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BASED ON OUR RECENT ARTICLES:

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization
EURO Journal on Computational Optimization. 2021. DOI: 10.1016/j.ejco.2021.100007
Jointly with Thomas Kleinert, Martine Labbé, and Martin Schmidt

A Survey on Bilevel Optimization Under Uncertainty
Jointly with Yasmine Beck and Martin Schmidt, Optimization Online, 2022

A Brief Introduction to Robust Bilevel Optimization
Jointly with Yasmine Beck and Martin Schmidt,
Views-and-News of the SIAM Activity Group on Optimization, to appear 2022




BILEVEL OPTIMIZATION

WITH DETERMINISTIC DATA



STACKELBERG GAMES

Introduced in economy by H. v. Stackelberg in 1934 MARKTFORM

Two-player sequential game: LEADER and FOLLOWER B O

The LEADER moves before the FOLLOWER

HEINRICH VON STACKELBERG
KOLN

Perfect information: the leader has a perfect knowledge
of the followers strategy

The follower observes leader’s action and acts rationally

Rationality: agents act optimally, maximizing their payoffs

BILEVEL OPTIMIZATION: Bracken & McGill (1973), Candler
& Norton (1977) VERLAE;EONNc;I?L?lf:]éL??INGER
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APPLICATIONS: PRICING

Pricing: operator sets tariffs, and then customers choose
the cheapest alternative

Tariff-setting, toll optimization (Labbé et al., 1998;
Brotcorne et al., 2001; Labbé & Violin, 2016)

Network Design and Pricing (Brotcorne et al., 2008)
Survey (van Hoesel, 2008)

Figure 1: 1-commodity network with two tarifl arcs.



A DETERMINISTIC BILEVEL PROBLEM

min”  F(z,y)
st. G(x,y) >0
y € S(z),

S(x): the set of optimal solutions of the x-parameterized problem

min T,
min - f(z,y)

s.t. g(z,y) > 0.

Y

(la) [T

upper
)= level
(1c) L

(2a) lower
(2b) level

Both levels may involve integer decision variables. Functions can be non-linear, non-convex...

(1) could be ill-posed (if LL solution is not unique). “min” to be replaced by

min min  F(x,
xeX yeS(x) ( y)

() Optimistic!

min max  F(zx,
reX yeS(x) ( y)

©) Pessimistic!



OVERVIEW OF BILEVEL OPTIMIZATION PROBLEMS

Bilevel
Optimization

|
[ | |
Under Uncertainty,

General Case g (SC , y) <0 Interdiction-Like Y <1- X Multi-Objective,
inf-dim spaces,...

1 1
| | |
Non-Convex Convex Non-Convex

— MILP

(MI)NLP, ... —  (MI)NLP.,...




THIS TALK

From deterministic bilevel optimization to bilevel optimization under uncertainty

Sources of uncertainty
Data uncertainty

Decision uncertainty
Timing for the data uncertainty
Here-and-now follower

Wait-and-see follower

Challenges & opportunities



SOURCES OF UNCERTAINTY



UNCERTAINTY: SINGLE-LEVEL VS BILEVEL

Single-level optimization: Bilevel optimization:
min{c'z: Az > b} " min " F(x,y) (1a)
X
s.t. G(zx,y) >0, (1b)
“Only” subject to data y € S(z), (1c)

uncertainty in A,b,c : . :
L S(x): optimal solutions of the x-parameterized problem

Stochastic optimization

' 2
Robust optimization ;%13 f(z.y) (2a)
Distributionally robust, etc s.t. g(z,y) =2 0. (2b)

Subject to: data uncertainty

But also: decision uncertainty. The leader is not sure about the reaction of the
follower, or the follower is not certain about the observed leader's decision.



TIMING OF UNCERTAINTY



WAIT-AND-SEE FOLLOWER

leader x ~ uncertainty u ~ follower y = y(x, u).

The leader is uncertain about the optimization parameters of the follower
Example: the leader solves a robust optimization problem

“mi »F . S
min max”  F(z,y) st yeS(a,u),

S(x,u) :=argmin f(z,u,y) s.t. g(x,u,y)>0.
yey

Example: the leader is risk-neutral wrt data uncertainty (discrete scenario set) Optimistic or pessimistic leader

“min” Zqu(x,y(:c,u)) s.t. y(z,u) € S(x,u),uecl

S(x,u) :=argmin f(x,u,y) s.t. g(x,u,y)>0.
yey




HERE-AND-NOW FOLLOWER

leader x  ~ follower y = y(x) ~ uncertainty u.

The follower solves the problem under data uncertainty (stochastic, robust,...).

Optimistic vs pessimistic leader

For example: optimistic leader, the robust follower hedges against uncertainty in the objective function

min min  F'(x,
xeX yeS(x) ( y)

S(z) := arg min {max f(z,u,y): glz,y’) > O} .
y' €Y ueld




A SMALL EXAMPLE



Deterministic bilevel

“min”  F(z,y)=z+vy

zeR
st. x—y>—1,
3z +y > 3,
y € S(x),

S(x) :=argmin f(x,y) = —0.1y
yeR

Here-and-now follower

Wait-and-see follower

U:={ueR:|ul <0.5}

S(x) :=argmin max f(z,u,y) = (—0.14+u)y

st. —2x+4+y>-T7,
— 3x — 2y > —14,
0<y<25.
y LY
) ,;2}?
J‘. T
[ f’ f
2 1 !
(J‘
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i }:’[:

“min max” F(z,y)=xz+y

zeR ueld
st. x—y>—1,
3rx+vy > 3,
y € S(x,u),
S(x,u) :=argmin (—0.1 4+ u)y
yeR
st. —2x+y> -7,
— 3z — 2y > —14,
0<y<25.

yeR wuweld
st. —2zx4y>—7,
—3x — 2y > —14,
0<y<25.
y bl
E > F
J
T
2 T ,;'
{l
1 b
"l-
& : > I
1 2 3 4

min F(x) s.t 1.5<xr<4

~ 2. 1.5 <x <

Fla) = T + 2.5, o< x <3,
—05x+7, 3<zx<4.

u € [—0.5,0.1) = (a)
u € (0.1,0.5] = (b)
u = 0.1 = all LL sol feasible




CHALLENGES



PROBLEM COMPLEXITY

Robust single-level LPs: Robust bilevel optimization:

Interval, ball, ellipsoidal, polyhedral or Gamma-
uncertainty preserve “tractability” of their
deterministic counterpart (Ben-Tal &
Nemirovski, Bertsimas & Sim) Continuous convex lower level: KKT-based, strong

Here-and-now follower: tractability of the lower-level
remains preserved for these uncertainty types

: T duality-based reformulations still possible
min cx

- Discrete lower level: branch-and-cut still possible
st. (a+u) x<bforallueld

Major challenge: much larger in size, parallelization

Robust bilevel optimization:

Wait-and-see follower: the problems may climb up in the complexity hierarchy!



ROBUST BILEVEL OPTIMIZATION

Deterministic bilevel Robust bilevel: Wait-and-see follower
“max” dly “max min” d'y
r€X zeX  uel
s.t. y € S(x) s.t. y € S(x,u)
S(z) := argmax{u’y : Ay < Bz + b} S(z,u) := argmax{u’y : Ay < Bx + b}
X C{0,1}" X C{0,1}"
- — [u” utl x ... — ut
NP-hard U= [up,ul ] X X [u, u, ]

Under interval uncertainty, the robust counterpart is Sigma,"-hard
The “adversarial problem” (inner min) is NP-hard

Buchheim, Henke, Hommelsheim:
On the complexity of robust bilevel optimization with uncertain follower's objective. OR Letters 49(5): 703-707 (2021)



OPPORTUNITIES



BILEVEL STOCHASTIC MIP

Discrete scenario set

Value-function reformulation (optimistic)

min
reX,y

Tot Y pa dE ylow

ueU

s.t. y(z,u) € arg mi}r/l{dg y: Ay < B,z +b,}
ye

X C{0,1}",Y C {0, 1}"v

O(x,u)

Value function:

= mingey {dL y: Ay < B,z + b, }

min c :U—I—E Du dLyu
reX,y
uel

st.  dby, < O(z,u), uel
Ay, < B,z +b,, uwelU
y. €Y, uwuel
X CH{0,1}"= Y C {0,1}"

Single-leader, multiple independent followers

Leverage on the existing branch-and-cut methods
(Fischetti et al, 2017; Tahernejad et al, 2020)

S. Bolusani, S. Coniglio, T. K. Ralphs, and S. Tahernejad, “A Unified Framework for Multistage Mixed Integer Linear
in Bilevel optimization: advances and next challenges, S. Dempe and A. Zemkoho, Eds., 2020, p. 513-560.

Optimization,”



CRITICISM... AND OUTLOOK

PERFECT INFORMATION AND RATIONALITY OF DECISION MAKERS



DECISION UNCERTAINTY: EXAMPLES

Leader hedges against sub-optimal follower reactions - near-optimal robust bilevel models
(Besancon et al, 2019).

If the level of cooperation/confrontation of the follower is unknown = intermediate cases,
between the optimistic and the pessimistic one (Aboussoror & Loridan, 1995; Mallozzi & Morgan,
1996).

The follower cannot perfectly observe the decision of the leader = hedges against all possible
leader decision given the noisy observation (Bagwell, 1995; vanDamme & Hurkens,1997; Beck &
Schmidt:2021).

Limited intellectual or computational resources render it impossible for the follower to take a
globally optimal decision = the follower resorts to heuristic approaches and the leader may be
uncertain w.r.t. which heuristic is used (Zare et al, 2020).



ROSES ARE RED
ELEPHANTS ARE GREY
BLAH BLAH BLAW BLAK
AT @ |

CONCLUSIONS

Connections between bilevel and robust/stochastic optimization still to be better
understood

When can we retain the tractability of the deterministic bilevel counterpart?
When can we solve uncertain bilevel problems through a serious of deterministic ones?
When do the bilevel problems under uncertainty become significantly harder?

How can we better exploit the existing computational frameworks for deterministic bilevel
optimization? (decomposition, SAA, scenario aggregation...)

Data uncertainty vs Decision uncertainty, which paradigm to follow?
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