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Abstract

This work deals with the creation and optimization of real-world instances in
the design of telecommunication networks. We propose two new sets of bench-
mark instances for the Steiner tree problem in graphs, which is one of the
fundamental network optimization problems. Our instances are large, sparse
graphs that contain over 100 000 nodes and originate from real-world applica-
tions of deploying last-mile fiber-optic networks. To obtain a rough estimate
on the hardness of the new instances, we measured the performance of prepro-
cessing techniques and of an exact algorithm based on branch-and-cut. This
work shall establish a missing link between the real world and the mathemat-
ical modeling and optimization of telecommunication networks.

1 Introduction

One of the fundamental problems in the design of telecom networks is the Steiner tree prob-
lem in graphs (STP) which searches for a subtree in an edge-weighted graph that connects a
subset of nodes (called terminals) at minimum cost. The performance of algorithms for the STP
is usually evaluated through practical experiments on publicly available sets of benchmark in-
stances (e.g., SteinLib [10]). However, at the time of this paper, only a relatively small number
of these instances include real-world graphs with more than 10 000 nodes. The main purpose
of this article is to establish a missing link between the real-world input data and the mathe-
matical modeling and optimization of telecommunication networks. To this end, we propose
two new sets of benchmark instances that contain a huge number of nodes (up to 100 000) and
that represent edge-weighted graphs based on spatial data.
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The presented instances should be of broader interest for the network optimization community
since they originate from real-world problems that appear in practical network design. To
ensure that the instances pose a challenge to state-of-the-art exact methods for solving the
STP, we applied preprocessing techniques and a branch-and-cut algorithm. The remainder of
this paper is structured as follows: In Section 2, we provide information about the set of new
benchmark instances. In Sections 3 and 4, we describe the applied preprocessing techniques
and the branch-and-cut algorithm, respectively. In Section 5, we present the computational
results. Concluding remarks are made in Section 6.

2 New Benchmark Instances

The STP is known to be A’/P-hard [8] and can be formally defined as follows: Let G = (V, E, ¢)
be an edge-weighted undirected graph with a weight function ¢ : £ — Z* and a set of
terminals 7" C V. The goal is to find a connected subgraph S = (Vg, Eg) of G for which
T C Vg and the sum of edge weights } . . cc is minimal. Nodes from V\T" are also called
Steiner nodes.

In this section we provide some details on the generation of instances originating from spatial
data (more detailed information can be found in Prossegger [12]). The instances were cre-
ated using land use data covering part of a city and its surrounding rural environment. More
precisely, the following information is used:

1. spatial polygon data describing the land use of an area, and
2. point-objects, describing customer locations.

Spatial data originates from the Austrian digital cadastral map that contains information on
parcel’s boundaries of all public and private properties. It also documents the type of land use
of each parcel as well as buildings. Edges of the graph represent the contours and emphcross-
ings of spatial polygon-objects. Steiner nodes are spatial point-objects on edge crossings. Ter-
minals are spatial point-objects representing centroids of buildings. To ensure data privacy,
terminals in our instances are chosen as random subsets of artificial customer locations.

Since we are dealing with graphs modeling the deployment of fiber optic telecommunication
networks, edge weights are obtained as averaged construction costs, including costs for the un-
derground work and costs for building cable poles in a correct proportion. The type of the land
use (e.g., building land, forest, highway, street,...) determines the costs for the underground
work.

The instances are divided into two sets:

GEO-Instances: This set contains 23 instances originating from an Austrian city, with different
deployment areas and different density concerning the number of terminals. The graphs con-
tain between 42 481 and 235 686 nodes, 52 552 and 366 093 edges, and between 88 and 6313
terminals. These basic instance properties, namely |V, |E| and |T'|, are listed in Table 2.
Figures 1 to 3 show GEO instances and their optimal solutions, plotted with coordinates in-




cluded in the instance files. The simple preprocessing step (see below) was skipped for the GEO
instances, it deemed unnecessary, hence no comparison data is available for this step.

I-Instances: This set contains 85 instances representing deployment areas from various Aus-
trian cities, but they also include rural areas with smaller population density and very sparse
infrastructure. The coordinates and construction data of the set I cannot be disclosed to the
public. The instances we publish are modified in a way that does not allow inference of the
original data. This is the reason why only simple preprocessed data (see below) is available
for the I-instances. The underlying graphs contain between 7886 and 178 810 nodes, 9265
and 239 552 edges, and between 38 and 4991 terminals. Table 3 provides |V|, | E| and |T'| for
each single instance of this set.

3 Preprocessing

The aim of preprocessing is to simplify all instances prior to using a time-consuming exact
algorithm. Table 1 lists all used tests. For a description of the tests, the reader is referred to
the works of Uchoa, Aragio, and Ribeiro [15] and Duin [6].

We first apply a simple preprocessing procedure in which degree reduction tests (NTD1 and
NTD2) are executed exhaustively. Then we continue with an advanced preprocessing procedure
as proposed by Ribeiro, Uchoa, and Werneck [13], using their publicly available implementa-
tion Bossa [bossa |. Algorithm 1 presents a short description of the preprocessing procedure’s
structure as implemented in Bossa [bossa ]. The procedure includes a number of reduction
tests, which are referred to by their acronym. If not further specified, a test in the algorithm
refers to calling it once for each node/edge in the graph.

Table 1: Applied reduction tests.

Acronym | Reduction test

NTD1 Non-Terminal of Degree 1
NTD2 Non-Terminal of Degree 2

TD1 Terminal of Degree 1
NSV Nearest Special Vertex (also known as Terminal Distance test)
SDE Special Distance with Equality

SDExp SDE with Expansion

4 Exact Solution Approach

The implemented branch-and-cut procedure is based on the algorithm proposed by Koch and
Martin [9]. In this paper we will only cover the differences between our and their implemen-
tation. For a complete description the reader is referred to the original paper.
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Figure 1: Instance G107
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Algorithm 1: Preprocessing Procedure, cf. [bossa, 13]

Data: A weighted graph G = (V, E, ¢) with terminals 7" C V.
Result: A reduced instance.

1 repeat
2 | NSV
3 until no further reductions possible

4+ SDE

5 repeat
| NTD1, NTD2, TD1, NSV, SDE
until no further reductions possible
repeat
‘ NTD1, NTD2, TD1, SDE, NSV, SDExp
10 until no further reductions possible

o e N

Koch and Martin’s branch-and-cut procedure is based on the well-known directed cut formula-
tion [16], which they extended through so-called flow-balance inequalities (see below). These
inequalities were originally considered by Duin [6] and may improve the LP relaxation in some
cases. In our approach we use a similar formulation with the exception that we incorporate
additional variables for Steiner nodes to facilitate node-oriented branching, which is generally
more effective than branching on arc variables [4].

We refer to this ILP model as extended directed cut formulation (EDCF). To apply a directed
formulation to an undirected problem instance, the original graph G = (V, E, ¢) has to be
transformed into an equivalent directed version Gp = (V, A, ¢). The arc set A contains two
antiparallel arcs for all edges in E and each arc is assigned the same weight as its corresponding
edge.

For each arc (7, j) € A, an arc variable z;; denotes membership of the corresponding arc to the
Steiner tree (z;; = 1) or not (z;; = 0). Similarly, additional node variables y; for i € (V\T')
denote if 7 is spanned by the Steiner tree (y; = 1) or not (y; = 0). An arbitrary terminal is
chosen as root node r. For brevity, we use the following notations: Givenaset W C V, we
define 6t (W) = {(i,j) € A|i € W A j € VNI } as the set of all arcs with tail inside TV and
the head in its complement. Conversely, 6~ (W) denotes the set of arcs pointing into W from
its complement set. For short, if W contains only a single element v, we write 61 ({v}) as
6% (v) and 6~ ({v}) as 6~ (v), respectively.
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The objective function minimizes the weight of the selected arcs. Degree constraints (1) ensure
that each terminal except the root and all Steiner nodes that are part of the solution have in-
degree exactly one. Constraints (2) are directed cut constraints that ensure that there is a
directed path between the root and any other terminal node.

The following inequalities are additionally used to initialize the branch-and-cut procedure:

(67 (1)) > y; Vie V\T (3)
i + 153 < y; V(i,j) € A,i € V\T (4)

Constraints (3) ensure that Steiner nodes that are part of the solution have at least one outgo-
ing arc (they were referred to as “flow-balance” constraints in the literature). Constraints (4)
express that each arc in the solution tree can only be oriented in one way. We also add root in-
and out-degree constraints: (61 (7)) > 1and (6~ (r)) = 0 (notice that one can alternatively
remove root-incoming arcs from the input graph).

The size of the formulation is exponential due to the directed cut constraints (2). Such a for-
mulation can be solved efficiently through the application of the well-known cutting-plane
method. For description of the general approach the reader is referred to Grotschel, Monma,
and Stoer [7]. The cutting-plane method requires a separation method, which decides which
inequalities are added to the LP. We implement the separation method in the same manner
as in Koch and Martin [9]. The push-relabel maximum flow algorithm [3] is applied, which
runs in O(|V|? - /|E|). Nested cuts, back cuts and creep-flow (facilitates the separation of
maximum cardinality cuts) are used by default to improve the number and strength of sepa-
rated inequalities per call. In their approach Koch and Martin restrict themselves to the use
of creep-flow, because experiments suggested that nested and back cuts do not provide signif-
icant additional improvements when already using creep-fow and flow-balance inequalities.
We chose to include nested and back cuts anyway, since for several of the proposed instances
a performance improvement could be achieved. This may be attributable to the fact that with-
out nested and back cuts, the solution of the LP relaxation does not change much in each
cutting-plane iteration.

Further differences between our and the implementation of Koch and Martin are in the cre-
ation of fesible solutions and in the initialization of the cutting plane procedure. To further
increase the branch-and-cut procedure’s performance, an initial set of directed cut inequali-
ties is computed heuristically through Wong’s dual ascent algorithm [16]. This method is very
effective for decreasing runtime, since less cutting-plane iterations are generally necessary
to find the optimal solution [1, 11]. Dual ascent also calculates a feasible solution which is



used to initialize the upper bounds. During the branch-and-cut procedure feasible solutions
are additionally computed using a primal heuristic. We apply the improved implementation of
the well-known shortest path heuristic [14] as proposed by Aragdo and Werneck [2], which
achieves a much better average-case runtime than the classic implementation. The heuris-
tic is called after each cutting-plane iteration (instead of every five iterations like in Koch
and Martin [9]), since the running time for a single separation iteration can be quite high for
large instances. The heuristic is applied to the original undirected graph with adapted edge
weights c;j, which are computed from the current LP solution (Z, §) as follows:

C;j = ¢;j - (1 — max(Z;;, Zji)) V{i,j} € E

5 Results

In this section we first analyze the influence of the described preprocessing procedures on the
proposed benchmark sets. Afterwards, computational results of the branch-and-cut proce-
dure as described in Section 4 are given. For the latter we compare the performance of solving
instances after simple and advanced preprocessing. The branch-and-cut procedure was im-
plemented in C++ using ILOG CPLEX and Concert Technology 12.5. The code was compiled
using gcc 4.8.1 with the -04 flag (full optimization). All algorithms were executed on a Sun
Grid Engine cluster with 14 Intel Xeon E5540 2.53 GHz with 24 GB RAM and 2 Intel Xeon E5649
2.53 GHz with 60 GB RAM. All given runtimes were measured as real CPU runtime (walltime).

Since in most instances the edge weights range from very small to quite large numbers, CPLEX
was configured to solve instances to a gap of 0% (default is 0.01%). Additionally the prepro-
cessing reduction (CPX_PARAM_REDUCE) switch was set to primal only, the generation of gen-
eral purpose cuts was deactivated by setting the CPX_PARAM_EACHCUTLIM parameter to O.
CPX_PARAM_DIVETYPE was set to probing, as CPLEX documentation indicated faster results
for integer problems. Variable selection (CPX_PARAM_VARSEL) was set to strong branching,
and branching priorities were set to prefer node variables (y;). The CPLEX time limit was set
to 86 400 seconds (24 hours). All other CPLEX parameters were left at their respective defaults.

5.1 Preprocessing

Tables 2 and 3 list the preprocessing results on the set of GEO and I instances, respectively.
Each entry contains the number of edges, nodes and terminals before and after preprocessing.
Additionally, we also show the percentage of remaining edges compared to the original in-
stances after each preprocessing step (denoted by R[%]). Recall that, in contrast to I instances,
the simple preprocessing had no effect on GEO instances, and therefore only the advanced pre-
processing was applied to them. We notice that the advanced preprocessing applied to the
group GEO removes 60 to 80% of all edges. In case of I instances, the advanced preprocessing
was applied after the graphs were already reduced by the simple preprocessing. We note that
the simple preprocessing procedure already manages to eliminate at least ~30% of all edges
for each instance of group I. The application of advanced preprocessing manages to remove



another ~30% of all edges. Regarding the running time, we report it only for the advanced
preprocessing — it can be found in Tables 4 and 5. The runtime of simple preprocessing was in-
significant in comparison and was thus not documented. A cumulative chart of the advanced
preprocessing runtimes is depicted in Figure 4. The time axis is drawn in a logarithmic scale.
The line marks the last instance that finished preprocessing within 24 hours. We note that
the advanced preprocessing of the larger instances took quite long, e.g. instance 1024 finished
preprocessing after 5.8 days).

Figure 5 plots the distribution of both terminal percentage and the ratio between nodes and
edges before and after advanced preprocessing. The structure plot of the original instances was
omitted, since the changes introduced by simple preprocessing are minimal. On the contrary,
after advanced preprocessing the distribution indicates that most instances have become more
sparse than before. For the GEQ instances the step of simple preprocessing was skipped there
for, no data was available. In case of advanced preprocessing, a clear divergence for the GEO
instances from the I instances can be seen.

Table 2: Results of the preprocessing procedure for the GEO instances.

original advanced preprocessing
ID
4 |E| TV |E|  |T| R[%]time [s]
G101 67966 82485 100 | 10734 16345 9% 20 13

G102 | 111707 160504 2052 | 27896 43925 2003 27 1003
G103 | 135543 201803 3033 | 36270 57370 2930 28 2580
G104 | 158212 240022 3914 | 44251 70029 3776 29 4307

G105 79244 101189 550 | 14586 22450 525 22 72
G106 | 204621 318136 5556 | 62618 100067 5373 31 7401
G107 85568 114113 938 | 15536 23858 893 21 359
G201 44624 56 205 190 8286 12617 188 22 17
G202 62174 87562 1015 | 14028 21610 985 25 933
G203 88728 133625 2041 | 25651 40610 1999 30 1784
G204 50002 65203 386 9939 15249 376 23 30
G205 | 120866 187312 3224 | 37398 59323 3146 32 3458
G206 60 446 82940 803 | 13688 21197 789 26 87
G207 42481 52552 97 7565 11521 98 22 11
G301 80736 98750 191 | 13291 20261 181 21 24

G302 | 117756 165153 1879 | 24951 38647 1797 23 2668
G303 | 147718 214176 2992 | 37085 57711 2915 27 2793
G304 86413 108872 419 | 15213 23329 403 21 162
G305 | 172687 255825 3902 | 47016 73861 3809 29 4011
G307 | 235686 366093 6313 | 71184 113616 6107 31 21691
G308 78 834 95732 88 | 13298 20351 86 21 32
G309 97928 128632 902 | 18704 28851 868 22 287

10



Table 3: Results of the preprocessing procedures for the I instances. The column R denotes the percentage of | E|
remaining compared to the original instance.

original simple preprocessing advanced preprocessing
ID
Vi 1B T vl Bl T RE| VI 1Bl T R (%ltime (5]

I001| 46051 64083 1184| 30190 47748 1184 75 14675 22055 941 34 5851
I002| 86009 115002 1665| 49920 77871 1665 68 23800 35758 1282 31 165874
I003| 79177 109757 3222| 44482 73419 3222 67 16270 23919 2336 22 197038
1004 9128 12409 570| 5556 8552 570 69 867 1238 263 10 183
I005| 16914 22958 1017| 10284 15980 1017 70 1677 2430 491 11 484
I006| 48804 70254 2202| 31754 52875 2202 75 13339 19532 1842 28 49796
I007| 23332 32772 737| 15122 24371 737 74 6873 10299 599 31 2979
I008| 25130 35244 871| 15714 25567 871 73 6522 9629 708 27 2885
I009| 52316 71775 1262| 33188 52007 1262 72 14977 22435 1053 31 29516
I010| 65533 83865 943| 29905 47457 943 57 13041 19545 782 23 3113
I011| 45510 62188 1428 | 25195 41298 1428 66 9298 13685 1202 22 2491

I012| 32326 40562 503| 12355 19962 503 49 3500 5214 387 13 186
I013| 30754 41753 891| 18242 28976 891 69 7147 10608 670 25 5512
I014| 36097 44609 475| 12715 20632 475 46 3577 5311 364 12 35

I015| 92217 124613 2493| 48833 79987 2493 64 20573 30541 2119 25 59274
I016|143463 187841 4391| 72038 115055 4391 61 27214 39824 3434 21 472546
I017| 25393 34679 478| 15095 24091 478 69 7571 11571 386 33 484
I018| 52889 73439 1898| 31121 51113 1898 70 12258 18014 1549 25 31068
I019| 58078 74770 866| 25946 41645 866 56 11693 17624 732 24 1133
I020| 68626 83380 594| 21808 34921 594 42 6405 9564 508 11 485
I021| 45459 55846 392| 16013 25269 392 45 5195 7861 295 14 101
I022| 31703 41466 437| 16224 25691 437 62 8869 13551 356 33 1100
I023| 33382 46156 582| 22805 35307 582 76 13724 20863 403 45 1628
1024|113054 154736 3001| 68464 108732 3001 70 32357 48250 2511 31 503528
I025| 50126 65383 945| 23412 37952 945 58 10055 14961 833 23 1328
1026| 79487 111878 3334| 47429 79307 3334 71 18155 26568 2661 24 291744
1027|169438 224904 3954| 85085 138888 3954 62 40772 60555 3490 27 246569
1028|119785 163543 1790| 72701 115430 1790 71 43690 66461 1597 41 39934
1029|128122 171369 2162| 69988 111804 2162 65 32979 49627 1946 29 62948
I030| 80126 101802 1263| 33188 53680 1263 53 12941 19279 1093 19 3862
I031|110930 146104 2182| 54351 88211 2182 60 21054 31410 1832 22 11549
1032|119110 155597 3017| 56023 91399 3017 59 21345 31353 2454 20 50222
I033| 33309 44769 636| 18555 29730 636 66 8500 12700 548 28 1511
I034| 49017 62922 735| 22311 35516 735 56 9128 13668 606 22 1187
I035| 72466 92967 1704| 30585 50454 1704 54 13129 19420 1428 21 23569
I036| 92336 116626 1411| 37208 60356 1411 52 17036 25482 1258 22 6664

I037| 33711 42651 427| 13694 22126 427 52 5886 8869 392 21 460
I038| 38081 50417 967| 18747 30639 967 61 7733 11478 798 23 2326
I039| 18250 24156 347| 8755 14449 347 60 3719 5533 306 23 96

I040| 78351 104573 1762| 40389 65820 1762 63 18837 28156 1501 27 35413
I041|107893 137798 1193| 47197 75307 1193 55 22466 33868 1014 25 6411
I042| 98374 133196 2171| 51896 85550 2171 64 | 23925 35806 1923 27 15693

I043| 24460 31168 367| 10398 16787 367 54 4511 6740 335 22 214
1044|130289 176526 3358| 68905 113889 3358 65 | 31500 46757 2954 26 122199
I045| 32420 41763 421| 14685 23466 421 56 6775 10227 378 24 94

1046|144745 192528 3598| 70843 117209 3598 61 32376 48054 3154 25 124694
I047| 46509 64573 2354| 28524 46251 2354 72 10622 15440 1791 24 61349
I048| 39363 48182 358| 13189 21219 358 44 4920 7356 320 15 272

11



Table 3: Results of the preprocessing procedures for the I instances. The column R denotes the percentage of | E|
remaining compared to the original instance.

original simple preprocessing advanced preprocessing
ID
Vi 1B T vl Bl T RE| VI 1Bl T R (%ltime (5]

I049| 79338 99310 990| 30857 49591 990 50 15045 22713 821 23 8417
I050| 71355 99944 2868| 43073 71276 2868 71 17787 26176 2232 26 253915
I051| 48764 67543 1524| 27028 45406 1524 67 12130 17892 1337 26 3368

1052 9257 10789 40| 2363 3761 40 35 160 237 23 2 <1
1053 8604 10807 126| 3224 5285 126 49 693 1023 102 9 1
I054| 32788 35681 38| 3803 6213 38 17 540 817 25 2 <1
I055| 27519 36175 570| 13332 21580 570 60 4701 6979 483 19 301
1056 7886 9265 51 1991 3176 51 34 290 439 34 5 <1
I057| 68134 90703 1569| 33231 55149 1569 61 13078 19368 1346 21 14587
I068| 54221 71062 1256| 23527 39628 1256 56 7877 11657 997 16 852
I059| 21746 27716 363 9287 14975 363 54 2800 4157 286 15 86

I060|137451 165937 1242| 42008 67572 1242 41 18991 28536 1158 17 19905
I061| 70170 95284 1458| 39160 63659 1458 67 20958 31465 1337 33 32477
1062|155326 202462 3343| 66048 110491 3343 55 23714 35305 2812 17 9369
I063| 52176 69576 1645| 26840 43661 1645 63 9600 14042 1291 20 55795
I064| 94336 138745 3458| 63158 107345 3458 77 | 31712 46711 3182 34 332814

I065| 10200 12807 144| 3898 6356 144 50 1185 1756 119 14 4
I066| 59872 70249 551| 15038 24596 551 35 4551 6821 417 10 38
I067| 43552 56846 627| 20547 33230 627 58 10318 15588 579 27 972
I068| 68863 91586 1553| 33118 55127 1553 60 12191 18023 1302 20 5992
I069| 18855 25626 543 9574 16208 543 63 3508 5156 452 20 843
I070| 37489 47602 550| 15079 24608 550 52 6739 10064 511 21 874
I071| 79580 102014 1494| 33203 54427 1494 53 12772 18886 1281 19 3843
I072| 80184 98679 993| 26948 44194 993 45 11628 17411 851 18 721
I073| 35009 48757 1847| 21653 35171 1847 72 7510 10873 1337 22 30970
I074| 29623 38611 653| 13316 22033 653 57 4441 6562 548 17 123
I075|110782 149620 2973| 57551 95381 2973 64 | 23195 34362 2498 23 20143
I076| 31738 41032 598| 14023 22895 598 56 4909 7268 498 18 187

I077| 31318 44908 1787| 20856 34237 1787 76 9153 13363 1490 30 133537
I078| 23220 32034 835| 13294 21948 835 69 5864 8662 692 27 6513

I079| 57402 70047 565| 19867 31271 565 45 7933 11807 497 17 533
I080| 47422 59412 548| 18695 29708 548 50 7589 11256 499 19 712
I081| 56718 73051 888| 25081 40739 888 56 10747 16029 751 22 1217
I082| 41475 51351 515| 15592 24788 515 48 5850 8693 435 17 728

I083|178810 239522 4991| 89596 148583 4991 62 | 34221 50301 4138 21 77571
I084| 96899 126877 2319| 44934 73727 2319 58 17050 25201 1918 20 33793
I085| 26002 31896 301 9113 14491 301 45 2780 4123 243 13 80

12
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Figure 4: Runtimes of advanced preprocessing as depicted in Table 5.

Figure 6 indicates a correlation between the number of nodes and the number of edges in an
instance. We note that preprocessing techniques (simple and advanced) increase this correla-
tion. Figure 6(b) shows a more detailed view of this graphic for the advanced preprocessing.
In this series of plots no significant difference between the I and GEO instances can be seen.

5.2 Exact Solution

Table 4 provides results for solving GEO instances without preprocessing and after advanced
preprocessing. Table 5 lists the results for solving I instances after simple and advanced pre-
processing. The following values are reported: The column “DAgap[%]” gives the gaps ob-
tained by the dual ascent algorithm, which can be seen as a starting point for the ILP (recall
that the ILP is initialized by the cutting planes found in the dual ascent and the the first ILP
primal solution is the dual ascent feasible solution). The “gap” column lists the relative ILP
optimality gaps, which specify the difference between the best found solution (shown in the
“objective” column) and the best lower bound (shown in the “lower bound” column).

objective value — lower bound

gap =

lower bound

For the instances with advanced preprocessing the gaps have been scaled to include the pre-
processing offset so that they can be compared more easily with the simple preprocessed ones.
Finally, the column “time[s]” shows the running time (in seconds) of the exact approach (TL
stands for “the time limit reached”, which was set to 24 hours per instance).

13
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Figure 5: Scatter plot of the node-edge ratio and the terminal-node ratio. Some outlier in-
stances from (a) are marked to illustrate the changes after preprocessing.
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In Figure 7 the cumulative runtimes from Table 5 are plotted. The graph reveals that the run-
time improvement gained from preprocessing for branch-and-cut increases heavily with in-
stance size. Almost all instances could be solved to optimality within one day after advanced
preprocessing. If the preprocessing duration is added, the set of solved instances is still ~85%
within this time limit. On the contrary, only ~65% of all instances could be solved in one day
without advanced preprocessing. Table 4 reveals that only two unpreprocessed instances from
the GEO group could be solved to optimality within 24 hours, and therefore, we do not show a
similar chart for this group.

In general, without advanced preprocessing, a large number of instances could not be solved
to optimality within one day. Figure 8 shows the relative ILP gaps (as reported by CPLEX) of
the unsolved instances. Note that we did not include data for the I instances after advanced
preprocessing since the unsolved instances in this case where few and the gaps small.

Table 4: Results of the branch-and-cut procedure for the GEO instances.

original instances instances with advanced preprocessing

ID

DAgap[%] gap [%] lower bound objective  time [s] | DAgap[%] gap [%] lower bound objective  time [s]
G101 4.8084 4.8084 3439226 3604599 TL 3.2171 0 3492405 3492405 11887
G102 4.6487 1.1388 15132879 15305 206 TL 3.9544  0.1421 15184047 15205628 TL
G103 4.4554 1.0418 19857612 20064 484 TL 3.7510  0.0806 19927745 19943 807 TL
G104 4.3463  4.3463 25847 585 26971 006 TL 3.6252  0.1606 26155589 26197583 TL
G105 4.1508  4.1508 12362 889 12876 053 TL 3.4270 0 12507 877 12507877 73229
G106 3.8048  3.8048 44062993 45739520 TL 3.2867  0.6150 44 458 569 44731984 TL
G107 4.7539  0.6993 7309 295 7360 406 TL 3.6783 0 7325530 7325530 7815
G201 3.8601 0.2380 3481975 3490 260 TL 4.3274 0 3484028 3484028 1369
G202 4.2548  0.0433 6849 281 6852245 TL 3.1465 0 6849 423 6849423 1191
G203 4.2008 0.9392 13107 861 13230972 TL 3.6252 0 13155210 13155210 23703
G204 4.1588 0 5313548 5313548 34256 3.2254 0 5313548 5313548 1057
G205 3.8414  3.8414 24534 820 25477 296 TL 3.1937  0.3579 24792524 24 881 257 TL
G206 4.2856  0.3279 9166 968 9197029 TL 3.8149 0 9175622 9175622 2296
G207 3.0872 0 2265834 2265834 50754 1.9700 0 2265834 2265834 1028
G301 4.4834 4.4834 4736298 4948 643 TL 3.9353 0 4797 441 4797441 13252
G302 4.7381 1.1628 13243377 13397374 TL 3.4634 0 13300990 13300990 31291
G303 3.7310 3.7310 27 645 432 28676881 TL 3.2469 0.0027 27941035 27941 801 TL
G304 4.0303  4.0303 6629770 6896 969 TL 3.7322 0 6721180 6721180 30326
G305 3.6847  3.6847 40198331 41679517 TL 3.1814  0.0777 40615001 40646 576 TL
G307 3.8089  3.8089 50652 541 52581831 TL 3.2236  0.5967 51117755 51422797 TL
G308 4.3545  4.3545 4634667 4836484 TL 4.2217 0 4699474 4699474 55315
G309 3.6466 3.6466 11143170 11549514 TL 3.4066 0 11256303 11256303 36578
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Table 5: Results of the branch-and-cut procedure, for the I instances

instances with simple preprocessing

instances with advanced preprocessing

ID

DAgap[%] gap [%] lower bound objective time [s] | DAgap[%] gap [%] lower bound objective  time [s]
I001 0.1654 0 253921201 253921201 8474 0.0593 0 253921201 253921201 909
1002 0.1993 0.1993 399673678 400470203 TL 0.0643 0 399809303 399809303 6885
1003 0.3985 0.0038 788767152 788796834 TL 0.0484 0 788774494 788774494 3295
1004 0.5017 0 279512692 279512692 125 0.0980 0 279512692 279512692 2
1005 0.4606 0 390876350 390876350 577 0.1839 0 390876350 390876350 6
1006 0.1228 0 504526035 504526035 59133 0.0534 0 504526035 504526035 1739
1007 0.1627 0 177909 660 177 909 660 1830 0.0552 0 177909660 177 909 660 217
1008 0.1748 0 201788202 201788202 2411 0.0484 0 201788202 201788202 218
1009 0.2069 0 275558727 275558727 46354 0.0953 0 275558727 275558727 480
1010 0.1965 0 207889674 207889674 64207 0.0787 0 207 889674 207 889 674 501
I011 0.1876 0 317589880 317589880 4837 0.0655 0 317589880 317589880 377
1012 0.3891 0 118893243 118893243 547 0.0968 0 118893243 118893243 14
1013 0.1600 0 193190339 193190339 7758 0.0560 0 193190339 193190339 153
1014 0.3561 0 105173465 105173465 454 0.0917 0 105173465 105173465 6
1015 0.2404 0.0195 592199698 592315122 TL 0.0925 0 592240832 592240832 6383
1016 0.2017 0.0174 1110829727 1111023215 TL 0.0786 0 1110914623 1110914623 25647
1017 0.2099 0 109739695 109739695 703 0.0677 0 109739695 109739695 53
1018 0.1639 0 463887832 463887832 28352 0.0548 0 463887832 463887832 923
1019 0.3357 0.0137 217631791 217661665 TL 0.1095 0 217647693 217 647 693 1026
1020 0.3100 0 146515460 146515460 5022 0.1027 0 146515460 146515460 66
I021 0.2945 0 106470644 106470 644 4109 0.1036 0 106470644 106470 644 47
1022 0.2251 0 106799980 106799980 2270 0.0687 0 106799980 106799 980 233
1023 0.2519 0 131044872 131044872 5578 0.0565 0 131044872 131044872 677
1024 0.1690 0.0090 758461284 758529425 TL 0.0676 0 758483415 758483415 44124
1025 0.4678 0 232790758 232790758 48985 0.2180 0 232790758 232790758 1289
1026 0.2070 0.0084 927995642 928073794 TL 0.0565 0 928032223 928032223 3955
1027 0.2471 0.0256 976718597 976968 933 TL 0.0938 0.0000 976811902 976814293 TL
1028 0.2450 0.2450 383904288 384844706 TL 0.0963 0.0273 374103584 384324703 TL
1029 0.3059 0.0173 492167713 492252699 TL 0.1247 0 492193565 492193565 10876
1030 0.4950 0 321646787 321646787 63989 0.1585 0 321646787 321646787 467
1031 0.3144 0.0234 578237328 578372425 TL 0.1719 0 578284709 578284709 2759
1032 0.1316 0.0107 773064822 773147670 TL 0.0561 0 773096 651 773096 651 2493
1033 0.1711 0 134461857 134461857 1735 0.0780 0 134461857 134461857 118
1034 0.3018 0 165115148 165115148 80365 0.0894 0 165115148 165115148 410
1035 0.1813 0 414440370 414440370 34056 0.0704 0 414440370 414440370 767
1036 0.3184 0.0211 375236129 375315190 TL 0.1328 0 375260864 375260864 2696
1037 0.4207 0 105720727 105720727 5427 0.1292 0 105720727 105720727 59
1038 0.2291 0 255767543 255767543 8669 0.0746 0 255767543 255767 543 584
1039 0.2572 0 85566290 85566290 331 0.0726 0 85566290 85566290 30
1040 0.3016 0.0263 431468812 431582451 TL 0.0925 0 431498867 431498867 2874
1041 0.3686 0.0291 301879284 301967000 TL 0.1350 0 301914840 301914840 10892
1042 0.2338 0.0267 532079428 532221597 TL 0.0985 0 532131412 532131412 10532
1043 0.2555 0 95722094 95722094 1002 0.1358 0 95722094 95722094 35
1044 0.2372 0.0143 804487839 804602796 TL 0.1013 0 804532332 804532332 24578
1045 0.2889 0 105944062 105944 062 4047 0.1175 0 105944062 105944 062 73
1046 0.2455 0.0293 925400944 925672015 TL 0.1415 0 925470052 925470052 52020
1047 0.1963 0.0007 695159075 695164265 TL 0.0597 0 695163406 695163406 1524
1048 0.2728 0 91509 264 91509 264 4547 0.1486 0 91509 264 91509 264 44
1049 0.3290 0.0398 294771429 294888690 TL 0.1327 0 294811505 294811505 3302
1050 0.1689 0.0174 792559129 792696 807 TL 0.0661 0 792599114 792599114 19726
I051 0.1463 0 357230839 357230839 75456 0.0582 0 357230839 357230839 1420
1052 0.1188 0 13309 487 13309487 1 0.0197 0 13309 487 13309487 <1
1053 0.1544 0 30 854 904 30854904 10 0.0863 0 30854 904 30854904 <1
1054 1.1682 0 15841596 15841596 94 0.6760 0 15841596 15841596 <1
1055 0.1552 0 144164924 144164924 912 0.0498 0 144164924 144164924 44
1056 0.2039 0 14171206 14171 206 1 0.0442 0 14171 206 14171 206 <1
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Table 5: Results of the branch-and-cut procedure, for the I instances

instances with simple preprocessing instances with advanced preprocessing

ID

DAgap[%] gap [%] lower bound objective time [s] | DAgap[%] gap [%] lower bound objective  time [s]
1057 0.2014 0 412746415 412746415 78499 0.0646 0 412746415 412746 415 764
1058 0.2829 0 305024188 305024188 6638 0.0788 0 305024188 305024188 191
1059 0.1968 0 107 617854 107 617 854 130 0.0397 0 107 617854 107 617 854 6
1060 0.4419  0.0044 337277249 337292055 TL 0.3193 0 337290460 337290460 3441
1061 0.1894  0.0269 363005993 363103538 TL 0.0831 0 363042722 363042722 14454
1062 0.3359  0.0226 792875218 793054349 TL 0.1416 0 792941137 792941137 6898
1063 0.2691 0 459801704 459801704 57789 0.1252 0 459801704 459801704 1008
1064 0.1575 0.0205 863036549 863213284 TL 0.0701 0.0000 863103171 863104019 TL
1065 0.2297 0 32965718 32965718 55 0.0712 0 32965718 32965718 4
1066 0.2602 0 174219813 174219813 2153 0.1377 0 174219813 174219813 45
1067 0.2214 0 175540750 175540750 57694 0.1142 0 175540750 175540750 462
1068 0.2179 0 420730046 420730046 16961 0.0751 0 420730046 420730046 597
1069 0.1882 0 135161583 135161583 866 0.0487 0 135161583 135161583 38
1070 0.2802 0 136700139 136700 139 5639 0.1017 0 136700139 136700 139 135
I071 0.1891 0 382539099 382539099 38045 0.0741 0 382539099 382539099 533
1072 0.2683 0 289019226 289019226 82039 0.0909 0 289019226 289019226 528
1073 0.2313 0 663004987 663004987 17297 0.0486 0 663004987 663004 987 359
1074 0.3288 0 165573383 165573383 725 0.1134 0 165573383 165573383 29
I075 0.2546  0.0186 815360214 815511714 TL 0.0814 0 815404026 815404026 5622
1076 0.3925 0 166249692 166 249 692 1091 0.0801 0 166249692 166 249 692 40
1077 0.1719 0 472503150 472503150 21580 0.1124 0 472503150 472503150 740
1078 0.1544 0 185525490 185525490 1049 0.0562 0 185525490 185525490 129
1079 0.4900  0.0025 150506371 150510132 TL 0.2471 0 150506933 150 506 933 1514
1080 0.4339 0 164299652 164299652 53423 0.1349 0 164299652 164299652 213
1081 0.3561 0 247527679 247527679 35565 0.1270 0 247527679 247527679 674
1082 0.3735 0 147 407 632 147 407 632 4923 0.1481 0 147 407 632 147 407 632 73
1083 0.2787  0.0291 1405421745 1405830098 TL 0.1217 0 1405593856 1405593856 27622
1084 0.3082  0.0157 627148556 627 246 982 TL 0.1065 0 627187559 627 187 559 2876
1085 0.2585 0 80628079 80628079 199 0.1053 0 80628 079 80628079 10

6 Conclusion

We presented two new sets of STP benchmark instances that were created from real-world fiber
optic network design problems. Our experiments indicate that the application of preprocessing
requires a large amount of time on such huge graphs. However, results suggest that the effort
pays off and the application of preprocessing prior to exact methods is recommendable. It
remains an open question how other solution approaches would perform on this instance set.
We expect that the results presented in this work can further be improved by applying more
sophisticated and effective methods as e.g. the framework by Polzin [11] and Daneshmand [5].
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