MIP Modeling of Incremental Connected Facility Location

Ashwin Arulselvan¹ Andreas Bley² Ivana Ljubić³

¹ University of Strathclyde, UK
 ² University of Kassel, Germany
 ³ ESSEC Business School of Paris, France

INFORMS Telecommunications Conference 2018 May 23, 2018, Hamburg

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Next generation access networks

- Replace long copper lines by optical fibers to the curb/building (FTTC / FFTB / FTTA)
 - more bandwidth
 - more reach
 - less active locations
 - less energy consumption
- Nation-wide technology change
 - replacement of link technology on last miles to customers
 - huge investments
 - work intensive
 - deployment in multiple phases

Trail network with existing and potential infrastructure

Strategic planning

- Which facilities (COs) to open?
- When to migrate which region?
- Use of intermediate technologies and technology mix?

Company objective

• Maximize net present value

Main constraints

- network technically feasible
- meet minimum service levels (given by regulation authorities)

Part of an FTTH network

Strategic planning

- Which facilities (COs) to open?
- When to migrate which region?
- Use of intermediate technologies and technology mix?

Company objective

• Maximize net present value

Main constraints

- network technically feasible
- meet minimum service levels (given by regulation authorities)

Year 1

Year 2

Strategic planning

- Which facilities (COs) to open?
- When to migrate which region?
- Use of intermediate technologies and technology mix?

Company objective

• Maximize net present value

Main constraints

- network technically feasible
- meet minimum service levels (given by regulation authorities)

Deployment of new Access Networks

Typical real-world setting

- Mix of different (intermediate) technologies
 - ► ADSL, VDSL (copper lines), LTE (ratio), FTTB (optical fiber)
- Different service levels with coverage constraints

Year	available bandwidth							
	\geq 384 kb/s	\geq 7.2 <i>Mb/s</i>	\geq 50 Mb/s					
Х	\geq 80%	$\geq 10\%$	\geq 0 %					
X+1	\geq 90%	\geq 30 %	$\geq 10\%$					
X+2	\geq 95%	\geq 50 %	\geq 25%					

Deployment of new Access Networks

Typical real-world setting

- Mix of different (intermediate) technologies
 - ► ADSL, VDSL (copper lines), LTE (ratio), FTTB (optical fiber)
- Different service levels with coverage constraints

Year	available bandwidth							
	\geq 384 <i>kb/s</i>	\geq 7.2 <i>Mb/s</i>	\geq 50 Mb/s					
Х	\geq 80%	≥ 10 %	\geq 0 %					
X+1	\geq 90%	\geq 30 %	$\geq 10\%$					
X+2	\geq 95%	\geq 50 %	\geq 25%					

Simplified model

- Only single 'new' technology
- Only direct client-facility connections
- \bullet Applicable to DSL \rightarrow FTTx migration
 - global migration planning for many regions
 - fiber optic rollout within a small region

- Given
 - Mixed graph G = (V, E) with
 - V = R potential clients F potential facilities M Steiner nodes $\left. \right\} = S$
 - $E = A_R$ fac.-client connections E_S edges of facility network
 - Planning horizon $T=1,\ldots,\mathcal{T}$
 - Setup and maintenance costs for facilities and edges
 - Demands and profits for clients
 - Total demand D^t to be covered
 - Discount factor for costs/profits

- Facility
- Steiner node

- Given
 - Mixed graph G = (V, E) with
 - $\left. \begin{array}{l} V = R \text{ potential clients} \\ F \text{ potential facilities} \\ M \text{ Steiner nodes} \end{array} \right\} = S$
 - $E = A_R \text{ fac.-client connections} \\ E_S \text{ edges of facility network}$
 - Planning horizon $T=1,\ldots,\mathcal{T}$
 - Setup and maintenance costs for facilities and edges
 - Demands and profits for clients
 - Total demand D^t to be covered
 - Discount factor for costs/profits

- Facility
- O Steiner node

- Given
 - Mixed graph G = (V, E) with
 - $\left. \begin{array}{l} V = R \text{ potential clients} \\ F \text{ potential facilities} \\ M \text{ Steiner nodes} \end{array} \right\} = S$
 - $E = A_R$ fac.-client connections E_S edges of facility network
 - Planning horizon ${\mathcal T}=1,\ldots,{\mathcal T}$
 - Setup and maintenance costs for facilities and edges
 - Demands and profits for clients
 - Total demand D^t to be covered
 - Discount factor for costs/profits

- Δ Client
- Facility
- Steiner node

- Given
 - Mixed graph G = (V, E) with
 - V = R potential clients F potential facilities M Steiner nodes $\left. \right\} = S$
 - $E = A_R$ fac.-client connections E_S edges of facility network
 - Planning horizon $T=1,\ldots,\mathcal{T}$
 - Setup and maintenance costs for facilities and edges
 - Demands and profits for clients
 - Total demand D^t to be covered
 - Discount factor for costs/profits

- Facility
- Steiner node

Seek

- For each time period $t \in T$:
 - facilities to open
 - clients to serve
 - edges connecting all open facilities and served clients

Such that

- total demand of clients served in period *t* exceeds *D*^{*t*}
- each client is served undisrupted (once served, always served)
- net present value is maximized

- Δ Client
- Facility
- Steiner node

Seek

- For each time period $t \in T$:
 - facilities to open
 - clients to serve
 - edges connecting all open facilities and served clients

Such that

- total demand of clients served in period *t* exceeds *D*^{*t*}
- each client is served undisrupted (once served, always served)
- net present value is maximized

- Facility
- O Steiner node

Period t = 1

INFORMS Telecom 2018

Seek

- For each time period $t \in T$:
 - facilities to open
 - clients to serve
 - edges connecting all open facilities and served clients

Such that

- total demand of clients served in period *t* exceeds *D*^{*t*}
- each client is served undisrupted (once served, always served)
- net present value is maximized

- Δ Client
- Facility
- O Steiner node

Period t = 2

Seek

- For each time period $t \in T$:
 - facilities to open
 - clients to serve
 - edges connecting all open facilities and served clients

Such that

- total demand of clients served in period *t* exceeds *D*^{*t*}
- each client is served undisrupted (once served, always served)
- net present value is maximized

- Facility
- O Steiner node

Period t = 3

Seek

- For each time period $t \in T$:
 - facilities to open
 - clients to serve
 - edges connecting all open facilities and served clients

Such that

- total demand of clients served in period *t* exceeds *D*^{*t*}
- each client is served undisrupted (once served, always served)
- net present value is maximized

- Facility
- O Steiner node

Literature

- ConFL exact: Gollowitzer and Ljubić (2011); Leitner et al. (2017)
- ConFL heuristics: Eisenbrand et al. (2010); Bardossy and Raghavan (2010)
- incremental FL: Albareda-Sambola et al. (2009), Arulselvan et al. (2015)
- Incremental network design (shortest paths, spanning trees and maximum flows): Baxter et al. (2014); Engel et al. (2017); Kalinowski et al. (2015),

BASIC MILP FORMULATION

Ivana Ljubić (ESSEC)

MIP Modeling of Incremental ConFL

- E - N INFORMS Telecom 2018

6

< A⊒ ► < Ξ ►

IP Modeling – Variables

Time-indexed ConFL model with

Annual maintenance cost for used facilities and used arcs

Annual revenues for served customers

Setup cost for used facilities and used edges

IP Modeling – Variables

Time-indexed ConFL model with binary variables for

Annual maintenance cost for used facilities and used arcs

- z_i^t : 1 if facility *i* is used in time period *t*, 0 otherwise
- x_{ii}^t : 1 if arc (i, j) is used in time period t, 0 otherwise

Annual revenues for served customers

• y_i^t : 1 if customer j is served in time period t, 0 otherwise

Setup cost for used facilities and used edges

IP Modeling – Variables

Time-indexed ConFL model with binary variables for

Annual maintenance cost for used facilities and used arcs

- z_i^t : 1 if facility *i* is used in time period *t*, 0 otherwise
- x_{ij}^t : 1 if arc (i, j) is used in time period t, 0 otherwise

Annual revenues for served customers

• y_i^t : 1 if customer j is served in time period t, 0 otherwise

Setup cost for used facilities and used edges

\$\tilde{x}_e^t(\tilde{z}_e^t)\$: 1 if edge e (facility i) is used in time period t, 0 otherwise

IP Modeling – Objective

Maximize the net present value

$$\max \sum_{t=1}^{T} (1+\alpha)^{-t} \left[\sum_{j \in R} p_j y_j^t \qquad \text{revenues} \right. \\ \left. - \sum_{i \in F} g_i \tilde{z}_i^t - \sum_{e \in E} c_e \tilde{x}_e^t \qquad \text{setup} \right. \\ \left. - \sum_{i \in F} m_i z_i^t - \sum_{(i,j) \in A} m_{ij} x_{ij}^t \right] \qquad \text{maintenance}$$

Ivana Ljubić (ESSEC)

8

Image: A matrix

IP Modeling – Objective

Maximize the net present value

$$\max \sum_{t=1}^{T} (1+\alpha)^{-t} \left[\sum_{j \in R} p_j y_j^t \qquad \text{revenues} \right. \\ \left. - \sum_{i \in F} g_i \tilde{z}_i^t - \sum_{e \in E} c_e \tilde{x}_e^t \qquad \text{setup} \right. \\ \left. - \sum_{i \in F} m_i z_i^t - \sum_{(i,j) \in A} m_{ij} x_{ij}^t \right] \qquad \text{maintenance}$$

Remark

- Here: discounted fixed revenues and costs
- Analogously: time-dependent revenue and cost functions

IP Modeling - Constraints

Standard ConFL constraints for each period $t \in T$

• Assign served clients

$$\sum_{i \in F(j)} x_{ij}^t = y_j^t \qquad \forall j \in R, \ t \in T$$
(1)

• Open assigned facilities

$$x_{ij}^t \leq z_i^t \qquad \forall (i,j) \in A_R, \ t \in T$$
 (2)

• Connect root to open facilities

$$\sum_{(u,v)\in\delta^{-}(W)} x_{uv}^{t} \geq z_{j}^{t} \quad \forall W \subseteq S \setminus \{r\}, j \in W \cap F, t \in T \quad (3)$$

IP Modeling - Constraints

Setup used edges and facilities

$$egin{aligned} x_{ij}^t + x_{ji}^t &\leq \sum_{k=1}^t ilde{x}_e^k \ z_i^t &\leq \sum_{k=1}^t ilde{z}_i^k \end{aligned}$$

$$\forall (i,j) = e \in E, t \in T$$
 (4)

$$\forall i \in F, t \in T \tag{5}$$

Minimum demand coverage

$$\sum_{j\in R} d_j y_j^t \ge D^t \qquad \qquad \forall t \in T \qquad (6)$$

No service withdrawal

$$y_j^t \ge y_j^{t-1} \qquad \forall j \in R, \ t \in T$$
 (7)

STRENGTHENING INEQUALITIES

Ivana Ljubić (ESSEC)

MIP Modeling of Incremental ConFL

INFORMS Telecom 2018

э

< 回 > < 三 > < 三 >

Knapsack Cover Inequalities on Customers

- Derived from the coverage constraint $\sum_{j \in R} d_j y_j \ge D$.
- Let J be the minimal subset of customers such that its complement $\overline{J} = R \setminus J$ cannot satisfy the whole demand, i.e., $D(\overline{J}) < D$ and $d_k + D(\overline{J}) \ge D$, for any $k \in J$.
- J is called the *minimal cover* wrt D. Let COV_R be the collection of all such minimal covers.
- Knapsack cover inequalities are valid for P(D):

$$y(J) \ge 1$$
 $J \in COV_R$ (8)

Set-Union Knapsack Cover (SUKC) Inequalities Consider facility location for single period t

• Example:
$$F \setminus \{r\} = \{1, \dots, 5\}, D = 174, D^t = 76.$$

• Valid LP solution: $z_i^t = 76/174$ for i = 1, ..., 5(optimal for high core connection costs)

Demand requirement $D^t = 76$

Set-Union Knapsack Cover (SUKC) Inequalities Consider facility location for single period t

- Example: $F \setminus \{r\} = \{1, \dots, 5\},\ D = 174, D^t = 76.$
- Valid LP solution: $z_i^t = 76/174$ for $i = 1, \dots, 5$ (optimal for high core connection costs)
- Combined demand of clients of $\{1,2,3\}$ is $75 < D^t$
- \Rightarrow Either 4 or 5 has to be open

Demand requirement $D^t = 76$

< ロト < 同ト < ヨト < ヨ)

Definition

- $I^t \subset F$ is cover if $F \setminus I^t$ cannot serve enough clients to meet D^t .
- I^t is minimal cover if no cover $J^t \subsetneq I^t$ exists.
- COV^t := family of minimal covers for period t

SUKC Inequalities

Theorem

The SUKC inequalities

$$\sum_{i \in I^t} z_i^t \ge 1 \quad \forall t \in T, \ I^t \in COV^t$$
(9)

are valid for the integer solutions of (1)-(7).

There are problem instances and corresponding (optimal) fractional solutions for (1)-(7) that do not satisfy (9).

э

SUKC Inequalities

Theorem

The SUKC inequalities

$$\sum_{i \in I^t} z_i^t \ge 1 \quad \forall t \in T, \ I^t \in COV^t$$
(9)

are valid for the integer solutions of (1)-(7).

There are problem instances and corresponding (optimal) fractional solutions for (1)–(7) that do not satisfy (9).

Separation

- Search for the complement of I^t which cannot cover all the demand
- Set union knapsack problem: Each item has a profit, and covers a set of elements. Each element has a weight.
- Find a subset of items of maximum profit that covers elements of weight at most *B*.

Ivana Ljubić (ESSEC)

Separation of SUKC inequalities

Separation of SUKC inequalities

- Set union knapsack problem, strongly NP-hard Goldschmidt et al. (1994)
- Greedy gives a constant factor approximation for special case

$$\begin{split} \min \sum_{i \in F} \hat{z}_i^t \alpha_i \\ \sum_{j \in R} d_j \beta_j &\leq D^t - \epsilon \\ \beta_j &\geq 1 - \alpha_i \\ \alpha_i, \beta_j \in \{0, 1\} \\ \end{split} \quad \begin{array}{l} \forall (i, j) \in \mathcal{A}_R \\ \forall i \in F, j \in R \\ \end{array} \end{split}$$

• \hat{z}^t – current (fractional) values of facility variables

- $\alpha_i \in \{0,1\}, \forall i \in F: \quad \alpha_i = 1 \text{ iff facility in } I^t$
- ► $\beta_j \in \{0,1\}, \forall j \in R$: $\beta_j = 1$ iff client j can be served by $F \setminus I^t$

Separation of SUKC inequalities

Heuristic investigations of the separation problem

- 1: $H := \emptyset$
- 2: Let w_j be the number of facilities serving customer $j, j \in R$.
- 3: while $F \neq \emptyset$ do
- 4: pick a facility $i \in F$ that maximizes $\frac{\hat{z}_i}{\sum_{j \in R_i} \frac{d_j}{w_j}}$ and remove it from F
- 5: if $D(R_H) + D(R_i) < D$ then
- $6: \qquad H := H \cup \{i\}, \qquad R := R \setminus \{R_i\}$
- 7: return SUKC $I := F \setminus H$
 - Greedy heuristic provides approximation guarantees for special cases Arulselvan (2014)
 - Number of facilities serving a customer is bounded
 - Cover complements of size 2 and 3 are enumerated and added

Cut-set-SUKC Inequalities

- Suppose $z_i^t = 1/|I^t|$ for all facilities *i* in some cover I^t .
- Then LP enforces only connectivity $1/|I^t|$ from r to I^t .
- But: I^t must be 1-connected from r in ILP solution.

Cut-set-SUKC Inequalities

- Suppose $z_i^t = 1/|I^t|$ for all facilities *i* in some cover I^t .
- Then LP enforces only connectivity $1/|I^t|$ from r to I^t .
- But: I^t must be 1-connected from r in ILP solution.

TheoremImage: Constraint of the cut-set cover inequalities $\sum_{uv \in \delta^-(W)} x_{uv}^t \ge 1 \quad \forall t \in T, \ I^t \in COV^t, \ W \subseteq S \setminus \{r\}, \ I^t \subseteq W \quad (10)$ are valid for the integer solutions of (1)-(7).Image: There are problem instances and corresponding (optimal)
fractional solutions for (1)-(7), (9) that do not satisfy (10).

SOME LIFTING IDEAS

Ivana Ljubić (ESSEC)

MIP Modeling of Incremental ConFL

INFORMS Telecom 2018

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

18

э

Lifting

- We try to lift SUKC inequalities, by including customer variables.
- Denote by R₂ ⊆ R the subset of customers j such that if j is not served, we need to open at least two facilities from I in order to serve the demand D.

$$z(I) \ge 2 - y_j \quad I \in COV_F, j \in R_2$$
(11)

In general

$$z(I) + \sum_{k \in L} \alpha_k(y_k - 1) + \alpha_j(y_j - 1) \ge 1$$
(12)

COMPUTATIONAL RESULTS

Ivana Ljubić (ESSEC)

MIP Modeling of Incremental ConFL

INFORMS Telecom 2018

< 回 > < 三 > < 三 >

20

э

Implementation

- Branch-and-cut based on CPLEX 12.2 with Python API
- Initial formulation
 - all model constraints except connectivity cuts
 - indegree inequalities
- Separation via cut callback
 - root—facility cut-set inequalities
 - SUKC and customer cover inequalities
 - cut-set-SUKC inequalities
 - lifted inequalities

Implementation

- Branch-and-cut based on CPLEX 12.2 with Python API
- Initial formulation
 - all model constraints except connectivity cuts
 - indegree inequalities
- Separation via cut callback
 - root—facility cut-set inequalities
 - SUKC and customer cover inequalities
 - cut-set-SUKC inequalities
 - lifted inequalities
- Branching priorities
 - facility vars z_i^t > client vars y_i^t > remaining (arc) vars

Primal heuristics

Let (x^*, y^*, z^*) be the optimal LP value at a branch and bound node

- Round up the fractional y^* and z^* variables for all time periods
- Assign the customers to its cheapest fractional facility
- Post-processing to remove non-serving open facilities
- Facility open at time t remains open for subsequent time period
- ullet Shortest path heuristic for Steiner tree problem for period ${\cal T}$
 - Take the cost of edge (i, j) to be $(1 x_{ij}^*)$
 - Consider the facilities in some order
 - Find the shorted path from a terminal to the root node
 - Fix the cost of the edges in this path to be zero
- For time periods, T 1, T 2, ..., remove the paths of missing facilities

・ロット (日本) (日本) (日本) (日本)

Test instances

Benchmark instances

- Combination of UFL and Steiner tree instances
- UFL: mp1, mp2, mp3 (200x200, 300x300)
- STP: 500-1,000 nodes, up to 25,000 edges
- Sparsification: only 20 closest facilities per client
- \Rightarrow up to 1,300 nodes and 45,000 edges
- time horizon $\mathcal{T}=3$
- client demands random in [20-40]
- min coverage {50%,75%,90%}
- 8 real world instances of varying sizes

			В				B ^c	
	root	Final	Cuta	nadaa	root	Final	Cuta	nadaa
	gap	Gap	Cuts	nodes	gap	Gap	Cuts	nodes
а	77.6	32.7	17409	313	81.0	77.2	9275/1075	1111
Ь	71.3	67.5	12128	488	77.3	58.0	5937/220	240
с	67.1	59.4	12976	1651	68.8	60.4	8121/1076	1123
d	57.4	57.4	8982	0	63.5	63.5	3710/69	20
e	63.9	63.9	10171	5	64.9	64.9	4894/90	47
f	64.9	64.9	12756	20	67.7	67.7	5455/100	52
g	57.2	57.2	7353	0	63.2	63.2	3703/69	20
ĥ	78.9	78.6	1432	0	78.1	78.1	1939/36	0
			B^+				B^{++}	
	root	Final	Cuta	nodos	root	Final	Cuta	nadaa
	gap	Gap	Cuts	nodes	gap	Gap	Cuts	nodes
а	4.0	1.6	6528/411/3410	385	4.0	2.4	4265/184/1965/6370	145
Ь	2.4	1.2	1844/411/851	400	2.4	1.2	1644/267/854/2849	250
c	4.0	0.2	5183/153/1654	98	4.4	0.3	3055/410/2280/13058	370
d	23.1	23.1	6199/32/442	0	25.9	25.9	1611/30/476/974	0
e	12.4	12.4	7513/39/587	2	12.5	12.5	2561/47/1133/0	0
f	37.5	37.5	10403/53/1454	5	40.6	40.6	2744/50/1105/417	0
g	24.0	24.0	6140/32/557	0	26.1	26.1	1544/29/458/1059	0
ĥ	63.8	63.8	3675/18/111	0	69.5	69.5	898/16/88/647	0

Comparison of four branch-and-cut settings for the ConFL-CR with 50% coverage.

3

			В				B ^c	
	root	Final	Cuta	nadaa	root	Final	Cuta	nadaa
	gap	Gap	Cuts	nodes	gap	Gap	Cuts	noues
а	70.4	10.4	18857	220	74.7	71.2	10573/332	326
Ь	64.4	61.8	13159	396	63.6	60.1	6750/387	354
с	62.0	55.7	15523	1071	63.4	55.7	8415/1358	1352
d	47.8	47.8	8066	0	53.6	53.6	3519/65	15
e	53.8	53.8	10392	5	55.9	55.4	3973/74	30
f	56.7	56.7	12209	13	59.9	59.9	5887/109	60
g	49.1	49.1	8062	0	53.9	53.9	3700/69	20
ĥ	67.6	67.6	5285	0	72.1	72.0	2176/41	0
			B ⁺				B ⁺⁺	
	root	Final	Cuta	nadaa	root	Final	Cuta	nadaa
	gap	Gap	Cuts	noues	gap	Gap	Cuts	noues
а	7.9	5.2	11148/221/3030	195	7.9	6.9	6363/203/3228/1625	173
Ь	5.7	5.6	2622/520/1057	496	5.5	5.5	1588/502/694/3216	465
с	2.3	0.0	2334/94/419	68	2.1	0.3	2374/96/420/101	61
d	22.5	22.5	6646/33/336	0	24.5	24.5	2009/37/762/379	0
e	13.4	13.4	8863/56/811	10	13.6	13.6	3049/58/1568/246	12
f	35.7	35.7	12128/60/1766	10	37.9	37.9	3508/65/2021/1705	17
					0 - 0	05.0	1000 /05 /000 / 1440	0
g	21.8	21.7	5788/29/465	0	25.0	25.0	1860/35/688/440	0

Comparison of four branch-and-cut settings for the ConFL-CR with 75% coverage.

3

			В				B ^c	
	root	Final	Cuta	nadaa	root	Final	Cuta	nadaa
	gap	Gap	Cuts	nodes	gap	Gap	Cuts	noues
а	67.6	59.4	21032	127	69.9	66.6	9776/806	767
Ь	59.3	56.4	14730	240	62.7	56.9	5167/496	478
с	56.5	51.0	15631	1046	58.0	52.1	7936/1016	1008
d	47.3	47.3	6734	0	51.0	51.0	2692/50	0
e	46.6	46.6	10346	5	49.8	49.8	4300/78	30
f	49.6	49.6	12246	11	52.7	52.7	5108/94	45
g	48.7	48.7	7356	0	51.9	51.9	2664/50	0
ĥ	61.1	61.1	5304	0	65.6	65.6	2373/44	0
			B ⁺				B ⁺⁺	
	root	Final	Cute	nodes	root	Final	Cute	nodec
	gap	Gap	Cuts	noues	gap	Gap	Cuts	noues
а	7.7	5.6	14597/174/9666	142	10.2	7.2	6510/177/10285/685	150
Ь	2.6	2.4	2607/508/685	286	2.6	2.5	2813/532/578/8570	500
с	4.0	0.4	4237/115/1225	94	4.0	0.0	2711/87/773/5	68
d	25.5	25.5	5704/28/588	0	28.2	28.2	2057/38/1030/7	0
e	10.0	10.0	8378/46/543	8	9.8	9.8	3055/58/1238/164	15
f	28.2	28.2	10654/53/1334	7	28.8	28.8	3488/65/2010/565	15
g	27.2	27.2	5112/25/397	0	29.5	29.5	1882/35/879/7	0
		FF 0	4070 /00 /007		1 61 6	C 1 0	1076 /06 /101 /000	

Comparison of four branch-and-cut settings for the ConFL-CR with 90% coverage.

Three-period iConFL results for coverage rates: 50%, 75% and 90%. ConFL instances.

Comparison of root- and final gaps with increasing coverage rates. ConFL instances.

Experiments

(a)

(b)

(c)

Three-period iConFL results for coverage rates for Ahorn: 50%, 75% and 90%. ConFL instances.

Ivana Ljubić (ESSEC)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusions

Summary

- Incremental connected facility location
- Valid inequalities and strengthening
- Experiments and results

Interesting questions

- Approximation algorithm for budgeted version of connected facility location
- Buy-at-bulk network design problems in incremental and budgeted settings

Literature |

- M. Albareda-Sambola, E. Fernández, Y. Hinojosa, and J. Puerto. The multi-period incremental service facility location problem. *Computers & Operations Research*, 36:1356–1375, May 2009.
- A. Arulselvan. A note on set union knapsack problem. *Discrete Appl. Math.*, 169:214–218, 2014.
- A. Arulselvan, O. Maurer, and M. Skutella. An incremental algorithm for the uncapacitated facility location problem. *Networks*, 65(4):306–311, 2015.
- M. Bardossy and S. Raghavan. Dual-Based Local Search for the Connected Facility Location and Related Problems. *INFORMS Journal on Computing*, 22(4):584–602, 2010.
- M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, and M. Savelsbergh. Incremental network design with shortest paths. *European Journal of Operational Research*, 238(3):675–684, 2014.

3

Literature II

- F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Connected facility location via random facility sampling and core detouring. *Journal of Computer and System Sciences*, 76:709–726, 2010.
- K. Engel, T. Kalinowski, and M. Savelsbergh. Incremental network design with minimum spanning trees. J. Graph Algorithms Appl., 21(4): 417–432, 2017.
- O. Goldschmidt, D. Nehme, and G. Yu. Note: On the set-union knapsack problem. *Naval Research Logistics (NRL)*, 41(6):833-842, 1994.
- S. Gollowitzer and I. Ljubić. MIP models for connected facility location: A theoretical and computational study. *Computers & Operations Research*, 38(2):435-449, 2011.
- T. Kalinowski, D. Matsypura, and M. Savelsbergh. Incremental network design with maximum flows. *European Journal of Operational Research*, 242(1):51–62, 2015.

- 31

・ロト ・ 一下 ・ コト ・ ヨト

Literature III

M. Leitner, I. Ljubić, and M. S. J.J. Salazar-González and. An algorithmic framework for the exact solution of tree-star problems. *European Journal* of Operational Research, 261(1):54 – 66, 2017.