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Bilevel Optimization

General bilevel optimization problem

min
x∈Rn1 ,y∈Rn2

F (x , y) (1)

G (x , y) ≤ 0 (2)

y ∈ arg min
y ′∈Rn2

{f (x , y ′) : g(x , y ′) ≤ 0 } (3)

• Stackelberg game: two-person sequential game

• Leader takes follower’s optimal reaction into account

• Nx = {1, . . . , n1}, Ny = {1, . . . , n2}
• n = n1 + n2: total number of decision variables
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Optimistic vs Pessimistic Solution

The Stackelberg game under:

• Perfect information: both agents have perfect knowledge of each others
strategy

• Rationality: agents act optimally, according to their respective goals

• What if there are multiple optimal solutions for the follower?
I Optimistic Solution: among the follower’s solution, the one leading to the

best outcome for the leader is assumed
I Pessimistic Solution: among the follower’s solution, the one leading to the

worst outcome for the leader is assumed
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Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

(MIBLP) min cTx x + cTy y (4)

Gxx + Gyy ≤ 0 (5)

y ∈ arg min{dT y : Ax + By ≤ 0, (6)

yj integer,∀j ∈ Jy} (7)

xj integer,∀j ∈ Jx (8)

(x , y) ∈ Rn (9)

where cx , cy ,Gx ,Gy ,A,B are given rational matrices/vectors of appropriate size.

Ivana Ljubić (ESSEC) B&C for Bilevel MIPs SPO 2018, June 11, Paris 4



Complexity

Bilevel Linear Programs

Bilevel LPs are strongly NP-hard (Audet et al. [1997], Hansen et al. [1992]).

min cT x

Ax = b

x ∈ {0, 1}
⇔

min cT x

Ax = b

v = 0

v ∈ arg max{w : w ≤ x ,w ≤ 1− x ,w ≥ 0}

x

w
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Complexity

Bilevel Mixed-Integer Linear Programs

MIBLP is ΣP
2 -hard (Lodi et al. [2014]): there is no way of formulating MIBLP as a

MILP of polynomial size unless the polynomial hierarchy collapses.
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Overview

Part I
• Branch-and-cut approach for general Mixed-Integer Bilevel Programs

• Based on intersection cuts

Part II
• Special subfamily: Interdiction-like problems (with monotonicity property)

• Specialized branch-and-cut algorithm based on interdiction cuts

• Examples: Knapsack-Interdiction and Clique-Interdiction
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Based on the papers:

Part I
• M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: On the Use of Intersection Cuts

for Bilevel Optimization, Mathematical Programming, to appear, 2018

• M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: A new general-purpose
algorithm for mixed-integer bilevel linear programs, Operations Research
65(6): 1615-1637, 2017

Part II
• M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: Interdiction Games and

Monotonicity, with Application to Knapsack Problems, INFORMS Journal on
Computing, to appear, 2018

• F. Furini, I. Ljubić. P. San Segundo, S. Martin: The Maximum Clique
Interdiction Game, submitted, 2018
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STEP 1: VALUE FUNCTION
REFORMULATION
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Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)
Value Function Reformulation:

(MIBLP) min cTx x + cTy y (10)

Gxx + Gyy ≤ 0 (11)

Ax + By ≤ 0 (12)

(x , y) ∈ Rn (13)

dT y ≤ Φ(x) (14)

xj integer, ∀j ∈ Jx (15)

yj integer, ∀j ∈ Jy (16)

where Φ(x) is non-convex, non-continuous:

Φ(x) = min{dT y : Ax + By ≤ 0, yj integer,∀j ∈ Jy}

• dropping dT y ≤ Φ(x) → High Point Relaxation (HPR) which is a MILP →
we can use MILP solvers with all their tricks

• let HPR be LP-relaxation of HPR
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Example

• notorious example from Moore and Bard [1990]

• HPR

• value-function reformulation

min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4

Φ(x)
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General Idea

General Procedure

• Start with the HPR- (or HPR-)relaxation

• Get rid of bilevel infeasible solutions on the fly

• Apply branch-and-bound or branch-and-cut algorithm

There are some unexpected difficulties along the way...

• Optimal solution can be unattainable

• HPR can be unbounded
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(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the leader, integer variables in the follower ⇒ optimal
solution may be unattainable

inf
x,y

x − y

0 ≤ x ≤ 1

y ∈ arg min
y ′
{y ′ : y ′ ≥ x , 0 ≤ y ′ ≤ 1, y ′ ∈ Z}.

Equivalent to
inf
x
{x − dxe : 0 ≤ x ≤ 1}

x

y

1

1

Bilevel feasible set is neither convex nor closed.
Crucial assumption for us: follower subproblem
depends only on integer leader variables JF ⊆ Jx .
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(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

Unboundness of HPR-relaxation does not allow to draw conclusions on the
optimal solution of MIBLP

• unbounded

• infeasible

• admit an optimal solution

max
x,y

x + y

0 ≤ x ≤ 2

x ∈ Z
y ∈ arg max

y ′
{d · y ′ : y ′ ≥ x , y ′ ∈ Z}.

max
x,y

x + y

0 ≤ x ≤ 2

y ≥ x

x , y ∈ Z

d = 1 ⇒ Φ(x) =∞ (MIBLP infeasible)

d = 0 ⇒ Φ(x) feasible for all y ∈ Z (MIBLP unbounded)

d = −1 ⇒ x∗ = 2, y∗ = 2 (optimal MIBLP solution)
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STEP 2: BRANCH-AND-CUT
ALGORITHM
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Assumption

All the integer-constrained variables x and y have finite lower and upper bounds
both in HPR and in the follower MILP.

Assumption

Continuous leader variables xj (if any) do not appear in the follower problem.

If for all HPR solutions, the follower MILP is unbounded ⇒ MIBLP is infeasible.
Preprocessing (solving a single LP) allows to check this. Hence:

Assumption

For an arbitrary HPR solution, the follower MILP is well defined.
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
solve MIBLP by using a standard simplex-based branch-and-cut algorithm;
enforce dT y ≤ Φ(x) on the fly, by adding cutting planes

• given optimal vertex (x∗, y∗) of HPR
I (x∗, y∗) infeasible for HPR (i.e., fractional) → branch as usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) ≤ Φ(x∗) → update the incumbent as

usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

Ivana Ljubić (ESSEC) B&C for Bilevel MIPs SPO 2018, June 11, Paris 17



Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
solve MIBLP by using a standard simplex-based branch-and-cut algorithm;
enforce dT y ≤ Φ(x) on the fly, by adding cutting planes

• given optimal vertex (x∗, y∗) of HPR
I (x∗, y∗) infeasible for HPR (i.e., fractional) → branch as usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) ≤ Φ(x∗) → update the incumbent as

usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!
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I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• Moore and Bard [1990] (Branch-and-Bound)
I branching to cut-off bilevel infeasible solutions
I no y -variables in leader-constraints
I either all x-variables integer or all y -variables continuous
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
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usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• DeNegre [2011], DeNegre & Ralphs (Branch-and-Cut)
I cuts based on slack
I needs all variables and coefficients to be integer
I open-source solver MibS
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
solve MIBLP by using a standard simplex-based branch-and-cut algorithm;
enforce dT y ≤ Φ(x) on the fly, by adding cutting planes

• given optimal vertex (x∗, y∗) of HPR
I (x∗, y∗) infeasible for HPR (i.e., fractional) → branch as usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) ≤ Φ(x∗) → update the incumbent as

usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• Our Approach (Branch-and-Cut)
I Use Intersection Cuts (Balas [1971]) to cut off bilevel infeasible solutions
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STEP 3: INTERSECTION CUTS
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Intersection Cuts (ICs)

• powerful tool to separate a bilevel infeasible point (x∗, y∗) from a set of
bilevel feasible points (X ,Y ) by a linear cut

IC

• what we need to derive ICs
I a cone pointed at (x∗, y∗) containing all (X ,Y ) (if (x∗, y∗) is a vertex of

HPR-relaxation, a possible cone comes from LP-basis)
I a convex set S with (x∗, y∗) but no bilevel feasible points ((x , y) ∈ (X ,Y )) in

its interior
I important: (x∗, y∗) should not be on the frontier of S .
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Intersection Cuts for Bilevel Optimization

• we need a bilevel-free set S

Theorem

For any feasible solution of the follower ŷ ∈ Rn2 , the set

S(ŷ) = {(x , y) ∈ Rn : dT y > dT ŷ , Ax + Bŷ ≤ b}

does not contain any bilevel-feasible point (not even on its frontier).

• note: S(ŷ) is a polyhedron

• problem: bilevel-infeasible (x∗, y∗) can be on the frontier of bilevel-free set
S → IC based on S(ŷ) may not be able to cut off (x∗, y∗)
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Intersection Cuts for Bilevel Optimization

Assumption

Ax + By − b is integer for all HPR solutions (x , y).

Theorem

Under the previous assumption, for any feasible solution of the follower ŷ ∈ Rn2 ,
the extended polyhedron

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}, (17)

where 1 = (1, · · · , 1) denote a vector of all ones of suitable size, does not contain
any bilevel feasible point in its interior.
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Intersection Cuts for Bilevel Optimization

• application sketch on the example from Moore and Bard [1990]

• solve HPR→ obtain (x∗, y∗) = (2, 4) and LP-cone, take ŷ = 2

• solve HPR again → obtain (x∗, y∗) = (6, 2) and LP-cone, take ŷ = 1

min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4
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Intersection Cuts for Bilevel Optimization
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• solve HPR again → obtain (x∗, y∗) = (6, 2) and LP-cone, take ŷ = 1
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Other Bilevel-Free Sets can be defined

• The choice of bilevel-free polyhedra is not unique.

• The larger the bilevel-free set, the better the IC.

Theorem (Motivated by Xu [2012], Wang and Xu [2017])

Given ∆ŷ ∈ Rn
2 such that dT∆ŷ < 0 and ∆ŷj integer ∀j ∈ Jy , the following set

X+(∆ŷ) = {(x , y) ∈ Rn : Ax + By + B∆ŷ ≤ b + 1}

has no bilevel-feasible points in its interior.

Proof: by contradiction. Assume (x̃ , ỹ) ∈ X+(∆ŷ) is bilevel-feasible. But then,
dT ỹ > dT (ỹ + ∆ŷ) and (x̃ , ỹ + ∆ŷ) is feasible for the follower, hence
contradiction.
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SEPARATION of INTERSECTION
CUTS
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Separation of ICs associated to S+(ŷ)

Given ŷ ∈ Rn
2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}

is bilevel-feasible free. How to compute ŷ?

• SEP1

ŷ ∈ arg min
y∈Rn2

{dT y : By ≤ b − Ax∗, yj integer ∀j ∈ Jy}.

I ŷ is the optimal solution of the follower when x = x∗.
I Maximize the distance of (x∗, y∗) from the facet dT y ≥ dT ŷ of S(ŷ).

• SEP2 Alternatively, try to find ŷ such that some of the facets in
Ax + bŷ ≤ b can be removed (making thus S(ŷ) larger!)

I A modified MIP is solved, s.t. the number of removable facets is maximized.
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Separation of ICs associated to X+(∆ŷ)

Given ∆ŷ ∈ Rn
2 such that dT∆ŷ < 0 and ∆ŷj integer ∀j ∈ Jy , the following set

X+(∆ŷ) = {(x , y) ∈ Rn : Ax + By + B∆ŷ ≤ b + 1}

has no bilevel-feasible points in its interior. How to compute ∆ŷ?

• XU (Xu [2012])

∆ŷ ∈ arg min
m̃∑
i=1

ti

dT∆y ≤ −1

B∆y ≤ b − Ax∗ − By∗

∆yj integer, ∀j ∈ Jy

B∆y ≤ t and t ≥ 0.

I variable ti has value 0 in case (B̃∆y)i ≤ 0 (“removable facet”);
I “maximize the size” of the bilevel-free set associated with ∆ŷ .
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COMPUTATIONAL STUDY
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Settings

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads.

Class Source Type #Inst #OptB #Opt

DENEGRE DeNegre [2011],Ralphs and Adams [2016] I 50 45 50
MIPLIB Fischetti et al. [2016] B 57 20 27
XUWANG Xu and Wang [2014] I,C 140 140 140

INTER-KP DeNegre [2011],Ralphs and Adams [2016] B 160 79 138
INTER-KP2 Tang et al. [2016] B 150 53 150
INTER-ASSIG DeNegre [2011],Ralphs and Adams [2016] B 25 25 25
INTER-RANDOM DeNegre [2011],Ralphs and Adams [2016] B 80 - 80
INTER-CLIQUE Tang et al. [2016] B 80 10 80
INTER-FIRE Baggio et al. [2016] B 72 - 72

total 814 372 762

• #OptB = number of optimal solutions known before our work.

• #Opt = number of optimal solutions known after our work.
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Effects of different ICs

• MIX++: combination of settings SEP2++ and XU++ (both ICs being separated
at each separation call).

• Performance profile on the subsets of (bilevel and interdiction) instances that
could be solved to optimality by all three settings within the given time-limit
of one hour.
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Comparison with the literature (1)

• Results for the instance set XUWANG

MIX++ Xu and Wang [2014]
n1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 avg avg

10 3 3 3 3 2 3 2 3 2 3 2.6 1.4
60 2 0 0 1 1 1 1 1 2 2 0.9 45.6
110 2 1 2 2 1 2 1 2 2 12 2.8 111.9
160 2 2 3 2 3 1 4 1 1 3 2.1 177.9
210 2 3 1 1 3 3 3 2 5 3 2.6 1224.5
260 3 4 3 6 3 5 6 2 7 11 5.0 1006.7
310 5 10 11 14 7 16 15 8 5 3 9.4 4379.3
360 17 28 11 13 11 15 7 19 9 14 14.4 2972.4
410 19 10 29 8 21 10 9 15 23 42 18.7 4314.2
460 22 10 22 35 21 21 32 22 23 23 23.1 6581.4
B1-110 0 0 0 0 0 1 0 1 0 9 1.3 132.3
B1-160 1 1 3 1 2 1 3 0 0 2 1.3 184.4
B2-110 16 2 2 8 1 25 15 5 1 122 19.7 4379.8
B2-160 8 38 21 91 34 4 40 3 12 123 37.4 22999.7
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Comparison with the literature (2)

• Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right)

MIX++ Tang et al. [2016]
n1 k t[s] t[s] #unsol

20 5 5.4 721.4 0
20 10 1.7 2992.6 3
20 15 0.2 129.5 0
22 6 10.3 1281.2 6
22 11 2.3 3601.8 10
22 17 0.2 248.2 0
25 7 33.6 3601.4 10
25 13 8.0 3602.3 10
25 19 0.4 1174.6 0
28 7 97.9 3601.0 10
28 14 22.6 3602.5 10
28 21 0.5 3496.9 8
30 8 303.0 3601.0 10
30 15 31.8 3602.3 10
30 23 0.6 3604.5 10

MIX++ Tang et al. [2016]
ν d t[s] t[s] #unsol

8 0.7 0.1 373.0 0
8 0.9 0.2 3600.0 10
10 0.7 0.3 3600.1 10
10 0.9 0.7 3600.2 10
12 0.7 0.8 3600.3 10
12 0.9 1.9 3600.4 10
15 0.7 2.2 3600.3 10
15 0.9 12.6 3600.2 10
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Conclusions (Part I)

• Branch-and-cut algorithm, a black-box solver for mixed integer bilevel
programs

I Major feature: intersection cuts, to cut away bilevel-free sets.
I It outperforms previous methods from the literature by a large margin.
I Byproduct: the optimal solution for more than 300 previously unsolved

instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Part II
Often, the follower’s subproblem has a special structure that we could exploit.
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PART II:
BRANCH-AND-CUT FOR
INTERDICTION-LIKE

PROBLEMS
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Interdiction Games (IGs)
• special case of bilevel optimization problems
• leader and follower have opposite objective functions
• leader interdicts items of follower

I type of interdiction: linear or discrete, cost increase or destruction
I interdiction budget

• two-person, zero-sum sequential game
• studied mostly for network-based problems in the follower

(a) Linear, cost increase (b) Discrete, destruction

Figure: Early Applications of Interdiction, following [Livy, 218BC]
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Interdiction Games (IGs): Attacker-Defender models

(a) Drug cartels (b) Most voulnerable nodes

Figure: Modern Applications of Interdiction

• Interdiction Problems: find leader’s strategy that results in the worst
outcome for the follower (min-max)

• Blocker Problems: find the minimum cost strategy for the leader that
guarantees a limited outcome for the follower
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Interdiction Games (IGs)

We focus on:

min
x∈X

max
y∈Rn2

dT y (18)

Q y ≤ q0 (19)

0 ≤ yj ≤ uj(1− xj), ∀j ∈ N (20)

yj integer, ∀j ∈ Jy (21)

• X = {x ∈ Rn1 : Ax ≤ b, xj integer ∀j ∈ Jx , xj binary ∀j ∈ N} (feasible
interdiction policies).

• n1 and n2 are the number of leader (x) and follower (y) variables, resp.

• d , Q, q0, u, A, b are given rational matrices/vectors of appropriate size.

• u: finite upper bounds on the follower variables yj that can be interdicted.

• The concept easily extends to blocker problems as well.
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PROBLEM REFORMULATION
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Problem Reformulation

For a given x ∈ X we define the value function:

Φ(x) = max
y∈Rn2

dT y (22)

Q y ≤ Q0 (23)

0 ≤ yj ≤ uj(1− x j), ∀j ∈ N (24)

yj integer, ∀j ∈ Jy (25)

so that problem can be restated in the Rn1+1 space as

min
x∈Rn1 ,w∈R

w (26)

w ≥ Φ(x) (27)

Ax ≤ b (28)

xj integer, ∀j ∈ Jx (29)

xj ∈ {0, 1}, ∀j ∈ N. (30)

Try to replace the constraints (27) by linear constraints.
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Benders-Like Reformulation
Find (sufficiently large) Mj ’s and reformulate the follower [Wood, 2010]

Φ(x) = max{dT y −
∑
j∈N

Mjxjyj : y ∈ Y }, (31)

where

Y = {y ∈ Rn2 : Q y ≤ q0, 0 ≤ yj ≤ uj ∀j ∈ N, yj integer ∀j ∈ Jy}.

Let Ŷ be extreme points of convY .

Benders-Like Reformulation

min
x∈Rn1 ,w∈R

w (32)

w ≥ dT ŷ −
∑
j∈N

Mjxj ŷj ∀ŷ ∈ Ŷ (33)

Ax ≤ b (34)

xj integer, ∀j ∈ Jx (35)

xj binary, ∀j ∈ N. (36)
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INTERDICTION GAMES
WITH

MONOTONICITY PROPERTY
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Interdiction Problems with Monotonicity Property

The follower:

Φ(x) = max
y∈Rn2

dT
N yN + dT

R yR

QN yN + QR yR ≤ q0

0 ≤ yj ≤ uj(1− xj), ∀j ∈ N

yj integer, ∀j ∈ Jy
• yN = (yj)j∈N variables that can be interdicted,

• yR = (yj)j∈R the remaining follower variables.

• Associated Q = (QN ,QR) and dT = (dT
N , d

T
R ).

Downward Monotonicity: Assume QN ≥ 0

“if ŷ = (ŷN , ŷR) is a feasible follower for a given x and y ′ = (y ′N , ŷR) satisfies
integrality constraints and 0 ≤ y ′N ≤ ŷN , then y ′ is also feasible for x”.

Independent Systems (y are binary and R = ∅)
S := {S ⊆ N : Q χS ≤ q0} ⊆ 2N forms an independent system.
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Even with Monotonicity the Problems Remain Hard...

Complexity

• Even when the follower is a pure LP, the problem remains NP-hard
(Zenklusen [2010], Dinitz and Gupta [2013]).

• In general, already knapsack interdiction is ΣP
2 -hard (Caprara et al. [2013]).

Examples

Interdicting/Blocking:

• set packing problem

• (multidimensional) knapsack problem

• prize-collecting Steiner tree

• orienteering problem

• maximum clique problem

• all kind of hereditary problems on graphs
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The Choice of Mj ’s is Crucial

Theorem

For Interdiction Games with Monotonicity Mj = dj , i.e., we have:

min
x∈Rn1 ,w∈R

w

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) ∀ŷ ∈ Ŷ

Ax ≤ b

xj integer, ∀j ∈ Jx

xj binary, ∀j ∈ N.

• Branch-and-cut: separation of interdiction cuts is done by solving the
follower’s subproblem with given x∗ (lazy cut separation).

• Specialized procedures/algorithms for the follower’s subproblem could be
exploited.
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Interdiction Cuts Could be Lifted/Modified

Assumption 2

All follower variables yN are binary and uj = 1.

Theorem

Take any ŷ ∈ Ŷ . Let a, b ∈ N with ŷa = 1, ŷb = 0, da < db and Qa ≥ Qb. Then
the following lifted interdiction cut is valid:

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) + (db − da)(1− xb).

Theorem

Take any ŷ ∈ Ŷ . Let a, b ∈ N with ŷa = 1, ŷb = 0 and Qa ≥ Qb. Then the
following modified interdiction cut is valid:

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) + db(xa − xb). (37)
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COMPUTATIONAL RESULTS

Ivana Ljubić (ESSEC) B&C for Bilevel MIPs SPO 2018, June 11, Paris 45



The Knapsack Interdiction Problem

Runtime to optimality. Our approach (B&C) vs. the cutting plane (CP) and CCLW

approaches from Caprara et al. [2016].

size instance z∗ CP CCLW B&C

35 1 279 0.34 0.79 0.12
2 469 1.59 2.57 0.21
3 448 55.61 40.39 0.66
4 370 495.50 1.48 0.87
5 467 TL 0.72 0.93
6 268 71.43 0.06 0.11
7 207 144.46 0.06 0.07
8 41 0.50 0.04 0.07
9 80 0.97 0.03 0.07
10 31 0.12 0.03 0.08

40 1 314 0.66 1.06 0.16
2 472 6.67 7.50 0.36
3 637 324.61 162.80 1.02
4 388 1900.03 0.34 0.82
5 461 TL 0.22 0.58
6 399 2111.85 0.09 0.13
7 150 83.59 0.05 0.08
8 71 1.73 0.04 0.09
9 179 137.16 0.08 0.09
10 0 0.03 0.03 0.04

size instance z∗ CP CCLW B&C

45 1 427 1.81 2.37 0.23
2 633 13.03 11.64 0.37
3 548 TL 344.01 1.81
4 611 TL 38.90 3.30
5 629 TL 3.42 2.78
6 398 3300.76 0.07 0.17
7 225 60.43 0.04 0.09
8 157 60.88 0.05 0.10
9 53 0.83 0.05 0.10
10 110 0.40 0.05 0.11

50 1 502 2.86 4.55 0.21
2 788 1529.16 1520.56 2.38
3 631 TL 105.59 2.40
4 612 TL 3.64 1.27
5 764 TL 0.60 4.82
6 303 1046.85 0.05 0.14
7 310 2037.01 0.09 0.11
8 63 2.79 0.05 0.12
9 234 564.97 0.10 0.12
10 15 0.09 0.04 0.13
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The Knapsack Interdiction Problem
Instances from Tang et al. [2016] (TRS). Comparison with MIX++. Average results

over ten instances per row. N∗ #instances unsolved.

TRS MIX++ B&C

|N| k t[s] N∗ t[s] t[s]

20 5 721.4 0 5.4 0.1
20 10 2992.6 3 1.7 0.1
20 15 129.5 0 0.2 0.1
22 6 1281.2 6 10.3 0.1
22 11 3601.8 10 2.3 0.1
22 17 248.2 0 0.2 0.1
25 7 3601.4 10 33.6 0.2
25 13 3602.3 10 8.0 0.2
25 19 1174.6 0 0.4 0.1
28 7 3601.0 10 97.9 0.3
28 14 3602.5 10 22.6 0.3
28 21 3496.9 8 0.5 0.1
30 8 3601.0 10 303.0 0.3
30 15 3602.3 10 31.8 0.3
30 23 3604.5 10 0.6 0.1
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The Clique Interdiction Problem

Example: ω(G ) = 5 and k = 1

v1 v2

v3

v4

v5v6

v7

v8
v9

v1 v2

v3

v4

v5v6

v7

v8
v9

Maximum Clique K̃ = {v3, v4, v7, v8, v9} Optimal interdiction policy {v8}
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The Clique Interdiction Problem

Example: ω(G ) = 5 and k = 2, k = 3

v1 v2

v3

v4

v5v6

v7

v8
v9

v1 v2

v3

v4

v5v6

v7

v8
v9

Optimal interdiction policy {v4, v8} Optimal interdiction policy {v4, v7, v8}
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Branch-and-Cut for Clique Interdiction

Benders-Like Reformulation
K: set of all cliques in G .

min w

w +
∑
u∈K

xu ≥ |K | K ∈ K∑
u∈V

xu ≤ k

xu ∈ {0, 1} u ∈ V .

Ingredients:

• State-of-the-art clique solver from
San Segundo et al. [2016].

• Facets, lifting.

• Combinatorial primal and dual
bounds.

• Graph reductions.
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Comparison with MIX++

CLIQUE-INTER MIX++

|V | # # solved time exit gap root gap # solved time exit gap root gap

50 44 44 0.01 - 0.16 28 68.58 6.44 8.50

75 44 44 1.45 - 0.41 14 120.19 9.47 10.91

100 44 37 9.30 1.00 0.98 7 164.42 12.65 13.11

125 44 35 13.43 1.33 1.20 2 135.33 13.88 14.73

150 44 33 27.23 1.91 1.43 1 397.52 16.42 16.39
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Results on Real-world (sparse) networks

k = d0.005 · |V |e k = d0.01 · |V |e

|V | |E | ω [s] [s] |Vp| [s] |Vp|

socfb-UIllinois 30,795 1,264,421 0.5 24.4 10,456 41.6 8290

ia-email-EU 32,430 54,397 0.0 0.6 30,375 0.5 29,212

rgg n 2 15 s0 32,768 160,240 0.0 - - 0.2 30,848

ia-enron-large 33,696 180,811 0.0 2.2 27,791 29.5 26,651

socfb-UF 35,111 1,465,654 0.3 17.8 14,264 87.8 10,708

socfb-Texas84 36,364 1,590,651 0.3 24.6 10,706 74.3 8,704

tech-internet-as 40,164 85,123 0.0 1.4 31,783 - -

fe-body 45,087 163,734 0.1 1.8 2,259 1.8 2259

sc-nasasrb 54,870 1,311,227 0.1 - - 145.5 1,195

soc-themarker u 69,413 1,644,843 2.1 T.L. 35,678 T.L. 31,101

rec-eachmovie u 74,424 1,634,743 0.7 - - 367.3 13669

fe-tooth 78,136 452,591 0.5 18.9 7 19.0 7

sc-pkustk11 87,804 2,565,054 1.1 70.7 2,712 57.1 2,712

soc-BlogCatalog 88,784 2,093,195 11.7 T.L. 51,607 T.L. 46,240

ia-wiki-Talk 92,117 360,767 0.2 49.2 72,678 87.4 72,678

sc-pkustk13 94,893 3,260,967 1.3 724.9 2,360 879.2 2,354
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Conclusions

Branch-and-Cuts for
• General Mixed Integer Bilevel Programs (intersection cuts)

• Interdiction-Like Bilevel Programs (interdiction cuts)

• Interdiction problems easier, and it pays off to exploit the structure

• Use interdiction cuts for blocker-type problems too

Open questions, directions for future research

• Other bilevel-free sets, tighter cuts for the generic case?

• Non-linear mixed integer bilevel problems?

• General purpose solvers for bilevel pricing problems?

• Three-level and multi-level optimization problems, DAD models?

Ivana Ljubić (ESSEC) B&C for Bilevel MIPs SPO 2018, June 11, Paris 53



Literature I

C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and
mixed 0–1 programming problems. Journal of Optimization Theory and
Applications, 93(2):273–300, 1997.

A. Baggio, M. Carvalho, A. Lodi, and A. Tramontani. Multilevel approaches for
the critical node problem. Working paper. École Polytechnique de Montreal,
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