Generalized Benders Cuts for Congested Facility Location

M. Fischetti¹, <u>I. Ljubić²</u>, M. Sinnl³

¹DEI, University of Padua ²ESSEC Business School of Paris ³ISOR, University of Vienna

TRISTAN 2016, Aruba June 16th 2016

Capacitated facility location (CFL) with multiple allocation

- Given:
 - ▶ bipartite graph $G = (I \cup J, E)$,
 - ▶ *J*: potential facility locations, *I*: customers, *E* possible allocations
 - ▶ Customers to be served by open facilities.
 - ▶ Demand $d_i > 0$ for each customer $i \in I$.
 - ▶ Capacity $s_i > 0$, for each facility $j \in J$.
 - Demand can be split and a customer partially served by several facilities.
 - ► Facility opening costs f_j > 0, allocation costs c_{ij} > 0 (per unit of demand)
- Goal: find facilities to open and allocate customers to minimize costs for opening facilities plus allocation costs.
- NP-hard problem (uncapacitated problem: reduction from set-cover)

CFL: MIP-model

- binary variables $y_i = 1$, iff facility i is opened
- ullet variables x_{ij} fraction of demand of customer i served by facility j

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij}$$

$$\text{s.t.} \qquad \sum_{j \in J} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$\sum_{i \in I} d_i x_{ij} \le s_j y_j \qquad \forall j \in J$$

$$y_i \in \{0, 1\} \qquad \forall j \in J$$

- total customer demand is satisfied
- (partial) allocation to a facility j is only possible if this facility is open

1 jubic@essec.edu Congested CFL June, 16th 2016 3

Congested Capacitated Facility Location

- Congestion at facilities can lead to
 - huge delays,
 - higher cost: overtime workers, costly materials,
 - postponing/neglecting maintenance schedules.
- Congestion costs: diseconomies of scale!
- For example, in production-distribution networks, convex "costs":
 - service/production costs at facilities,
 - waiting times (not always measured in currencies)
 - number of waiting items

Congested Capacitated Facility Location

- Congestion at facilities can lead to
 - huge delays,
 - higher cost: overtime workers, costly materials,
 - postponing/neglecting maintenance schedules.
- Congestion costs: diseconomies of scale!
- For example, in production-distribution networks, convex "costs":
 - service/production costs at facilities,
 - waiting times (not always measured in currencies)
 - number of waiting items

- Queuing theory...
- As a convex function of the facility load: total demand served by a facility
- Let the load of facility *j* be:

$$v_j = \sum_{i \in I} d_i x_{ij}$$

Congestion can be measured (see Desrochers et al., 1995)

$$v_j \cdot F(v_j)$$

where F is a convex penalty function associated with the load.

$$\sum_{i\in I} d_i x_{ij} \cdot F(\sum_{i\in I} d_i x_{ij}).$$

- Queuing theory...
- As a convex function of the facility load: total demand served by a facility
- Let the load of facility *j* be:

$$v_j = \sum_{i \in I} d_i x_{ij}$$

• Congestion can be measured (see Desrochers et al., 1995)

$$v_j \cdot F(v_j)$$

where *F* is a convex penalty function associated with the load.

$$\sum_{i\in I} d_i x_{ij} \cdot F(\sum_{i\in I} d_i x_{ij}).$$

- Queuing theory...
- As a convex function of the facility load: total demand served by a facility
- Let the load of facility *j* be:

$$v_j = \sum_{i \in I} d_i x_{ij}$$

Congestion can be measured (see Desrochers et al., 1995)

$$v_j \cdot F(v_j)$$

where F is a convex penalty function associated with the load.

$$\sum_{i\in I} d_i x_{ij} \cdot F(\sum_{i\in I} d_i x_{ij}).$$

- Queuing theory...
- As a convex function of the facility load: total demand served by a facility
- Let the load of facility *j* be:

$$v_j = \sum_{i \in I} d_i x_{ij}$$

Congestion can be measured (see Desrochers et al., 1995)

$$v_j \cdot F(v_j)$$

where F is a convex penalty function associated with the load.

$$\sum_{i\in I} d_i x_{ij} \cdot F(\sum_{i\in I} d_i x_{ij}).$$

Congested CFL: MINLP

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + \sum_{j \in J} v_j \cdot F(v_j)$$

$$\text{s.t.} \qquad \sum_{j \in J} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$

$$v_j \le s_j y_j \qquad \forall j \in J$$

$$\sum_{j \in J} y_j = p$$

$$v_i \in \{0, 1\} \qquad \forall j \in J$$

p-median constraint: to avoid opening too many facilities

For a fixed value of y^* , the NLP is a convex problem. However, this continuous relaxation is not particularly strong.

Congested CFL: MINLP

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + \sum_{j \in J} v_j \cdot F(v_j)$$

$$\text{s.t.} \quad \sum_{j \in J} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$

$$v_j \le s_j y_j \qquad \forall j \in J$$

$$\sum_{j \in J} y_j = p$$

$$v_i \in \{0, 1\} \qquad \forall j \in J$$

p-median constraint: to avoid opening too many facilities

For a fixed value of y^* , the NLP is a convex problem. However, this continuous relaxation is not particularly strong.

1jubic@essec.edu Congested CFL June, 16th 2016

Congested CFL: MINLP

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + \sum_{j \in J} v_j \cdot F(v_j)$$

$$\text{s.t.} \quad \sum_{j \in J} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$

$$v_j \le s_j y_j \qquad \forall j \in J$$

$$\sum_{j \in J} y_j = p$$

$$v_i \in \{0, 1\} \qquad \forall j \in J$$

p-median constraint: to avoid opening too many facilities For a fixed value of y^* , the NLP is a convex problem. However, this continuous relaxation is not particularly strong.

Congested CFL: Previous Work

- Introduced by Desrochers, Marcotte, Stan (Location Science, 1995): branch-and-price (pricing problem is a convex NLP).
- Instances of size 57×57 , with p = 13, 29, 55
- ...
- Selfun, 2011: master thesis, Bilkent Univ. Outer approximation.
- Instances of size $|I| = |J| \in \{20, 40, 60, 80\}$ solved within 10 minutes

Our contribution:

- Derive a tighter MINLP formulation (perspective reformulation)
- 2 Reduce the MINLP-size: remove x_{ij} and v_j variables (generalized Benders decomposition)
- Solve the newly obtained MILP using a branch-and-cut (separate generalized Benders cuts on the fly)
- Instances of size $|I| \times |J| \in \{300 \times 300, \dots, 1000 \times 1000\}$ solved to optimality.

Congested CFL: Previous Work

- Introduced by Desrochers, Marcotte, Stan (Location Science, 1995): branch-and-price (pricing problem is a convex NLP).
- Instances of size 57×57 , with p = 13, 29, 55
- ...
- Selfun, 2011: master thesis, Bilkent Univ. Outer approximation.
- Instances of size $|I| = |J| \in \{20, 40, 60, 80\}$ solved within 10 minutes

Our contribution:

- Derive a **tighter MINLP** formulation (perspective reformulation)
- **2** Reduce the MINLP-size: remove x_{ij} and v_j variables (generalized Benders decomposition)
- Solve the newly obtained MILP using a branch-and-cut (separate generalized Benders cuts on the fly)
- **③** Instances of size $|I| \times |J| \in \{300 \times 300, \dots, 1000 \times 1000\}$ solved to optimality.

1jubic@essec.edu Congested CFL June, 16th 2016 7

STEP 1: PERSPECTIVE REFORMULATION

Towards Perspective Reformulation

Assume (for a moment) that

$$F(t) = a \cdot t + b \quad (a, b > 0),$$

so the congestion term in the objective function

$$\sum_{j\in J} v_j F(v_j) = a \sum_{j\in J} v_j^2 + b \sum_{j\in J} v_j$$

where

$$v_j = \sum_{i \in I} d_i x_{ij} \quad \forall j \in J$$

MINLP - rewritten in terms of v_j 's

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + b \sum_{j \in J} v_j + a \sum_{j \in J} \frac{v_j^2}{}$$
 (1)

s.t.
$$\sum_{i \in J} y_i = p \tag{2}$$

$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$
 (3)

$$\sum_{i \in J} x_{ij} = 1 \qquad \forall i \in I \tag{4}$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J \quad (5)$$

$$v_j \leq s_j y_j \qquad \forall j \in J \qquad (6)$$

$$y_j \in \{0, 1\} \qquad \forall j \in J \tag{7}$$

$$v_j$$
 are semi-continuous: $y_j = 0 \implies v_j = 0$,

$$y_j=1 \implies v_j \leq s_j.$$

ljubic@essec.edu Congested CFL June,

Perspective Reformulation

Replace v_i^2 by z_j in the OF and make a second-order constraint (SOC)

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + b \sum_{j \in J} v_j + a \sum_{j \in J} \mathbf{z}_j$$

$$\mathrm{s.t.} \quad \sum_{j \in J} y_j = p$$

$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$

$$\sum_{i \in I} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$v_j \le s_j y_j \qquad \forall j \in J$$

$$v_j^2 \le \mathbf{z}_j \qquad \forall j \in J$$

$$v \in \{0, 1\}^{|J|}, \mathbf{z} > 0$$

ljubic@essec.edu June, 16th 2016

Perspective Reformulation

Replace v_j^2 by z_j in the OF and make a second-order constraint (SOC)

$$\min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + b \sum_{j \in J} v_j + a \sum_{j \in J} z_j$$

$$\text{s.t.} \quad \sum_{j \in J} y_j = p$$

$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$

$$\sum_{i \in I} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$v_j \le s_j y_j \qquad \forall j \in J$$

$$v_j^2 \le z_j y_j \qquad \forall j \in J \qquad (SOC)$$

$$y \in \{0, 1\}^{|J|}, z \ge 0$$

1 jubic@essec.edu Congested CFL June, 16th 2016 11

STEP 2: (GENERALIZED) BENDERS DECOMPOSITION

June, 16th 2016

Benders Reformulation

$$\min \sum_{j \in J} f_j y_j + w \tag{8}$$

s.t.
$$w \ge \Phi(y)$$
 (9)

$$\sum_{j\in J}y_j=p$$

$$\sum_{j\in J} s_j y_j \ge \sum_{i\in I} d_i \tag{10}$$

$$y \in \{0,1\}^{|J|} \tag{11}$$

$\Phi(y)$ is convex: allocation plus congestion costs for a given y.

Variables x_{ij} , v_j , z_j projected out and replaced by a single w. Constraints (10) ensure feasibility for any fixed value of y^* . Geoffrion (1972) proposed a **generalized Benders decomposition** solve such problems.

Benders Reformulation

$$\min \sum_{j \in J} f_j y_j + w \tag{8}$$

s.t.
$$w \ge \Phi(y)$$
 (9)

$$\sum_{j\in J}y_j=p$$

$$\sum_{j\in J} s_j y_j \ge \sum_{i\in I} d_i \tag{10}$$

$$y \in \{0,1\}^{|J|} \tag{11}$$

13

 $\Phi(y)$ is convex: allocation plus congestion costs for a given y. Variables x_{ij} , v_j , z_j projected out and replaced by a single w. Constraints (10) ensure feasibility for any fixed value of y^* . Geoffrion (1972) proposed a **generalized Benders decomposition** to solve such problems.

Benders Subproblem: convex NLP for a fixed y

If we fix the value of y, the problem becomes a convex NLP:

$$\Phi(y) = \min \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} + b \sum_{j \in J} v_j + a \sum_{j \in J} z_j$$
s.t.
$$\sum_{i \in I} d_i x_{ij} = v_j \qquad \forall j \in J$$

$$\sum_{j \in J} x_{ij} = 1 \qquad \forall i \in I$$

$$0 \le x_{ij} \le y_j \qquad \forall i \in I, j \in J$$

$$v_j \le s_j y_j \qquad \forall j \in J$$

$$v_j^2 \le z_j y_j \qquad \forall j \in J$$

$$z > 0$$

For a fixed (possibly fractional) value of y:

SOCP turned into a QCP. UBs on x and v variables.

Use your favorite NLP solver to find $\Phi(y)$ (e.g., CPLEX).

STEP 3: BRANCH-AND-CUT

Generalized Benders Decomposition

In a more general setting, we have

(P)
$$\min f(x, y)$$

s.t. $g(x, y) \le 0$
 $y \in Y$

Functions f and g are convex, y are complicating (integer) variables. Benders reformulation:

(B)
$$\min w$$

s.t. $w \ge \Phi(y)$ (OCuts)
 $y \in Y$

 Φ is the value function: $\Phi(\hat{y}) = \min_{x} \{ f(x, \hat{y}) \mid g(x, \hat{y}) \leq 0 \}$

 $\Phi(y)$ is convex in y

ljubic@essec.edu

Generalized Benders Decomposition

In a more general setting, we have

(P)
$$\min f(x, y)$$

s.t. $g(x, y) \le 0$
 $y \in Y$

Functions f and g are convex, y are complicating (integer) variables. Benders reformulation:

(B)
$$\min w$$

s.t. $w \ge \Phi(y)$ (OCuts)
 $y \in Y$

 Φ is the value function: $\Phi(\hat{y}) = \min_{x} \{ f(x, \hat{y}) \mid g(x, \hat{y}) \leq 0 \}$

 $\Phi(y)$ is convex in y

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

Generalized Benders Decomposition

In a more general setting, we have

(P)
$$\min f(x, y)$$

s.t. $g(x, y) \le 0$
 $y \in Y$

Functions f and g are convex, y are complicating (integer) variables. Benders reformulation:

(B)
$$\min w$$

s.t. $w \ge \Phi(y)$ (OCuts)
 $y \in Y$

 Φ is the value function: $\Phi(\hat{y}) = \min_{x} \{ f(x, \hat{y}) \mid g(x, \hat{y}) \leq 0 \}$

 $\Phi(y)$ is convex in y

◆ロ → ◆同 → ◆ き → ◆ き ・ り へ ○

Generalized Benders Decomposition: Idea

Benders reformulation:

(B)
$$\min w$$

s.t. $w \ge \Phi(y)$ (OCuts)
 $y \in Y$

Relaxed Master Problem (RMP)

min w

$$y \in Y, w \ge 0$$

Benders separation:

- **1** Let (y^*, w^*) be the optimal solution of RMP.
- ② Check if $w^* \ge \Phi(y^*)$. If not, add violated optimality cut to RMP.
- Resolve RMP.

Benders separation:

- Check if $w^* \ge \Phi(y^*)$. If not, add violated optimality cut to RMP.
- Resolve RMP.

The function $\Phi(y)$ is underestimated by tangential hyperplanes:

$$\Phi(y) \ge \Phi(y^*) + \alpha^T (y - y^*)$$

where α is a subgradient of Φ in y^* .

Benders optimality cut:

$$w \ge \Phi(y^*) + \alpha^T (y - y^*)$$

Implementation:

- Old School: Resolve RMP as a MIP. Caveat: each new cut requires solving the RMP as a MIP!
- Modern Benders: Remove integrality requirements from the RMP and embed it into a B&B ⇒ Branch-and-Cut! Inserted cuts are globally valid!

18

1jubic@essec.edu Congested CFL June, 16th 2016

Benders separation:

- Check if $w^* \ge \Phi(y^*)$. If not, add violated optimality cut to RMP.
- Resolve RMP.

The function $\Phi(y)$ is underestimated by tangential hyperplanes:

$$\Phi(y) \ge \Phi(y^*) + \frac{\alpha}{\alpha}^T (y - y^*)$$

where α is a subgradient of Φ in y^* .

Benders optimality cut:

$$w \ge \Phi(y^*) + \alpha^T (y - y^*)$$

Implementation:

- Old School: Resolve RMP as a MIP. Caveat: each new cut requires solving the RMP as a MIP!
- Modern Benders: Remove integrality requirements from the RMP and embed it into a B&B ⇒ Branch-and-Cut! Inserted cuts are globally valid!

Benders separation:

- Check if $w^* \ge \Phi(y^*)$. If not, add violated optimality cut to RMP.
- Resolve RMP.

The function $\Phi(y)$ is underestimated by tangential hyperplanes:

$$\Phi(y) \ge \Phi(y^*) + \alpha^T (y - y^*)$$

where α is a subgradient of Φ in y^* .

Benders optimality cut:

$$w \ge \Phi(y^*) + \alpha^T (y - y^*)$$

Implementation:

- Old School: Resolve RMP as a MIP. Caveat: each new cut requires solving the RMP as a MIP!
- Modern Benders: Remove integrality requirements from the RMP and embed it into a B&B ⇒ Branch-and-Cut! Inserted cuts are globally valid!

How to find α ?¹

Reformulate Benders subproblem $\Phi(y^*) = \min\{f(x, y^*) : g(x, y^*) \le 0\}$ as

(S)
$$\min f(x, q)$$

s.t. $g(x, q) \le 0$
s.t. $y^* \le q \le y^*$ (12)

Then, in particular, a subgradient lpha is the reduced cost vector w.r.t. variables $m{q}$. So, the optimality cut:

$$w \ge \Phi(y^*) + \alpha^T (y - y^*)$$

can be derived without explicitly invoking the computation of Lagrangian dual multipliers and subgradients of f and g.

¹By Lagrangian duality:
$$\Phi(y) = f(x,y) + \lambda^T g(x,y)$$
, and $\alpha \in \nabla_y f(x,y) + \lambda^T \nabla_y g(x,y)$

19

1jubic@essec.edu Congested CFL June, 16th 2016

How to find α ?¹

Reformulate Benders subproblem $\Phi(y^*) = \min\{f(x,y^*) : g(x,y^*) \le 0\}$ as

(S)
$$\min f(x, \mathbf{q})$$

s.t. $g(x, \mathbf{q}) \le 0$
s.t. $y^* \le \mathbf{q} \le y^*$ (12)

Then, in particular, a subgradient α is the reduced cost vector w.r.t. variables q. So, the optimality cut:

$$w \geq \Phi(y^*) + \frac{\alpha}{\alpha}^T (y - y^*)$$

can be derived without explicitly invoking the computation of Lagrangian dual multipliers and subgradients of f and g.

4□ → 4□ → 4 = → 4 = → 9 < ○</p>

19

1jubic@essec.edu Congested CFL June, 16th 2016

¹By Lagrangian duality: $\Phi(y) = f(x,y) + \lambda^T g(x,y)$, and $\alpha \in \nabla_V f(x,y) + \lambda^T \nabla_V g(x,y)$

COMPUTATIONAL RESULTS

June, 16th 2016

Computational Settings

- Comparing our generalized Benders decomposition framework with the perspective reformulation
- IBM ILOG Cplex 12.6.1
- Cluster: Intel Xeon E3-1220V2 @ 3.1GHz, with 16GB of RAM, 4 threads.
- Timelimit: 50,000 seconds.
- CPX_PARAM_EPGAP=1e-6
- Branch-and-cut:
 - Stabilization at the root node (multi-thread)
 - $ightharpoonup \leq$ 100 cuts at the root, \leq 20 at the nodes
 - Restart the root node twice (static Benders cuts & incumbent enforce variable fixing, internal Cplex cuts)

Benchmark Instances

- i*: Used to test the branch-and-cut-and-price algorithm by Avella & Boccia (2009) for linear CFL.
- Available at http://www.ing.unisannio.it/boccia/CFLP.htm.
- Generated following the procedure proposed in Cornuéjols, Sridharan, Thizy (1991) for linear CFL.
- 100 instances of size $|J| \times |I| \in \{300 \times 300, 300 \times 1500, 500 \times 500, 700 \times 700, 1, 000 \times 1, 000\}$ and $r \in \{5, 10, 15, 20\}$.
- Congestion function a = b = 0.75 (as suggested by Desrochers et al.)
- $p = \lfloor \pi |J| \rfloor$, where $\pi \in \{0.4, 0.6, 0.8\}$.

Instances 300×300

					Perspective Reformulation (Cplex)					Benders B&C					
inst.	J	I	π	OPT	$gap_r[\%]$	$t_r[s]$	gap[%]	t[s]	nodes	$gap_r[\%]$	$t_r[s]$	gap[%]	t[s]	nodes	
1	300	300	0.4	257315.7360	0.1186	149	0.0000	233	130	0.0031	319	0.0000	383	10	
1	300	300	0.6	214609.8293	0.0050	5057	0.0000	25115	17	0.0050	373	0.0000	594	30	
1	300	300	8.0	219221.1886	0.4101	80	0.0000	155	49	0.0001	226	0.0000	236	0	
6	300	300	0.4	273308.0002	0.0044	5675	0.0000	36598	28	0.0056	347	0.0000	583	32	
6	300	300	0.6	225383.3635	0.0015	2329	0.0000	11696	9	0.0015	290	0.0000	299	3	
6	300	300	8.0	228139.1799	0.0006	1825	0.0000	6196	5	0.0006	144	0.0000	165	0	
11	300	300	0.4	259294.8204	0.0019	4936	0.0000	26260	17	0.0020	257	0.0000	271	3	
11	300	300	0.6	216415.5633	0.0001	2257	0.0000	2257	0	0.0001	159	0.0000	167	0	
11	300	300	8.0	224171.5836	0.0007	1842	0.0000	5273	5	0.0005	248	0.0000	254	0	
16	300	300	0.4	256734.9041	0.0011	7417	0.0000	44495	33	0.0012	230	0.0000	281	8	
16	300	300	0.6	220241.5213	0.0018	3063	0.0000	9463	6	0.0016	238	0.0000	250	3	
16	300	300	8.0	231623.9657	0.0001	2888	0.0000	4641	3	0.0001	106	0.0000	115	0	

All instances of size 300×300 solved to optimality in less than 10 minutes.

Instances 500×500

					Perspective Reformulation (Cplex)					Benders B&C					
inst.	J	[/]	π	OPT	gap _r [%]	$t_r[s]$	gap[%]	t[s]	nodes	gap _r [%]	$t_r[s]$	gap[%]	t[s]	nodes	
1	500	500	0.4	433836.6527	2.3892	667	0.0000	1311	294	0.0017	1265	0.0000	2282	32	
1	500	500	0.6	361323.3070	0.0006	50130	0.0006	TL	0	0.0007	1259	0.0000	1435	5	
1	500	500	0.8	368022.2916	0.0000	17071	0.0000	17071	0	0.0000	587	0.0000	587	0	
6	500	500	0.4	465717.4928	0.0005	4255	0.0005	TL	4	0.0005	823	0.0000	901	5	
6	500	500	0.6	384364.0093	0.0004	11594	0.0004	TL	4	0.0006	975	0.0000	1430	12	
6	500	500	0.8	393072.8259	0.0001	3000	0.0000	19734	3	0.0001	506	0.0000	532	0	
11	500	500	0.4	420862.4354	0.0025	11074	0.0025	TL	5	0.0028	971	0.0000	2027	133	
11	500	500	0.6	353185.6836	0.0009	3296	0.0009	TL	6	0.0010	962	0.0000	1664	32	
11	500	500	0.8	366081.6812	0.0001	2698	0.0000	2698	0	0.0001	768	0.0000	814	0	
16	500	500	0.4	398241.0995	0.0009	7310	0.0009	TL	5	0.0009	766	0.0000	946	9	
16	500	500	0.6	345164.2574	0.0008	4956	0.0008	TL	5	0.0008	1061	0.0000	1719	17	
16	500	500	8.0	367401.3250	0.0001	2984	0.0000	19396	3	0.0001	589	0.0000	639	0	

Benders: All instances of size 500×500 solved to optimality in less than 40 minutes.

Cplex: in more than 50% of the cases reaches the TL (50 000 sec.s)

Instances 700×700

					Perspective Reformulation (Cplex)					Benders B&C					
inst.	J	1	π	OPT	$gap_r[\%]$	$t_r[s]$	gap[%]	t[s]	nodes	gap _r [%]	$t_r[s]$	gap[%]	t[s]	nodes	
1	700	700	0.4	608104.4400	0.4047	1760	0.0000	3106	345	0.0007	2306	0.0000	4485	128	
1	700	700	0.6	511852.0282	0.0002	49519	0.0002	TL	1	0.0003	2495	0.0000	2532	2	
1	700	700	8.0	528832.2478	0.0005	11270	0.0005	TL	7	0.0005	2274	0.0000	3117	6	
6	700	700	0.4	590223.9309	0.0009	17338	0.0009	TL	5	0.0009	2126	0.0000	3093	20	
6	700	700	0.6	491995.9402	0.0001	12952	0.0001	TL	7	0.0002	2196	0.0000	2600	4	
6	700	700	0.8	512486.5658	0.0001	11506	0.0000	11506	0	0.0001	1195	0.0000	1307	0	
11	700	700	0.4	588518.4248	0.0017	50117	0.0017	TL	0	0.0021	2342	0.0000	19450	2630	
11	700	700	0.6	496861.5248	0.0011	12357	0.0011	TL	7	0.0012	2462	0.0000	11539	528	
11	700	700	8.0	514897.8446	0.0005	11357	0.0003	TL	8	0.0005	2327	0.0000	3175	8	
16	700	700	0.4	591092.0635	0.0010	15292	0.0010	TL	6	0.0012	2326	0.0000	5530	382	
16	700	700	0.6	498257.7984	0.0004	14950	0.0004	TL	6	0.0004	2002	0.0000	2294	5	
16	700	700	8.0	515610.2532	0.0001	11468	0.0000	TL	8	0.0001	1227	0.0000	1332	0	

Benders: All instances of size 700×700 solved to optimality in less than $20\,000$ sec.s (most in about 1h).

Cplex: in more than 80% of the cases reaches the TL (50 000 sec.s)

Instances 1000×1000

					Perspective Reformulation (Cplex)					Benders B&C					
inst.	J	1	π	OPT	gap _r [%]	$t_r[s]$	gap[%]	t[s]	nodes	gap _r [%]	$t_r[s]$	gap[%]	t[s]	nodes	
1	1000	1000	0.4	831618.2005	1.0782	5785	0.0000	12826	705	0.0015	7245	0.0006	TL	3649	
1	1000	1000	0.6	700140.6641	_	_	-	-	-	0.0006	6102	0.0000	19435	237	
1	1000	1000	8.0	720445.3031	_	_	-	-	-	0.0004	8256	0.0000	11922	7	
6	1000	1000	0.4	884498.8703	_	_	_	_	_	0.0007	5849	0.0000	10162	90	
6	1000	1000	0.6	739680.3837	_	_	_	_	_	0.0002	6640	0.0000	10429	13	
6	1000	1000	8.0	765867.8192	_	_	-	_	_	0.0002	6829	0.0000	7263	2	
11	1000	1000	0.4	808297.2103	_	_	-	-	-	0.0012	6003	0.0001	TL	2666	
11	1000	1000	0.6	692675.4305	_	_	-	_	_	0.0003	4907	0.0000	8085	22	
11	1000	1000	8.0	729765.8357	_	_	-	_	_	0.0002	5631	0.0000	6353	3	
16	1000	1000	0.4	852614.2315	_	_	-	_	_	0.0015	4697	0.0005	TL	4700	
16	1000	1000	0.6	719272.2322	_	_	-	_	_	0.0003	5503	0.0000	9205	37	
16	1000	1000	8.0	744746.7001	_	_	-	-	-	0.0001	3098	0.0000	3208	2	

Benders: Most instances of size 1000×1000 solved to optimality within the TL.

Root relaxation: Benders (< 2h) with extremely small gaps!

Cplex: even impossible to solve the initial continuous relaxation (MINLP with 1M of variables and 1000 SOC)

Conclusion

- Solving convex MINLP with branch-and-cut implementation of the generalized Benders decomposition
- Strong perspective reformulation improves the root relaxation
- Projecting out variables crucial: otherwise impossible to solve the continuous relaxation
- Even though the Benders subproblem is not separable, we draw advantage of decomposition for two reasons:
 - reduce the number of variables from $O(m \cdot n)$ to O(m)
 - \blacktriangleright the compact model is a mixed-integer NLP \Rightarrow transformed into a MILP
- Further applications: congestion in transportation (convex flow-costs), multi-commodity network design, two-stage stochastic opt. with convex recourse...

Conclusion

- Solving convex MINLP with branch-and-cut implementation of the generalized Benders decomposition
- Strong perspective reformulation improves the root relaxation
- Projecting out variables crucial: otherwise impossible to solve the continuous relaxation
- Even though the Benders subproblem is not separable, we draw advantage of decomposition for two reasons:
 - reduce the number of variables from $O(m \cdot n)$ to O(m)
 - \blacktriangleright the compact model is a mixed-integer NLP \Rightarrow transformed into a MILP
- Further applications: congestion in transportation (convex flow-costs), multi-commodity network design, two-stage stochastic opt. with convex recourse...

Thank you!

M. Fischetti, I. Ljubić, M. Sinnl:

Benders decomposition without separability: A computational study for capacitated facility location problems, European Journal of Operational Research 253(3): 557-569, 2016.