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Capacitated facility location (CFL) with multiple allocation

Given:
I bipartite graph G = (I ∪ J,E ),
I J: potential facility locations, I : customers, E possible allocations
I Customers to be served by open facilities.
I Demand di > 0 for each customer i ∈ I .
I Capacity sj > 0 , for each facility j ∈ J.
I Demand can be split and a customer partially served by several

facilities.
I Facility opening costs fj > 0, allocation costs cij > 0 (per unit of

demand)

Goal: find facilities to open and allocate customers to minimize

costs for opening facilities plus allocation costs.

NP-hard problem (uncapacitated problem: reduction from set-cover)
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CFL: MIP-model

binary variables yi = 1, iff facility i is opened

variables xij fraction of demand of customer i served by facility j

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij

s.t.
∑
j∈J

xij = 1 ∀i ∈ I

0 ≤ xij ≤ yj ∀i ∈ I , j ∈ J∑
i∈I

dixij ≤ sjyj ∀j ∈ J

yj ∈ {0, 1} ∀j ∈ J

total customer demand is satisfied

(partial) allocation to a facility j is only possible if this facility is open
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Congested Capacitated Facility Location

Congestion at facilities can lead to
I huge delays,
I higher cost: overtime workers, costly materials,
I postponing/neglecting maintenance schedules.

Congestion costs: diseconomies of scale!

For example, in production-distribution networks, convex “costs”:
I service/production costs at facilities,
I waiting times (not always measured in currencies)
I number of waiting items
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How to model congestion costs?

Queuing theory...

As a convex function of the facility load: total demand served by a
facility

Let the load of facility j be:

vj =
∑
i∈I

dixij

Congestion can be measured (see Desrochers et al., 1995)

vj · F (vj)

where F is a convex penalty function associated with the load.

Desrochers et al., 1995: If F is non-negative, convex, increasing, so is∑
i∈I

dixij · F (
∑
i∈I

dixij).
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Congested CFL: MINLP

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij+
∑
j∈J

vj · F (vj)

s.t.
∑
j∈J

xij = 1 ∀i ∈ I

0 ≤ xij ≤ yj ∀i ∈ I , j ∈ J∑
i∈I

dixij = vj ∀j ∈ J

vj ≤ sjyj ∀j ∈ J∑
j∈J

yj = p

yj ∈ {0, 1} ∀j ∈ J

p-median constraint: to avoid opening too many facilities

For a fixed value of y∗, the NLP is a convex problem. However, this continuous

relaxation is not particularly strong.
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Congested CFL: Previous Work

Introduced by Desrochers, Marcotte, Stan (Location Science, 1995):
branch-and-price (pricing problem is a convex NLP).

Instances of size 57× 57, with p = 13, 29, 55

. . .

Selfun, 2011: master thesis, Bilkent Univ. Outer approximation.

Instances of size |I | = |J| ∈ {20, 40, 60, 80} solved within 10 minutes

Our contribution:

1 Derive a tighter MINLP formulation (perspective reformulation)

2 Reduce the MINLP-size: remove xij and vj variables (generalized
Benders decomposition)

3 Solve the newly obtained MILP using a branch-and-cut (separate
generalized Benders cuts on the fly)

4 Instances of size |I | × |J| ∈ {300× 300, . . . , 1000× 1000} - solved to
optimality.
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STEP 1: PERSPECTIVE
REFORMULATION
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Towards Perspective Reformulation

Assume (for a moment) that

F (t) = a · t + b (a, b > 0),

so the congestion term in the objective function∑
j∈J

vjF (vj) = a
∑
j∈J

v2j + b
∑
j∈J

vj

where

vj =
∑
i∈I

dixij ∀j ∈ J
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MINLP - rewritten in terms of vj ’s

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij+b
∑
j∈J

vj + a
∑
j∈J

v2j (1)

s.t.
∑
j∈J

yj = p (2)

∑
i∈I

dixij = vj ∀j ∈ J (3)∑
j∈J

xij = 1 ∀i ∈ I (4)

0 ≤ xij ≤ yj ∀i ∈ I , j ∈ J (5)

vj≤ sjyj ∀j ∈ J (6)

yj ∈ {0, 1} ∀j ∈ J (7)

vj are semi-continuous: yj = 0 =⇒ vj = 0,

yj = 1 =⇒ vj ≤ sj .
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Perspective Reformulation

Replace v2j by zj in the OF and make a second-order constraint (SOC)

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij+b
∑
j∈J

vj + a
∑
j∈J

zj

s.t.
∑
j∈J

yj = p

∑
i∈I

dixij = vj ∀j ∈ J∑
j∈J

xij = 1 ∀i ∈ I

0 ≤ xij ≤ yj ∀i ∈ I , j ∈ J

vj ≤ sjyj ∀j ∈ J

v2j ≤ zj ∀j ∈ J

y ∈ {0, 1}|J|, z ≥ 0
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STEP 2: (GENERALIZED)
BENDERS DECOMPOSITION
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Benders Reformulation

min
∑
j∈J

fjyj + w (8)

s.t. w ≥ Φ(y) (9)∑
j∈J

yj = p

∑
j∈J

sjyj≥
∑
i∈I

di (10)

y ∈ {0, 1}|J| (11)

Φ(y) is convex: allocation plus congestion costs for a given y .
Variables xij , vj , zj projected out and replaced by a single w .
Constraints (10) ensure feasibility for any fixed value of y∗.
Geoffrion (1972) proposed a generalized Benders decomposition to
solve such problems.
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Benders Subproblem: convex NLP for a fixed y
If we fix the value of y , the problem becomes a convex NLP:

Φ(y) = min
∑
i∈I

∑
j∈J

dicijxij+b
∑
j∈J

vj + a
∑
j∈J

zj

s.t.
∑
i∈I

dixij = vj ∀j ∈ J∑
j∈J

xij = 1 ∀i ∈ I

0 ≤ xij ≤ yj ∀i ∈ I , j ∈ J

vj ≤ sjyj ∀j ∈ J

v2j ≤ zjyj ∀j ∈ J

z ≥ 0

For a fixed (possibly fractional) value of y :
SOCP turned into a QCP. UBs on x and v variables.
Use your favorite NLP solver to find Φ(y) (e.g., CPLEX).

ljubic@essec.edu Congested CFL June, 16th 2016 14

ljubic@essec.edu


STEP 3: BRANCH-AND-CUT
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Generalized Benders Decomposition

In a more general setting, we have

(P) min f (x , y)

s.t. g(x , y) ≤ 0

y ∈ Y

Functions f and g are convex, y are complicating (integer) variables.
Benders reformulation:

(B) minw

s.t. w ≥ Φ(y) (OCuts)

y ∈ Y

Φ is the value function: Φ(ŷ) = minx{f (x , ŷ) | g(x , ŷ) ≤ 0}

Φ(y) is convex in y
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Generalized Benders Decomposition: Idea

Benders reformulation:

(B) minw

s.t. w ≥ Φ(y) (OCuts)

y ∈ Y

Relaxed Master Problem (RMP)

minw

y ∈ Y ,w ≥ 0

Benders separation:

1 Let (y∗,w∗) be the optimal solution of RMP.

2 Check if w∗ ≥ Φ(y∗). If not, add violated optimality cut to RMP.

3 Resolve RMP.
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Benders separation:

1 Check if w∗ ≥ Φ(y∗). If not, add violated optimality cut to RMP.

2 Resolve RMP.

The function Φ(y) is underestimated by tangential hyperplanes:

Φ(y) ≥ Φ(y∗) + αT (y − y∗)

where α is a subgradient of Φ in y∗.
Benders optimality cut:

w ≥ Φ(y∗) + αT (y − y∗)

Implementation:

Old School: Resolve RMP as a MIP. Caveat: each new cut requires
solving the RMP as a MIP!

Modern Benders: Remove integrality requirements from the RMP and
embed it into a B&B ⇒ Branch-and-Cut! Inserted cuts are globally
valid!
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How to find α?1

Reformulate Benders subproblem Φ(y∗) = min{f (x , y∗) : g(x , y∗) ≤ 0} as

(S) min f (x , q)

s.t. g(x , q) ≤ 0

s.t. y∗ ≤ q ≤ y∗ (12)

Then, in particular, a subgradient α is the reduced cost vector w.r.t.
variables q. So, the optimality cut:

w ≥ Φ(y∗) + αT (y − y∗)

can be derived without explicitly invoking the computation of Lagrangian
dual multipliers and subgradients of f and g .

1By Lagrangian duality: Φ(y) = f (x , y) + λTg(x , y), and

α ∈ ∇y f (x , y) + λT∇yg(x , y)
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COMPUTATIONAL RESULTS
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Computational Settings

Comparing our generalized Benders decomposition framework with
the perspective reformulation

IBM ILOG Cplex 12.6.1

Cluster: Intel Xeon E3-1220V2 @ 3.1GHz, with 16GB of RAM, 4
threads.

Timelimit: 50,000 seconds.

CPX PARAM EPGAP=1e-6

Branch-and-cut:
I Stabilization at the root node (multi-thread)
I ≤ 100 cuts at the root, ≤ 20 at the nodes
I Restart the root node twice (static Benders cuts & incumbent enforce

variable fixing, internal Cplex cuts)
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Benchmark Instances

i*: Used to test the branch-and-cut-and-price algorithm by Avella &
Boccia (2009) for linear CFL.

Available at http://www.ing.unisannio.it/boccia/CFLP.htm.

Generated following the procedure proposed in Cornuéjols, Sridharan,
Thizy (1991) for linear CFL.

100 instances of size
|J|×|I | ∈ {300×300, 300×1500, 500×500, 700×700, 1, 000×1, 000}
and r ∈ {5, 10, 15, 20}.
Congestion function a = b = 0.75 (as suggested by Desrochers et al.)

p = bπ |J| c, where π ∈ {0.4, 0.6, 0.8}.
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Instances 300× 300

Perspective Reformulation (Cplex) Benders B&C
inst. |J| |I | π OPT gapr [%] tr [s] gap[%] t[s] nodes gapr [%] tr [s] gap[%] t[s] nodes

1 300 300 0.4 257315.7360 0.1186 149 0.0000 233 130 0.0031 319 0.0000 383 10
1 300 300 0.6 214609.8293 0.0050 5057 0.0000 25115 17 0.0050 373 0.0000 594 30
1 300 300 0.8 219221.1886 0.4101 80 0.0000 155 49 0.0001 226 0.0000 236 0
6 300 300 0.4 273308.0002 0.0044 5675 0.0000 36598 28 0.0056 347 0.0000 583 32
6 300 300 0.6 225383.3635 0.0015 2329 0.0000 11696 9 0.0015 290 0.0000 299 3
6 300 300 0.8 228139.1799 0.0006 1825 0.0000 6196 5 0.0006 144 0.0000 165 0

11 300 300 0.4 259294.8204 0.0019 4936 0.0000 26260 17 0.0020 257 0.0000 271 3
11 300 300 0.6 216415.5633 0.0001 2257 0.0000 2257 0 0.0001 159 0.0000 167 0
11 300 300 0.8 224171.5836 0.0007 1842 0.0000 5273 5 0.0005 248 0.0000 254 0
16 300 300 0.4 256734.9041 0.0011 7417 0.0000 44495 33 0.0012 230 0.0000 281 8
16 300 300 0.6 220241.5213 0.0018 3063 0.0000 9463 6 0.0016 238 0.0000 250 3
16 300 300 0.8 231623.9657 0.0001 2888 0.0000 4641 3 0.0001 106 0.0000 115 0

All instances of size 300× 300 solved to optimality in less than 10 minutes.
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Instances 500× 500

Perspective Reformulation (Cplex) Benders B&C
inst. |J| |I | π OPT gapr [%] tr [s] gap[%] t[s] nodes gapr [%] tr [s] gap[%] t[s] nodes

1 500 500 0.4 433836.6527 2.3892 667 0.0000 1311 294 0.0017 1265 0.0000 2282 32
1 500 500 0.6 361323.3070 0.0006 50130 0.0006 TL 0 0.0007 1259 0.0000 1435 5
1 500 500 0.8 368022.2916 0.0000 17071 0.0000 17071 0 0.0000 587 0.0000 587 0
6 500 500 0.4 465717.4928 0.0005 4255 0.0005 TL 4 0.0005 823 0.0000 901 5
6 500 500 0.6 384364.0093 0.0004 11594 0.0004 TL 4 0.0006 975 0.0000 1430 12
6 500 500 0.8 393072.8259 0.0001 3000 0.0000 19734 3 0.0001 506 0.0000 532 0

11 500 500 0.4 420862.4354 0.0025 11074 0.0025 TL 5 0.0028 971 0.0000 2027 133
11 500 500 0.6 353185.6836 0.0009 3296 0.0009 TL 6 0.0010 962 0.0000 1664 32
11 500 500 0.8 366081.6812 0.0001 2698 0.0000 2698 0 0.0001 768 0.0000 814 0
16 500 500 0.4 398241.0995 0.0009 7310 0.0009 TL 5 0.0009 766 0.0000 946 9
16 500 500 0.6 345164.2574 0.0008 4956 0.0008 TL 5 0.0008 1061 0.0000 1719 17
16 500 500 0.8 367401.3250 0.0001 2984 0.0000 19396 3 0.0001 589 0.0000 639 0

Benders: All instances of size 500× 500 solved to optimality in less than
40 minutes.
Cplex: in more than 50% of the cases reaches the TL (50 000 sec.s)
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Instances 700× 700

Perspective Reformulation (Cplex) Benders B&C
inst. |J| |I | π OPT gapr [%] tr [s] gap[%] t[s] nodes gapr [%] tr [s] gap[%] t[s] nodes

1 700 700 0.4 608104.4400 0.4047 1760 0.0000 3106 345 0.0007 2306 0.0000 4485 128
1 700 700 0.6 511852.0282 0.0002 49519 0.0002 TL 1 0.0003 2495 0.0000 2532 2
1 700 700 0.8 528832.2478 0.0005 11270 0.0005 TL 7 0.0005 2274 0.0000 3117 6
6 700 700 0.4 590223.9309 0.0009 17338 0.0009 TL 5 0.0009 2126 0.0000 3093 20
6 700 700 0.6 491995.9402 0.0001 12952 0.0001 TL 7 0.0002 2196 0.0000 2600 4
6 700 700 0.8 512486.5658 0.0001 11506 0.0000 11506 0 0.0001 1195 0.0000 1307 0

11 700 700 0.4 588518.4248 0.0017 50117 0.0017 TL 0 0.0021 2342 0.0000 19450 2630
11 700 700 0.6 496861.5248 0.0011 12357 0.0011 TL 7 0.0012 2462 0.0000 11539 528
11 700 700 0.8 514897.8446 0.0005 11357 0.0003 TL 8 0.0005 2327 0.0000 3175 8
16 700 700 0.4 591092.0635 0.0010 15292 0.0010 TL 6 0.0012 2326 0.0000 5530 382
16 700 700 0.6 498257.7984 0.0004 14950 0.0004 TL 6 0.0004 2002 0.0000 2294 5
16 700 700 0.8 515610.2532 0.0001 11468 0.0000 TL 8 0.0001 1227 0.0000 1332 0

Benders: All instances of size 700× 700 solved to optimality in less than
20 000 sec.s (most in about 1h).
Cplex: in more than 80% of the cases reaches the TL (50 000 sec.s)
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Instances 1000× 1000

Perspective Reformulation (Cplex) Benders B&C
inst. |J| |I | π OPT gapr [%] tr [s] gap[%] t[s] nodes gapr [%] tr [s] gap[%] t[s] nodes

1 1000 1000 0.4 831618.2005 1.0782 5785 0.0000 12826 705 0.0015 7245 0.0006 TL 3649
1 1000 1000 0.6 700140.6641 – – – – – 0.0006 6102 0.0000 19435 237
1 1000 1000 0.8 720445.3031 – – – – – 0.0004 8256 0.0000 11922 7
6 1000 1000 0.4 884498.8703 – – – – – 0.0007 5849 0.0000 10162 90
6 1000 1000 0.6 739680.3837 – – – – – 0.0002 6640 0.0000 10429 13
6 1000 1000 0.8 765867.8192 – – – – – 0.0002 6829 0.0000 7263 2

11 1000 1000 0.4 808297.2103 – – – – – 0.0012 6003 0.0001 TL 2666
11 1000 1000 0.6 692675.4305 – – – – – 0.0003 4907 0.0000 8085 22
11 1000 1000 0.8 729765.8357 – – – – – 0.0002 5631 0.0000 6353 3
16 1000 1000 0.4 852614.2315 – – – – – 0.0015 4697 0.0005 TL 4700
16 1000 1000 0.6 719272.2322 – – – – – 0.0003 5503 0.0000 9205 37
16 1000 1000 0.8 744746.7001 – – – – – 0.0001 3098 0.0000 3208 2

Benders: Most instances of size 1000× 1000 solved to optimality within
the TL.
Root relaxation: Benders (< 2h) with extremely small gaps!
Cplex: even impossible to solve the initial continuous relaxation (MINLP
with 1M of variables and 1000 SOC)
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Conclusion

Solving convex MINLP with branch-and-cut implementation of the
generalized Benders decomposition

Strong perspective reformulation improves the root relaxation

Projecting out variables crucial: otherwise impossible to solve the
continuous relaxation

Even though the Benders subproblem is not separable, we draw
advantage of decomposition for two reasons:

I reduce the number of variables from O(m · n) to O(m)
I the compact model is a mixed-integer NLP ⇒ transformed into a MILP

Further applications: congestion in transportation (convex
flow-costs), multi-commodity network design, two-stage stochastic
opt. with convex recourse...
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Thank you!

M. Fischetti, I. Ljubić, M. Sinnl:
Benders decomposition without separability: A computational study for

capacitated facility location problems,
European Journal of Operational Research 253(3): 557-569, 2016.

ljubic@essec.edu Congested CFL June, 16th 2016 28

ljubic@essec.edu

	Problem Definitions

