BILEVEL OPTIMIZATION UNDER UNCERTAINTY

IVANA LJUBIC

ESSEC BUSINESS SCHOOL, PARIS

PGMO DAYS, NOV 30, 2022, PARIS

Programme Gaspard Monge pour l'optimisation, la recherche opérationnelle et leurs interactions avec les sciences des données

BASED ON OUR RECENT ARTICLES:

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization EURO Journal on Computational Optimization. 2021. DOI: 10.1016/j.ejco.2021.100007 Jointly with Thomas Kleinert, Martine Labbé, and Martin Schmidt

A Survey on Bilevel Optimization Under Uncertainty Jointly with Yasmine Beck and Martin Schmidt, Optimization Online, 2022

A Brief Introduction to Robust Bilevel Optimization Jointly with Yasmine Beck and Martin Schmidt, Views-and-News of the SIAM Activity Group on Optimization, to appear 2022

BILEVEL OPTIMIZATION

WITH DETERMINISTIC DATA

STACKELBERG GAMES

- Introduced in economy by H. v. Stackelberg in 1934
- **Two-player sequential game: LEADER and FOLLOWER**
- The LEADER moves before the FOLLOWER
- Perfect information: the leader has a perfect knowledge of the followers strategy
- The follower observes leader's action and acts rationally
- Rationality: agents act optimally, maximizing their payoffs
- BILEVEL OPTIMIZATION: Bracken & McGill (1973), Candler & Norton (1977)

APPLICATIONS: PRICING

Pricing: operator sets tariffs, and then customers choose the cheapest alternative

- Tariff-setting, toll optimization (Labbé et al., 1998; Brotcorne et al., 2001; Labbé & Violin, 2016)
- Network Design and Pricing (Brotcorne et al., 2008)
- Survey (van Hoesel, 2008)

Figure 1: 1-commodity network with two tariff arcs.

A DETERMINISTIC BILEVEL PROBLEM

- Both levels may involve integer decision variables. Functions can be non-linear, non-convex...
- (1) could be ill-posed (if LL solution is not unique). "min" to be replaced by

OVERVIEW OF BILEVEL OPTIMIZATION PROBLEMS

THIS TALK

- From deterministic bilevel optimization to bilevel optimization under uncertainty
- Sources of uncertainty
 - Data uncertainty
 - Decision uncertainty
- Timing for the data uncertainty
 - Here-and-now follower
 - Wait-and-see follower
- Challenges & opportunities

SOURCES OF UNCERTAINTY

UNCERTAINTY: SINGLE-LEVEL VS BILEVEL

Single-level optimization:

 $\min_{x} \{ c^{\top} x \colon Ax \ge b \}$

- "Only" subject to data uncertainty in A,b,c
- Stochastic optimization
- Robust optimization
- Distributionally robust, etc

Bilevel optimization:

$$\begin{array}{ccc}
\text{``min''} & F(x,y) & (1a) \\
\text{s.t.} & G(x,y) \ge 0, & (1b) \\
& y \in S(x), & (1c)
\end{array}$$

S(x): optimal solutions of the x-parameterized problem

$$\begin{array}{ll} \min_{y \in Y} & f(x, y) \\ \text{s.t.} & g(x, y) \ge 0. \end{array} \tag{2a}$$
(2b)

- Subject to: data uncertainty
- But also: decision uncertainty. The leader is not sure about the reaction of the follower, or the follower is not certain about the observed leader's decision.

TIMING OF UNCERTAINTY

WAIT-AND-SEE FOLLOWER

leader
$$x \quad \curvearrowright$$
 uncertainty $u \quad \curvearrowright$ follower $y = y(x, u)$.

The leader is uncertain about the optimization parameters of the follower Example: the leader solves a robust optimization problem

$$\underset{x \in X}{\text{max}} \underset{u \in \mathcal{U}}{\text{max}} F(x, y) \quad \text{s.t.} \quad y \in S(x, u),$$
$$S(x, u) := \underset{y \in Y}{\text{arg min}} \quad f(x, u, y) \quad \text{s.t.} \quad g(x, u, y) \ge 0.$$

Example: the leader is risk-neutral wrt data uncertainty (discrete scenario set)

Optimistic or pessimistic leader

$$\underset{x \in X}{``} \min_{\mathbf{u} \in \mathcal{U}} \sum_{\mathbf{u} \in \mathcal{U}} p_{\mathbf{u}} F(x, y(x, \mathbf{u})) \quad \text{s.t.} \quad y(x, \mathbf{u}) \in S(x, \mathbf{u}), u \in \mathcal{U}$$
$$S(x, \mathbf{u}) := \underset{y \in Y}{\operatorname{arg\,min}} \quad f(x, \mathbf{u}, y) \quad \text{s.t.} \quad g(x, \mathbf{u}, y) \ge 0.$$

HERE-AND-NOW FOLLOWER

leader
$$x \quad \curvearrowleft$$
 follower $y = y(x) \quad \curvearrowright$ uncertainty u .

The follower solves the problem under data uncertainty (stochastic, robust,...).

Optimistic vs pessimistic leader

For example: optimistic leader, the robust follower hedges against uncertainty in the objective function

$$\min_{x \in X} \min_{y \in S(x)} F(x, y)$$
$$S(x) \coloneqq \arg\min_{y' \in Y} \left\{ \max_{u \in \mathcal{U}} f(x, u, y') \colon g(x, y') \ge 0 \right\}.$$

A SMALL EXAMPLE

(a)

CHALLENGES

PROBLEM COMPLEXITY

Robust single-level LPs:

Interval, ball, ellipsoidal, polyhedral or Gammauncertainty preserve "tractability" of their deterministic counterpart (Ben-Tal & Nemirovski, Bertsimas & Sim)

 $\min c^T x \\ \text{s.t.} \ (a+u)^T x \le b \text{ for all } u \in \mathcal{U}$

Robust bilevel optimization:

Robust bilevel optimization:

- Here-and-now follower: tractability of the lower-level remains preserved for these uncertainty types
- Continuous convex lower level: KKT-based, strong duality-based reformulations still possible
- Discrete lower level: branch-and-cut still possible
- Major challenge: much larger in size, parallelization

Wait-and-see follower: the problems may climb up in the complexity hierarchy!

ROBUST BILEVEL OPTIMIZATION

Deterministic bilevel

 $\begin{array}{l} \underset{x \in X}{\overset{``}{\max}} & d^{T}y \\ \text{s.t. } y \in S(x) \\ S(x) := \arg \max\{ \frac{u^{T}y}{x} : Ay \leq Bx + b \} \\ X \subseteq \{0, 1\}^{n_{x}} \end{array}$

NP-hard

Robust bilevel: Wait-and-see follower

$$\underset{x \in X}{\overset{\text{min}}{\underset{u \in U}{\text{min}}}} d^{T}y$$
s.t. $y \in S(x, u)$

$$S(x, u) := \arg \max\{u^{T}y : Ay \le Bx + b\}$$

$$X \subseteq \{0, 1\}^{n_{x}}$$

$$\mathcal{U} := [u_1^-, u_1^+] \times \dots \times [u_{n_y}^-, u_{n_y}^+]$$

Under interval uncertainty, the robust counterpart is Sigma₂^P-hard The "adversarial problem" (inner min) is NP-hard

Buchheim, Henke, Hommelsheim:

On the complexity of robust bilevel optimization with uncertain follower's objective. OR Letters 49(5): 703-707 (2021)

OPPORTUNITIES

BILEVEL STOCHASTIC MIP

Discrete scenario set

$$\min_{x \in X, y} c^T x + \sum_{u \in \mathcal{U}} p_u \quad d_L^T y(x, u)$$

s.t. $y(x, u) \in \arg\min_{y \in Y} \{ d_F^T y : Ay \le B_u x + b_u \}$
 $X \subseteq \{0, 1\}^{n_x}, Y \subseteq \{0, 1\}^{n_y}$

Value function: $\Phi(x, \mathbf{u}) = \min_{y \in Y} \{ d_F^T \ y : Ay \le B_{\mathbf{u}} x + b_{\mathbf{u}} \}$ Value-function reformulation (optimistic)

$$\min_{x \in X, y} c^T x + \sum_{u \in \mathcal{U}} p_u d_L^T y_u$$
s.t.
$$d_F^T y_u \leq \Phi(x, u), \quad u \in \mathcal{U}$$

$$Ay_u \leq B_u x + b_u, \quad u \in \mathcal{U}$$

$$y_u \in Y, \quad u \in \mathcal{U}$$

$$X \subseteq \{0, 1\}^{n_x}, Y \subseteq \{0, 1\}^{n_y}$$

Single-leader, multiple independent followers

Leverage on the existing branch-and-cut methods (Fischetti et al, 2017; Tahernejad et al, 2020)

S. Bolusani, S. Coniglio, T. K. Ralphs, and S. Tahernejad, "A Unified Framework for Multistage Mixed Integer Linear Optimization," in *Bilevel optimization: advances and next challenges*, S. Dempe and A. Zemkoho, Eds., 2020, p. 513–560.

BILEVEL GAMMA-ROBUST MIP

Bilevel Knapsack Interdiction

- Players share common set of items
- Leader interdicts usage of certain items
- Deterministic interdiction cuts (Fischetti et al. 2019)
- F-robust variant
 - (Ext) or (MS) at lower level
 - (Scenario) interdiction cuts as generalization of deterministic cuts

$$\max_{y} \quad d^{\top}y - \max_{\{S \subseteq N : \ |S| \le \Gamma\}} \sum_{i \in S} \Delta d_i y_i$$

Yasmine Beck, I. L., Martin Schmidt Exact Methods for Discrete F-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem, Optimization Online, 2022

BILEVEL GAMMA-ROBUST MIP

(MS): Multi-scenario formulation: single-leader, multiple independent followers

$$\Phi(x) = \max_{\ell \in \{\Gamma, \dots, n+1\}} \Phi^{\ell}(x) = \max_{\ell \in \{\Gamma, \dots, n+1\}} \left\{ -\Gamma \Delta d_{\ell} + \max_{y \in Y(x)} \left\{ \tilde{d}(\ell)^{\top} y \right\} \right\}$$

(Ext): Extended formulation: dualize the inner max term

CRITICISM... AND OUTLOOK

PERFECT INFORMATION AND RATIONALITY OF DECISION MAKERS...

TOWARDS BOUNDED RATIONALITY, LIMITED OBSERVABILITY AND MORE

DECISION UNCERTAINTY: EXAMPLES

Near-optimal robust bilevel models (Besancon et al, 2019): Leader hedges against sub-optimal follower reactions

Limited observability: the follower cannot perfectly observe the decision of the leader and hedges against all possible leader decisions given the noisy observation (Bagwell, 1995; van Damme & Hurkens, 1997; Beck & Schmidt: 2021).

If the level of cooperation/confrontation of the follower is unknown → intermediate cases, between the optimistic and the pessimistic one (Aboussoror & Loridan, 1995; Mallozzi & Morgan, 1996).

Limited intellectual or computational resources: the follower resorts to heuristic approaches and the leader may be uncertain w.r.t. which heuristic is used (Zare et al, 2020).

CONCLUSIONS

- Connections between bilevel and robust/stochastic optimization still to be better understood
- When can we retain the tractability of the deterministic bilevel counterpart?
- When can we solve uncertain bilevel problems through a serious of deterministic ones?
- When do the bilevel problems under uncertainty become significantly harder?
- How can we better exploit the existing computational frameworks for deterministic bilevel optimization? (decomposition, SAA, scenario aggregation...)
- Data uncertainty vs Decision uncertainty, which paradigm to follow?

THANK YOU FOR YOUR ATTENTION

A Survey on Bilevel Optimization Under Uncertainty Jointly with Yasmine Beck and Martin Schmidt, Optimization Online, 2022

