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Outline

• Max-Capture problem with random utilities

• Methodological approaches to solve the problem

• Proposed branch-and-cut method

• Computational comparison



Facility Location

• One of the most classical problems in Operations Research/Management

• To choose a point in the plane that minimize the weighted sum of distance to n

existing points (de Fermat 1643, Weber 1909) 

• Classical discrete case:

- Installation costs of facilities

- transportation cost from clients

to facilities

- minimize the total cost



Competitive Facility Location

• Ice-cream vendor problem (Hotelling ’29)

• homogeneous product → maximize market share.

• Clients choose based on distance.

• 70’s: extension to other networks, Nash equilibriums

• Slater (75) and Hakimi (83) formulated the problem as a Facility Location 

problem.



MAX-Capture Facility Location Model

• Given: 

• Set of potential locations (L), clients (S) with 

demand ds, and a “cost” (distance) from 

each client to each location cs,l.

• A competitor with costs cs,a.  
Remark: w.l.o.g.  we can assume that only one competitor 

exists.   

• Goal: 

• choose where to locate k new facilities so 

as to maximize the captured demand 

(market share).
xl = 1 if location l  is constructed

ps,l= % of demand of s captured by l



MAX-CAP model

• Result: “all-or-nothing” assignment to the 

closest facility (Voronoi diagram)

• Unrealistic! Customers do not always prefer

the closest facility!

• How to integrate customer behaviour

/preferences into an optimization model?

• One possibility: discrete choice models



Random Utility Model  (e.g., McFadden, 1973)

• Each customer s has its own utility function          for choosing location l.

It will choose location l if

• The utility function has a deterministic part (observable attributes) and a 

random term (non-observable attributes).

• Random distribution of                           allows to compute the choice 

probabilities.

• If      are iid and if they follow a Gumbel distribution, then the probability that a 

user s selects location l is given by

(Multinomial Logit)



Discrete choice models

• Random utility model (McFadden, 1973). Facility location utility model 

(Drezner, 1994).

• Users have an “utility” function, and they split between options according to a 

logit function.

• θ represents the uncertainty of the

users.

Cost using facility located in l
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Example
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MAX-Capture Facility Location with Random 

Utilities



Which k facilites to open so as to max the capured

demand?
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Facility Location with Random Utilities

• Given a set of potential locations, to 

choose where to locate k new 

facilities to maximize the captured 

demand.

• Set of potential locations (L), 

customers (S) with demand ds

• Generalized costs for customer s 

using facility l : cs,l.

• A generalized costs for the 

competitor facility cs,a.
Remark: w.l.o.g.  we can assume that only one 

competitor exists.   

Max-Capture problem with random utilities

(Facility located in site l)

(Probability of using facility l

for customer s)



Facility Location with Random Utilities

Max-Capture problem with random utilities

(Facility located in site l)

(Probability of using facility l

for customer s)



Solving the problem



Method 1: Non-linear model (Benati & Hansen’ 02)

• ws(x) is a concave function (Benati & Hansen 2002)

Proof: Composition of concave non-decreasing function f(y)=y/(1+y) with a 

linear function.

• Can be solved using a branch-and-bound algorithm.



Method 2: MIP reformulation (Haase ’09)

• Aros-Vera et al (2013): 

• Haase (2009):

• Freire et al (2016): 

⇔



• Idea: to approximate the concave function by its first-order approximation in a 

given point x*, but in a cutting-plane approach. 

• Original idea from Quesada & Grossman (1992)

Proposed: Branch-and-cut (Outer Approximation)



Proposed: Branch-and-cut (Outer Approximation)

• Implementation details: In the branch & bound tree, if a solution x* is integer, 

we check if this constraint is violated for some s, and we add the cut to the 

problem (lazy-cut callback in CPLEX/GUROBI)

• It can also be applied to a fractional solution (user-cut callback)



• Submodular function: marginal gain of adding a new location decreases with 

the size of the already included locations.

• The fraction of demand of a client s captured by a set of locations given by x is 

a non-decreasing submodular function (Benati, 1997)

• Nemhauser and Wolsey (1981) provide a MIP valid cut for maximizing non-

decreasing sub modular functions.

Proposed: Branch-and-cut (Submodular cuts)



Proposed: Branch-and-cut (Submodular cuts)

• In general, is NP-hard to separate violated cut, but it can be proven that we 

only need to separate these cuts at integer solutions x* of the branch-and 

bound, which can be done efficiently.



Some important properties:

1. Outer-approximation cuts and Submodular cuts do not 

dominate each other. We can apply both cuts 

simultaneously.

2. All results previous results for these cuts also applied 

to more general sets of constraints imposed on the 

possible locations (e.g., tree, tour, 2-connectivity…). 

3. The model is very sparse (only linear instead of

quadratic number of variables)



Computational results



Implementation and Dataset

• MIP formulation and cutting planes solved using CPLEX 12.6 under default 

settings. Nonlinear relaxation solved using method-of-moving-asymptotes 

(MMA) implemented in NLopt v2.4.

• Dataset HM14: Haase & Müller (2014).  Clients and candidate locations 

uniformly distributed in a rectangular region with unit demand. Client cost are 

distances to each facility. 50 to 400 customers, 25 to 100 locations.

• Dataset ORlib: Hoefer (2003). Classic facility location problems where a 

competitor is created selecting a subset of locations and fixing the cost to the 

minimum among them with up to 1000 clients and 100 locations.

• P&R NYC Dataset (Aros-Vera, 2013): 82341 clients and 59 locations

(almost 5 Mio of psl variables!)

• Utilities:  vsl= -𝛳·csl vsa= -𝛳·α·csl

𝛳: Uncertainty of customers, α: Competitiveness of incumbent location 

• 81 configurations (3 values of 𝛳, 3 values of α, and 9 values of k)



Computational Results

(*) Average values between solved instances
B&C solves more instances

Good approximation of 

the integer polytopeA smaller and faster subproblems



Computational Results



Large-scale Instance : P&R locations in NY

82341 “clients”, 59 locations



Computational Results (P&R NYC instances)

Inst. Solved Time [s] (*)

CP MUG OA SC OA+SC CP MUG OA SC OA+SC

2 6 9 9 9 9 3727 69 1363 456 971

3 6 9 9 9 9 2485 170 2177 514 573

4 5 9 9 9 9 2338 411 2950 603 674

5 5 9 9 9 9 1813 1303 783 504 570

6 7 9 9 9 9 4707 3187 464 430 596

7 6 9 9 9 9 1169 6562 418 422 510

8 6 9 9 9 9 2441 10157 391 603 538

9 6 6 9 9 9 4025 2995 397 429 512

10 5 6 9 9 9 1469 3843 414 412 503

(*) Among solved instances within time-limit of 4 hrs.



Results Transit Network



Conclusions

• A Branch-and-cut method that exploits the structure of the captured demand 

function (concave, submodular, non-decreasing)

• Very robust, suitable for more general facility location problems

- Cardinality or budget constraints

- Simultaneous facility location and design decisions

- Infrastructure requirements (e.g., connectivity between facilities)

- Other (convex, non-decreasing and submodular) utility functions

• Further improvements can be obtained by strengthening the submodular cuts 

(Yu & Ahmed, 2017) 

• Remains to be exploited for other discrete choice models with similar

properties

Thanks


