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Stackelberg Games

= ;
* Two-player sequential-play game: LEADER and FOLLOWER @iﬂ@a _—
 LEADER moves before FOLLOWER - first mover advantage | , l

* Perfect information: both agents have perfect knowledge of each others
strategy

e Rationality: agents act optimally, according to their respective goals

 LEADER takes FOLLOWERS'’s optimal response into account

* Optimistic vs Pessimistic: when FOLLOWER has multiple optimal responses
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STACKELBERG EQUILIBRIUM:
Find the best strategy for LEADER
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LEADER takes FOLLOWERS's o sponse into account

Optimistic vs Pessimistic: when FOLLOWER has multiple optimal responses



Stackelberg Games

* Introduced in economy by v. Stackelberg in
1934

* 40 years later introduced in Mathematical
Optimization = Bilevel Optimization

A Convex Progrumming Model for Optimizing SLBM

Attack of Bomber Bases

Jerome Bracken and James T. McGill
Institute for Defense Analyses, Arlington, Virginia

(Received July 30, 1970)

This paper formulates a convex programming model allocating submarine-
launched ballistic missiles (SLBMs) to launch areas and providing simulta-
neously an optimal targeting pattern against a specified set of bomber bases.
Flight times of missiles from launch areas to bases vary and targets de-
crease in value over time. A nonseparable concave objective function is
given for expected destruction of bombers. An example is presented.
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Applications: Pricing

Two competitive agents act in a hierarchical way with different/conflicting
objectives

* Pricing: operator sets tariffs, and then
customers choose the cheapest
alternative

* Tariff-setting, toll optimization (Labbé et
al., 1998; Brotcorne et al., 2001)

* Network Design and Pricing (Brotcorne
et al., 2008)

 Survey (van Hoesel, 2008)




Applications: Interdiction

Canada and the Transcontinental Drug Links

Strategic Forecasting Inc =l Emailpage &L PrintPage E Email Us
go to original

Canadian police conducted several MAJOR DRUG SMUGGLING ROUTES
simultaneous raids on suspected drug THROUGH NORTH AMERICA
trafﬁckers in Newfoundland and Quebec B Edmonton (v o
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weapons, cash and property. The drug-
trafficking ring, which Canadian
authorities believe was operated by the
Quebec-based Hell's Angels
motorcycle/crime gang, could have
smuggled the cocaine into Canada from
South America via Mexico and the Uniteg

Denve

NARCES

More than e Royal
Newfoundland Constabulary and
Quebec's Provincial Biker Enforcement
Unit carried out the raids, which
represented the culmination of an 18-

monthlong investigation dubbed . . T
; The jungles of South America, where cocaine is produced, seem
Operation Roadrunner. The arrests were  ; |ong way from the St. Lawrence River. Using a sophisticated

made near St. John's in Newfoundland shipment and distribution network, however, criminal and
and near the towns of Laval and La militant organizations can cover the distance in a few days.
Tuque in Quebec. In Newfoundland, authorities seized $300,000 in cash, 51 pounds of
marijuana and 19 pounds of cocaine, as well as vehicles, weapons and computers. In
Quebec, $170,000 and four houses were seized.

source: banderasnews.com
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Bilevel Optimization

General bilevel optimization problem

Leader

-

min
xeR"M ycRm2

F(x,y)

G(x,y) <0

) ‘yEarg min {f(x,y"):g(x.y) <0}
yIEan

|

Follower

Both players may involve integer decision variables, functions can be
non-linear, non-convex...
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Bilevel Optimization

|-

General bilevel optimization problem

F(x,y)

G(x,y) <0

Stephan Dempe

Bilevel optimization: y € arg fmIquTz{f(X?yf) g(x.y ) <07}
theory, algorithms and applications Y <
[ 1362
Follower references!

integer decision variables, functions can be
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Hierarchy of bilevel optimization problems

|-

Bilevel Optimization

g(:c,y’) < 0 y’_ § 1 — 1z,

Interdiction-Like Under Uncertainty,
Multiobjective, inf dim
spaces, ...

General Case

Follower: Follower: Follower:
Convex Non-Convex Non-Convex

Network
Interdiction (LP)
Follower: Follower:

(M)ILP (M)ILP

Jeroslow, MP,
1985
P-hard (LP+LP

Fischetti, Ljubic, Monaci,
Sinnl, OR, 2017: Branch&Cut




About our journey

* With sparse MILP formulations, we can now solve to optimality:

* Covering Facility Location (Cordeau, Furini, Ljubic, 2018): 20M clients

* Code: https://github.com/fabiofurini/LocationCovering
» Competitive Facility Location (Ljubic, Moreno, 2017): 80K clients (nonlinear)
* Facility Location Problems (Fischetti, Ljubic, Sinnl, 2016): 2K x 10K instances
 Steiner Trees (DIMACS Challenge, 2014): 150k nodes, 600k edges

e Common to all: Branch-and-Benders-Cut

Is there a way to exploit sparse formulations along with Branch-and-Cut
for bilevel optimization?



https://github.com/fabiofurini/LocationCovering

Problems addressed today...

* Interdiction-Like Problems: LEADER "interdicts” FOLLOWER by removing
some “objects”. Both agents play pure strategies.

* FOLLOWER solves a combinatorial optimization problem (mostly, an NP-
hard problem!). One could build a payoff matrix (exponential in size!).

* We propose a generic Branch-and-Interdiction-Cuts framework to
efficiently solve these problems in practice!
* Assuming monotonicty property for FOLLOWER: interdiction cuts (facet-defining)
 Computationally outperforming state-of-the-art

* Draw a connection to some problems in Graph Theory



Based on a joint work with...

M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: A new general-purpose algorithm for
2moixed-integer bilevel linear programs, Operations Research 65(6): 1615-1637,
17

M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: Interdiction Games and Monotonicity,
\év(i)tthAppIication to Knapsack Problems, INFORMS Journal on Computing, in print,

F. Furini, I. Ljubic, P. San Segundo, S. Martin: The Maximum Clique Interdiction
Game, Optimization Online, 2018

F. Furini, I. Ljubic, E. Malaguti, P. Paronuzzi:
(2)6\ Ié\teger and Bilevel Formulations for the k-Vertex Cut Problem, submitted,
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Interdicting Communities in a Network

|
; Y After studying the lives of 172 terrorists, Sageman found the most common
| factors driving them are the social ties. Communities in social networks are
often characterized as densely connected subgraphs.
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Defender-Attacker Game

LEADER: eliminates the nodes
FOLLOWER: builds communities

Research question: assuming that one can prevent k members of doing
criminal activities, what is the size of the largest community that will remain?



Hamburg Cell: Max-Clique Interdiction
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Max-Clique Interdiction

Hamburg Cell
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Bilevel Integer Program

min d’ y

bT$ § BD

y €

arg max{d’ y :
yeY}

x; binary, 1€ N

N\ 7

o = O =

if node i belongs to the community
otherwise

if node 7 is interdicted

_ 1 € N.
otherwise

1€ N.

min w
v'x < Bp
w >fmax{d’y :
v <1l—a,, 1€l
yeY}
x; binary, 1€/

Value
Function

= O(x)




Value Function Reformulation

min w : T
rERINT weR 2ERIN e
w 2 O(x) K > ®(z)
vz < Bp z; binary, i€ N

x; binary, 1€ N

[INTERDICTION: Min-max] | BLOCKING: Min-num or Min-sum]




Value Function Reformulation

min w : T
reRIV,weR ;UIEI%RIHVI bz
w 2> ®(z) K > ®(x)
vz < Bp z; binary, i€ N

x; binary, 1€ N

| INTERDICTION: Min-max] | BLOCKING: Min-num or Min-sum]

GENERAL IDEA:
e Benders-Like Reformulation: y variables are projected out!

e If function ®(x) could be "convexified” (using linear functions in z), we
would obtain an MILP!

e To be solved in a branch-and-cut fashion







Convexification

i

Observation: Given z, for the optimal follower's response it holds:

i +y; <1 = z;y;, =0 jeN

Instead of solving:
P(x) = d’ "
(@) yerm © 7 Y={yeR": Qy<qo,
0<y, <l—z; VjeN y; integer Vj € J, }.
yey

Wood (2011) proposes to move x into the objective function and find the
penalties M, such that we can equivalently solve:

— T, _ Sy = dT ' — M1
O () yfgﬁ% {d"y ;V M;jx;y; Qeggr?xf%}f){ Yy j;v %505}
j

y €Y}




Convexification = Benders-Like Reformulation

Benders-Like Reformulation

€RM weR
wsz“—Zijij VjeyY
JEN
Az <b
r; integer, Vi€ Jy
x; binary, Vj e N.

The choice of )/, is crucial:

e |f FOLLOWER solves an LP: Wood (2011), M, is the upper bound of the
dual variable.

e If FOLLOWER solves the KNAPSACK PROBLEM: Caprara et al. (2016),
De Negre (2011), M, = d;.

e In general: OPEN QUESTION.




If the follower satisfies monotonicity property...

> |

Y ={y e R"™

Downward Monotonicity

Yy < qo, min w

: : reR™"1, welk
y; integer Vj € J, }.

w Z Z dj@j(l — JED
JEN

Axr < b
x; integer,

x; binary,

Theorem (Fischetti, Ljubié, Monaci, Sinnl,2018)
For Interdiction Games with Monotonicity i.e., we have:

Vyey

VieJ;
Vj e N.

If 7 is a feasible follower and 3’ satisfies integrality constraints and

0 <y <4y, theny is also feasible.




If the follower satisfies monotonicity property...

Y ={y e R"™

y; integer Vj € J, }.

|

y < qo, min w
reR™1 weR

w Z Z dj@j(l — :IED
JEN

Axr < b

x; integer,

Theorem (Fischetti, Ljubié, Monaci, Sinnl,2018)
For Interdiction Games with Monotonicity i.e., we have:

VyeyY

VieJ;
Vj e N.

Downward Monotonicity x; binary,

If 7 is a feasible follower and 3’ satisfies integrality constraints and

0 <y <4y, theny is also feasible.
e max-knapsack (set packing)

e max-clique

e max-relaxed-clique (s-plex: degree, s—clique: distance, s—-bundle: connectivity)




A Careful Branch-and-Interdiction-Cut Design

e Separation: finding the best FOLLOWER's response for a given z*. NP- Solve Master
hard, in general. Problem

e A good balance between “lazy cut separation” (integer points only) and
“user cut separation” (fractional points).

4 4
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QS| [

— Branch-and-Interdiction-Cut




A Careful Branch-and-Interdiction-Cut Design

e Separation: finding the best FOLLOWER's response for a given z*. NP- @ Solve Master

hard, in general. Problem
e A good balance between “lazy cut separation” (integer points only) and @ @
“user cut separation” (fractional points).
e Crucial: specialized procedures/algorithms for FOLLOWER's sub- J L’
problem (if available).

e Combinatorial algorithms for LOWER and UPPER BOUNDS. @ @ @ @

o Efficient PREPROCESSING techniques.

— Branch-and-Interdiction-Cut



A Careful Branch-and-Interdiction-Cut Design

e Separation: finding the best FOLLOWER's response for a given z*. NP-
hard, in general.

e A good balance between “lazy cut separation” (integer points only) and
“user cut separation” (fractional points).

e Crucial: specialized procedures/algorithms for FOLLOWER's sub-
problem (if available).

e Combinatorial algorithms for LOWER and UPPER BOUNDS.
o Efficient PREPROCESSING techniques.

e Under monotonicity property: Interdiction cuts are facet-defining or
could be lifted, otherwise.

e Resulting in general in strong LP-relaxation bounds.

4 4
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— Branch-and-Interdiction-Cut




Max-Clique-Interdiction on Large-Scale Networks

socfb-UIllinois
ia-email-EU
ia-enron-large
socfb-UF
socfb-Texas84
fe-tooth
sc-pkustkll
ia-wiki-Talk

sc-pkustkl3

Max-Cligue Solver

San Segundo et al. (2016)

k = [0.005 - [V]]

V] BGE) ts (i
S

30,795 11,264,421} 0.5 24.4 10,456
32,430 54,397 0.0 0.6 30,375
33,696 180,811} 0.0 2.2 27,791
35,111 |1,465,654] 0.3 17.8 14,264
36,364 1,590,651 0.3 24.6 10,706
78,136 | 452,591 0.5 18.9 7
87,804 |2,565,054 1.1 70.7 2,712
92,117 | 360,767} 0.2 49.2 72,678
94,893 13,260,967] 1.3 724.9 2,360

k= T[0.01-|V]]
tis] (%) roprocessing
41.6 8290
0.5 29,212
29.5 26,651
87.8 10,708
74.3 8,704
19.0 7
57.1 2,712
87.4 72,678
879.2 2,354

Furini, Ljubic, Martin, San Segundo (2018)



Max-Clique-Interdiction on Large-Scale Networks

Max-Cligue Solver

San Segundo et al. (2016) k=10.005-|V|| k=/[0.01-|V]]
v Co) w1 ) 1 () et
S
socfb-UIllinois |30,795|1,264,421] 0.5 24.4 110,456 41.6| 8290
ia-email-EU 32,430 54,397 0.0 0.6 |30,375 0.5]29,212
ia-enron-large 33,696 180,811 0.0 2.2 |27,791 29.5] 26,651
socfb-UF 35,111 11,465,654} 0.3 17.8 | 14,264 87.8110,708
socfb-Texas84 36,364 (11,590,651] 0.3 24.6 110,706 74.3| 8,704
fe-tooth 78,136 || 452,591] 0.5 18.9 7 19.0 7
sc-pkustkll 87,804 12,565,054 1.1 70.7 2,712 57.1} 2,712
ia-wiki-Talk 92,117} 360,767} 0.2 49.2 |72,678 87.4)172,678
sc-pkustk13 94,893 13,260,967 1.3 |724.9 | 2,360 | 879.2| 2,354
#variables

Furini, Ljubic, Martin, San Segundo (2018)



B&IC Ingredients

i
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Comparison with the state-of-the-art
MILP bilevel solver

Branch-and-
Interdiction-Cut

Generic B&C for Bilevel MILPs

(Fischetti, Ljubic, Monaci, Sinnl, 2017)

V| #  # solved

50 44
75 44
100 44
125 44
150 44

time exit gap

root gap

44
44
37
35
33

0.01 -
1.45 -
9.30 1.00
13.43 1.33
27.23 1.91

0.16
0.41
0.98
1.20
1.43

# solved  time exit gap root gap

28  68.58 6.44
14 120.19 9.47
7 164.42 12.65
2 135.33 13.88
1 397.52 16.42

8.50
10.91
13.11
14.73
16.39




Slide “NOT TO BE SHOWN”

The follower:

B&IC WORKS WELL EVEN
IF FOLLOWER HAS MORE

DECISION VARIABLES, AS LONG AS
* MONOTONOCITY HOLDS FOR
* INTERDICTED VARIABLES

Downward MonotonicCity: AsSE

Yif y = (Vn,Yr) is a feasible follower for a given x and y’ = (y,,. Vr) satisfies
integrality constraints and 0 < y;, < ¥, then y’ is also feasible for x".




The result can be further generalized

Relevant Operations Research applications. Two companies competing at the
market for customers.

e LEADER: established on the market,

e FOLLOWER: a newcomer who wants to disrupt the market. O

LEADER wants to keep the customers by providing them coupons, vouchers.
FOLLOWER is solving a profit-maximization problem:

e NETWORK DESIGN: prize-collecting Steiner tree
e LOGISTICS: orienteering problems
e FACILITY LOCATION: profit maximization variant

Fischetti, Ljubic, Monaci, Sinnl (2018)






A weird example...

* Property: A set of vertices is a vertex cover if and only if its complement is
an independent set

* Vertex Cover as a Blocking Problem:

e LEADER: interdicts (removes) the nodes.

* FOLLOWER: maximizes the size of the largest connected component in the remaining
graph.

* Find the smallest set of nodes to interdict, so that FOLLOWER's optimal response is

R




The k-Vertex-Cut Problem

e A set of vertices is a vertex k—cut if upon its removal the graph contains -
at least £ components.
e The k£ Vertex-Cut Problem: Find a vertex k-cut of minimum cardinal-
ity/weight.
0

Open question: Is there an ILP formulation in the natural space of variables?

Furini, Ljubic, Malaguti, Paronuzzi (2018)



The k-Vertex-Cut Problem

e A set of vertices is a vertex k—cut if upon its removal the graph contains k=3 -
at least £ components.
e The k£ Vertex-Cut Problem: Find a vertex k-cut of minimum cardinal-
ity/weight.
¢ Influential nodes in a diffusion model for social networks, Kempe et al.
(2005)
0
e Decomposition method for linear equation systems, e.g. GCG solver
(Bastubbe, Liibbecke, 2017) €
2 @ 4
5 6

Open question: Is there an ILP formulation in the natural space of variables?

Furini, Ljubic, Malaguti, Paronuzzi (2018)



Property: A graph GG has at least k£ (not empty) components if and only if any
cycle-free subgraph of GG contains at most |V| — k edges.

Example with |[V| =9 and k = 3:



K-Vertex-Cut

Property: A graph G has at least k£ (not empty) components if and only if any
cycle-free subgraph of GG contains at most |V| — k edges.

Example with |[V| =9 and k = 3:

Stackelberg game:

e |LEADER: searches the smallest subset of nodes to delete;

e FOLLOWER maximizes the size of the cycle-free subgraph on the re-
maining graph.

k=3



"

k-Vertex-Cut: Benders-like reformulation

min E Xy

veV
d(x) < |V| - Z x, — k The value function reformulation

veV
x, € {0,1} veV.

The following Natural Space Formulation, is a valid model for the k-vertex
cut problem (Furini et al. 2018):

min E Ty

> ldegp(v) =z, > k — V| + |E(T)] TeT,
veV

z, € {0,1} veV.

Furini, Ljubic, Malaguti, Paronuzzi (2018)
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k-Vertex-Cut: Benders-like reformulation

100
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BP — e 5 g g Branch-and-

HYB : : : At -
80. o o e e e e .................................. .................................. ................................ InterdICtlon CUt
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Furini, Ljubic, Malaguti, Paronuzzi (2018)






Takeaways

ROSES ARE RED
ELEPHANTS ARE GREY
BLAH BLAH BLAH BLAH
TAKEAWAY? @ l

* Bilevel optimization: very difficult!

* Branch-and-Interdiction-Cuts can work very well in practice:

* Problem reformulation in the natural space of variables (,thinning out” the heavy MILP
models)

* Tight , interdiction cuts” (monotonicity property)

* Crucial: Problem-dependent (combinatorial) separation strategies, preprocessing,
combinatorial poly-time bounds

 Many graph theory problems (node-deletion, edge-deletion) could be solved
efficiently, when approached from the bilevel-perspective



Possible directions for future research

* Bilevel Optimization: a better way of integrating customer behaviour into
decision making models

e Generalizations of Branch-and-Interdiction-Cuts for:
* Non-linear follower functions
e Submodular follower functions
* Interdiction problems under uncertainty

e Extensions to Defender-Attacker-Defender (DAD) Models (trilevel games)

* Benders-like decomposition for general mixed-integer bilevel optimization




Thank you for your attention!
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