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Covering Location Problems

* Given:
* Set of demand points (clients): J
* Set of potential facility locations: |

* A demand point is covered if it is within a
neighborhood of at least one open facility

» Set Covering Location Problem (SCLP):

e Choose the min-number of facilities to open so
that each client is covered

* Might be too restrictive

* Gives the same importance to every point,
regardless its position and size




Two Variants Studied in This Work

Additional input:

Demand d,, for each client j from ]
Facility opening cost f, for each i from |

/.

Maximal Covering Location Problem (MCLP)

* Choose a subset of facilities to open so as to maximize the covered demand,
without exceeding a budget B for opening facilities
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Partial Set Covering Location Problem (PSCLP)

* Minimize the cost of open facilities that can cover a certain fraction of the
total demand

/
\

J




A (not so) futuristic scenario

Smart home

How intelligently connected household appliances communicate with each other

Heating, ventilation, and air-
conditioning are automatically
adjusted to changing weather

According to Gartner, a |

electric car checks with
the utility company for the

typical family home could | .

A central home gateway

contain more than 500 akes care o ot ecetion
smart devices by 2022*.

appliances and the internet

Recording your favorite TV program, starting
the washing machine - all this can be done
remotely

Earthers © BOSCH il _ ]
1(http://Www.gartner.com/newsroom/ id/2839717) e ABB vented forlfe sape: @ LG source: bosch presse.de



Smart Metering: beyond the simple billing function

* loT: even disposable objects,
such as milk cartons, will be

perceptible in the digital D E

world soon

* Smart metering is a driving
force in making loT a reality "0

e To interact with our .
surroundings through data
mining and detaile
analytics:

* limiting energy consumption,

e preserving resources D
* having e-devices operate
according to our preferences (@) -

source: www.kamstrup.com

Internet
of ThINgs - ¢

* Economic and environmental
benefits



Wireless Communication

Mk © aaa

BAN WAN NAN HAN
Building Area Network Wide Area Network Neighborhood Area Network Home Area Network
ZigBee, Thread, WiFi, Bluetooth Fiber, Ethernet, Cellular GSM PLC, 802.15.4g, 802.11ah
3G, LTE Cellular GSM, 3G, LTE

LPWAN, Sigfox, LoRa
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source: eenewseurope.com

(1) Point-to-Point, (2) Mesh Topology or (3) Hybrid



Smart Metering: Facility Location with BigData

* Given a set of households (with smart meters), decide where to place
the collection points/base stations for point-to-point
communication so as to:

* Maximize the number of covered households given a certain budget for
investing in the infrastructure 2> MCLP

* Minimize the investment budget for covering a certain fraction of all
households = PSCLP



Other Applications

e Service Sector:

* Hospitals, libraries, restaurants, retail
outlets

* Location of emergency facilities or
vehicles:

* fire stations, ambulances, oil spill
equipments

* Continuous location covering (after
discretization)




Related Literature

e MCLP, heuristics:
* Church and ReVelle, 1974 (greedy heuristic)
* Galvao and ReVelle, EJOR, 1996 Lagrangean heuristic

* Maximo et al., COR, 2017

e MCLP, exact methods:
* Downs and Camm, NRL, 1994 (branch-and-bound, Lagrangian relaxation)

* PSCLP:
e Daskin and Owen, 1999, Lagrangian heuristic



Our Contribution

e Consider problems with very-large scale data
* Number of demand points runs in millions (big data)
* Relatively low number of potential facility locations

* We provide an exact solution approach for PSCLP and MCLP
e Based on Branch-and-Benders-cut approach

* The instances considered in this study are out of reach for modern MIP
solvers



Benders Decomposition and Location Problems

* With sparse MILP formulations, we can now solve to optimality:

Uncapacitated FLP (linear & quadratic)

* (Fischetti, Ljubic, Sinnl, Man Sci 2017): 2K facilities x 10K clients
Capacitated FLP (linear & convex)

* (Fischetti, Ljubic, Sinnl, EJOR 2016): 1K facilities x 1K clients
Maximum capture FLP with random utilities (nonlinear)

* (Ljubic, Moreno, EJOR 2017): ~100 facilities x 80K clients

Recoverable Robust FLP
* (Alvarez-Miranda, Fernandez, Ljubic, TRB 2015): 500 nodes and 50 scenarios

e Common to all: Branch-and-Benders-Cut



Benders is trendy...

From CPLEX 12.7:

— API for Benders algorithm

CPLEX implements Benders algorithm in all its application programming interfaces (API).

—> Benders decomposition: CPLEX default

CPLEX implements a default Benders decomposition in certain situations.

—> Annotated decomposition for Benders algorithm

CPLEX applies your annotations when it decomposes a model.

From SCIP 6.0



Compact MIP Formulations



The Partial Set Covering Location Problem

(1, if facility i is open, | min Z JiYi
Yi = 9 _ 1€l :
|0, otherwise el
. i > 2 e J
1, if client jis covered, | Z Yi= % /
Zj = 1 _ jed i€1(j)
0, otherwise
) Z dej > D
jed
Ij = ZI(:)?J y; € {0,1} iel
1€1 (9
z; € {0,1} JjeJ
I(7) : facilities that can cover client j




The Maximum Covering Location Problem

1, if facility 7 is open, | max Zdjzj
Yi = 4 _ 1el -
|0, otherwise JE
p >
1, if client jis covered, . Z Yi=
Zj = 9 _ j€ed i€1(j)
0, otherwise
Z fivi < B
icl
I = Z Yi y; € {0,1}
i€l(y)
Zj , }
I(j) : facilities that can cover client j Z; <1

jeJ

1€ 1
J € J

Property: Integrality on z variables can be relaxed into z; <1, j € J.




Notation




Benders Decomposition

For the PSCLP



Textbook Benders for the PSCLP

Master: min {Ziel fivi+ |Bi(y) >0, t€ P, |y; €{0,1}, i € I}, Branch-and-Benders-cut

For a given vector § € [0,1]!!], the Benders primal subproblem is:

: ~ : Separation:
min< 0:z; <I;, j€J, diz; >D, 0<z; <1, 5€J,. _
3= J;I 7 J J Solve (1), if unbounded,

generate Benders cut

Its dual is given as:

max DW—Z(fjﬁj+Jj):(w,a,f}/)€P : Z Zﬁj yiED’?—Z5j-

J€J iel \jeJ(i) jeJ

where 7, v and o are dual variables constrained to belong to the pointed cone
P:
P={(my,0)>0: mj+0; >d;v, jE€J}. (2)



A Careful Branch-and-Benders-Cut Design

Co

g
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e Separation: A fast algorithm for finding an optimal solution of the sub-
problem.

e Which solution to choose?
e Stabilization techniques?

e A good balance between “lazy cut separation” (integer points only) and
“user cut separation” (fractional points).

e Crucial: specialized procedures/combinatorial algorithms for the
subproblem (if available).

Solve Master
Problem
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— Branch-and-Benders-Cut




Some Issues When Implementing Benders...

e Subproblem LP is highly degenerate, which Benders cut to choose?
* Pareto-optimal cuts, normalization, facet-defining cuts, etc
* MIP Solver may return a random (not necessarily extreme) ray of P

* The structure of P is quite simple —is there a better way to obtain an
extreme ray of P (or extreme point of a normalized P)?



Normalization Approach

Observation: The solution y of the restricted master problem is infeasible

and only if the demand covered by y is strictly less than D.

Instead of solving a feasibility LP, we search for the maximum demand that can

be covered by y:

) = max ZdZJ zj_ hnJ€ed, 0<z,<1,75¢€J
jed

This problem is always feasible, and its extreme point corresponds to an ex-

treme ray of P.

Normalization is obtained by setting v = 1.

Branch-and-Benders-cut

Separation:
Solve A(y), if less than D,
generate Benders cut

D

el

> #|vizD-

J€J(4)

> ;.

jeJ




Combinatorial Separation Algorithm:

Cuts (BO) and (BOf)

Theorem: An optimal dual solution (7, &) of the normalized Benders subprob-
lem can be computed as:

i d;, ifl;<1 i 0, ifl;<1 |
Tj = _ oj = _ ] € J.
0, otherwise d;j, otherwise

For a given point y, these cuts can be separated in linear time!

Benders Cuts (BO), derived at an integer point:

Z( > dj)yﬁDD(J(ff)) KclI (BO)

igK \jeJ()\J(K)

residual demand

(BOf)

D

el

(

>

J€J(4)

|

yi > D - 5

e




Benders Cuts (BO), derived at an integer point:
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Theorem: An optimal dual solution (7, &) of the normalized Benders subprob-

Combinatorial Separation Algorithm:

Cuts (B1) and (B1f)

lem can be computed as:

d .
@_{J

if I; <1lorjecJ,
otherwise

O'j—

0, iflj<lorje.J,
d;j, otherwise

For a given point y, these cuts can be separated in linear time!

Benders Cuts (B1), derived at an integer point:

2.

igK

(

2

JEJ()\J

dj) Yi
(K)

3

icK

(

> 4

jeJNJI(3)

|

residual demand

jed

(B1f)
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Combinatorial Separation Algorithm:
Cuts (B2) and (B2f)

Theorem: An optimal dual solution (7, &) of the normalized Benders subprob- (B2f)
lem can be computed as:

- dj Ifljgl - O, IfIJS]. . — - ;

T = el \jeJ(i)
d;j, otherwise

0, otherwise
Benders Cuts (B2), derived at an integer point:

igdK \jeJ(i)\J(K) jeJ(@H)NJs(K) ieK (K)N




Comparing the Strength of Benders Cuts

Theorem:

e At the root node of the branch-and-bound tree, all three Benders cuts
(BOf), (B1f) and (B2f) provide the same lower bound. This bound is equal
to the value of the LP-relaxation of the compact model-

Theorem:

e Benders cuts (B1f) strictly dominate (BOf) unless all customers can be
covered by at least two facilities (J; = (), in which case they are identical.

e Benders cuts (B1f) and (B2f) do not dominate each other.



Facet-Defining Benders Cuts

e Following Conforti and Wolsey, 2016, one can use a CGLP to create a
facet-defining Benders cut (facet of the LP-relaxation polytope).

e It requires a core point ¢ and the current fractional point 4.

e |t turns out, the CGLP corresponds to another normalization: intersec-
tion of the pointed cone P with another hyperplane.

max D-’}'—E G'J-—E Ijm;

jeJ jeJd

Tl'j: -+ liTj E dj'"‘lr'

{ﬂ_.'- a, 'ﬁ.") = 0.
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What About MCLP?



Replace D by Theta in (BOf), (B1f), (B2f)

Master problem:

max{@: Zf?;yigB, Bi(y,0) >0, te P'| y; € {0,1}, ?,'EI}
icl

Subproblem:
min {Z (fj'rrj ~ aj) : (m,0) € P/}
jedJ

where
P ={(m,0):mj+0;>d;, jeJ, (mo)>0}.

P’ is precisely P intersected with v = 1.



Replace D by Theta in (BO), (B1), (B2)

Master problem:

max{@: ZfiyigB, Bi(y,0) >0, t € P, in{O,l},iEI}

el

Benders cuts for MCLP:

Benders cuts for PSCLP:

D

A=

(

2 7

JeJ (%)

|

Z(Z ﬁj) yi >D—) &;l

l i

i€l \jeJ(i) l jeJ



What About Submodularity?



Benders Cuts vs Submodular Cuts

Covering Function F'(K) is submodular:

e For a given set of open facilities, F'(K) is the total demand covered by
K.

e Let p;(K) be the marginal contribution of facility 7, when the set K of
facilities is already opened.

e A function is submodular if p;(K) > p;(L), forall K C L C 1,7 & L.




Benders Cuts vs Submodular Cuts

ILP Model Based on Submodular Cuts (Nemhauser, Wolsey, 1980):

max v
ye{0,1},0
O<F(K)+ ) pi(K)yi— Y pI—i)1-y)  KCI (S1)
igK ieK
0<F(K)+> pi@yi—> pi(K—i)1-y;)  KCI (S2)
1€ K 1EK

Y fwyi<B
icl
Theorem:

e Benders Cuts (B1) and Submodular Cuts (S1) are the same.

e Benders Cuts (B2) dominate Submodular Cuts (S2).



Computational Study



Benchmark Instances

* BDS (Benchmarking Data Set):
* 10000, 50000, 100000 clients
* 100 potential facilities

 MDS (Massive Data Set)
 Between 0.5M and 20M clients

Budget Covering Demand Radius of Coverage

B =10 D = 50%D R € {5.5;5.75;6;6.25}
B =15 D = 60%D R € {4;4.25;4.5;4.75;5}
B =20 D = 70%D R € {3.25;3.5;3.75;4;4.25}

Table 1: Random-coordinate data set parameters.



Tested Configurations

e BEN B1: where both fractional and integer points are separated using
(B1f) and (B1) Benders cuts, respectively.

e BEN B2: where both fractional and integer points are separated using
(B2f) and (B2) Benders cuts, respectively.

e BEN RAYS: where both fractional and integer points are separated using
Benders cuts (B), whose coefficients are derived from extreme rays of
the polyhedron associated to the dual LP of the Benders subproblem.

e BEN FACETS: where both fractional and integer points are separated using
CGLP by Conforti and Wolsey.

In addition:
e CPLEX: compact model

e AUTO BEN: automatic Benders decomposition by Cplex



CPU Times for “Small” Instances

BEN B1 BEN B2 BEN RAYS BEN FACETS

]| D i t[s] t[s] t[s] t[s]
10,000 50% D 20 0.02 0.02 7.81 25.46
60% D 25 0.06 0.04 24.60 38.59

70%D 25 0.17 0.14 16.33 48.22

Table 1: Computing times to solve PSCLP instances with |.J| = 10,000 compar-
ing the performances of four families of Benders Cuts.



Comparison with CPLEX and Auto-Benders

CPLEX AUTO BEN BEN B1 BEN B2
|| D i t[s] # opt t[s] # opt t[s] # opt t[s] # opt
10,000 50%D 20 6.53 20 12.50 20 | 0.02 20 | 0.02 20

60%D 25 6.60 25 19.36 25 | 0.06 25 | 0.04 25
70%D 25 5.59 25 24.27 25 | 0.17 25 | 0.14 25
50,000 50%D 20 70.23 20 | 346.92 16 | 0.06 20 | 0.04 20
60%D 25 104.48 25 | 524.45 5 | 0.18 25 | 0.11 25
70%D 25 157.04 25 | 530.70 2 | 0.36 25 | 0.32 25
100,000 50%D 20 | 299.79 15 t.l. 0 | 0.12 20 | 0.12 20
60%D 25 |341.38 16 t.l. 0 | 0.46 25 | 0.33 25
70%D 25 | 306.10 18 t.l. 0 | 0.59 25 | 0.49 25
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PSCLP on Instances with up to 20M clients

/] #
500,000 70
1,000,000 /0
1,500,000 /70
2,000,000 /70
4,000,000 /70
6,000,000 70
10,000,000 /0
15,000,000 /70
20,000,000 /70

# opt t[s] # BEN B2 int. # BEN B2 frac. # nodes
70 1.75 4.20 40.00 64.90
70 4.14 3.77 31.16 61.03
70 7.51 4.20 31.36 58.49
70 8.51 4.33 28.94 4476
70 23.35 3.80 31.51 64.04
70 28.20 3.99 30.17 48.51
70 55.76 3.80 34.96 60.50
70 109.61 4.39 42.44 80.47
70 117.25 5.12 36.21 58.01

Table 1: Computational performance of BEN B2 on massive PSCLP data sets.



To summarize...

* Two important location problems that have not received much attention in the
literature despite their theoretical and practical relevance.

* The first exact algorithm to effectively tackle realistic PSCLP and MCLP instances
with millions of demand points.

* These instances are far beyond the reach of modern general-purpose MIP
solvers.

» Effective branch-and-Benders-cut algorithms exploits a combinatorial cut-
separation procedure.




Interesting Directions for Future Work

Problem variants under uncertainty (robust, stochastic)

Multi-period, multiple coverage, facility location & network design

Data-driven optimization

Applications in clustering and classification

Exploiting submodularity together with

concave utility functions
 Benders Cuts

* Quter Approximation
e Submodular Cuts where f is a concave utility function, e.q. f(z) =1—¢

* Inthe original or in the projected space...

JEJ(K)

F(K)=f( Y dj), KCI

>



Open-Source Implementation

https://github.com/fabiofurini/LocationCovering

src_ MCLP Add files via upload

src_PSCLP Add files via upload
=] MCLP_INSTANCES tar.gz Add files via upload
=] PCSLP_INSTANCES.tar.gz Add files via upload
=] README.md Update README.md
& license.md Update license.md

J.F. Cordeau, F. Furini, I. Ljubic:

Benders Decomposition for Very Large Scale Partial Set Covering and Maximal Covering Problems,
European Journal of Operational Research, to appear, 2019



