

IVANA LJUBIC ESSEC BUSINESS SCHOOL, PARIS

EURO 2019 TUTORIAL, DUBLIN JUNE 26, 2019

References:

- M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: Interdiction Games and Monotonicity, with Application to Knapsack Problems, INFORMS Journal on Computing 31(2):390-410, 2019
- F. Furini, I. Ljubic, P. San Segundo, S. Martin: The Maximum Clique Interdiction Game, European Journal
 of Operational Research 277(1):112-127, 2019
- F. Furini, I. Ljubic, E. Malaguti, P. Paronuzzi: On Integer and Bilevel Formulations for the k-Vertex Cut Problem, submitted, 2018
- M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: A new general-purpose algorithm for mixed-integer bilevel linear programs, *Operations Research* 65(6): 1615-1637, 2017

SOLVER: https://msinnl.github.io/pages/bilevel.html

STACKELBERG GAMES

- Introduced in economy by H. v. Stackelberg in 1934
- Two-player sequential-play game: LEADER and FOLLOWER
- LEADER moves before FOLLOWER first mover advantage
- Perfect information: both agents have perfect knowledge of each others strategy
- Rationality: agents act optimally, according to their respective goals

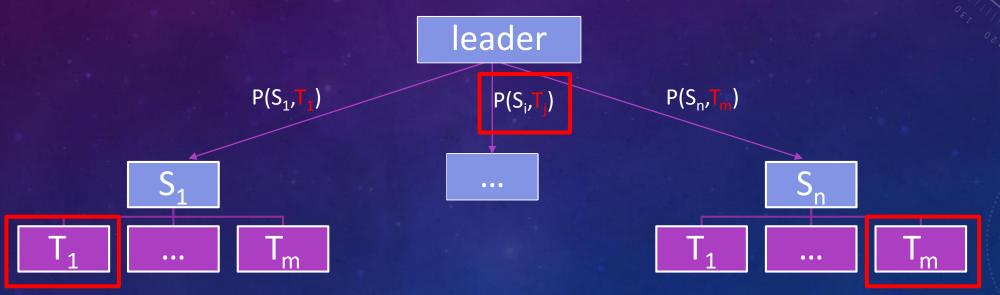
MARKTFORM UND GLEICHGEWICHT

VON

HEINRICH VON STACKELBERG

WIEN UND BERLIN VERLAG VON JULIUS SPRINGEF 1984

A TWO-PLAYER SETTING



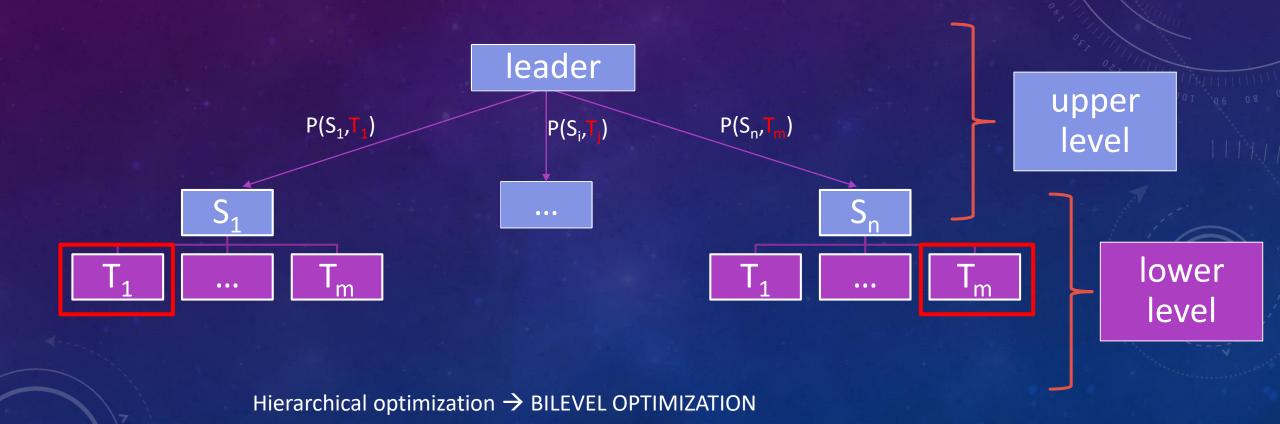
Leader chooses the strategy that maximizes her payoff
Leader anticipates the best response of the follower (backward induction)
Stackelberg equilibrium

A TWO-PLAYER SETTING: PESSIMISTIC VS OPTIMISTIC?

Pessimistic! imistic!

When multiple strategies of the follower lead to the best response, we can distinguish between "optimistic" and "pessimistic leader"

STACKELBERG GAMES



STACKELBERG GAMES

- Introduced in economy by v. Stackelberg in 1934
- 40 years later introduced in Mathematical Optimization
 - → Bilevel Optimization

A Convex Programming Model for Optimizing SLBM Attack of Bomber Bases

Jerome Bracken and James T. McGill

Institute for Defense Analyses, Arlington, Virginia (Received July 30, 1970)

This paper formulates a convex programming model allocating submarinelaunched ballistic missiles (SLBMs) to launch areas and providing simultaneously an optimal targeting pattern against a specified set of bomber bases. Flight times of missiles from launch areas to bases vary and targets decrease in value over time. A nonseparable concave objective function is given for expected destruction of bombers. An example is presented.

MARKTFORM UND GLEICHGEWICHT

VON

HEINRICH VON STACKELBERG

WIEN UND BERLIN VERLAG VON JULIUS SPRINGER 1984

APPLICATIONS: PRICING

Pricing: operator sets tariffs, and then customers choose the cheapest alternative

- Tariff-setting, toll optimization (Labbé et al., 1998;
 Brotcorne et al., 2001; Labbé & Violin, 2016)
- Network Design and Pricing (Brotcorne et al., 2008)
- Survey (van Hoesel, 2008)

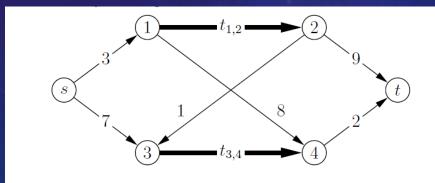


Figure 1: 1-commodity network with two tariff arcs.

APPLICATIONS: INTERDICTION

Canada and the Transcontinental Drug Links

Strategic Forecasting Inc go to original

Canadian police conducted several simultaneous raids on suspected drug traffickers in Newfoundland and Quebec provinces Oct. 11, arresting two dozen people and seizing marijuana, cocaine, weapons, cash and property. The drugtrafficking ring, which Canadian authorities believe was operated by the Quebec-based Hell's Angels motorcycle/crime gang, could have smuggled the cocaine into Canada from South America via Mexico and the United States.

More than 70 members of the Royal Newfoundland Constabulary and Quebec's Provincial Biker Enforcement Unit carried out the raids, which represented the culmination of an 18-monthlong investigation dubbed Operation Roadrunner. The arrests were made near St. John's in Newfoundland and near the towns of Laval and La

MAJOR DRUG SMUGGLING ROUTES
THROUGH NORTH AMERICA

Edmonton
CANADA
Regina
Winnipeg
Montreal
Denver Chicago
Denver Chicago
Albany
STATES
Dallas
Tijuana
Douglas Houston
OLaredo

Email Page Print Page

Email Us

The jungles of South America, where cocaine is produced, seem a long way from the St. Lawrence River. Using a sophisticated shipment and distribution network, however, criminal and militant organizations can cover the distance in a few days.

Tuque in Quebec. In Newfoundland, authorities seized \$300,000 in cash, 51 pounds of marijuana and 19 pounds of cocaine, as well as vehicles, weapons and computers. In Quebec, \$170,000 and four houses were seized.

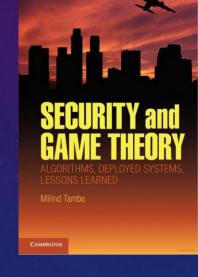
source: banderasnews.com, Oct 2017

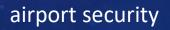
APPLICATIONS: INTERDICTION

- Monitoring / halting an adversary's activity
 - Maximum-Flow Interdiction
 - Shortest-Path Interdiction
- Action:
 - Destruction of certain nodes / edges
 - Reduction of capacity / increase of cost
- The problems are NP-hard! Survey (Collado&Papp, 2012)
- Uncertainties:
 - Network characteristics
 - Follower's response

APPLICATIONS: SECURITY GAMES

- Players: DEFENDER (leader) and ATTACKER (follower)
- DEFENDER needs to allocate scare resources to minimize the potential damage caused by ATTACKER
- Leader plays a mixed strategy; Single- or multi-period, multiple followers; imperfect information,...
- Casorrán, Fortz, Labbé, Ordonez, EJOR, 2019.

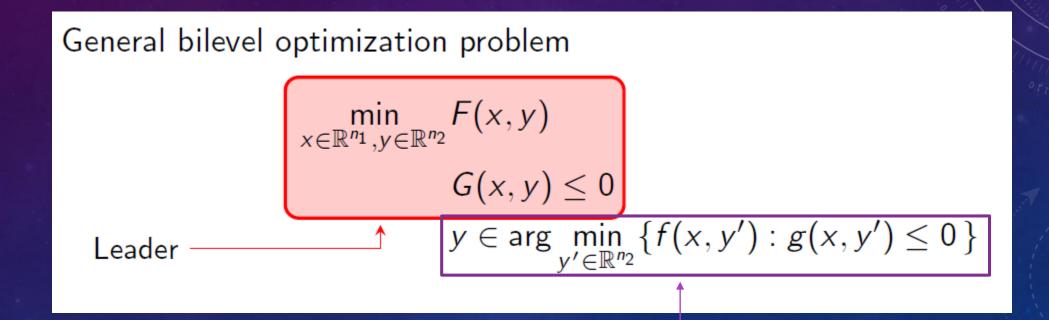




poaching

fare evasion

BILEVEL OPTIMIZATION



Follower

Both levels may involve integer decision variables Functions can be non-linear, non-convex...

BILEVEL OPTIMIZATION

Stephan Dempe

Bilevel optimization: theory, algorithms and applications

PREPRINT 2018-11

Fakultät für Mathematik und Informatik

BILEVEL OPTIMIZATION

77

- 1359. X. Zhu and P. Guo, Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems, Mathematical Methods of Operations Research 86 (2017), 255 – 275.
- 1360. X. Zhu, Q. Yu, and X. Wang, A hybrid differential evolution algorithm for solving non-linear bilevel programming with linear constraints, 5th IEEE International Conference on Cognitive Informatics., vol. 1, IEEE, 2006, pp. 126–131.
- 1361. X. Zhuge, H. Jinnai, R.E. Dunin-Borkowski, V. Migunov, S. Bals, P. Cool, A.-J. Bons, and K.J. Batenburg, Automated discrete electron tomography-towards routine high-fidelity construction of nanomaterials, Ultramicroscopy 175 (2017), 87–96.
- 1362. M Zugno, J.M. Morales, P. Pinson, and H. Madsen, A bilevel model for electricity retailers' participation in a demand response market environment, Energy Economics 36 (2013), 182–197.

1362 references!

HIERARCHY OF BILEVEL OPTIMIZATION PROBLEMS

 $\min_{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}} F(x, y)$

 $G(x,y) \leq 0$

 $y \in \arg\min_{y' \in \mathbb{R}^{n_2}} \{ f(x, y') : g(x, y') \leq 0 \}$

Bilevel Optimization

General Case $g(x,y') \leq 0$

Interdiction-Like

 $y_j' \le 1 - x_j$

Under Uncertainty, Multi-Objective, infdim spaces,...

Jeroslow, 1985 NP-hard (LP+LP)

Non-Convex

Convex

Non-Convex

follower

Fischetti, L., Monaci, Sinnl, 2017: Branch&Cut

(MI)NLP, ...

MILP This talk!

(MI)NLP,...

PROBLEMS ADDRESSED TODAY...

FOLLOWER solves a **combinatorial optimization problem** (mostly, an NP-hard problem!). Both agents play pure strategies.

Interdiction Problems: LEADER has a limited budget to "interdict" FOLLOWER by removing some "objects".

Leader

Follower

Min-Max
Objective

Blocker Problems: LEADER minimizes the budget to "interdict" FOLLOWER by removing some "objects". The FOLLOWER's objective should stay below a given threshold T Leader **Follower**

ABOUT OUR JOURNEY

- With sparse MILP formulations, we can now solve to optimality:
 - Covering Facility Location (Cordeau, Furini, L., 2018): **20M clients**
 - Code: https://github.com/fabiofurini/LocationCovering
 - Competitive Facility Location (L., Moreno, 2017): 80K clients (nonlinear)
 - Facility Location Problems (Fischetti, L., Sinnl, 2016): 2K x 10K instances
 - Steiner Trees (DIMACS Challenge, 2014): 150k nodes, 600k edges
- Common to all: Branch-and-Benders-Cut

Can we exploit sparse formulations along with Branch-and-Cut for bilevel optimization?

BRANCH-AND-INTERDICTION-CUTS FRAMEWORK

- We propose a generic Branch-and-Interdiction-Cuts framework to efficiently solve these problems in practice!
- Assuming monotonicty property for FOLLOWER: interdiction cuts (facet-defining)
- Computationally outperforming state-of-the-art
- Draw a connection to some problems in Graph Theory

BRANCH-AND-INTERDICTION-CUT A GENTLE INTRODUCTION

BILEVEL KNAPSACK WITH INTERDICTION CONSTRAINTS

$$egin{aligned} \min_{x \in \mathbf{B}^n} \ p^T y \ & v^T x \leq C_l \ & ext{where } y ext{ solves the follower problem} \ & \max_{y \in \mathbf{B}^n} \ p^T y \ & w^T y \leq C_f \ & y_i \leq 1 - x_i \quad i = 1, \dots, n \end{aligned}$$

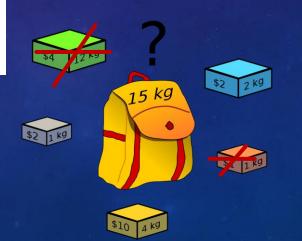
Marketing Strategy Problem (De Negre, 2011)

Companies A (leader) and B (follower).

Items are geographic regions.

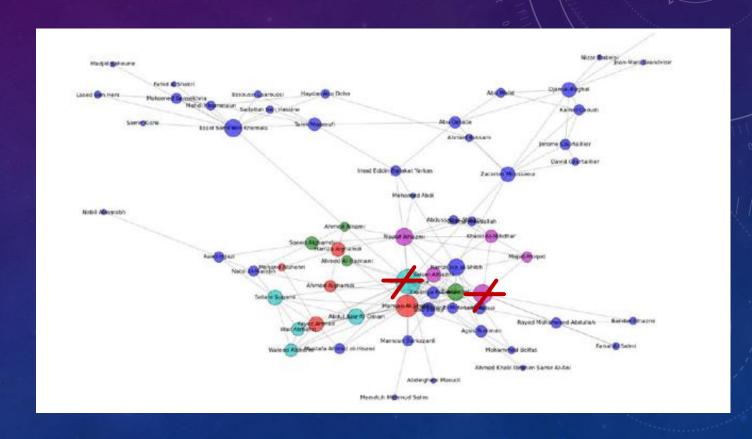
Cost and benefit for each target region.

A dominates the market: whenever A and B target the same region, campaign of B is not effective



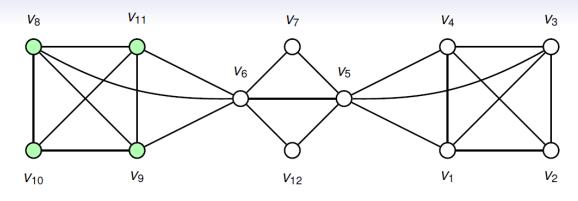
THE CLIQUE INTERDICTION PROBLEM

- Marc Sageman ("Understanding terror networks") studied the "Hamburg cell" network (172 terrorists): social ties very strong in densely connected networks
- Cliques
- Given an interdiction budget k, which k nodes to remove from the network so that the remaining maximum clique is smallest possible?

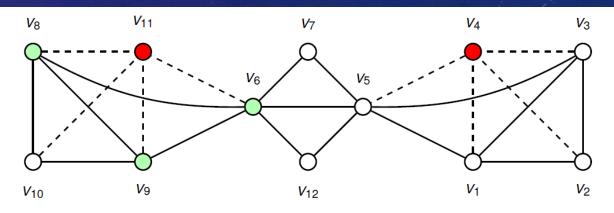


THE CLIQUE INTERDICTION PROBLEM

$$egin{aligned} \min_{x \in \mathbf{B}^n} \ p^T y \ & v^T x \leq C_l \ \end{aligned}$$
 where y solves the follower problem $\max_{y \in \mathbf{B}^n} \ p^T y \ & y$ is a clique $\ (y \in Y) \ y_i \leq 1 - x_i \quad i = 1, \dots, n \end{aligned}$



The clique number is $\omega(G) = 4 (K_2 = \{v_8, v_9, v_{10}, v_{11}\})$



An optimal interdiction strategy with k = 2 ($\omega(G[V \setminus \{v_4, v_{11}\}]) = 2$)

GENERAL SETTING

$$\min d^T y$$

$$v^T x \le C_l$$

$$x \in X$$

$$y \in \arg \max \{ d^T y :$$

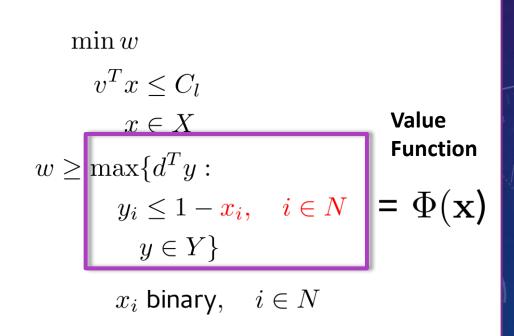
$$y_i \le 1 - x_i, \quad i \in N$$

$$y \in Y \}$$

 x_i binary, $i \in N$

$$y_i = \begin{cases} 1 & \text{if i belongs to the follower's solution} \\ 0 & \text{otherwise} \end{cases} \quad i \in N.$$

$$x_i = \begin{cases} 1 & \text{if i is interdicted} \\ 0 & \text{otherwise} \end{cases} \quad i \in N.$$

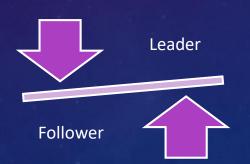


VALUE FUNCTION REFORMULATION

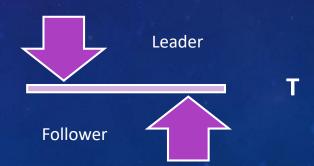
$$egin{aligned} \min_{x \in X, w \in \mathbb{R}} w \ & w \geq \Phi(x) \ & v^T x \leq C_l \ & x_i ext{ binary}, \quad i \in N \end{aligned}$$

$$\min_{x \in X} b^T x$$
 $T \geq \Phi(x)$ $x_i \text{ binary}, \quad i \in N$

INTERDICTION: Min-max



BLOCKING: Min-num or Min-sum



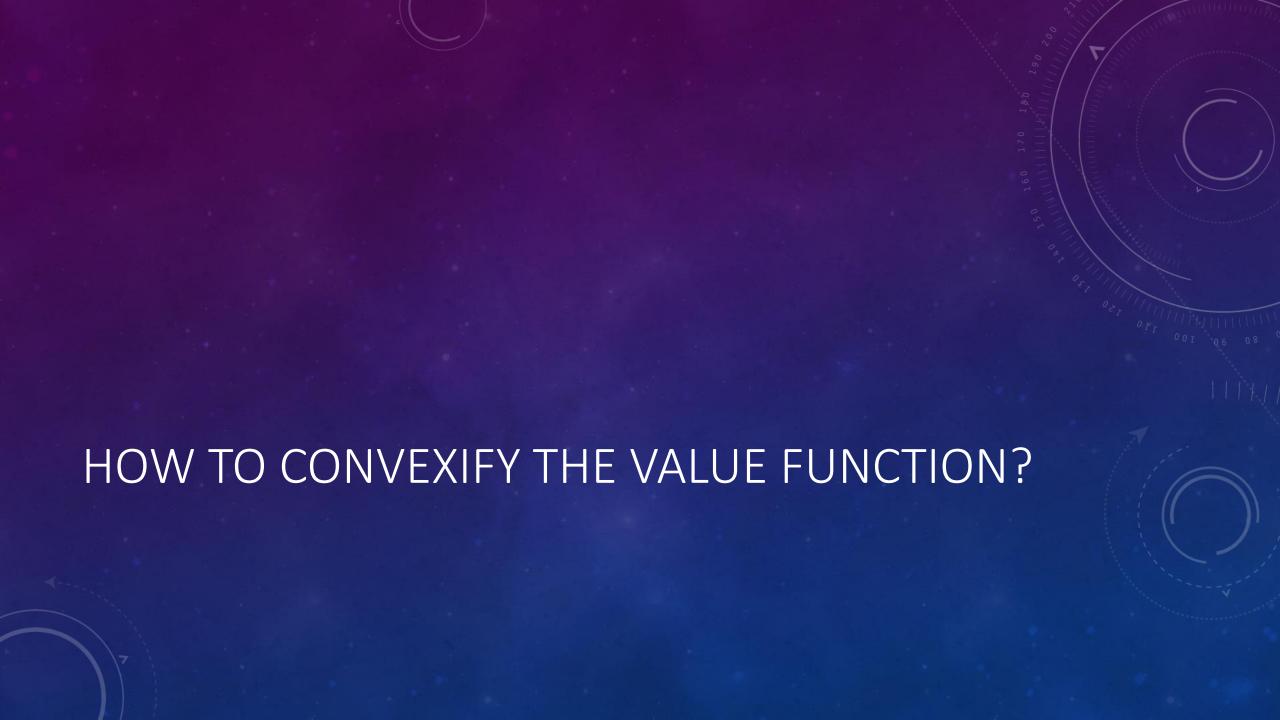
VALUE FUNCTION REFORMULATION

$$egin{aligned} \min_{x \in X, w \in \mathbb{R}} w \ & w \geq \Phi(x) \ & v^T x \leq C_l \ & x_i ext{ binary}, \quad i \in N \end{aligned}$$

$$\min_{x \in X} b^T x$$
 $T \geq \Phi(x)$ $x_i ext{ binary}, \quad i \in N$

GENERAL IDEA:

- ullet Benders-Like Reformulation: y variables are projected out!
- If function $\Phi(x)$ could be "convexified" (using linear functions in x), we would obtain an MILP!
- To be solved in a branch-and-cut fashion



CONVEXIFICATION

Observation: Given x, for the optimal follower's response it holds:

$$x_j + y_j \le 1 \quad \Rightarrow \quad x_j y_j = 0 \qquad j \in N$$

Instead of solving:

$$\Phi(\boldsymbol{x}) = \max_{y \in \mathbb{R}^{n_2}} d^T y \qquad Y = \{ y \in \mathbb{R}^{n_2} : Qy \le q_0, \\ 0 \le y_j \le 1 - x_j, \quad \forall j \in N \qquad y_j \text{ integer } \forall j \in J_y \}.$$

$$y \in Y$$

Wood (2011) proposes to move x into the objective function and find the penalties M_j , such that we can equivalently solve:

$$\Phi(\mathbf{x}) = \max_{\mathbf{y} \in \mathbb{R}^{n_2}} \{ d^T \mathbf{y} - \sum_{j \in N} \mathbf{M_j} \mathbf{x_j} \mathbf{y_j} \qquad = \max_{\hat{\mathbf{y}} \in \text{conv}(Y)} \{ d^T \hat{\mathbf{y}} - \sum_{j \in N} \mathbf{M_j} \mathbf{x_j} \hat{\mathbf{y}_j} \}$$
$$\mathbf{y} \in Y \}$$

CONVEXIFICATION -> BENDERS-LIKE REFORMULATION

Benders-Like Reformulation

$$\begin{aligned} \min_{x \in \mathbb{R}^{n_1}, w \in \mathbb{R}} w \\ w &\geq d^T \hat{y} - \sum_{j \in N} M_j x_j \hat{y}_j & \forall \hat{y} \in \hat{Y} \\ Ax &\leq b \\ x_j \text{ integer,} & \forall j \in J_x \\ x_j \text{ binary,} & \forall j \in N. \end{aligned}$$

The choice of M_i is crucial:

- If FOLLOWER solves an LP: Wood (2011), M_j is the upper bound of the dual variable.
- If FOLLOWER solves the KNAPSACK PROBLEM: Caprara et al. (2016), De Negre (2011), $M_j=d_j$.
- In general: **OPEN QUESTION**.

IF THE FOLLOWER SATISFIES MONOTONICITY PROPERTY...

Downward Monotonicity: $Q \ge 0$

If \hat{y} is a feasible follower solution and y' satisfies integrality constraints and $0 \le y' \le \hat{y}$, then y' is also feasible.

$$Y = \{ y \in \mathbb{R}^{n_2} : Q \ y \le q_0,$$

 $y_j \text{ integer } \forall j \in J_y \}.$

Theorem:

For Interdiction Games with Monotonicity $M_j = d_j$, i.e., we have:

$$egin{aligned} \min_{x \in \mathbb{R}^{n_1}, w \in \mathbb{R}} w \ & w \geq \sum_{j \in N} d_j \hat{y}_j (1-x_j) & orall \hat{y} \in \hat{Y} \ & Ax \leq b \ & x_j ext{ integer,} & orall j \in J_x \ & x_j ext{ binary,} & orall j \in N. \end{aligned}$$

- max-knapsack (set packing)
- max-clique
- max-relaxed-clique (s-plex: degree, s-clique: distance, s-bundle: connectivity)

SOME THEORETICAL PROPERTIES...

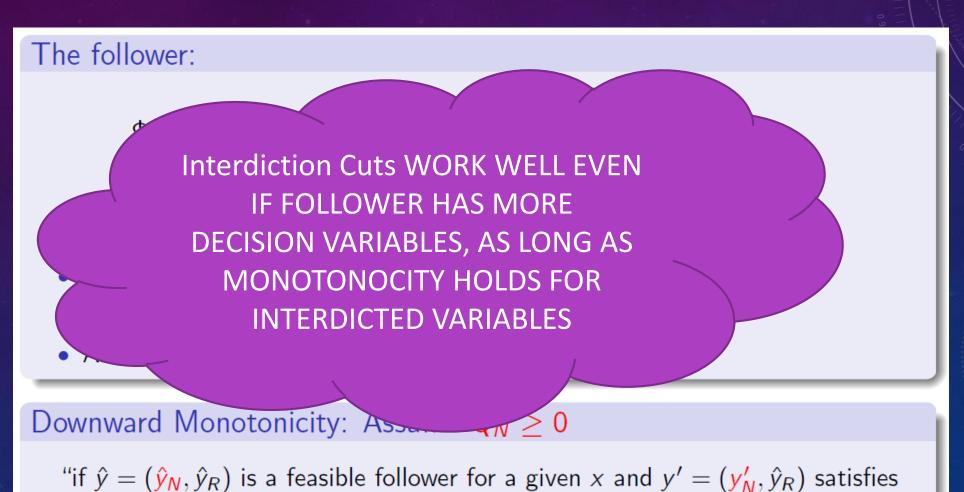
Under **Downward Monotonicity**, $Q \ge 0$:

- interdiction cuts are facet-defining under mild conditions [1],
- interdiction cuts can be efficiently down-lifted [2],
- specific pre-processing and dominance rules can be developed [1,2]

References:

- [1] Furini, L., Martin, San Segundo: The Maximum Clique Interdiction Problem, European Journal of Operational Research 277(1):112-127, 2019
- [2] Fischetti, L., Monaci, Sinnl: Interdiction Games and Monotonicity, with Application to Knapsack Problems, INFORMS Journal on Computing, 31(2):390-410, 2019

SLIDE "NOT TO BE SHOWN"



integrality constraints and $0 \le y'_N \le \hat{y}_N$, then y' is also feasible for x".

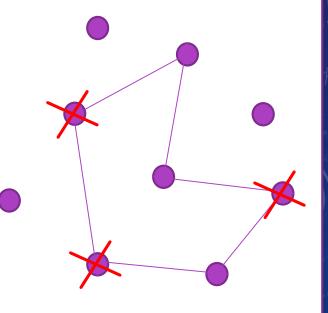
THE RESULT CAN BE FURTHER GENERALIZED

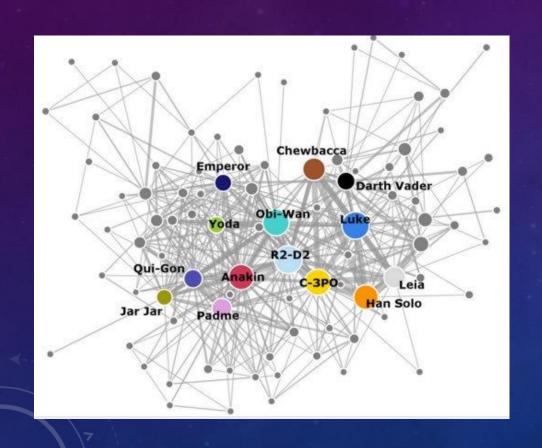
Relevant Operations Research applications. Two companies competing at the market for customers.

- LEADER: established on the market,
- FOLLOWER: a newcomer who wants to disrupt the market.

LEADER wants to keep the customers by providing them coupons, vouchers. FOLLOWER is solving a profit-maximization problem:

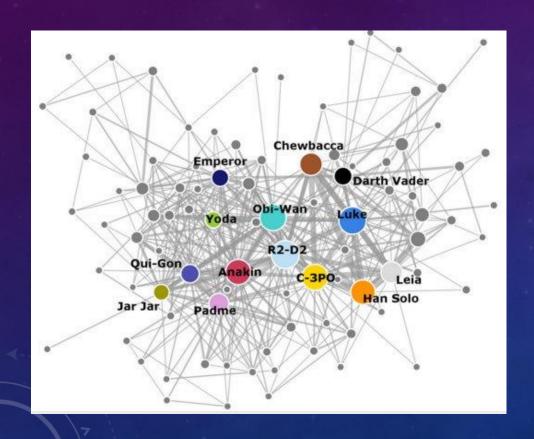
- **NETWORK DESIGN**: prize-collecting Steiner tree
- LOGISTICS: orienteering problems
- FACILITY LOCATION: profit maximization variant





Centrality Measure?

Individual or Collective?



Node Centrality

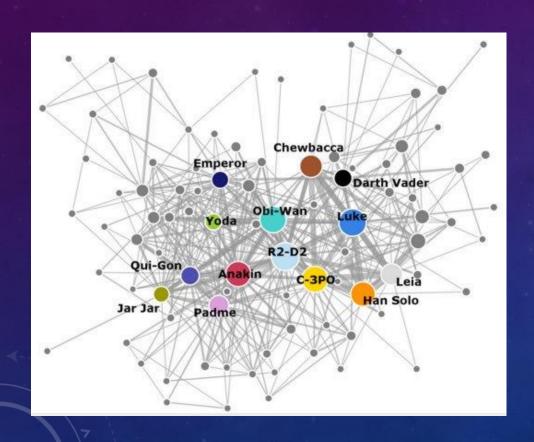
• Degree-, betweenness-, distance-, eigenvalue-centrality,...

Individual vs **Collective** Centrality?

Greedy selection of the most central k nodes is **suboptimal!** (Shen, Smith, Goli, 2012)

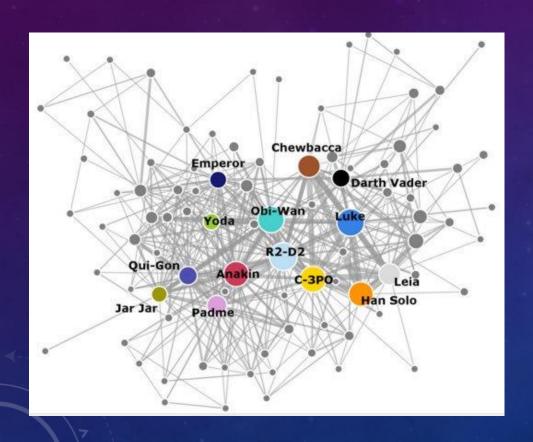
Evaluation of $\binom{n}{k}$ all possible combinations is intractable!

$$\binom{500}{10} = 2.4581058880189 \times 10^{20}.$$



Connectivity-based Centrality Measures:

- the number of connected components
- the size of a largest connected component
- the number of pairwise disconnected node pairs
- the number of edges needed to reconnect the graph
- the size of the largest (relaxed) clique, ...



Stackelberg Games:

- LEADER removes edges/nodes
- FOLLOWER optimizes the connectivity measure

Sparse MIP models
vs
Very large extended formulations

HEREDITARY PROPERTY OF THE FOLLOWER

follower

Node hereditary

Edge hereditary

Node deletion

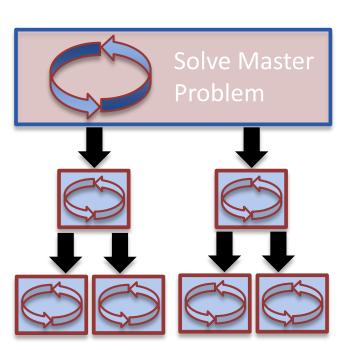
Edge deletion

Otherwise: a slightly extended formulation is needed (cf. k-vertex cut)

BRANCH-AND-INTERDICTION-CUT IMPLEMENTATION

A CAREFUL BRANCH-AND-INTERDICTION-CUT DESIGN

- **Separation:** finding the best FOLLOWER's response for a given x^* . NP-hard, in general.
- A good **balance** between "lazy cut separation" (integer points only) and "user cut separation" (fractional points).
- Crucial: specialized procedures/algorithms for FOLLOWER's subproblem (if available).
- Combinatorial algorithms for LOWER and UPPER BOUNDS.
- Efficient PREPROCESSING techniques.
- Under monotonicity property: Interdiction cuts are facet-defining or could be lifted, otherwise.
- Resulting in general in **strong LP-relaxation bounds**.



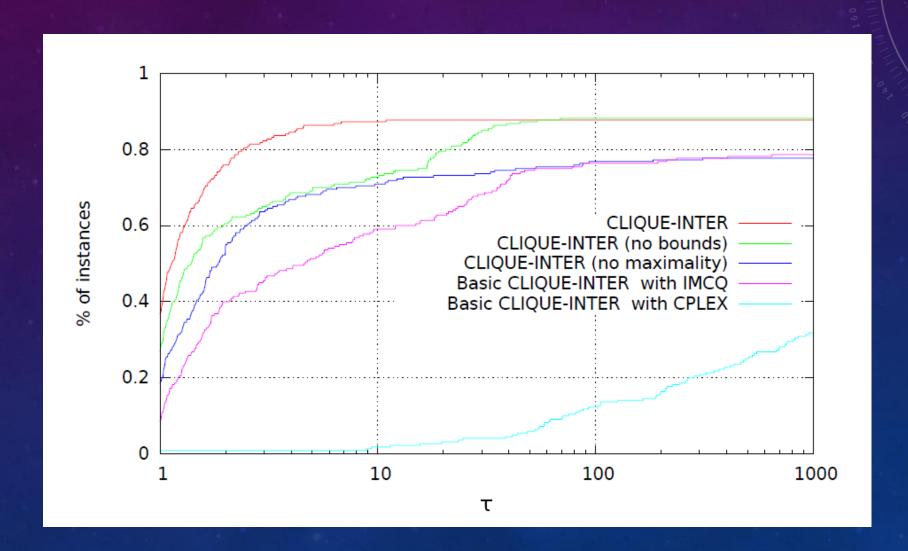
Branch-and-Interdiction-Cut

MAX-CLIQUE-INTERDICTION: LARGE-SCALE NETWORKS

		ique Solver gundo et al. (201	16)	$k = \lceil 0.0 \rceil$	$005 \cdot V $	$k = \lceil 0.01 \cdot V \rceil$	
		E	ω [s]	t [s]	$ V_p $	t [s]	$ V_p $
socfb-UIllinois	30,795	1,264,421	0.5	24.4	10,456	41.6	8290
ia-email-EU	32,430	54,397	0.0	0.6	30,375	0.5	29,212
ia-enron-large	33,696	180,811	0.0	2.2	27,791	29.5	26,651
socfb-UF	35,111	1,465,654	0.3	17.8	14,264	87.8	10,708
socfb-Texas84	36,364	1,590,651	0.3	24.6	10,706	74.3	8,704
fe-tooth	78,136	452,591	0.5	18.9	7	19.0	7
sc-pkustk11	87,804	2,565,054	1.1	70.7	2,712	57.1	2,712
ia-wiki-Talk	92,117	360,767	0.2	49.2	72,678	87.4	72,678
sc-pkustk13	94,893	3,260,967	1.3	724.9	2,360	879.2	2,354

eliminated by preprocessing

B&IC INGREDIENTS



COMPARISON WITH THE STATE-OF-THE-ART MILP BILEVEL SOLVER

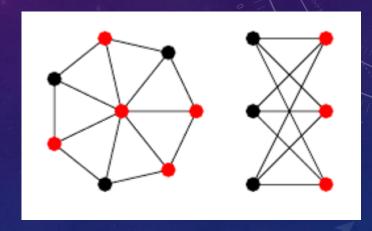
			Branch-and- Interdiction-Cut			Generic B&C for Bilevel MILPs (Fischetti, Ljubic, Monaci, Sinnl, 2017)				
V	#	# solved	$_{ m time}$	exit gap	root gap	# solved	$_{ m time}$	exit gap	root gap	
50	44	44	0.01	-	0.16	28	68.58	6.44	8.50	
75	44	44	1.45	-	0.41	14	120.19	9.47	10.91	
100	44	37	9.30	1.00	0.98	7	164.42	12.65	13.11	
125	44	35	13.43	1.33	1.20	2	135.33	13.88	14.73	
150	44	33	27.23	1.91	1.43	1	397.52	16.42	16.39	

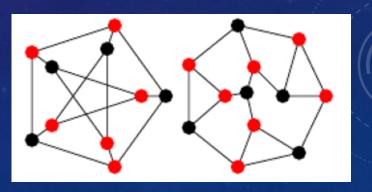
AND WHAT ABOUT GRAPH THEORY?

A WEIRD EXAMPLE

 Property: A set of vertices is a vertex cover if and only if its complement is an independent set

- Vertex Cover as a Blocking Problem:
 - LEADER: interdicts (removes) the nodes.
 - FOLLOWER: maximizes the size of the largest connected component in the remaining graph.
 - Find the smallest set of nodes to interdict, so that FOLLOWER's optimal response is at most one.



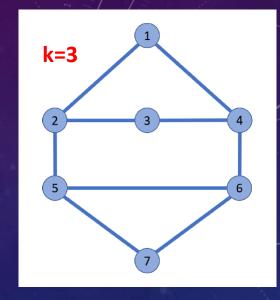


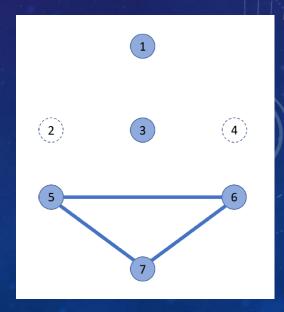
THE K-VERTEX-CUT PROBLEM

- A set of vertices is a **vertex** k-**cut** if upon its removal the graph contains at least k connected components.
- The k Vertex-Cut Problem: Find a vertex k-cut of minimum cardinality/weight.

Open question: ILP formulation in the natural space of variables

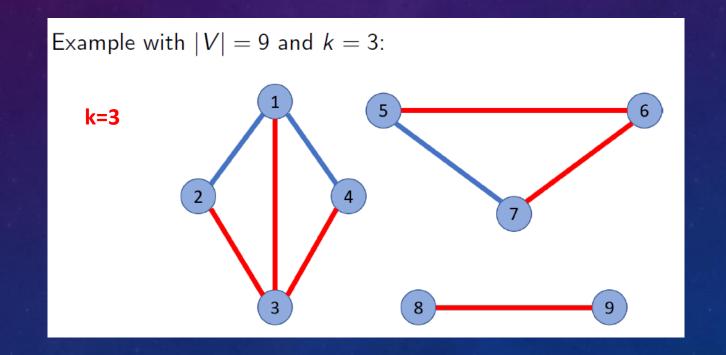
- Influential nodes in a diffusion model for social networks, Kempe et al. (2005)
- Decomposition method for linear equation systems, e.g. GCG solver (Bastubbe, Lübbecke, 2017)





K-VERTEX-CUT

Property: A graph G has at least k (not empty) components if and only if any cycle-free subgraph of G contains at most |V|-k edges.



K-VERTEX-CUT

Stackelberg game:

- ullet LEADER: searches the min-weight subset of nodes V_0 to delete;
- FOLLOWER maximizes the size of the cycle-free subgraph on the interdicted graph.
- Solution of the LEADER is feasible iff optimal FOLLOWER's response is at most $T=|V|-|V_0|-k$.

$$\min \sum_{v \in V} w_v x_v$$

$$\Phi(x) \le |V| - \sum_{v \in V} x_v - k$$

$$x_v \in \{0, 1\}$$

$$v \in V.$$

K-VERTEX-CUT: BENDERS-LIKE REFORMULATION

The following **Natural Space Formulation**, is a valid model for the k-vertex cut problem:

$$\min \sum_{v \in V} x_v$$

$$\sum_{v \in V} [\deg_T(v) - 1] x_v \ge k - |V| + |E(T)| \qquad T \in \mathcal{T},$$

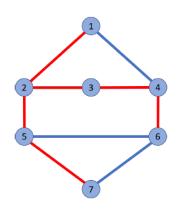
$$x_v \in \{0, 1\} \qquad v \in V.$$

where \mathcal{T} is the set of all (maximal) cycle-free subgraphs of G.

Separation of "interdiction cuts" is polynomial.

K-VERTEX-CUT: BENDERS-LIKE REFORMULATION

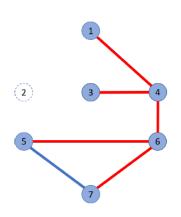
$$\sum_{v \in V} [\deg_T(v) - 1] x_v \ge k - |V| + |E(T)|$$



$$2x_2 + x_4 + x_5 \ge 2$$

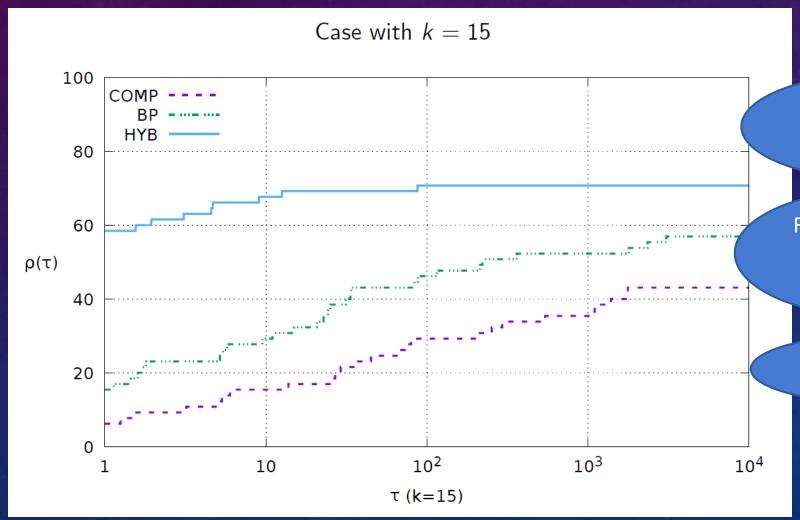
K-VERTEX-CUT: BENDERS-LIKE REFORMULATION

$$\sum_{v \in V} [\deg_T(v) - 1] x_v \ge k - |V| + |E(T)|$$



$$2x_2 + x_4 + x_5 \ge 2$$
$$-x_2 + 2x_4 + 2x_6 \ge 1$$

COMPUTATIONAL PERFORMANCE



Branch-and-Interdiction-Cut

Furini et al. (2018) Prev. STATE-OF-THE-ART

Compact model

TAKEAWAYS

Bilevel optimization: very difficult!

- Branch-and-Interdiction-Cuts can work very well in practice:
 - Problem reformulation in the natural space of variables ("thinning out" the heavy MILP models)
 - Tight "interdiction cuts" (monotonicity property)
 - Crucial: Problem-dependent (combinatorial) separation strategies, preprocessing, combinatorial poly-time bounds
- Many graph theory problems (node-deletion, edge-deletion) could be solved efficiently, when approached from the bilevel-perspective

DEALING WITH BILEVEL MILPS

- Check first: is it an interdiction/blocker problem?
- Does it satisfy monotonicity property?
- Graph problems: Is the follower's subproblem hereditary (wrt nodes/edges)?
- If yes, go for a branch-and-interdiction cut.
- Otherwise, try our GENERAL PURPOSE BILEVEL MILP SOLVER:

https://msinnl.github.io/pages/bilevel.html

CHALLENGING DIRECTIONS FOR FUTURE RESEARCH

- Bilevel Optimization: a better way of integrating customer behaviour into decision making models
- Generalizations of Branch-and-Interdiction-Cuts for:
 - Non-linear follower functions
 - Submodular follower functions
 - Interdiction problems under uncertainty, ...
- Extensions to **Defender-Attacker-Defender (DAD)** Models (**trilevel games**)
- Benders-like decomposition for general mixed-integer bilevel optimization

THANK YOU FOR YOUR ATTENTION!

References:

- M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: Interdiction Games and Monotonicity, with Application to Knapsack Problems, INFORMS Journal on Computing 31(2):390-410, 2019
- F. Furini, I. Ljubic, P. San Segundo, S. Martin: The Maximum Clique Interdiction Game, European Journal
 of Operational Research 277(1):112-127, 2019
- F. Furini, I. Ljubic, E. Malaguti, P. Paronuzzi: On Integer and Bilevel Formulations for the k-Vertex Cut Problem, submitted, 2018
- M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl: A new general-purpose algorithm for mixed-integer bilevel linear programs, *Operations Research* 65(6): 1615-1637, 2017

SOLVER: https://msinnl.github.io/pages/bilevel.html

LITERATURE

- Bastubbe, M., Lübbecke, M.: A branch-and-price algorithm for capacitated hypergraph vertex separation. Technical Report, Optimization Online (2017)
- L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard. A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network, Transportation Science, 35(4): 345-358, 2001
- L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard. Joint design and pricing on a network. Operations Research, 56 (5):1104–1115, 2008
- A. Caprara, M. Carvalho, A. Lodi, G.J. Woeginger. Bilevel knapsack with interdiction constraints. INFORMS Journal on Computing 28(2):319–333, 2016
- C. Casorrán, B. Fortz, M. Labbé, F. Ordóñez. A study of general and security Stackelberg game formulations.
 European Journal of Operational Research 278(3): 855-868, 2019
- R.A.Collado, D. Papp. Network interdiction models, applications, unexplored directions, Rutcor Research Report 4-2012, 2012.
- J.F. Cordeau, F. Furini, I. Ljubic. Benders Decomposition for Very Large Scale Partial Set Covering and Maximal Covering Problems, *European Journal of Operational Research* 275(3):882-896, 2019
- S. Dempe. Bilevel optimization: theory, algorithms and applications, TU Freiberg, ISSN 2512-3750. Fakultät für Mathematik und Informatik. PREPRINT 2018-11
- DeNegre S (2011) Interdiction and Discrete Bilevel Linear Programming. Ph.D. thesis, Lehigh University

LITERATURE, CONT.

- M. Fischetti, I. Ljubic, M. Sinnl: Redesigning Benders Decomposition for Large Scale Facility Location, Management Science 63(7): 2146-2162, 2017
- R.G. Jeroslow. The polynomial hierarchy and a simple model for competitive analysis. Mathematical Programming, 32(2):146–164, 1985
- Kempe, D., Kleinberg, J., Tardos, E.: Influuential nodes in a diffusion model for social networks. In: L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung (eds.) Automata, Languages and Programming, pp. 1127-1138., 2005
- M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its application to optimal highway pricing.
 Management Science, 44(12):1608–1622, 1998
- I. Ljubic, E. Moreno: Outer approximation and submodular cuts for maximum capture facility location problems with random utilities, European Journal of Operational Research 266(1): 46-56, 2018
- M. Sageman. Understanding Terror Networks. ISBN: 0812238087, University of Pennsylvania Press, 2005
- San Segundo P, Lopez A, Pardalos PM. A new exact maximum clique algorithm for large and massive sparse graphs.
 Computers & OR 66:81–94, 2016
- S. Shen, J.C. Smith, R. Goli. Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optimization 9(3): 172-188, 2012
- S. van Hoesel. An overview of Stackelberg pricing in networks. European Journal of Operational Reseach, 189:1393–1492, 2008
- R.K. Wood. Bilevel Network Interdiction Models: Formulations and Solutions, John Wiley & Sons, Inc., http://hdl.handle.net/10945/38416, 2010