Decomposition Methods for Stochastic Steiner Trees

M. Leitner² I. Ljubić¹ M. Luipersbeck² M. Sinnl²

¹ ESSEC Business School of Paris, France ² ISOR, University of Vienna, Austria

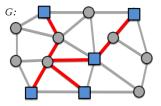
2nd European Conference on Stochastic Optimization (ECSO 2017) September 20-22, 2017 Roma Tre University, Rome, Italy

Deterministic Steiner Tree Problem (STP)

Deterministic STP

- **Given:** undirected graph G = (V, E), positive edge costs c_e , set of terminals $T \subset V$, $T \neq \emptyset$.
- Objective:

$$\min\{c(E_0): E_0 \subset E, E_0 \text{ spans } R\}.$$



Decision problem NP-complete. Well studied, many applications, recent DIMACS Challenge (non-trivial graphs with 100 000's of nodes solved to optimality).

WHY DO WE STUDY STEINER TREES UNDER UNCERTAINTY?

Steiner Tree Problem (STP) Under Uncertainty

In practice, two sources of uncertainty:

- Who are the terminals? No precise knowledge of future customer demands.
- What are the edge installation costs? Future edge costs may be more expensive and prices are highly volatile ("wait and see" can be costly).

One possible approach: Stochastic Optimization

Estimate possible outcomes and derive scenarios:

Each scenario k assumes terminals T^k ⊂ V are given and edge costs c^k are specified.

Decision Process: Two Stages

- First Stage: ("now", Monday): buy cheap/profitable edges now. Difficulty: we only know possible outcomes and their probabilities.
- **Second Stage**: ("future", Tuesday, one scenario is realized): additional edges are purchased to make the solution feasible (**recourse action**).

SSTP: Formal Problem Definition

SSTP

- **Given:** Undirected graph G = (V, E), root $r \in V$, positive edge costs c_e^0 , $e \in E$. Set of scenarios K, s.t. $k \in K$:
 - probability $p^k > 0$,
 - edge costs c_e^k , $e \in E$,
 - set of terminals $T^k \subset V$, $r \in T^k$.
- Objective: Find E⁰ ⊂ E (purchased in the first-stage) and E^k ⊂ E (purchased in the second-stage, if scenario k is realized), for all k ∈ K such that expected solution cost is minimized, i.e.:

$$\begin{split} \min \sum_{e \in E^0} c_e^0 + \sum_{k \in K} p^k \sum_{e \in E^k} c_e^k \\ \text{s.t. } E^0 \cup E^k \text{ spans } T^k, \quad \forall k \in K \end{split}$$

WHAT IS KNOWN ABOUT SSTP SO FAR?

Previous Work

- introduced by Gupta et al. [2007a] (approximation and complexity results)
- approximation algorithms [Gupta and Pál, 2005, Gupta et al., 2004, 2007b, Swamy and Shmoys, 2006]
 - In general, SSTP is NP-hard to approximate within a constant factor. Constant approximation possible only for special cases.
- fixed-parameter tractability [Kurz et al., 2013]
- heuristics [Hokama et al., 2014] (genetic algorithm, DIMACS Challenge 2014)
- exact two-stage branch-and-cut based on Benders decomposition:
 - stochastic STP [Bomze et al., 2010],
 - stochastic survivable network design [Ljubić et al., 2017],
 - PhD thesis Bernd Zey (upcoming 2017).

Our Contribution

- we introduce a new ILP formulation for the SSTP
 - strongest among existing formulations
- we design a solution framework based on this formulation
 - exploits the decomposability of the formulation in various ways

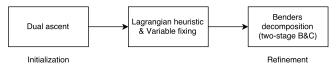


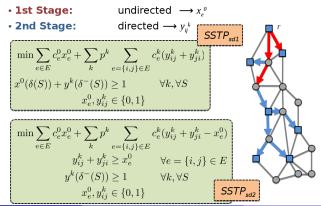
Figure: Algorithmic framework.

- we present a computational study comparing our approach with
 - state-of-the-art exact approach from [Bomze et al., 2010, Ljubić et al., 2017] (Benders decomposition based on two-stage branch-and-cut)
 - genetic algorithm from [Hokama et al., 2014]
- presented method significantly outperforms these approaches

STEP 1: A STRONGER FORMULATION

Two Semi-Directed Models for SSTP [Bomze et al., 2010, Zey, 2016, Ljubić et al., 2017]

It is impossible to orient the firststage solution, so we derive semidirected formulations.



Hierarchy of Formulations

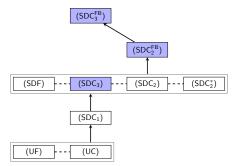


Figure: Directed arcs indicate that the target formulation is stronger than the source formulation. Blue boxes: the formulation has been introduced by us, all the others are from Bomze et al. [2010], Zey [2016]

Flow-Balance constraints (FB):

- · strengthening: ensure, that only terminals can be leaf-nodes
- added to (SDC₂) from Bomze et al. [2010], Zey [2016] \rightarrow (SDC₂^{FB})
- added to our $(SDC_3) \rightarrow (SDC_3^{FB})$

(SDC₃): A Strong Formulation for SSTP

- idea: Steiner arborscence rooted at r for each k ∈ K, using arcs bought in first and second stage
 - binary $w_{ij}^k = 1$, iff arc (i, j) is selected in the first stage for scenario k
 - binary $z_{ij}^{k} = 1$, iff arc (i, j) is selected in the second stage for scenario k
 - binary $x_e = 1$, iff edge *e* is selected in the first stage
- \mathcal{W}^k : set of directed **Steiner cuts** for scenario k

$$\begin{array}{ll} \min & \sum_{e \in E} c_e^0 x_e + \sum_{k \in K} p^k \sum_{e=\{i,j\} \in E} c_e^k (z_{ij}^k + z_{ji}^k) \\ \text{s.t.} & w^k (\delta^-(W)) + z^k (\delta^-(W)) \ge 1 & \forall W \in \mathcal{W}^k, \forall k \in K \quad (\text{SDC}_3:1) \\ & w_{ij}^k + w_{ji}^k \le x_e & \forall e = \{i,j\} \in E, \forall k \in K \\ & (\text{SDC}_3:2) \\ & (\textbf{x}, \textbf{z}, \textbf{w}) \in \{0, 1\}^{|E|+2|A||K|} & (\text{SDC}_3:3) \end{array}$$

The Framework

Advantages of (SDC_3) : It decomposes nicely, and gives the strongest bounds with (SDC_3^{FB}) .

How does it work?

- Dual ascent: greedy heuristic that changes dual multipliers λ while monotonically increasing LB. Gives also an UB.
- **Lagrangian:** takes UB and final λ from DA to initialize the subgradient method. Improves UB and LB. Applies reduction techniques. Generates a collection of useful dual multipliers λ.
- Benders: takes UB and optimality cuts associated to Langrangian λ found during the subgradient procedure.

OBSERVE: Steps 1 and 2 give valid LB and UB and are purely combinatorial (no MIP solver needed!) Step 3 is a branch-and-cut (CPLEX).

STEP 2: DUAL ASCENT

Dual Ascent

• let β and λ be the dual multipliers of (SDC₃:1) (connectivity) and (SDC₃:2) (linking)

$$\begin{array}{ll} (\operatorname{SDC}_3^D) & \max \sum_{k \in K} \sum_{W \in \mathcal{W}^k} \beta_W^k \\ & \sum_{k \in K} \lambda_e^k \leq c_e^0 & \forall e \in E \\ & (\operatorname{SDC}_3^D:1) \\ & \beta(\mathcal{W}_{ij}^k) \leq p^k c_e^k & \forall (i,j) \in A, \forall k \in K, e = \{i,j\} \\ & (\operatorname{SDC}_3^D:2) \\ & \beta(\mathcal{W}_{ij}^k) - \lambda_e^k \leq 0 & \forall (i,j) \in A, \forall k \in K, e = \{i,j\} \\ & (\operatorname{SDC}_3^D:3) \\ & (\beta^k, \lambda^k) \in \mathbb{R}_{\geq 0}^{|\mathcal{W}^k| + |E|} & \forall k \in K \end{array}$$

- dual ascent works similar to dual ascent for STP Wong [1984]
 - start from initial solution $ar{oldsymbol{eta}}=oldsymbol{0}$
 - each iteration: increase one dual variable $\beta_W^k = 0$ while preserving feasibility
 - ► The worst-case time complexity: $\mathcal{O}(\sum_{k \in K} |A| \min\{|A|, |T^k||V|\}).$

STEP 3: LAGRANGIAN HEURISTIC

Lagrangian Relaxation

- relax constraints (SDC₃:2) using Lagrangian dual multipliers $\lambda \ge 0$
- we obtain the relaxation

$$L(\lambda) := \min \left\{ \sum_{e \in E} c_e^0 x_e + \sum_{k \in K} p^k \sum_{e=\{i,j\} \in E} c_e^k (z_{ij}^k + z_{ji}^k) + \sum_{k \in K} \sum_{e=\{i,j\} \in E} \lambda_e^k (w_{ij}^k + w_{ji}^k - x_e) : (SDC_3:1), (SDC_3:3) \right\}$$

- define Lagrangian cost as $ilde{c}_e := c_e^0 \sum_{k \in K} \lambda_e^k, e \in E$
- problem decomposes into $|\mathcal{K}|+1$ independent subproblems

one in x

$$L^0(oldsymbol{\lambda}) := \min \Big\{ \sum_{e \in E} ilde{c}_e x_e : \mathbf{x} \in \{0,1\}^{|E|} \Big\}$$

• and one in
$$\mathbf{z}^k, \mathbf{w}^k$$
 for $k \in K$

$$\begin{split} L^{k}(\boldsymbol{\lambda}) &:= \min \Big\{ \sum_{e = \{i,j\} \in E} \Big[p^{k} c_{e}^{k} (z_{ij}^{k} + z_{ji}^{k}) + \lambda_{e}^{k} (w_{ij}^{k} + w_{ji}^{k}) \Big] : \\ (SDC_{3}:1), (\mathbf{z}^{k}, \mathbf{w}^{k}) \in \{0, 1\}^{2|A|} \Big\} \end{split}$$

Lagrangian Relaxation

• the Lagrangian dual problem is

$$(\mathsf{SDC}_3^{LD}) \qquad \max_{oldsymbol{\lambda} \geq oldsymbol{0}} \left\{ L^0(oldsymbol{\lambda}) + \sum_{k \in \mathcal{K}} L^k(oldsymbol{\lambda})
ight\}$$

- $L^0(\lambda)$ can be computed by inspection
- $L^k(\lambda)$: solving an instance of the Steiner arborescence problem (SAP)

Theorem

$$v(LP-SDC_3^{FB}) \leq v(SDC_3^{LD}) = v(SDC_3)$$

- we solve (SDC_3^{LD}) using a subgradient scheme
- dual variables at the end of the dual ascent are used to initialize λ
- subproblems $L^k(\boldsymbol{\lambda})$ are solved heuristically
 - using a dual ascent for SAP together with a primal heuristic
- two different heuristics to calculate high-quality feasible solutions
- we designed reduction tests to fix nodes and edges

STEP 4: BENDERS DECOMPOSITION

Benders Decomposition

- in the spirit of the two-stage B&C approach introduced in Bomze et al. [2010] for (SDC₂).
- Benders master problem is stated as follows

$$\begin{split} \text{(SDC}_{3}^{B}) \min & \sum_{e \in E} c_{e}^{0} x_{e} + \sum_{k \in K} p^{k} \theta^{k} \\ \text{s.t.} & \theta^{k} \geq \Phi^{k}(\mathbf{x}) \quad \forall k \in K \\ & \mathbf{x} \in \{0, 1\}^{|E|}, \boldsymbol{\theta} \in \mathbb{R}_{\geq 0}^{|K|} \end{split}$$

- variables z and w associated to the second stage projected out
- $\theta^k \ge 0$: second-stage cost for each scenario
- for each k ∈ K and first-stage solution x
 , the recourse function Φ^k(x

 the corresponding second-stage cost
- dynamically separated fractional and integral Benders optimality cuts are used in order to underestimate the value of Φ^k(x̄)

Benders Decomposition

- Benders subproblem is another Steiner arborescence problem
- Benders cuts

$$\theta^{k} \geq \sum_{W \in \mathcal{W}^{k}} \bar{\beta}_{W}^{k} - \sum_{e \in E} \bar{\lambda}_{e}^{k} x_{e} \qquad \forall k \in \mathcal{K} \qquad (\mathsf{SDC}_{3}^{B}:\mathsf{FRAC})$$

where $\bar{\lambda}^k$ and $\bar{\beta}^k$ are (optimal) dual multipliers of the LP-relaxation of the Benders subproblem.

- Lagrangian optimality cuts:
 - initialize the master problem using optimality cuts derived from high-quality Lagrangian multipliers $(\bar{\lambda}^k = \lambda^k \text{ and } \bar{\beta}^k = \frac{1}{\rho_k} \beta^k)$
- Integer optimality cuts
 - $\Phi^k(\bar{\mathbf{x}})$ is an STP, solved using the exact solver by Fischetti et al. [2017]
 - let $E_S^0 = \{e \in E : \bar{x}_e = 1\}$, optimality cuts are defined as

$$\theta^{k} \ge \Phi^{k}(\bar{\mathbf{x}}) - \sum_{e \in E \setminus E_{S}^{0}} c_{e}^{k} x_{e} \qquad \forall k \in K \qquad (\mathsf{SDC}_{3}^{B}:\mathsf{INT})$$

COMPUTATIONAL RESULTS

Implementation Details and Benchmark Instances

- implemented in C++
- Benders decomposition: CPLEX 12.7 is used as a ILP solver
- single-threaded on an Intel Xeon CPU E5-2670v2 (2.5 GHz)
- time limit of one hour and a memory limit of 6 GB
- instances from the [SSTPLib] (used in the 11th DIMACS Implementation Challenge); denoted as **SMALL**
- also generated new large-scale benchmark instances from real-world STP instances [Leitner et al., 2014]; denoted as LARGE

			V			E			K	
dataset	inst[#]	min	avg	max	min	avg	max	min	avg	max
K100	154	22	31	45	64	115	191	5	272	1000
P100	70	66	77	91	163	194	237	5	272	1000
LIN01-10) 140	53	190	321	80	318	540	5	272	1000
WRP	196	10	194	311	149	363	613	5	272	1000
VIENNA	40	1991	5756	9574	3176	9347	16208	5	21	50

Table: Basic properties of our benchmark instances.

Effects of the Dual Ascent Initialization

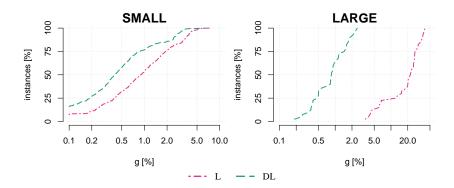


Figure: Optimality gap charts for SMALL and LARGE instances with dual ascent initialization of the subgradient algorithm (DL) and without (L).

Effects of the Benders Decomposition

• gap at the end of the root node

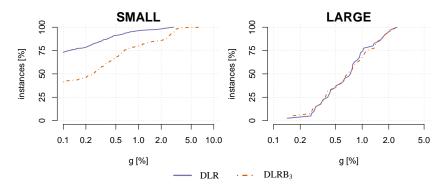


Figure: Optimality gap charts at the end of the root node for SMALL and LARGE with $(DLRB_3)$ and without (DLR) Benders decomposition applied as a refinement procedure.

Comparison with the State-of-the-Art

• re-implemented Benders approach of Bomze et al. [2010], denoted as B₂

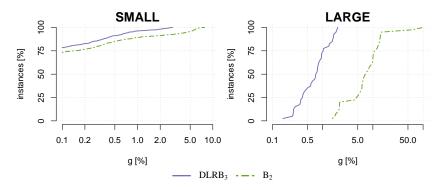


Figure: Optimality gap charts comparing DLRB₃ and B₂.

Comparison with the State-of-the-Art

- H: heuristic of Hokama et al. [2014] are denoted
 - ▶ done in C++; obtained on an Intel Xeon CPU E3-1230 V2, (3.30GHz)
- Pg: primal gap, t_b : time to best solution

Table: Results on datasets K100 (all solved to optimality by DLRB₃ and B₂, columns Pg[%] are thus omitted).

	t[s]		Pg[%]	t		
K	DLRB ₃	B_2	Н	DLRB ₃	B_2	Н
5 10 20 50 75 100 150 200 250 300 400 500 750	1 2 3 4 5 9 13 15 19 27 32 44	1 1 2 3 5 5 8 12 16 17 22 28 47	$\begin{array}{c} 2.31\\ 0.86\\ 0.68\\ 0.81\\ 0.55\\ 0.58\\ 0.57\\ 0.52\\ 0.55\\ 0.88\\ 0.72\\ 0.60\\ 0.66\\ \end{array}$	0 1 2 2 3 6 8 6 9 15 18 26	1 1 2 4 4 6 9 11 14 18 18 36	1 2 5 8 11 16 23 28 30 40 57 93
1000	68	61	0.82	32	35	121

Further Reading

References:

 M. Leitner, I. Ljubić, M. Luipersbeck, M. Sinnl, Decomposition methods for the two-stage stochastic Steiner tree problem, technical report, 2017 http://homepage.univie.ac.at/ivana.ljubic/research/ publications/da-TR.pdf

Our additional work on dual ascent for Steiner trees:

- M. Leitner, I. Ljubić, M. Luipersbeck, M. Sinnl, A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems, INFORMS Journal on Computing, 2017, to appear
- code available at https://github.com/mluipersbeck/dapcstp

Literature I

- I. Bomze, M. Chimani, M. Jünger, I. Ljubić, P. Mutzel, and B. Zey. Solving two-stage stochastic Steiner tree problems by two-stage branch-and-cut. In International Symposium on Algorithms and Computation, pages 427–439. Springer, 2010.
- M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, and M. Sinnl. Thinning out Steiner trees: a node-based model for uniform edge costs. Mathematical Programming Computation, 9(2): 203-229, 2017. ISSN 1867-2957. doi: 10.1007/s12532-016-0111-0. URL http://dx.doi.org/10.1007/s12532-016-0111-0.
- A. Gupta and M. Pál. Stochastic Steiner trees without a root. Automata, Languages and Programming, pages 100–100, 2005.
- A. Gupta, M. Pál, R. Ravi, and A. Sinha. Boosted sampling: Approximation algorithms for stochastic optimization. In **Proceedings of the thirty-sixth annual ACM symposium on Theory of computing**, pages 417–426. ACM, 2004.
- A. Gupta, M. Hajiaghayi, and A. Kumar. Stochastic Steiner tree with non-uniform inflation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 134–148. Springer, 2007a.

Literature II

- A. Gupta, R. Ravi, and A. Sinha. LP rounding approximation algorithms for stochastic network design. Mathematics of Operations Research, 32(2): 345–364, 2007b.
- P. Hokama, M. C. San Felice, E. C. Bracht, and F. L. Usberti. A heuristic approach for the stochastic Steiner tree problem. 11th DIMACS Challenge workshop, 2014.
- D. Kurz, P. Mutzel, and B. Zey. Parameterized algorithms for stochastic Steiner tree problems. In Mathematical and Engineering Methods in Computer Science, volume 7721 of LNCS, pages 143–154. Springer, 2013.
- M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and M. Resch. New real-world instances for the Steiner tree problem in graphs. Technical report, 2014.
- I. Ljubić, P. Mutzel, and B. Zey. Stochastic survivable network design problems: Theory and practice. **European Journal of Operational Research**, 256(2): 333–348, 2017.

SSTPLib. https://ls11-www.cs.uni-dortmund.de/staff/zey/sstp/. Accessed at: 2017-04-24.

Literature III

- C. Swamy and D. B. Shmoys. Approximation algorithms for 2-stage stochastic optimization problems. **ACM SIGACT News**, 37(1):33–46, 2006.
- R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Programming, 28(3):271–287, 1984. ISSN 0025-5610.
- B. Zey. ILP formulations for the two-stage stochastic Steiner tree problem. 2016.