Recent Developments on Exact Solvers for the (Prize-Collecting) Steiner Tree Problem

Ivana Ljubić

ESSEC Business School of Paris

The 22nd edition of the COMEX Belgian Mathematical Optimization Workshop

April 21, 2017, La-Roche-en-Ardennes

This tutorial is based on:

- M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D, Salvagnin, M. Sinnl:
 Thinning out Steiner trees: A node based model for uniform edge costs, Mathematical Programming Computation, 2016,
 DOI: 10.1007/s12532-016-0111-0, 2016
- M. Leitner, I. Ljubić, M. Luipersbeck, M. Sinnl:
 A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems, 2016.

 www.optimization-online.org/DB_HTML/2016/06/5509.html

Forthcoming: PhD Thesis of Martin Luipersbeck, University of Vienna

Why Studying Steiner Trees?

Wide range of applications:

- design of infrastructure networks (e.g., telecommunications), network optimization
- routing in communication networks
- handwriting recognition, image/3D movements recognition (machine learning)
- reconstruction of phylogenetic trees
- bioinformatics (analysis of protein-protein interaction networks)

Figure borrowed from The Fraenkel Lab, MIT

Our work was motivated by:

11th DIMACS Implementation Challenge in Collaboration with ICERM: Steiner Tree Problems

Co-sponsored by
DIMACS, the DIMACS Special Focus on Information Sharing and Dynamic Data Analysis, and by the
Institute for Computational and Experimental Research in Mathematics (ICERM)

From the web-site dimacs11.zib.de/

DIMACS Implementation Challenges address questions of determining realistic algorithm performance where worst case analysis is overly pessimistic and probabilistic models are too unrealistic: experimentation can provide guides to realistic algorithm performance where analysis fails."

We submitted codes: staynerd (['ʃtʌɪnə]) and mozartballs to the DIMACS Challenge

Exact Challenge, 1 Thread

	Gap		Time	
Class	Formula 1	Average	Formula 1	Average
SPG	mozartballs	mozartballs	mozartballs	mozartballs
RPCST	mozartballs scipjack scipjackspx	mozartballs scipjack scipjackspx	scipjack	scipjack
PCSPG	mozartballs	mozartballs	mozartballs	mozartballs
DCST	mozartballs	mozartballs	mozartballs	mozartballs
<u>MWCS</u>	mozartballs	mozartballs	heinz-no-dc	mozartballs

Exact Challenge, 8 Threads

	Gap		Time	
Class	Formula 1	Average	Formula 1	Average
<u>SPG</u>	mozartballs	mozartduet	mozartballs	mozartballs
RPCST	fscipjack fscipjackspx mozartballs	fscipjack fscipjackspx mozartballs	fscipjack	fscipjack
PCSPG	mozartballs	mozartduet	mozartballs	mozartballs
DCST	mozartballs	mozartballs	mozartballs	mozartballs
MWCS	mozartballs	mozartballs	heinz-no-dc	mozartballs

Heuristic Challenge, 1 Thread

	Primal Bound		Primal Integral	
Class	Formula 1	Average	Formula 1	Average
<u>SPG</u>	PUW	mozartballs	PUW	staynerd
RPCST	KTS mozartballs scipjack scipjackspx	KTS mozartballs scipjack scipjackspx	KTS	KTS
PCSPG	staynerd	staynerd	KTS	mozartballs
HCDST	stephop-ls4	stephop-ls4	stephop-ls4	stephop-ls4
<u>DCST</u>	mozartballs	scipjack	mozartballs	mozartballs
STPRBH	viennaNodehopper	viennaNodehopper	viennaNodehopper	viennaNodehopper
<u>MWCS</u>	mozartballs	mozartballs	mozartballs	mozartballs

Outline

- Basic ILP Model(s) for (PC) Steiner Trees
- ② A node-based model for (almost) uniform edge-costs (DIMACS Results)
- A new branch-and-bound framework (dual ascent approach)

Steiner Trees

Steiner Trees

Definition (Steiner Tree Problem on a Graph (STP))

We are given an undirected graph G = (V, E) with edge weights $c_e \geq 0$, $\forall e \in E$. The node set V is partitioned into required terminal nodes T_r and potential Steiner nodes S, i.e. $S \cup T_r = V$, $S \cap T_r = \emptyset$. The problem is to find a minimum weight subtree G' = (V', E') of G that contains all terminal nodes, i.e., such that:

- \bullet E' is a subtree
- $T_r \subset V'$ and

Special cases: shortest path, MST

Prize Collecting STP

Definition (Prize Collecting STP (PCSTP))

We are given an undirected graph G = (V, E) with edge weights $c_e \ge 0$, $\forall e \in E$, and node profits $p_i \ge 0$, $\forall i \in V$. The problem is to find a subtree G' = (V', E') of G that yields maximum profit, i.e.

$$\max \sum_{i \in V'} p_i - \sum_{e \in E'} c_e.$$

Equivalently:

$$\min \sum_{e \in E'} c_e + \sum_{i \notin V'} p_i.$$

Remark: For a subtree (V', E') we have:

$$\sum_{i \in V'} p_i - \sum_{e \in E'} c_e = -(\sum_{e \in E'} c_e + \sum_{i \notin V'} p_i) + \sum_{i \in V} p_i$$

PCSTP: Example

Figure: Input graph and a feasible PCSTP solution

Let us focus on PCSTP

- Assume a root node r is given
- let T_p be the set of potential terminals: only those with revenues $p_i > 0$ such that at least one adjacent edge is strictly cheaper than p_i (only they among nodes not in T_r can be potential leaves).

$$T_p = \{ v \in V \setminus \{r\} \mid \exists \{u, v\} \text{ s.t. } c_{uv} < p_v \}.$$

Recall: T_r is the set of **required terminals**. Together $T = T_r \cup T_p$.

- Transform instance into directed instance G = (V, A) by creating two arcs (i, j), (j, i) for every edge $\{i, j\} \in E$
- Incorporate node-weights into arc costs:

$$c'_{ij} := c_{ij} - p_j$$

Wlog: remove arcs entering the root.

Min-Cost Steiner Arborescence

After the transformation:

Every feasible solution is a rooted Steiner arborescence, i.e., from the root r to any node i in the solution, there exists a directed r-i path and the in-degree of each node is at most one.

ILP Models for PCSTP

Decision variables:

$$x_{ij} = \begin{cases} 1, & \text{iff arc } (i,j) \text{ is in solution} \\ 0. & \text{otherwise} \end{cases} \quad \forall (i,j) \in A$$

$$y_i = \begin{cases} 1, & \text{iff node } i \text{ is in solution} \\ 0. & \text{otherwise} \end{cases} \quad \forall i \in T$$

To model connectivity:

- flow models (single-commodity, multi-commodity, common-flow, etc)
- MTZ-like constraints,
- generalized subtour elimination constraints, or
- cut-set inequalities.

(x, y)-Model for PCSTP

Directed Cut Model:

$$\min \sum_{ij \in A} c'_{ij} x_{ij} + \sum_{i \in V} p_i$$
s.t. $x(\delta^-(W)) \ge y_i$ $\forall W \subset V, r \notin W, \forall i \in W \cap T$ $(1 \times (\delta^-(i)) = y_i$ $\forall i \in T$ $y_i = 1$ $\forall i \in T_r$ $y_i \in \{0, 1\}$ $\forall i \in T_p$ $x_{ij} \in \{0, 1\}$ $\forall (i, j) \in A$

- incoming cut-set $\delta^-(W) = \{(i,j) \in A \mid i \notin W, j \in W\}$
- (1): directed Steiner cuts
- separate them in a cutting-plane fashion using max-flow
- Branch-and-cut from Ljubić et al. (2006) has been state-of-the-art for PCSTP until DIMACS (integrated in bioinformatics packages: SteinerNet, HEINZ...)

A node-based model for (almost) uniform edge-costs (DIMACS Results)

Why is PCSTP with uniform edge-costs relevant?

PCSTP with Uniform Edge-Costs

In instances from bioinformatics and machine learning, edges represent a relation between nodes, i.e., they either exist or not, there are no different edge weights. So we have

$$c_{ij}=c, \quad \forall (i,j)\in A.$$

- Can we explot this fact in a different way?
- Can we "thin-out" the existing models in order to approach more challenging instances?
- Besides, among the most challenging DIMACS instances, most of them are with uniform edge-costs (PUC instances).

Outline

- Node-based MIP model for uniform instances
- 2 Benders-like (set covering) heuristic
- Overall Algorithmic Framework
- 4 Computational results

Node-based MIP model - Node separators

Definition (Node Separators)

For $i, j \in V$, a subset $N \subseteq V \setminus \{i, j\}$ is called (i, j) **node separator** iff after eliminating N from V there is no (i, j) path in G.

N is a **minimal node separator** if $N \setminus \{i\}$ is not a (i,j) separator, for any $i \in N$. Let $\mathcal{N}(i,j)$ denote the family of all (i,j) separators.

Node-based MIP model

Shift uniform edge costs *c* into node revenue:

$$\tilde{c}_{v} = c - p_{v}, \quad \forall v \in V$$

Let

$$T = T_r \cup T_p$$
 $P = \sum_{v \in V} p_v$

$$\min \qquad \sum_{v \in V} \tilde{c}_v y_v + (P - c) \tag{2}$$

s.t.
$$y(N) \ge y_i + y_j - 1$$
 $\forall i, j \in T, i \ne j, \forall N \in \mathcal{N}(i, j)$ (3)

$$y_{\nu}=1 \qquad \forall \nu \in T_{r} \qquad (4)$$

$$y_{v} \in \{0,1\} \qquad \forall v \in V \setminus T_{r} \qquad (5)$$

where
$$y(N) = \sum_{v \in N} y_v$$
.

Node-based MIP model - Lazy-Cut Separation

Algorithm

Data: **infeasible solution** defined by a vector $\tilde{y} \in \{0,1\}^n$ with $\tilde{y}_i = \tilde{y}_j = 1$, C_i being the connected component of $G_{\tilde{y}}$ containing i, and $j \notin C_i$. Let $Neigh(C_i)$ be neighboring nodes of C_i .

Result: **minimal node separator** N that violates inequality (3) with respect to i, j.

Delete all edges in $E[C_i \cup Neigh(C_i)]$ from GFind the set R_j of nodes that can be reached from jReturn $N = Neigh(C_i) \cap R_j$

This separation runs in linear time. To separate fractional points, one would need to calculate max-flows in a transformed graph.

Node-based MIP model - Valid inequalities

Node-degree inequalities:

$$y(A_i) \ge \begin{cases} y_i, & \text{if } i \in T \\ 2y_i, & \text{otherwise} \end{cases}$$

• 2-Cycle inequalities:

$$y_i \leq y_j \quad i \in V, j \in T_p, c_{ij} < p_j$$

Outline

- Node-based MIP model for uniform instances
- 2 Benders-like (set covering) heuristic
- Overall Algorithmic Framework
- 4 Computational results

Benders-like (set covering) heuristic

- node-based model can be interpreted as set covering problem
- connectivity constraints for pure Steiner tree problem $(T = T_r)$ take the following form:

$$y(N) \geq 1, \quad \forall N \in \mathcal{N}$$

where \mathcal{N} is the family of all node separators between arbitrary real terminal pairs.

→ exploit this property by using a set covering heuristic to generate high-quality solutions

Benders-like (set covering) heuristic

Heuristic

- Extract set covering relaxation of the current model
- Solve relaxation heuristically
- Repair: fix the nodes from the solution and solve the ILP model
- 4 Refine the model through generated node-separator cuts and repeat
- We employed set covering heuristic from Caprara et al. (1996)

Benders-like (set covering) heuristic

- Cutpool:
 - Add cuts also to set cover relaxation
 - Allows iteration to generate better solutions
- Diversification:
 - random shuffle of rows and columns
 - choose randomly only 80% of variables to fix
- Application to non-uniform instances:
 - shift edge non-uniform costs into node revenue:
 - "Blurred" version of the original problem

$$p_i = rac{1}{|\delta(i)|} \sum_{e \in \delta(i)} c_e \qquad \qquad orall i \in V \setminus T$$

Outline

- Node-based MIP model for uniform instances
- 2 Benders-like (set covering) heuristic
- Overall Algorithmic Framework
- 4 Computational results

Overall Algorithmic Framework

```
Data: input graph G, instance of the STP/PCSTP/DCSTP/MWCS,
       iteration and time limits.
Result: (sub)-optimal solution Sol.
S_{init} = Initialization Heuristics()
k = 1, CutPool = \emptyset
Choose Sol from the solution pool S_{\rm init}.
while (k \le maxLBiter) and (time\ limit\ not\ exceeded) do
   (Sol, CutPool) = LocalBranching(Sol, CutPool, seed)
   k = k + 1
   Choose Sol from the solution pool S_{init}. Change seed.
end
Sol = BranchAndCut(CutPool, Sol, TimeLim)
return Sol
```

Overall Algorithmic Framework

- Branch & Cut (B&C)
 - ► Node-based model (*y*-model)
 - ► Classic arc/node-based model ((x, y)-model) (Koch and Martin, 1998; Ljubić et al., 2006)
- B&C used as black-box solver in various heuristics
 - Benders-like heuristic
 - Local branching (Fischetti and Lodi, 2003)
 - Partitioning-based construction heuristic (Leitner et al., 2014)
- State-of-the-art dual & primal heuristics
 - Shortest path construction heuristic (de Aragão, Uchoa, and Werneck, 2001)
 - Local search: Keypath-exchange, Keynode-removal, Node-insertion (Uchoa and Werneck, 2010)
 - Dual ascent heuristic (Wong, 1984)

Local branching

- large-neighborhood exploration using B&C as black-box solver
- neighborhood defined by local branching constraint
- Given solution Sol, let $W_1 = \{v \in V \mid v \in Sol\}$ and $W_0 = V \setminus W_1$.
 - Symmetric local branching constraint

$$\sum_{v \in W_0} y_v + \sum_{v \in W_1} (1 - y_v) \le r$$

► Asymmetric local branching constraint

$$\sum_{v \in W_1} (1 - y_v) \le r$$

One problem - different flavors!

y OR (x, y) MODEL??

Instance filtering

- goal: solve hard instances well, but also still provide
 good average performance
- approx. 1500 (diverse) instances (STP, PCSTP, MWCS, DCSTP)
- method: match algorithmic configuration to instance features

```
uniform, sparse, dense, ratioT, bipartite, large, ...
```

- involved decisions:
 - model selection (node-based or arc/node-based model)
 - separation of inequalities (deal with tailing-off behavior)
 - estimate when to apply problem-specific heuristics

Filter rules

Model Selection

```
\begin{array}{ll} \text{uniform} & \to y\text{-model} \\ \neg \text{uniform} & \to (x,y)\text{-model} \\ \text{uniform} \land \text{sparse} \land \text{ratioT} < 0.1 & \to (x,y)\text{-model} \end{array}
```

(x, y)-model Settings

```
\begin{array}{lll} \text{dense} & \rightarrow \text{use tailing-off bound, high tolerance} \\ \text{verydense} & \rightarrow \text{use tailing-off bound, low tolerance} \\ \text{ratioT} < 0.01 & \rightarrow \text{add dual ascent connectivity cuts as violated} \\ \text{ratioT} \geq 0.01 & \rightarrow \text{init with full set of dual ascent c. cuts} \\ \text{ratioT} < 0.1 & \land \text{sparse} \land \text{big} \rightarrow \text{separate flow-balance, GSECs of size 2} \\ \end{array}
```

Heuristic Settings & Preprocessing

Outline

- Node-based MIP model for uniform instances
- 2 Benders-like (set covering) heuristic
- Overall Algorithmic Framework
- 4 Computational results

Computational Results

- Implementation in C++ and CPLEX 12.6
- Experiments performed in parallel on 4 cores (2.3GHz, 16GB RAM)
- 4 variants submitted at the DIMACS challenge:

"Mozart Duet"

#MozartBalls #StayNerd*	exact, single & multi-threaded heuristic, single & multi-threaded	STP, (R)PCSTP, MWCS, DCSTP STP, PCSTP
#MozartDuet	multi-threaded 1 thread exact, others heuristic	STP, PCSTP
#HedgeKiller	multi-threaded 50% exact — 50% heuristic	STP, PCSTP
#MozartDuet	multi-threaded 1 thread exact, others heuristic	STP, PCSTP

Exact results for STP and PCSTP

				<i>y</i> -ı	model	(x,y)	(x,y)-model $(*)$ out-of-memory $)$				
Instance	V	<i>E</i>	<i>T</i>	OPT	Time (s.)	UB	LB	Gap	Time (s.)		
s1	64	192	32	10	0.03	10	10	0.0%	0.01		
s2	106	399	50	73	0.04	73	73	0.0%	1.36		
s3	743	2947	344	514	0.15	514	505	1.78%	1090.61*		
s4	5202	20783	2402	3601	1.31	3601	3523	2.21%	3444.81*		
s5	36415	145635	16808	25210	22.28	25210	24056	4.80%	7200.00		

						y-model Time (s.)		(x, y)-model Time $(s.)$			
Instance	V	E	T	OPT	BEST	AVG	STD	BEST	AVG	STD	
w13c29 w23c23	783 1081	2262 3174	406 552	507 (508) 689 (694)	0.31 43.91	0.87 132.59	0.46 59.96	14.46 183.93	38.28 2600.15	30.04 1362.61	

					<i>y</i> -model		(x, y)-model	
Instance	V	<i>E</i>	T	OPT	Time (s.)	Gap	Time (s.)	Gap
drosophila001	5226	93394	5226	8273.98263	7.98	0.00	86.12	0.00
drosophila005	5226	93394	5226	8121.313578	9.48	0.00	76.32	0.00
drosophila0075	5226	93394	5226	8039.859460	7.45	0.00	68.48	0.00
HCMV	3863	29293	3863	7371.536373	0.96	0.00	6.11	0.00
lymphoma	2034	7756	2034	3341.890237	0.28	0.00	1.24	0.00
metabol_expr_mice_1	3523	4345	3523	11346.927189	5965.76	0.00	1.08	0.00
metabol_expr_mice_2	3514	4332	3514	16250.235191	1.21	0.00	1.57	0.00
metabol_expr_mice_3	2853	3335	2853	16919.620407	4.00	0.00	0.89	0.00

Heuristic results for unsolved STP instances (SteinLib)

				BEST		AVG		STD		
Instance	V	<i>E</i>	T	UB	Time	UB	Time	UB	Time	Impr.*
bip52u	2200	7997	200	233	1390.10	233.80	287.94	0.42	597.96	1
bip62u	1200	10002	200	219	6.21	219.00	12.28	0.00	5.04	1
bipa2p	3300	18073	300	35355	547.18	35360.90	1342.88	4.38	879.59	24
bipa2u	3300	18073	300	337	185.06	337.00	310.89	0.00	215.22	4
hc10p	1024	5120	512	59981	267.51	60041.30	1013.51	33.38	816.95	513
hc10u	1024	5120	512	575	11.17	575.00	86.97	0.00	85.92	6
hc11p	2048	11264	1024	119500	3327.76	119533.00	1708.94	35.11	1129.07	279
hc11u	2048	11264	1024	1145	663.27	1145.40	1319.21	0.52	873.14	9
hc12p	4096	24576	2048	236267	2782.93	236347.10	2514.01	55.44	565.26	682
hc12u	4096	24576	2048	2261	2756.85	2262.50	2805.22	1.27	747.01	14
cc10-2p	1024	5120	135	35257	875.45	35353.20	704.89	75.12	705.21	122
cc11-2p	2048	11263	244	63680	744.33	63895.70	976.37	103.40	726.59	146
cc3-10p	1000	13500	50	12784	3471.19	12826.20	1801.62	43.46	1139.72	76
cc3-11p	1331	19965	61	15599	458.95	15633.30	812.14	35.44	965.08	10
cc3-12u	1728	28512	74	185	59.70	185.00	900.54	0.00	985.39	1
ссб-3р	729	4368	76	20340	1266.76	20395.90	1543.97	46.02	983.95	116
cc7-3p	2187	15308	222	57080	1385.54	57328.70	1197.71	153.94	888.00	8
cc7-3u	2187	15308	222	551	383.80	554.10	1267.21	1.52	1078.48	1
cc9-2p	512	2304	64	17202	1603.44	17274.40	1579.81	28.51	984.36	94
i640-312	640	4135	160	35768	1410.35	35793.20	1478.45	25.38	1104.32	3
i640-314	640	4135	160	35533	1610.03	35547.00	1673.70	12.53	679.53	5
i640-315	640	4135	160	35720	156.24	35733.50	866.76	21.87	695.92	21

^(*) improved with respect to previously known best objective values

Conclusions

- Our work:
 - explored a node-based model for Steiner tree problems
 - exploited symmetries to our advantage
 - provided an algorithmic framework with local branching and Benders-like heuristics
 - handled both easy and hard instances
 - solved previously unsolved uniform instances within seconds
- At the end of the challenge, many new ideas and algorithms emerged (see forthcoming articles in Mathematical Programming Computation)
- The idea of thinning-out MIP models has been later successfully applied to Steiner trees with hop-constraints Sinnl and Ljubić (2016) or facility location problems Fischetti et al. (2016, 2017)

Literature I

- A. Caprara, M. Fischetti, and P. Toth. A heuristic algorithm for the set covering problem. In *Integer Programming and Combinatorial Optimization*, pages 72–84. Springer Berlin Heidelberg, 1996.
- M. P. de Aragão, E. Uchoa, and R. F. F. Werneck. Dual heuristics on the exact solution of large Steiner problems. *Electronic Notes in Discrete Mathematics*, 7:150–153, 2001.
- M. Fischetti and A. Lodi. Local branching. *Mathematical Programming*, 98(1-3):23–47, 2003.
- M. Fischetti, I. Ljubić, and M. Sinnl. Benders decomposition without separability: A computational study for capacitated facility location problems. *European Journal of Operational Research*, 253(3):557–569, 2016.
- M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning Benders Decomposition for Large Scale Facility Location. *Management Science*, 2017. to appear.
- T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. *Networks*, 32(3):207–232, 1998.

Literature II

- M. Leitner, I. Ljubić, M. Luipersbeck, and M. Resch. A Partition-Based Heuristic for the Steiner Tree Problem in Large Graphs. In M. J. Blesa, C. Blum, and S. Voß, editors, *Hybrid Metaheuristics Proceedings*, volume 8457 of *Lecture Notes in Computer Science*, pages 56–70. Springer, 2014.
- I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. *Mathematical Programming*, 105(2-3):427–449, 2006.
- M. Sinnl and I. Ljubić. A node-based layered graph approach for the Steiner tree problem with revenues, budget and hop-constraints. *Math. Program. Comput.*, 8(4): 461–490, 2016.
- E. Uchoa and R. F. Werneck. Fast local search for Steiner trees in graphs. In G. E. Blelloch and D. Halperin, editors, *ALENEX*, pages 1–10. SIAM, 2010.
- R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. *Mathematical Programming*, 28(3):271–287, 1984. ISSN 0025-5610.

A dual-ascent-based branch-and-bound framework for PCSTP and related problems

 ${\sf Markus\ Leitner}^1\ {\sf Ivana\ Ljubi\'c}^2\ {\sf Martin\ Luipersbeck}^1\ {\sf Markus\ Sinnl}^1$

¹ University of Vienna, Department of Statistics and Operations Research, Vienna, Austria

² ESSEC Business School, Paris, France

April 21st, COMEX Workshop 2017

Outline

- 1 Introduction
- 2 B&B framework
- 3 Dual ascent for the rooted APCSTP
- 4 Reduction tests
- **5** Computational results

Asymmetric prize-collecting Steiner tree problem (APCSTP)

Definition

Given: digraph G = (V, A), costs $c : A \mapsto \mathbb{R}_{\geq 0}$, prizes $p : V \mapsto \mathbb{R}_{\geq 0}$, fixed terminals $T_f \subset V$

Goal: find arborescence $S = (V_S, A_S) \subseteq G$ with $T_f \subseteq V_S$ and which minimizes

$$c(S) = \sum_{(i,j)\in A_S} c_{ij} + \sum_{i\notin V_S} p_i$$

$$c_{ij} = 6 \quad \forall (i,j) \in A$$

Potential terminals $T_p = \{i \in V \setminus T_f : p_i > 0\}$

Terminals $T = T_p \cup T_f$

Rooted APCSTP: fixed root $r \in T_f$

Generalizes several network design problems (directed and undirected)

Steiner tree/arborescence (STP/SAP), maximum-weight connected subgraph (MWCS), node-weighted Steiner tree (NWSTP), prize-collecting Steiner tree (PCSTP)

Asymmetric prize-collecting Steiner tree problem (APCSTP)

Definition

Given: digraph G=(V,A), costs $c:A\mapsto \mathbb{R}_{\geq 0}$, prizes $p:V\mapsto \mathbb{R}_{\geq 0}$, fixed terminals $T_f\subset V$

Goal: find arborescence $S = (V_S, A_S) \subseteq G$ with $T_f \subseteq V_S$ and which minimizes

$$c(S) = \sum_{(i,j)\in A_S} c_{ij} + \sum_{i \notin V_S} p_i$$

$$c_{ij} = 6 \quad \forall (i,j) \in A$$

Potential terminals $T_p = \{i \in V \setminus T_f : p_i > 0\}$

Terminals $T = T_p \cup T_f$

Rooted APCSTP: fixed root $r \in T_f$

Generalizes several network design problems (directed and undirected)

Steiner tree/arborescence (STP/SAP), maximum-weight connected subgraph (MWCS), node-weighted Steiner tree (NWSTP), prize-collecting Steiner tree (PCSTP)

Dual ascent

Solves the dual of an LP relaxation heuristically (usually very fast)

Follows simple greedy strategy

Outcome: a valid lower bound and a heuristic solution derived from the subgraph

update dual variables such that lower bound increases monotonically preserve dual feasibility at each step

Previous & related works

Dual ascent algorithm for the SAP (Wong, 1984)

Used in various B&B frameworks for the STP (Polzin and Daneshmand, 2001; Pajor et al., 2014)

For the first time, dual ascent for APCSTP

Generalizes Wong's dual ascent for the SAP

B&B framework - General structure (no MIP solver employed!)

Dual Ascent

Dual ascent - Transformation

Add artificial arcs and nodes, make each potential terminal a leaf node

(b) Transformed instance

Dual ascent - LP relaxation

The following cut-based ILP formulation:

(CUT) min
$$\sum_{(i,j)\in A} c_{ij}x_{ij} + \sum_{i'\in T_p} (1-x_{ii'})p_{i'}$$
(1)
s.t.
$$x(\delta^-(W)) \ge 1 \qquad \forall W \in \mathcal{W}_f \qquad (\beta_W) \qquad (2)$$

$$x(\delta^-(W)) \ge x_{ii'} \qquad \forall i' \in W \cap T_p, W \in \mathcal{W}_p \qquad (\beta_W') \qquad (3)$$

$$x_{ii'} \le 1 \qquad \qquad \forall i' \in T_p \qquad (\pi_{i'}) \qquad (4)$$

$$x_{ij} \ge 0 \qquad \qquad \forall (i,j) \in A \qquad (5)$$

Node sets inducing Steiner cuts:

$$\mathcal{W}_f = \{ W \subset V : r \notin W, |W \cap T_p| = 0, |W \cap T_f| \ge 1 \}$$

$$\mathcal{W}_p = \{ W \subset V : r \notin W, |W \cap T_p| = 1 \}$$

- (2) ensure connectivity to each fixed terminal $i \in T_f$
- (3) ensure connectivity to each potential terminal $i \in T_p$ if prize is collected

Dual ascent - Algorithm

(CUT-D) max
$$\sum_{i \in T_p} (p_i - \pi_i) + \sum_{W \in \mathcal{W}_f} \beta_W$$
(6)
s.t.
$$\sum_{\substack{W \in \mathcal{W}_p : \\ (i,j) \in \delta^-(W)}} \beta_W' + \sum_{\substack{W \in \mathcal{W}_f : \\ (i,j) \in \delta^-(W)}} \beta_W \le c_{ij} \quad \forall (i,j) \in A, j \notin T_p$$
(7)
$$\pi_i + \sum_{\substack{W \in \mathcal{W}_p : \\ i \in W}} \beta_W' \ge p_i \qquad \forall i \in T_p$$
(8)
$$(\beta, \beta', \pi) \in \mathbb{R}_{>0}^{|\mathcal{W}_f| + |\mathcal{W}_p| + |T_p|}$$
(9)

Ascent strategy:

Start with $\boldsymbol{\beta} = \boldsymbol{\beta'} = \mathbf{0}$, $\boldsymbol{\pi} = \boldsymbol{p}$.

Heuristically *choose* W and increase β_W or β_W' .

If β_W' is increased, decrease π_i by the same amount.

Repeat until no increase possible.

Dual ascent - Algorithm

Question: How should we choose W?

Reduced cost $\tilde{\mathbf{c}}$ for constraints (7)

$$\tilde{c}_{ij} = c_{ij} - \sum_{\substack{W \in \mathcal{W}_p: \\ (i,j) \in \delta^-(W)}} \beta'_W - \sum_{\substack{W \in \mathcal{W}_f: \\ (i,j) \in \delta^-(W)}} \beta_W \qquad \forall (i,j) \in A, j \notin T_p$$

Saturation graph G_S induced by $\{(i,j) \in A : \tilde{c}_{ij} = 0 \lor j \in T_p\}$

Active terminals are those not connected to the root in G_S and with $\pi_k \neq 0$:

$$T_a := \{k \in T \setminus \{r\} : \not\exists P_{G_S}(r,k)\} \setminus \{k \in T_p : \pi_k = 0\}$$

Active component wrt to k contains all nodes reachable from k in G_S :

$$W(k) := \{ i \in V : \exists P_{G_S}(i, k) \}$$

$$c_{ij} = 6 \; \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$

 $LB = 0, T_a = \{a, b, c, d, e\}$

$$c_{ij} = 6 \; \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$

 $LB = 0, T_a = \{a, b, c, d, e\}$

$$c_{ij} = 6 \; \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$

 $LB = 0, T_a = \{a, b, c, d, e\}$

$$c_{ij} = 6 \; \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$

 $LB = 0, T_a = \{a, b, c, d, e\}$

$$c_{ij} = 6 \; \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0$, $T_a = \{a, b, c, d, e\}$ b $LB = 1$, $T_a = \{b, c, d, e\}$

$$c_{ij} = 6 \; \forall (i,j) \in A$$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0$, $T_a = \{a, b, c, d, e\}$
 $LB = 1$, $T_a = \{b, c, d, e\}$
 $LB = 2$, $T_a = \{b, d, e\}$
 $LB = 8$, $T_a = \{b, d, e\}$
 $LB = 14$, $T_a = \{b, d, e\}$
 $LB = 20$, $T_a = \{b, d, e\}$
 $LB = 25$, $T_a = \{b, e\}$
 $LB = 26$, $T_a = \{b, e\}$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$
 $LB = 32, T_a = \{b\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$
 $LB = 32, T_a = \{b\}$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$
 $LB = 32, T_a = \{b\}$

Dual ascent - Example

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$
 $LB = 32, T_a = \{b\}$
 $LB = 37$

Dual ascent - Example

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$
 $LB = 32, T_a = \{b\}$
 $LB = 37$

Dual ascent - Example

$$T_a = \{a, b, c, d, e\}$$
 $LB = 0, T_a = \{a, b, c, d, e\}$
 $LB = 1, T_a = \{b, c, d, e\}$
 $LB = 2, T_a = \{b, d, e\}$
 $LB = 8, T_a = \{b, d, e\}$
 $LB = 14, T_a = \{b, d, e\}$
 $LB = 20, T_a = \{b, d, e\}$
 $LB = 25, T_a = \{b, e\}$
 $LB = 26, T_a = \{b, e\}$
 $LB = 32, T_a = \{b\}$
 $LB = 37T_a = \{b\}$
 \rightarrow Terminate.
 $LB = 37$

$$c_{ij} = 6 \ \forall (i,j) \in A$$

Resulting saturated graph G_S is very useful!

Upon termination of DA:

We have a valid LB

We have dual information in form of reduced costs on edges

We can perform reduction tests:

Decrease instance size while preserving at least one optimal solution Operations: exclude/fix/merge arcs and nodes

We can create heuristic solutions from G_S

DA can be applied in every B&B node

Reduction Tests

Reduction tests

Natural extensions of tests known for the STP, PCSTP:

Bound-based arc/node elimination

(STP, Duin, 1993; Polzin and Daneshmand, 2001)

Degree 1/2, least cost, non-reachability

(STP, Duin, 1993)

(Asymmetric) minimum adjacency

(PCSTP, Duin and Volgenant, 1987; Ljubić et al., 2006)

Bound-based node inclusion

Complementary new tests based on graph connectivity:

Single-successor, minimum-successor

Node inclusion: $i \in T_p$ can be added to T_f if

$$LB + \pi_i > UB$$

$$LB = 37$$
, assume $UB = 42$

Node inclusion: $i \in T_p$ can be added to T_f if

$$LB + \pi_i > UB$$

$$LB = 37$$
, assume $UB = 42$

Arc elimination: (i, j) can be removed if

$$LB + \tilde{d}(r,i) + \tilde{c}_{ij} + \min_{t \in T \setminus \{r\}} \tilde{d}(j,t) > UB$$

LB = 37, assume UB = 42

Arc elimination: (i, j) can be removed if

$$LB + \tilde{d}(r,i) + \tilde{c}_{ij} + \min_{t \in T \setminus \{r\}} \tilde{d}(j,t) > UB$$

LB = 37, assume UB = 42

Arc elimination: (i, j) can be removed if

$$LB + \tilde{d}(r,i) + \tilde{c}_{ij} + \min_{t \in T \setminus \{r\}} \tilde{d}(j,t) > UB$$

LB = 37, assume UB = 42

Minimum adjacency: adjacent nodes i, j can be merged if $c_{ij} = c_{ji} < \min\{p_i, p_j\}$ and

$$c_{ji} = \min_{(k,i)\in\delta^-(i)} c_{ki} \qquad c_{ij} = \min_{(k,j)\in\delta^-(j)} c_{kj}$$

Either none or exactly one of (i, j) and (j, i) will be part of an optimal solution.

Minimum adjacency: adjacent nodes i, j can be merged if $c_{ij} = c_{ji} < \min\{p_i, p_j\}$ and

$$c_{ji} = \min_{(k,i)\in\delta^{-}(i)} c_{ki}$$
 $c_{ij} = \min_{(k,j)\in\delta^{-}(j)} c_{kj}$

Either none or exactly one of (i,j) and (j,i) will be part of an optimal solution.

Question: What if $c_{ij} \neq c_{ji}$?

Minimum adjacency: adjacent nodes i, j can be merged if $c_{ij} = c_{ji} < \min\{p_i, p_j\}$ and

$$c_{ji} = \min_{(k,i)\in\delta^{-}(i)} c_{ki}$$
 $c_{ij} = \min_{(k,j)\in\delta^{-}(j)} c_{kj}$

Either none or exactly one of (i,j) and (j,i) will be part of an optimal solution.

Question: What if $c_{ij} \neq c_{ji}$?

If $i \neq r \ / \ j \neq r$, eliminate asymmetry by cost shifting

Minimum adjacency: adjacent nodes i, j can be merged if $c_{ij} = c_{ji} < \min\{p_i, p_j\}$ and

$$c_{ji} = \min_{(k,i)\in\delta^{-}(i)} c_{ki}$$
 $c_{ij} = \min_{(k,j)\in\delta^{-}(j)} c_{kj}$

Either none or exactly one of (i, j) and (j, i) will be part of an optimal solution.

Question: What if $c_{ij} \neq c_{ji}$?

If $i \neq r \ / \ j \neq r$, eliminate asymmetry by cost shifting

Single/Minimum successor

Augment local (asymmetric) minimum adjacency test with global (connectivity) information

Minimum successor: (i, j) can be contracted if i separates j from r (cut node) and

$$p_j > c_{ij} = \min_{(k,j) \in \delta^-(j)} c_{kj}$$

Single successor: (i, j) can be contracted if (i, j) separates j from r (cut arc) and $p_j > c_{ij}$.

Single/Minimum successor

Augment local (asymmetric) minimum adjacency test with global (connectivity) information

Minimum successor: (i, j) can be contracted if i separates j from r (cut node) and

$$p_j > c_{ij} = \min_{(k,j) \in \delta^-(j)} c_{kj}$$

Single successor: (i,j) can be contracted if (i,j) separates j from r (cut arc) and $p_j > c_{ij}$.

Other algorithmic details

Branching strategies

Root-multiway branching

decompose unrooted APCSTP instances into rooted instances

Node-based branching

priority based on highest degree in saturation graph G_S

Primal heuristics

Search for primal solutions on G_S

Cost shifting

Shift costs down as far as possible

Supports reduction tests, primal heuristics, dual ascent

Computational Comparison. Staynerd or Mozartballs or DualAscent??

Computational results

B&B framework implemented in C++

Intel Xeon CPU (2.5 GHz)

414 benchmark instances gathered during the 11th DIMACS Challenge on Steiner tree problems:

(rooted) PCSTP, MWCS, NWSTP

Time limit: 1 hour

Memory limit: 16 GB

Computational results

			avg.								
				size			ıΒ	speedup			
		#Inst.	V	A	T	#Nds.	t[s.]	w.r.t Cplex [†]			
PCSTP	CRR	80	500	12469	140	27	0.4	4			
	$_{ m JMP}$	34	100	568	46	0	0.1	10			
	RANDOM	68	4000	64056	4000	99	4.3	8			
	HANDSD	10	39600	157408	19135	2	5.5	228*			
	HANDSI	10	42500	168950	19905	81	5.5	94*			
	1640-0	25	640	100700	61	1	2.3	12			
	1640-1	25	640	100700	61	54	4.6	22			
RPCSTP	COLOGNE	29	1294	23435	9	0	0.2	284			
MWCS	ACTMOD	8	3933	82311	3595	1	2.0	2			
	JMPALMK	72	938	17390	936	0	0.1	2			

^(*) Data sets contained instances previously unsolved within an hour

^(†) State-of-the-art exact ILP-based B&C approach by Fischetti et al. (2016), winner of most categories during the 11th DIMACS Challenge on Steiner tree problems

Computational results: summary on large-scale instances

				B&B			SCIPJACK/CPLEX	
NWSTP	V	A	T	#Nds.	gap	time	gap	time
hiv-1	205717	4932002	54857	4	0.05	TL	0.0049	72 (hrs.) [†]
PCSTP								
handbi01	158400	631616	157385	0	0.00	117.2	1.10	TL
handbi02	158400	631616	8589	33	0.00	44.3	2.71	TL
handbi03	158400	631616	154148	0	0.00	11.3	0.00	1246.2
handbi04	158400	631616	16288	29518	0.06	TL	4.22	TL
handbi05	158400	631616	155695	0	0.00	12.4	0.00	916.3
i640-241	640	81792	50	1751	0.00	89.2	0.24	TL
i640-321	640	408960	160	25615	0.00	2544.1	0.36	TL
i640-322	640	408960	160	6583	0.00	2573.7	0.31	TL
i640-323	640	408960	160	3163	0.00	1906.2	0.26	TL
i640-324	640	408960	160	16955	0.00	1306.1	0.26	TL
i640-325	640	408960	160	3195	0.00	818.9	0.29	TL

Solved previously unsolved instances: 6 (1640), 13 (HANDBI/BD), 4 (HANDSI/SD)

(†) computed by SCIPJACK, exact ILP-based B&C approach by Gamrath et al. (2016) (on a machine with 386 GB memory)

Conclusions

Presented B&B framework based on a dual ascent algorithm & reduction tests for the APCSTP APCSTP generalizes several fundamental network design problems

Extremely good results on large-scale instances

Outperforms state-of-the-art exact ILP solver in most cases

The biggest synthetic PUC instances still unsolved (there Mozartballs outperforms DualAscent)

Source code publicly available at

https://github.com/mluipersbeck/dapcstp

No MIP solvers involved - ideal for applications in bioinformatics

Single-thread so far

Thank you for your attention!

Questions?

Conclusions

Presented B&B framework based on a dual ascent algorithm & reduction tests for the APCSTP APCSTP generalizes several fundamental network design problems

Extremely good results on large-scale instances

Outperforms state-of-the-art exact ILP solver in most cases

The biggest synthetic PUC instances still unsolved (there Mozartballs outperforms DualAscent)

Source code publicly available at

https://github.com/mluipersbeck/dapcstp

No MIP solvers involved - ideal for applications in bioinformatics

Single-thread so far

Thank you for your attention! Questions?

Literature I

- C. W. Duin. Steiner's problem in graphs. PhD thesis, University of Amsterdam, 1993.
- C. W. Duin and A. Volgenant. Some generalizations of the Steiner problem in graphs. *Networks*, 17(3):353–364, 1987. ISSN 1097-0037.
- M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, and M. Sinnl. Thinning out Steiner trees: a node-based model for uniform edge costs. *Mathematical Programming Computation*, pages 1–27, 2016.
- G. Gamrath, T. Koch, S. J. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack a solver for STP and variants with parallelization extensions. *Mathematical Programming Computation*, pages 1–66, 2016.
- I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. *Mathematical Programming*, 105(2-3):427–449, 2006.
- T. Pajor, E. Uchoa, and R. F. Werneck. A robust and scalable algorithm for the Steiner problem in graphs. 2014. 11th DIMACS challenge workshop.
- T. Polzin and S. V. Daneshmand. Improved algorithms for the Steiner problem in networks. *Discrete Applied Mathematics*, 112(1):263–300, 2001.
- R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. *Mathematical Programming*, 28(3):271–287, 1984. ISSN 0025-5610.

Dual ascent - Algorithm

Data: instance $(G = (V, A), \boldsymbol{c}, \boldsymbol{p}, T_f, r)$ **Result**: lower bound LB, reduced costs \tilde{c} , dual vector π 1 $LB \leftarrow 0$ 2 $\tilde{c}_{ij} \leftarrow c_{ij}$ $\forall (i,j) \in A, j \notin T_p$ $\forall i \in T_n$ $\pi_j \leftarrow p_j$ 4 $T_a \leftarrow T_f \cup T_p \setminus \{r\}$ 5 while $T_a \neq \emptyset$ do $k \leftarrow \texttt{chooseActiveTerminal}(T_a)$ 6 $W \leftarrow W(k)$ $\Delta \leftarrow \min_{(i,j)\in\delta^-(W)} \tilde{c}_{ij}$ 8 if $k \in T_p$ then 9 $\begin{vmatrix} \Delta \leftarrow \min\{\Delta, \pi_k\} \\ \pi_k \leftarrow \pi_k - \Delta \end{vmatrix}$ 10 11 end 12 $\tilde{c}_{ij} \leftarrow \tilde{c}_{ij} - \Delta \qquad \forall (i,j) \in \delta^-(W)$ 13 $LB \leftarrow LB + \Delta$ 14 $T_a \leftarrow \texttt{removeInactiveTerminals}(T_a)$ **15** 16 end

Worst-case complexity: $O(|A| \cdot \min\{|T||V|, |A|\})$