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Why Studying Steiner Trees?
Wide range of applications:

design of infrastructure networks (e.g., telecommunications), network
optimization

routing in communication networks

handwriting recognition, image/3D movements recognition (machine
learning)

reconstruction of phylogenetic trees

bioinformatics (analysis of protein-protein interaction networks)

Figure borrowed from

The Fraenkel Lab, MIT
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Our work was motivated by:

From the web-site dimacs11.zib.de/

DIMACS Implementation Challenges address questions of determining
realistic algorithm performance where worst case analysis is overly
pessimistic and probabilistic models are too unrealistic: experimentation
can provide guides to realistic algorithm performance where analysis fails.”
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We submitted codes: staynerd (["St2In@]) and mozartballs to the
DIMACS Challenge
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Outline

1 Basic ILP Model(s) for (PC) Steiner Trees

2 A node-based model for (almost) uniform edge-costs (DIMACS
Results)

3 A new branch-and-bound framework (dual ascent approach)
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Steiner Trees
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Steiner Trees

Definition (Steiner Tree Problem on a Graph (STP))

We are given an undirected graph G = (V ,E ) with edge weights ce ≥ 0,
∀e ∈ E . The node set V is partitioned into required terminal nodes Tr

and potential Steiner nodes S , i.e. S ∪ Tr = V , S ∩ Tr = ∅. The problem
is to find a minimum weight subtree G ′ = (V ′,E ′) of G that contains all
terminal nodes, i.e., such that:

1 E ′ is a subtree

2 Tr ⊂ V ′ and

3
∑

e∈E ′ ce is minimal

Special cases: shortest path, MST
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Prize Collecting STP

Definition (Prize Collecting STP (PCSTP))

We are given an undirected graph G = (V ,E ) with edge weights ce ≥ 0,
∀e ∈ E , and node profits pi ≥ 0, ∀i ∈ V . The problem is to find a subtree
G ′ = (V ′,E ′) of G that yields maximum profit, i.e.

max
∑

i∈V ′
pi −

∑

e∈E ′
ce .

Equivalently:

min
∑

e∈E ′
ce +

∑

i 6∈V ′
pi .

Remark: For a subtree (V ′,E ′) we have:

∑

i∈V ′

pi −
∑

e∈E ′

ce = −(
∑

e∈E ′

ce +
∑

i 6∈V ′

pi ) +
∑

i∈V
pi
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PCSTP: Example

Figure : Input graph and a feasible PCSTP solution
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Let us focus on PCSTP

Assume a root node r is given

let Tp be the set of potential terminals: only those with revenues
pi > 0 such that at least one adjacent edge is strictly cheaper than pi
(only they among nodes not in Tr can be potential leaves).

Tp = {v ∈ V \ {r} | ∃{u, v} s.t. cuv < pv}.

Recall: Tr is the set of required terminals. Together T = Tr ∪ Tp.

Transform instance into directed instance G = (V ,A) by creating two
arcs (i , j), (j , i) for every edge {i , j} ∈ E

Incorporate node-weights into arc costs:

c ′ij := cij − pj

Wlog: remove arcs entering the root.
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Min-Cost Steiner Arborescence

After the transformation:

Every feasible solution is a rooted Steiner arborescence, i.e., from the root
r to any node i in the solution, there exists a directed r -i path and the
in-degree of each node is at most one.
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ILP Models for PCSTP

Decision variables:

xij =

{
1, iff arc (i , j) is in solution

0. otherwise
∀(i , j) ∈ A

yi =

{
1, iff node i is in solution

0. otherwise
∀i ∈ T

To model connectivity:

flow models (single-commodity, multi-commodity, common-flow, etc)

MTZ-like constraints,

generalized subtour elimination constraints, or

cut-set inequalities.
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(x , y)-Model for PCSTP
Directed Cut Model:

min
∑

ij∈A
c ′ijxij +

∑

i∈V
pi

s.t. x(δ−(W )) ≥ yi ∀W ⊂ V , r 6∈W ,∀i ∈W ∩ T (1)

x(δ−(i)) = yi ∀i ∈ T

yi = 1 ∀i ∈ Tr

yi ∈ {0, 1} ∀i ∈ Tp

xij ∈ {0, 1} ∀(i , j) ∈ A

incoming cut-set δ−(W ) = {(i , j) ∈ A | i 6∈W , j ∈W }
(1): directed Steiner cuts

separate them in a cutting-plane fashion using max-flow

Branch-and-cut from Ljubić et al. (2006) has been state-of-the-art for
PCSTP until DIMACS (integrated in bioinformatics packages:
SteinerNet, HEINZ...)
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A node-based model for
(almost) uniform edge-costs

(DIMACS Results)
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Why is PCSTP with uniform edge-costs relevant?

PCSTP with Uniform Edge-Costs

In instances from bioinformatics and machine learning, edges represent a
relation between nodes, i.e., they either exist or not, there are no different
edge weights. So we have

cij = c , ∀(i , j) ∈ A.

Can we explot this fact in a different way?

Can we “thin-out” the existing models in order to approach more
challenging instances?

Besides, among the most challenging DIMACS instances, most of
them are with uniform edge-costs (PUC instances).
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Outline

1 Node-based MIP model for uniform instances

2 Benders-like (set covering) heuristic

3 Overall Algorithmic Framework

4 Computational results
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Node-based MIP model - Node separators

Definition (Node Separators)

For i , j ∈ V , a subset N ⊆ V \ {i , j} is called (i , j) node separator iff
after eliminating N from V there is no (i , j) path in G .
N is a minimal node separator if N \ {i} is not a (i , j) separator, for any
i ∈ N. Let N (i , j) denote the family of all (i , j) separators.

i j

CjCi

N
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Node-based MIP model

Shift uniform edge costs c into node revenue:

c̃v = c − pv , ∀v ∈ V

Let
T = Tr ∪ Tp P =

∑

v∈V
pv

min
∑

v∈V
c̃vyv + (P − c) (2)

s.t. y(N) ≥ yi + yj − 1 ∀i , j ∈ T , i 6= j , ∀N ∈ N (i , j) (3)

yv = 1 ∀v ∈ Tr (4)

yv ∈ {0, 1} ∀v ∈ V \ Tr (5)

where y(N) =
∑

v∈N yv .
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Node-based MIP model - Lazy-Cut Separation

Algorithm

Data: infeasible solution defined by a vector ỹ ∈ {0, 1}n with
ỹi = ỹj = 1, Ci being the connected component of Gỹ containing i ,
and j 6∈ Ci . Let Neigh(Ci ) be neighboring nodes of Ci .

Result: minimal node separator N that violates inequality (3) with
respect to i , j .

Delete all edges in E [Ci ∪ Neigh(Ci )] from G
Find the set Rj of nodes that can be reached from j
Return N = Neigh(Ci ) ∩ Rj

This separation runs in linear time. To separate fractional points, one
would need to calculate max-flows in a transformed graph.
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Node-based MIP model - Valid inequalities

Node-degree inequalities:

y(Ai ) ≥
{

yi , if i ∈ T

2yi , otherwise

2-Cycle inequalities:

yi ≤ yj i ∈ V , j ∈ Tp, cij < pj
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Outline

1 Node-based MIP model for uniform instances

2 Benders-like (set covering) heuristic

3 Overall Algorithmic Framework

4 Computational results
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Benders-like (set covering) heuristic

node-based model can be interpreted as set covering problem

connectivity constraints for pure Steiner tree problem (T = Tr )
take the following form:

y(N) ≥ 1, ∀N ∈ N

where N is the family of all node separators between
arbitrary real terminal pairs.

→ exploit this property by using a set covering heuristic
to generate high-quality solutions
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Benders-like (set covering) heuristic

Heuristic
1 Extract set covering relaxation of the current model

2 Solve relaxation heuristically

3 Repair: fix the nodes from the solution and solve the ILP model

4 Refine the model through generated node-separator cuts and repeat

We employed set covering heuristic from Caprara et al. (1996)
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Benders-like (set covering) heuristic

Cutpool:
I Add cuts also to set cover relaxation
I Allows iteration to generate better solutions

Diversification:
I random shuffle of rows and columns
I choose randomly only 80% of variables to fix

Application to non-uniform instances:
I shift edge non-uniform costs into node revenue:
I “Blurred” version of the original problem

pi =
1

|δ(i)|
∑

e∈δ(i)

ce ∀i ∈ V \ T
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Outline

1 Node-based MIP model for uniform instances

2 Benders-like (set covering) heuristic

3 Overall Algorithmic Framework

4 Computational results
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Overall Algorithmic Framework

Data: input graph G , instance of the STP/PCSTP/DCSTP/MWCS,
iteration and time limits.

Result: (sub)-optimal solution Sol .
Sinit =InitializationHeuristics()
k = 1, CutPool = ∅
Choose Sol from the solution pool Sinit.
while (k ≤ maxLBiter) and (time limit not exceeded) do

(Sol ,CutPool) = LocalBranching(Sol ,CutPool , seed)
k = k + 1
Choose Sol from the solution pool Sinit. Change seed .

end
Sol = BranchAndCut(CutPool ,Sol ,TimeLim)
return Sol
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Overall Algorithmic Framework

Branch & Cut (B&C)
I Node-based model ( y -model)
I Classic arc/node-based model ( (x , y)-model)

(Koch and Martin, 1998; Ljubić et al., 2006)

B&C used as black-box solver in various heuristics
I Benders-like heuristic
I Local branching (Fischetti and Lodi, 2003)
I Partitioning-based construction heuristic (Leitner et al., 2014)

State-of-the-art dual & primal heuristics
I Shortest path construction heuristic

(de Aragão, Uchoa, and Werneck, 2001)
I Local search: Keypath-exchange, Keynode-removal, Node-insertion

(Uchoa and Werneck, 2010)
I Dual ascent heuristic

(Wong, 1984)
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Local branching

large-neighborhood exploration using B&C as black-box solver

neighborhood defined by local branching constraint

Given solution Sol , let W1 = {v ∈ V | v ∈ Sol} and W0 = V \W1.

I Symmetric local branching constraint

∑

v∈W0

yv +
∑

v∈W1

(1− yv ) ≤ r

I Asymmetric local branching constraint

∑

v∈W1

(1− yv ) ≤ r
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One problem - different flavors!
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y or (x , y) model??

Ivana Ljubić (ESSEC) (Prize-Collecting) Steiner Trees COMEX 2017 32



Instance filtering

goal: solve hard instances well, but also still provide
good average performance

approx. 1500 (diverse) instances (STP, PCSTP, MWCS, DCSTP)

method: match algorithmic configuration to instance features

uniform, sparse, dense, ratioT, bipartite, large, . . .

involved decisions:
I model selection (node-based or arc/node-based model)
I separation of inequalities (deal with tailing-off behavior)
I estimate when to apply problem-specific heuristics
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Filter rules

Model Selection

uniform → y -model
¬uniform → (x , y)-model
uniform ∧ sparse ∧ ratioT < 0.1 → (x , y)-model

(x , y)-model Settings

dense → use tailing-off bound, high tolerance
verydense → use tailing-off bound, low tolerance
ratioT < 0.01 → add dual ascent connectivity cuts as violated
ratioT ≥ 0.01 → init with full set of dual ascent c. cuts
ratioT < 0.1 ∧ sparse ∧ big→ separate flow-balance, GSECs of size 2

Heuristic Settings & Preprocessing

bipartite ∧ uniform → benders-like heuristic
bipartite ∧ ¬uniform ∧ stp → benders-like heuristic (blurred)
hypercube ∧ ¬uniform ∧ ¬small ∧ pcstp→ benders-like heuristic (blurred)
¬bipartite → local branching
xy-model ∧ big ∧ sparse → partition-based heuristic
weightRange < 10 → allow non-improving moves

during local search
verydense → preprocessing (special distance test)
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Outline

1 Node-based MIP model for uniform instances

2 Benders-like (set covering) heuristic

3 Overall Algorithmic Framework

4 Computational results
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Computational Results
Implementation in C++ and CPLEX 12.6

Experiments performed in parallel on 4 cores
(2.3GHz, 16GB RAM)

4 variants submitted at the DIMACS
challenge: “Mozart Duet”

#MozartBalls exact, single & multi-threaded STP, (R)PCSTP,
MWCS, DCSTP

#StayNerd∗ heuristic, single & multi-threaded STP, PCSTP

#MozartDuet multi-threaded STP, PCSTP
1 thread exact, others heuristic

#HedgeKiller multi-threaded STP, PCSTP
50% exact – 50% heuristic

#MozartDuet multi-threaded STP, PCSTP
1 thread exact, others heuristic

#HedgeKiller multi-threaded STP, PCSTP
50% exact – 50% heuristic

(∗pronounced ["St2In@])
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Exact results for STP and PCSTP
y -model (x , y)-model ( (*) out-of-memory )

Instance |V | |E | |T | OPT Time (s.) UB LB Gap Time (s.)

s1 64 192 32 10 0.03 10 10 0.0% 0.01
s2 106 399 50 73 0.04 73 73 0.0% 1.36
s3 743 2947 344 514 0.15 514 505 1.78% 1090.61*
s4 5202 20783 2402 3601 1.31 3601 3523 2.21% 3444.81*
s5 36415 145635 16808 25210 22.28 25210 24056 4.80% 7200.00

y -model (x , y)-model
Time (s.) Time (s.)

Instance |V | |E | |T | OPT BEST AVG STD BEST AVG STD

w13c29 783 2262 406 507 (508) 0.31 0.87 0.46 14.46 38.28 30.04
w23c23 1081 3174 552 689 (694) 43.91 132.59 59.96 183.93 2600.15 1362.61

y -model (x , y)-model
Instance |V | |E | |T | OPT Time (s.) Gap Time (s.) Gap

drosophila001 5226 93394 5226 8273.98263 7.98 0.00 86.12 0.00
drosophila005 5226 93394 5226 8121.313578 9.48 0.00 76.32 0.00
drosophila0075 5226 93394 5226 8039.859460 7.45 0.00 68.48 0.00

HCMV 3863 29293 3863 7371.536373 0.96 0.00 6.11 0.00
lymphoma 2034 7756 2034 3341.890237 0.28 0.00 1.24 0.00

metabol expr mice 1 3523 4345 3523 11346.927189 5965.76 0.00 1.08 0.00
metabol expr mice 2 3514 4332 3514 16250.235191 1.21 0.00 1.57 0.00
metabol expr mice 3 2853 3335 2853 16919.620407 4.00 0.00 0.89 0.00
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Heuristic results for unsolved STP instances (SteinLib)

BEST AVG STD
Instance |V | |E | |T | UB Time UB Time UB Time Impr.*

bip52u 2200 7997 200 233 1390.10 233.80 287.94 0.42 597.96 1
bip62u 1200 10002 200 219 6.21 219.00 12.28 0.00 5.04 1
bipa2p 3300 18073 300 35355 547.18 35360.90 1342.88 4.38 879.59 24
bipa2u 3300 18073 300 337 185.06 337.00 310.89 0.00 215.22 4

hc10p 1024 5120 512 59981 267.51 60041.30 1013.51 33.38 816.95 513
hc10u 1024 5120 512 575 11.17 575.00 86.97 0.00 85.92 6
hc11p 2048 11264 1024 119500 3327.76 119533.00 1708.94 35.11 1129.07 279
hc11u 2048 11264 1024 1145 663.27 1145.40 1319.21 0.52 873.14 9
hc12p 4096 24576 2048 236267 2782.93 236347.10 2514.01 55.44 565.26 682
hc12u 4096 24576 2048 2261 2756.85 2262.50 2805.22 1.27 747.01 14

cc10-2p 1024 5120 135 35257 875.45 35353.20 704.89 75.12 705.21 122
cc11-2p 2048 11263 244 63680 744.33 63895.70 976.37 103.40 726.59 146
cc3-10p 1000 13500 50 12784 3471.19 12826.20 1801.62 43.46 1139.72 76
cc3-11p 1331 19965 61 15599 458.95 15633.30 812.14 35.44 965.08 10
cc3-12u 1728 28512 74 185 59.70 185.00 900.54 0.00 985.39 1
cc6-3p 729 4368 76 20340 1266.76 20395.90 1543.97 46.02 983.95 116
cc7-3p 2187 15308 222 57080 1385.54 57328.70 1197.71 153.94 888.00 8
cc7-3u 2187 15308 222 551 383.80 554.10 1267.21 1.52 1078.48 1
cc9-2p 512 2304 64 17202 1603.44 17274.40 1579.81 28.51 984.36 94

i640-312 640 4135 160 35768 1410.35 35793.20 1478.45 25.38 1104.32 3
i640-314 640 4135 160 35533 1610.03 35547.00 1673.70 12.53 679.53 5
i640-315 640 4135 160 35720 156.24 35733.50 866.76 21.87 695.92 21

(*) improved with respect to previously known best objective values
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Conclusions

Our work:
I explored a node-based model for Steiner tree problems
I exploited symmetries to our advantage
I provided an algorithmic framework with local branching and

Benders-like heuristics
I handled both easy and hard instances
I solved previously unsolved uniform instances within seconds

At the end of the challenge, many new ideas and algorithms emerged
(see forthcoming articles in Mathematical Programming Computation)

The idea of thinning-out MIP models has been later successfully
applied to Steiner trees with hop-constraints Sinnl and Ljubić (2016)
or facility location problems Fischetti et al. (2016, 2017)
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Introduction B&B framework Dual ascent Reduction tests Computational results

Asymmetric prize-collecting Steiner tree problem (APCSTP)

Definition

Given: digraph G = (V,A), costs c : A 7→ R≥0,
prizes p : V 7→ R≥0, fixed terminals Tf ⊂ V
Goal: find arborescence S = (VS , AS) ⊆ G
with Tf ⊆ VS and which minimizes

c(S) =
∑

(i,j)∈AS

cij +
∑

i 6∈VS

pi

1

1

10

20

20

1

cij = 6 ∀(i, j) ∈ A

Potential terminals Tp = {i ∈ V \ Tf : pi > 0}
Terminals T = Tp ∪ Tf
Rooted APCSTP: fixed root r ∈ Tf
Generalizes several network design problems (directed and undirected)

Steiner tree/arborescence (STP/SAP), maximum-weight connected subgraph (MWCS),

node-weighted Steiner tree (NWSTP), prize-collecting Steiner tree (PCSTP)
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Introduction B&B framework Dual ascent Reduction tests Computational results

Dual ascent

Solves the dual of an LP relaxation heuristically (usually very fast)

Follows simple greedy strategy

Outcome: a valid lower bound and a heuristic solution derived from the
subgraph

update dual variables such that lower bound increases monotonically
preserve dual feasibility at each step

Previous & related works

Dual ascent algorithm for the SAP (Wong, 1984)

Used in various B&B frameworks for the STP (Polzin and Daneshmand, 2001;

Pajor et al., 2014)

For the first time, dual ascent for APCSTP

Generalizes Wong’s dual ascent for the SAP
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B&B framework - General structure
(no MIP solver employed!)
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Dual Ascent
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Dual ascent - Transformation

Add artificial arcs and nodes, make each potential terminal a leaf node

r

j

pj = 50

i

pi = 40

(a) Original instance

r

ji

pj = 0, pj′ = 50pi = 0, pi′ = 40

i′

cii′ = 0

j′

cjj′ = 0

(b) Transformed instance
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Dual ascent - LP relaxation

The following cut-based ILP formulation:

(CUT) min
∑

(i,j)∈A
cijxij +

∑

i′∈Tp
(1− xii′ )pi′ (1)

s.t. x(δ−(W )) ≥ 1 ∀W ∈ Wf (βW ) (2)

x(δ−(W )) ≥ xii′ ∀i′ ∈W ∩ Tp,W ∈ Wp (β′W ) (3)

xii′ ≤ 1 ∀i′ ∈ Tp (πi′ ) (4)

xij ≥ 0 ∀(i, j) ∈ A (5)

Node sets inducing Steiner cuts:

Wf = {W ⊂ V : r /∈W, |W ∩ Tp| = 0, |W ∩ Tf | ≥ 1}
Wp = {W ⊂ V : r /∈W, |W ∩ Tp| = 1}

(2) ensure connectivity to each fixed terminal i ∈ Tf
(3) ensure connectivity to each potential terminal i ∈ Tp if prize is collected
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Dual ascent - Algorithm

(CUT-D) max
∑

i∈Tp
(pi − πi) +

∑

W∈Wf
βW (6)

s.t.
∑

W∈Wp:
(i,j)∈δ−(W )

β′W +
∑

W∈Wf :
(i,j)∈δ−(W )

βW ≤ cij ∀ (i, j) ∈ A, j /∈ Tp (7)

πi +
∑

W∈Wp:
i∈W

β′W ≥ pi ∀ i ∈ Tp (8)

(β,β′,π) ∈ R|Wf |+|Wp|+|Tp|≥0 (9)

Ascent strategy:

Start with β = β′ = 0, π = p.

Heuristically choose W and increase βW or β′W .

If β′W is increased, decrease πi by the same amount.

Repeat until no increase possible.
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Dual ascent - Algorithm

Question: How should we choose W?

Reduced cost c̃ for constraints (7)

c̃ij = cij −
∑

W∈Wp:
(i,j)∈δ−(W )

β′W −
∑

W∈Wf :
(i,j)∈δ−(W )

βW ∀ (i, j) ∈ A, j /∈ Tp

Saturation graph GS induced by {(i, j) ∈ A : c̃ij = 0 ∨ j ∈ Tp}

Active terminals are those not connected to the root in GS and with
πk 6= 0:

Ta := {k ∈ T \ {r} : 6 ∃PGS (r, k)} \ {k ∈ Tp : πk = 0}

Active component wrt to k contains all nodes reachable from k in GS :

W (k) := {i ∈ V : ∃PGS (i, k)}
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0,

1

11

20 20

20 20

1 1

r

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}

πa=1

πe=20

πd=20

πc=1

r

c

d

e

a

b

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}

πa=1

πe=20

πd=20

πc=1

r

c

d

e

a

b

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}

πa=1

πe=20

πd=20

πc=1

r

c

d

e

a

b

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}

W

πa=1

πe=20

πd=20

πc=1

r

c

d

e

a

b

6

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}

W

β′W=1

πa=0

πe=20

πd=20

πc=1

r

c

d

e

a

b

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}

W

β′W=1

πa=0

πe=20

πd=20

πc=0

r

c

d

e

a

b

5

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}

W

β′W=6

πa=0

πe=20

πd=14

πc=0

r

c

d

e

a

b

0

5 0

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}

W

β′W=6

πa=0

πe=14

πd=14

πc=0

r

c

d

e

a

b

5

0

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}

W

βW=6

πa=0

πe=14

πd=14

πc=0

r

c

d

e

a

b

0

5

0

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}

W

πa=0

πe=14

πd=14

πc=0

r

c

d

e

a

b

6

5

6

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}

W

β′W=5

πa=0

πe=14

πd=9

πc=0

r

c

d

e

a

b

1

5

1

5

0

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}

W

β′W=5

πa=0

πe=14

πd=9

πc=0

r

c

d

e

a

b

1

5

1

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}

W

πa=0

πe=14

πd=9

πc=0

r

c

d

e

a

b

1

5

6

1

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}

W

β′W=1

πa=0

πe=13

πd=9

πc=0

r

c

d

e

a

b

1

5

5

0

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}

W

β′W=1

πa=0

πe=13

πd=9

πc=0

r

c

d

e

a

b

1

5

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}

W

πa=0

πe=13

πd=9

πc=0

r

c

d

e

a

b

6

6 1

5

5

6

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}
LB = 32, Ta = {b}

W

βW=6

πa=0

πe=13

πd=9

πc=0

r

c

d

e

a

b

0

0 1

5

5

0

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}
LB = 32, Ta = {b}

W

βW=6

πa=0

πe=13

πd=9

πc=0

r

c

d

e

a

b

1

5

5

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}
LB = 32, Ta = {b}

W

πa=0

πe=13

πd=9

πc=0

r

c

d

e

a

b

6

6

1

5

5

6

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}
LB = 32, Ta = {b}
LB = 37

W

β′W=5

πa=0

πe=8

πd=9

πc=0

r

c

d

e

a

b

1

1

1

5

0

1

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}
LB = 32, Ta = {b}
LB = 37

W

β′W=5

πa=0

πe=8

πd=9

πc=0

r

c

d

e

a

b

1

1

1

5

1

5

cij = 6 ∀(i, j) ∈ A
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Dual ascent - Example

Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 0, Ta = {a, b, c, d, e}
LB = 1, Ta = {b, c, d, e}
LB = 2, Ta = {b, d, e}
LB = 8, Ta = {b, d, e}
LB = 14, Ta = {b, d, e}
LB = 20, Ta = {b, d, e}
LB = 25, Ta = {b, e}
LB = 26, Ta = {b, e}
LB = 32, Ta = {b}
LB = 37Ta = {}
→ Terminate.

LB = 37

W

πa=0

πe=8

πd=9

πc=0

r

c

d

e

a

b

1

1

1

5

1

5

cij = 6 ∀(i, j) ∈ A
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Resulting saturated graph GS is very useful!

Upon termination of DA:

We have a valid LB

We have dual information in form of reduced costs on edges

We can perform reduction tests:

Decrease instance size while preserving at least one optimal solution
Operations: exclude/fix/merge arcs and nodes

We can create heuristic solutions from GS

DA can be applied in every B&B node
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Reduction Tests
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Reduction tests

Natural extensions of tests known for the STP, PCSTP:

Bound-based arc/node elimination
(STP, Duin, 1993; Polzin and Daneshmand, 2001)

Degree 1/2, least cost, non-reachability
(STP, Duin, 1993)

(Asymmetric) minimum adjacency
(PCSTP, Duin and Volgenant, 1987; Ljubić et al., 2006)

Bound-based node inclusion

Complementary new tests based on graph connectivity:

Single-successor, minimum-successor
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Bound-based reductions

Node inclusion: i ∈ Tp can be added to Tf if

LB + πi > UB

LB = 37, assume UB = 42

πa=0

πe=8

πd=9

πc=0

r

c

d

e

a

b

1

1

1

5

1

5

A dual-ascent-based B&B framework for the prize-collecting Steiner tree and related problems 14 / 22



Introduction B&B framework Dual ascent Reduction tests Computational results

Bound-based reductions

Node inclusion: i ∈ Tp can be added to Tf if

LB + πi > UB

LB = 37, assume UB = 42

πa=0

πc=0

r

c

d

e

a

b

1

1

1

5

1

5
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Bound-based reductions

Arc elimination: (i, j) can be removed if

LB + d̃(r, i) + c̃ij + min
t∈T\{r}

d̃(j, t) > UB

LB = 37, assume UB = 42

πa=0

πe=8

πd=9

πc=0

r

c

d

e

a

b

1

6 1

1

5

1

5
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Bound-based reductions

Arc elimination: (i, j) can be removed if

LB + d̃(r, i) + c̃ij + min
t∈T\{r}

d̃(j, t) > UB

LB = 37, assume UB = 42

πa=0

πe=8

πd=9

πc=0

r

c

d

e

a

b

0

1

6 1

1
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0

0
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0
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Bound-based reductions

Arc elimination: (i, j) can be removed if

LB + d̃(r, i) + c̃ij + min
t∈T\{r}

d̃(j, t) > UB

LB = 37, assume UB = 42
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(Asymmetric) minimum adjacency

Minimum adjacency: adjacent nodes i, j can be merged if
cij = cji < min{pi, pj} and

cji = min
(k,i)∈δ−(i)

cki cij = min
(k,j)∈δ−(j)

ckj

3 4

i j

2

2

3

4

5

5

3

4

cfixed := cfixed − 1

Either none or exactly one of (i, j) and (j, i) will be part of an optimal
solution.

Question: What if cij 6= cji?

If i 6= r or j 6= r, eliminate asymmetry by cost shifting

A dual-ascent-based B&B framework for the prize-collecting Steiner tree and related problems 15 / 22



Introduction B&B framework Dual ascent Reduction tests Computational results

(Asymmetric) minimum adjacency

Minimum adjacency: adjacent nodes i, j can be merged if
cij = cji < min{pi, pj} and

cji = min
(k,i)∈δ−(i)

cki cij = min
(k,j)∈δ−(j)

ckj

3 4

i j

1

2

3

4

5

5

3

4

cfixed := cfixed − 1

Either none or exactly one of (i, j) and (j, i) will be part of an optimal
solution.

Question: What if cij 6= cji?

If i 6= r or j 6= r, eliminate asymmetry by cost shifting

A dual-ascent-based B&B framework for the prize-collecting Steiner tree and related problems 15 / 22



Introduction B&B framework Dual ascent Reduction tests Computational results

(Asymmetric) minimum adjacency

Minimum adjacency: adjacent nodes i, j can be merged if
cij = cji < min{pi, pj} and

cji = min
(k,i)∈δ−(i)

cki cij = min
(k,j)∈δ−(j)

ckj

3 4

i j

1

2

3

4

5

5

3

4

cfixed := cfixed − 1

Either none or exactly one of (i, j) and (j, i) will be part of an optimal
solution.

Question: What if cij 6= cji?

If i 6= r / j 6= r, eliminate asymmetry by cost shifting

A dual-ascent-based B&B framework for the prize-collecting Steiner tree and related problems 15 / 22



Introduction B&B framework Dual ascent Reduction tests Computational results

(Asymmetric) minimum adjacency

Minimum adjacency: adjacent nodes i, j can be merged if
cij = cji < min{pi, pj} and

cji = min
(k,i)∈δ−(i)

cki cij = min
(k,j)∈δ−(j)

ckj

3 5

i j

2

2

3

4

5

6

4

5

cfixed := cfixed − 1

Either none or exactly one of (i, j) and (j, i) will be part of an optimal
solution.

Question: What if cij 6= cji?

If i 6= r / j 6= r, eliminate asymmetry by cost shifting

A dual-ascent-based B&B framework for the prize-collecting Steiner tree and related problems 15 / 22



Introduction B&B framework Dual ascent Reduction tests Computational results

Single/Minimum successor

Augment local (asymmetric) minimum adjacency test with
global (connectivity) information

Minimum successor: (i, j) can be contracted if
i separates j from r (cut node) and

pj > cij = min
(k,j)∈δ−(j)

ckj

r

i j

10

3

4

9

5

1

1

1

1

2 2

Single successor: (i, j) can be contracted if
(i, j) separates j from r (cut arc) and pj > cij .
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Other algorithmic details

Branching strategies

Root-multiway branching
decompose unrooted APCSTP instances into rooted instances

Node-based branching
priority based on highest degree in saturation graph GS

Primal heuristics

Search for primal solutions on GS

Cost shifting

Shift costs down as far as possible

Supports reduction tests, primal heuristics, dual ascent
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Computational Comparison.

Staynerd or Mozartballs or DualAscent??
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Computational results

B&B framework implemented in C++

Intel Xeon CPU (2.5 GHz)

414 benchmark instances gathered during the 11th DIMACS Challenge
on Steiner tree problems:

(rooted) PCSTP, MWCS, NWSTP

Time limit: 1 hour

Memory limit: 16 GB
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Computational results

avg.

size B&B speedup
#Inst. |V | |A| |T | #Nds. t[s.] w.r.t Cplex†

pcstp crr 80 500 12469 140 27 0.4 4
jmp 34 100 568 46 0 0.1 10
random 68 4000 64056 4000 99 4.3 8
handsd 10 39600 157408 19135 2 5.5 228*
handsi 10 42500 168950 19905 81 5.5 94*
i640-0 25 640 100700 61 1 2.3 12
i640-1 25 640 100700 61 54 4.6 22

rpcstp cologne 29 1294 23435 9 0 0.2 284
mwcs actmod 8 3933 82311 3595 1 2.0 2

jmpalmk 72 938 17390 936 0 0.1 2

(*) Data sets contained instances previously unsolved within an hour
(†) State-of-the-art exact ILP-based B&C approach by Fischetti et al. (2016),

winner of most categories during the 11th DIMACS Challenge on Steiner tree problems
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Computational results: summary on large-scale instances

B&B ScipJack/Cplex
nwstp |V | |A| |T | #Nds. gap time gap time

hiv-1 205717 4932002 54857 4 0.05 TL 0.0049 72 (hrs.)†

pcstp

handbi01 158400 631616 157385 0 0.00 117.2 1.10 TL
handbi02 158400 631616 8589 33 0.00 44.3 2.71 TL
handbi03 158400 631616 154148 0 0.00 11.3 0.00 1246.2
handbi04 158400 631616 16288 29518 0.06 TL 4.22 TL
handbi05 158400 631616 155695 0 0.00 12.4 0.00 916.3

i640-241 640 81792 50 1751 0.00 89.2 0.24 TL
i640-321 640 408960 160 25615 0.00 2544.1 0.36 TL
i640-322 640 408960 160 6583 0.00 2573.7 0.31 TL
i640-323 640 408960 160 3163 0.00 1906.2 0.26 TL
i640-324 640 408960 160 16955 0.00 1306.1 0.26 TL
i640-325 640 408960 160 3195 0.00 818.9 0.29 TL

Solved previously unsolved instances: 6 (i640), 13 (handbi/bd), 4 (handsi/sd)

(†) computed by SCIPJack, exact ILP-based B&C approach

by Gamrath et al. (2016) (on a machine with 386 GB memory)
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Conclusions
Presented B&B framework based on a
dual ascent algorithm & reduction tests for the APCSTP

APCSTP generalizes several fundamental network design problems

Extremely good results on large-scale instances

Outperforms state-of-the-art exact ILP solver in most cases

The biggest synthetic PUC instances still unsolved (there Mozartballs

outperforms DualAscent)

Source code publicly available at
https://github.com/mluipersbeck/dapcstp

No MIP solvers involved - ideal for applications in bioinformatics

Single-thread so far

Thank you for your attention!

Questions?
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Dual ascent - Algorithm

Data: instance (G = (V,A), c,p, Tf , r)
Result: lower bound LB, reduced costs c̃, dual vector π

1 LB ← 0
2 c̃ij ← cij ∀ (i, j) ∈ A, j /∈ Tp
3 πj ← pj ∀ j ∈ Tp
4 Ta ← Tf ∪ Tp \ {r}
5 while Ta 6= ∅ do

6 k ← chooseActiveTerminal(Ta)
7 W ←W (k)
8 ∆← min

(i,j)∈δ−(W )
c̃ij

9 if k ∈ Tp then
10 ∆← min{∆, πk}
11 πk ← πk −∆

12 end

13 c̃ij ← c̃ij −∆ ∀ (i, j) ∈ δ−(W )
14 LB ← LB + ∆
15 Ta ← removeInactiveTerminals(Ta)

16 end

Worst-case complexity: O(|A| ·min{|T ||V |, |A|})
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