
Math. Prog. Comp. manuscript No.
(will be inserted by the editor)

Thinning out Steiner trees:
A node-based model for uniform edge costs

Matteo Fischetti · Markus Leitner ·
Ivana Ljubić · Martin Luipersbeck ·
Michele Monaci · Max Resch ·
Domenico Salvagnin · Markus Sinnl

Received: date / Accepted: date

Abstract The Steiner tree problem is a challenging NP-hard problem. Many hard in-
stances of this problem are publicly available, that are still unsolved by state-of-the-
art branch-and-cut codes. A typical strategy to attack these instances is to enrich the
polyhedral description of the problem, and/or to implement more and more sophisti-
cated separation procedures and branching strategies. In this paper we investigate the
opposite viewpoint, and try to make the solution method as simple as possible while
working on the modeling side. Our working hypothesis is that the extreme hardness
of some classes of instances mainly comes from over-modeling, and that some in-
stances can become quite easy to solve when a simpler model is considered. In other
words, we aim at “thinning out” the usual models for the sake of getting a more ag-

The research of the Padova’s group was supported by the University of Padova (Progetto di Ateneo “Ex-
ploiting randomness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN project “Mixed-
Integer Nonlinear Optimization: Approaches and Applications”). The research of the Vienna’s group was
supported by the Austrian Research Fund (FWF, Projects P 26755-N19 and I 892-N23). The work of
the last author was supported by a STSM Grant from COST Action TD1207; the authors would like to
acknowledge networking support by the same COST action.

Matteo Fischetti · Domenico Salvagnin
DEI, University of Padua, Italy
E-mail: {matteo.fischetti,michele.monaci,domenico.salvagnin}@unipd.it

Markus Leitner ·Martin Luipersbeck ·Markus Sinnl
Department of Statistics and Operations Research, University of Vienna, Austria
E-mail: {markus.leitner,martin.luipersbeck,markus.sinnl} @univie.ac.at

Ivana Ljubić
IDS, ESSEC Business School of Paris, Cergy-Pontoise, France
E-mail: ivana.ljubic@essec.edu

Michele Monaci
DEI, University of Bologna, Italy
E-mail: michele.monaci@unibo.it

Max Resch
Vienna University of Technology, Austria
E-mail: max.resch@alumni.tuwien.ac.at

2 Fischetti et al.

ile framework. In particular, we focus on a model that only involves node variables,
which is rather appealing for the “uniform” cases where all edges have the same cost.

In our computational study, we first show that this new model allows one to
quickly produce very good (sometimes proven optimal) solutions for notoriously hard
instances from the literature. In some cases, our approach takes just few seconds to
prove optimality for instances never solved (even after days of computation) by the
standard methods. Moreover, we report improved solutions for several SteinLib in-
stances, including the (in)famous hypercube ones. We also demonstrate how to build
a unified solver on top of the new node-based model and the previous state-of-the-
art model (defined in the space of arc and node variables). The solver relies on local
branching, initialization heuristics, preprocessing and local search procedures. A fil-
tering mechanism is applied to automatically select the best algorithmic ingredients
for each instance individually. The presented solver is the winner of the DIMACS
Challenge on Steiner trees in most of the considered categories.

Keywords Mixed Integer Programming · Exact Computation

Mathematics Subject Classification (2000) 90C10 · 90C27

Thinning out Steiner trees 3

1 Introduction

The Steiner tree problem (STP), in any of its various versions, is a challenging NP-
hard problem that involves two related decisions: choosing the nodes to cover, and
then covering them at minimum cost. Once the first decision has been taken, the
second one is just trivial as it amounts to solving a minimum-cost tree spanning the
selected nodes.

In this paper we introduce a new Mixed-Integer Linear Programming (MIP) ap-
proach for solving hard instances of the Steiner tree problem (close) to optimality.
Instead of modeling graph connectivity using edge or arc variables (where many of
them can exist), we propose to model it by using node variables only. Our model
is particularly suited for “uniform” cases where all edges have the same cost. Be-
sides the fact that these node-based models contain significantly less variables, they
also avoid equivalences induced by uniform edge weights. For very dense graphs,
or those containing a lot of symmetries, this strategy significantly outperforms the
standard models where connectivity is modeled by using edge variables. We then
demonstrate how to build a unified solver on top of the new node-based model and
the previous state-of-the-art model from [21] (defined in the space of arc and node
variables). The solver relies on local branching, initialization heuristics, preprocess-
ing and local search procedures. A filtering mechanism is applied to automatically
select the best algorithmic ingredients for each instance individually.

Our approach works for different variants of the Steiner tree problem, includ-
ing the (rooted) prize-collecting STP (PCSTP), the node-weighted STP (NWSTP),
the maximum-weight connected subgraph problem (MWCS), and also the degree-
constrained STP (DCSTP). To have a unified framework, in the following we will
therefore focus on a slightly more general variant of the PCSTP, with a (potentially
empty) set of terminal nodes. This general problem definition covers both the clas-
sical Steiner tree problem in graphs and its prize-collecting counterpart, as special
cases. Necessary adaptations for the remaining problems will be explained below.
It is worth mentioning that our code (with four variants submitted under the names
mozartballs, staynerd, hedgekiller and mozartduet) was the winner of the
DIMACS Challenge on Steiner trees [1] in most of the categories (see [11] for more
details). This article contains a summary of the main ingredients of this implementa-
tion.

Definition 1 (The prize-collecting Steiner tree problem (PCSTP)) Given an undi-
rected graph G = (V,E) with a (possibly empty) set of real terminals Tr ⊂ V , edge
costs c : E 7→ R+ and node revenues p : V 7→ R+, the goal is to find a subtree
T = (V [T],E[T]) that spans all real terminals and such that the cost

c(T) = ∑
e∈E[T]

ce + ∑
i 6∈V [T]

pi

is minimized.

In the classical PCSTP version studied in the previous literature, Tr = /0, and
the problem can be equivalently stated as searching for a subtree that maximizes

4 Fischetti et al.

the difference between the collected node revenues (∑i∈V [T] pi) and the costs for
establishing the links of that tree (∑e∈E[T] ce). One objective value can be transformed
into another by subtracting c(T) from the sum of all node revenues (P = ∑i∈V pi).

In general, each node in V \Tr is considered as a Steiner node, i.e., it can be used
as an intermediate node to connect real terminals, or those with positive revenues.

Observe that there always exists an optimal PCSTP solution in which non-
terminal nodes with zero revenue are not leaves. The same holds for each node i ∈V
such that pi > 0 and min{i, j}∈E ci j > pi. Note that we impose strict inequality in the
latter condition. Hence, besides real terminals only a specific subset of nodes in the
PCSTP can be leaves of an optimal solution. We will refer to those nodes as potential
terminals.

Definition 2 (Potential terminals) Among the nodes i ∈V \Tr, only those with rev-
enues pi > 0 such that at least one adjacent edge is strictly cheaper than pi are con-
sidered as potential leaves. These nodes are referred to as potential terminals, and the
associated set is denoted by Tp:

Tp = {v ∈V \Tr | ∃{u,v} s.t. cuv < pv}.

In the following, we will call the set T = Tr ∪Tp, the set of terminal nodes. Our
general problem definition covers the Steiner tree problem in graphs, since in this
case all node revenues are equal to zero (pv = 0, for all v ∈ V) and the set of real
terminals is nonempty, i.e., /0 6= T = Tr ⊂V .

Previous work. A MIP model for the PCSTP using both node and arc variables has
been proposed in [21]. The formulation is based on a transformation of the PCSTP
to a directed instance. A similar cut-based model has also been applied to the STP
in [18]. In our work the model of [21] has been extended to the general problem def-
inition of the PCSTP presented in this article which covers both problems. Given an
instance I = (G(V,E),c, p,Tr) of the PCSTP, an instance I′ = (G′(V ′,A′),c′, p,Tr,r)
is constructed as follows: An artificial root node r is added, i.e., V ′=V ∪{r}. For each
edge {i, j} ∈ E, A′ contains two anti-parallel arcs (i, j) and (j, i) with c′i j = ci j− p j.
Furthermore, r is connected by arcs (r, j) with c′r j = −p j to each potential terminal
j ∈ Tp. The set of terminals and revenues are left unchanged. For S ⊂ V , let δ−(S)
be defined as the set {(i, j) ∈ A′ : i /∈ S, j ∈ S}. Subsequently, a MIP model for the
PCSTP is formulated as follows:

(PCSTPxy) min ∑
(i, j)∈A′

c′i jxi j + ∑
v∈V

pv (1)

∑
(i,v)∈A′

xiv = yv ∀v ∈V (2)

x(δ−(S))≥ yv ∀v ∈ (S∩T),r /∈ S,∀S⊂V ′ (3)

∑
(r,i)∈A′

xri = 1 (4)

yv = 1 ∀v ∈ Tr (5)
xi j,yv ∈ {0,1} ∀(i, j) ∈ A,∀v ∈V (6)

Thinning out Steiner trees 5

Binary arc variables xi j,∀(i, j) ∈ A′, are set to one if arc (i, j) is part of the solu-
tion. Similiarly, binary node variables yv,∀v ∈V ′ \{r}, are set to one if node v is part
of the solution. Constraints (2) ensure that each node selected has exactly one incom-
ing arc, and link node and arc variables. Cut constraints (3) guarantee that the solution
is connected. Constraint (4) ensures that exactly one artificial root arc is chosen.

Constraints (5) have been added to allow the incorporation of real terminals Tr
into the model, which have not been considered in [21]. Note that if |Tr| ≥ 1, instead
of adding an artificial root and its associated arcs, it is sufficient to choose an arbitrary
real terminal v ∈ Tr as root. In this scenario constraint (4) must be excluded from the
model.

The formulation may be augmented with further valid or strengthening inequali-
ties, e.g., flow-balance inequalities, root asymmetry constraints, and generalized sub-
tour elimination constraints (GSEC) of size two (cf. [21] for details). The advantage
of this formulation is that it makes little assumptions on instance structure, however
the number of arc variables may be computationally prohibitive on dense graphs.
Throughout this article, we will refer to this formulation as (x,y)-model.

2 A node-based MIP model

Node-based models for solving the maximum-weight connected subgraph problem
have been compared, both theoretically and computationally, in a recent publica-
tion [2]. Since there are no edge-costs involved in the objective of the MWCS, a nat-
ural MIP modeling approach is to derive a formulation in the space of node variables
only. The first node-based model for the MWCS has been proposed in [5], and has
been shown to computationally outperform extended formulations (involving both
edge and node variables) on a benchmark set of instances from bioinformatics appli-
cations. However, as demonstrated in [2], the cycle-elimination model of [5] provides
arbitrarily bad lower bounds and can be computationally improved by considering the
notion of node separators whose definition is provided below. For brevity, in the rest
of the article a node separator will be referred to simply as separator.

For STP/PCSTP instances, uniform edge costs can be embedded into node rev-
enues (as shown below), so that using node-based MIPs appears natural in this case.

Definition 3 (Node separators) For two distinct nodes k and ` from V , a subset of
nodes N ⊆V \{k, `} is called (k, `)-separator if and only if after eliminating N from V
there is no (k, `) path in G. A separator N is minimal if N \{i} is not a (k, `)-separator,
for any i ∈ N. Let N (k, `) denote the family of all (k, `)-separators.

Note that in order to make sure that a subset of chosen nodes is connected, it
is sufficient to impose connectivity between the pairs of terminals (due to the mini-
mization of the objective function). Therefore, we are mainly interested in separators
between pairs of terminals.

Let N` = ∪k∈T,k 6=`N (k, `) be the family of all such separators with respect to
a node ` ∈ T . We will refer to elements from N` as `-separators. Finally, let N =
∪`∈T N` be the set of all node subsets that separate two arbitrary terminals.

6 Fischetti et al.

Let us assume that we are dealing with an undirected graph G with node revenues
pv and uniform edge costs ce = c for all e ∈ E.

In order to derive a node-based model, we will first shift edge costs into node
costs as follows:

c̃v = c− pv, ∀v ∈V.

Let P = ∑v∈V pv be the sum of all node revenues in G. Binary node-variables yv,
∀v ∈ V , will be set to one if node v is part of the solution, and the node-based MIP
model can be derived as follows:

(PCSTPy) min ∑
v∈V

c̃vyv +(P− c) (7)

y(N)≥ yi + y j−1 ∀i, j ∈ T, i 6= j, ∀N ∈N (i, j) (8)
yv = 1 ∀v ∈ Tr (9)
yv ∈ {0,1} ∀v ∈V \Tr (10)

where y(N) = ∑v∈N yv.
Connectivity constraints (8) are used to ensure connectivity of the underlying

solution. Basically, whenever two distinct terminals i, j ∈ T are part of a solution, at
least one node from any separator N ∈N (i, j) has to be chosen as well, in order to
ensure that there exists a path between i and j.

There is a difference between our model and the one considered in [2], where a
more general MWCS variant on digraphs has been studied. In this latter variant, a
root node needs to be established, i.e., a node r with in-degree zero and such that
there is a directed path from r to any node j being part of the solution. Consequently,
an additional set of node variables was needed to locate the root, separators were de-
fined on digraphs, and connectivity constraints have been lifted with respect to root
variables. Since our input graphs are undirected, we rely on the undirected model
to keep the number of variables as small as possible. Only very recently, connectiv-
ity constraints (8) were given more attention in the literature concerning polyhedral
studies. In particular, [25] studies the connected subgraph polytope, involving node
variables only, and show that (8) define facets if and only if N is a minimal separator
separating i and j.

Node-degree inequalities. The following node-degree inequalities are also valid for
our model:

y(Ai)≥

{
yi, if i ∈ T
2yi, otherwise

(11)

where Ai = {v∈V | ∃{v, i} ∈ E} is the set of all neighboring nodes of i. For terminals,
these constraints ensure that at least one of their neighbors is part of the solution
(assuming ∑v∈V yv ≥ 2, which can be safely assumed after preprocessing single-node
solutions). Clearly, they are just a special case of the inequalities (8), but can be
used to initialize the model for a branch-and-cut approach. For the remaining nodes,
constraints (11) make sure that each such node that belongs to a solution will be used
as an intermediate node, i.e., at least two of its neighbors have to be included in the

Thinning out Steiner trees 7

solution as well. These constraints are not implied by (8), in fact they can improve
the quality of lower bounds of the original model.

It is sufficient to consider only minimal separators in inequalities (8) (since they
dominate the remaining ones). In order to derive minimal separators associated to
node-degree constraints, we observe that nodes from V \T that are only adjacent to i
and other nodes from Ai do not play a role in connecting i to the remaining terminals.
Let J be the set of all such neighbors of a given i ∈ T , i.e., J = { j ∈ Ai \ T | A j ⊆
Ai∪{i}}. If V \Ai contains other terminals, then Ai \ J is a minimal i-separator, and
we can correspondingly strengthen the node-degree inequalities (11).

Finally, observe that for potential terminals i∈ Tp, the node-degree inequality can
be lifted as follows:

2 ∑
v∈Ai:cvi<pi

yv + ∑
v∈Ai:cvi≥pi

yv ≥ 2yi ∀i ∈ Tp.

2-Cycle inequalities. Observe the following: if node i ∈ V is adjacent to a node j ∈
Tp, so that ci j < p j, then if i is part of the optimal solution, j has to be included as
well, i.e.,

yi ≤ y j i ∈V, j ∈ Tp,ci j < p j (12)

2.1 Separation of connectivity constraints

Whenever we want to cut off a fractional solution ỹ, we can separate the connectivity
cuts (8) by applying a maximum flow algorithm. For each pair of distinct terminals
(i, j) such that ỹi + ỹ j − 1 > 0, one would need to find a minimum (i, j)-cut in a
support digraph D which is constructed as follows. First, each edge e ∈ E is replaced
by two directed arcs. Then, each node v ∈ V \ {i, j} is replaced by an arc (v′,v′′)
whose capacity is defined as ỹv, all arcs entering v are now directed into v′, and all
arcs leaving v are now directed out of v′′. Capacities of these arcs are set to ∞. Since
all arcs except the node-arcs are of infinite capacity, the maximum (i, j)-flow returns
the desired violated connectivity constraint.

According to our computational experience, however, the above procedure is
rather time consuming (all terminal pairs need to be considered, and for each pair,
the maximum flow is calculated). As there is always a certain trade-off between the
quality of lower bounds obtained by separating fractional points and the associated
computational effort, we refrain from the separation of fractional points in our default
implementation.

Consequently, to ensure the validity of our branch-and-cut approach, we need
to cut off infeasible integer points enumerated during the branching procedure (or
detected by the heuristics of the MIP solver, given that the solver was not provided
a complete information about the structure of the problem). Infeasible points are cut
off by means of a LazyCutCallback in our setting based on the commercial MIP
solver IBM ILOG CPLEX. For a given pair of distinct terminal nodes i, j ∈ T such
that ỹi = ỹ j = 1, our separation procedure runs in linear time (with respect to |E|) and
works as outlined below.

8 Fischetti et al.

To derive our algorithm, we use the following well-known property of node sep-
arators (see, e.g., [17]):

Lemma 1 Let N ∈N (i, j) be an (i, j)-separator for i, j ∈ T , i 6= j, and let Ci and
C j be connected components of G−N such that i ∈Ci, j ∈C j. Then N is a minimal
(i, j) node separator iff every node in N is adjacent to at least one node in Ci and to
at least one node in C j.

Let ỹ be an integer solution, and let Gỹ = (V,Eỹ) denote the support graph induced
by ỹ, where

Eỹ = {{i, j} ∈ E | ỹi = ỹ j = 1}
If ỹ is infeasible, then Gỹ contains at least two connected components, say Ci and
C j, with i ∈ Ci, j ∈ C j, and ỹi = ỹ j = 1. Let A(Ci) be the set of neighboring nodes
of Ci in G, i.e., A(Ci) = {v ∈ V \Ci | ∃{u,v} ∈ E,u ∈ Ci}. Clearly, {i, j} 6∈ E and
hence A(Ci) ∈Ni. However, A(Ci) is not necessarily a minimal (i, j)-separator, and
Algorithm 1 below describes how to derive a minimal separator starting from A(Ci).

Algorithm 1: A linear time algorithm for detecting a minimal separator be-
tween two components Ci and C j in Gỹ.

Data: Infeasible solution defined by a vector ỹ ∈ {0,1}n with ỹi = ỹ j = 1, Ci
being the connected component of Gỹ containing i, and j 6∈Ci.

Result: A minimal separator N that violates inequality (8) with respect to i, j.
Delete all edges in E[Ci∪A(Ci)] from G
Find the set R j of nodes that can be reached from j
Return N = A(Ci)∩R j

In practice, set R j can be found by just running a standard Breadth-First Search
(BFS) on the original graph G, starting from node j, with the additional rule that
nodes in A(Ci) are never put in the BFS queue.

Proposition 1 Algorithm 1 returns a minimal separator N ∈N (i, j) in time O(|E|).

Proof By definition of N, i and j are not connected in G−N. To see that N is a
minimal (i, j)-separator, consider G−N and let C′i and C′j be two connected compo-
nents, containing i and j, respectively. Clearly, Ci ⊂ C′i and C′j = R j \N. Hence, by
Lemma 1, it follows that N is minimal. ut

In case p > 2 connected components exist in Gỹ (each of them containing at least
one terminal), one can repeat the procedure described in Algorithm 1 for each pair of
distinct components Ci and C j.

We conclude this section by observing that, for the pure STP case with real ter-
minals only, connectivity constraints translate into

y(N)≥ 1, ∀N ∈N

where N is the family of all separators between arbitrary real terminal pairs. Our
model can therefore be interpreted as set covering problem with an exponential num-
ber of elements to be covered. As demonstrated by our computational experiments,
this property can be exploited to derive specialized set covering heuristics for pure
STP instances with uniform costs, with a significant performance boost.

Thinning out Steiner trees 9

3 Algorithmic framework

The proposed node-based model can be solved by means of a branch-and-cut (B&C)
algorithm, to be initialized with a high-quality feasible solution and with a suitable
set of relevant connectivity constraints.

Our initial MIP model, called the basic model in what follows, is made by (7),
(9), (10), plus the node-degree inequalities (11) and the 2-cycle inequalities (12).

The overall algorithmic framework is shown in Algorithm 2. In an initializa-
tion phase, an initial solution pool Sinit is generated by means of some problem-
dependent heuristics. In a subsequent local branching phase, multiple calls of the
B&C algorithm are used to explore the neighborhood of starting solutions chosen
from the solution pool Sinit. All connectivity constraints separated during this phase
are globally valid, hence they are stored in a global cut pool CutPool, and added to the
initial MIP model before each B&C re-execution. The incumbent solution (denoted
by Sol) is updated correspondingly. A detailed description of the LocalBranching

procedure and of its parameters is given in Section 3.1.
The local branching phase implements a multiple restart policy (with different

seed values and a maximum number of iterations LBMaxRestarts), intended to gather
relevant information about the problem at hand, namely good primal solutions and
a relevant set of connectivity constraints; see e.g. [15] for a recent application of
multiple restarts to MIPs with uncertainty. The availability of such information at the
root node of each B&C re-execution turns out to be very important, as it triggers a
more powerful preprocessing as well as the generation of a bunch of useful general-
purpose cuts (in particular, {0,1/2}-cuts [3,6]) based on the problem formulation
explicitly available on input.

The algorithm terminates after proving the optimality, or after reaching the given
time limit.

3.1 Local branching

Local branching (LB) has been proposed in [14] as a solution approach that uses the
power of a general-purpose MIP solver as a black box to strategically explore promis-
ing solution subspaces. LB is in the spirit of large-neighborhood search metaheuris-
tics, with the main difference that the underlying local search black-box algorithm is
a MIP with a specific local branching constraint that restricts the search for an optimal
solution within a certain neighborhood of a given reference solution.

The LB framework is built on top of our B&C solver. As already mentioned, our
solver deals with two sets of inequalities: those in the basic model, that are always
part of the model, and connectivity constraints (8) that are dynamically separated and
stored in a global CutPool to be used in every subsequent B&C call.

Given a reference solution Sol, let W1 = {v ∈V | v ∈ Sol} and W0 =V \W1. The
symmetric local branching constraint makes sure that the new solution is within a
given radius r from the solution Sol with respect to the Hamming distance between
the two solutions, i.e.

∑
v∈W0

yv + ∑
v∈W1

(1− yv)≤ r

10 Fischetti et al.

Algorithm 2: Proposed algorithmic framework.
Data: Instance I of the STP/PCSTP/NWSTP/MWCS, restart limit

LBMaxRestarts, time limit TimeLim, local branching parameters (rmin,
rmax, rdelta, LBMaxIter, LBSolLim, LBTimeLim).

Result: A (sub)-optimal solution Sol.
Sinit = InitializationHeuristics()
Sol = argminSol′∈Sinit

cost(Sol′)
k = 1, CutPool = /0, SolLim = ∞

while (k ≤ LBMaxRestarts) and (time limit not exceeded) do
Choose Sol′ from the solution pool Sinit.
(Sol′,CutPool′) = LocalBranching(I,Sol′,CutPool,seed,rmin,rmax,rdelta,

LBMaxIter,LBTimeLim,LBSolLim)
CutPool = CutPool∪CutPool′

if cost(Sol′)< cost(Sol) then
Sol = Sol′

end
k = k+1, change seed.

end
Sol = BranchAndCut(I,Sol,CutPool,TimeLim,SolLim)
return Sol

Alternatively, one may consider an asymmetric local branching constraint, requiring
that the new solution contains at least |Sol|− r nodes from Sol:

∑
v∈W1

(1− yv)≤ r. (13)

Notice that, for a fixed radius, the neighborhood of the asymmetric version is
larger and leads to potentially better solutions—though it is more time consuming
to explore. For example, for r = 0 the asymmetric version is equivalent to fixing to
1 all the variables from Sol, so that many feasible solutions are still available even
in the 0-neighborhood around Sol. After some preliminary tests, we decided to use
the asymmetric LB constraint (13) in our implementation, with a small radius r rang-
ing from 10 to 30. Working with a small radius is indeed crucial for the success of
proximity methods such as LB, as recently pointed out in [16].

The LB framework is shown in Algorithm 3. Since the goal of the B&C in this
context is to quickly find high-quality solutions, we do not necessarily search for
an optimal solution within the given neighborhood, but we rather impose limits on
the number of incumbent solutions found (LBSolLim), and a time limit per iteration
(LBTimeLim).

The neighborhood is systematically explored by starting with an initial radius
rmin, and increasing it by rdelta each time the subproblem could not provide an im-
proved solution. Each time an improved solution is found, the neighborhood radius
is reset to rmin. The whole framework is executed until a given number of iterations
(LBMaxIter) is reached, or the radius exceeds rmax. Note that the radius limit rmax,

Thinning out Steiner trees 11

in combination with a consistent increase of the current radius, implicitly imposes a
limit on the overall number of iterations without any improvement.

Algorithm 3: Local Branching.
Data: Instance I of the STP/PCSTP/NWSTP/MWCS, starting solution Sol,

CutPool, seed, lower and upper bound for radius (rmin,rmax), radius step
(rdelta), maximum n. of iterations LBMaxIter, time limit LBTimeLim,
solution limit LBSolLim.

Result: Improved solution Sol, enlarged cut pool CutPool.
r = rmin, k = 1
while (k ≤ LBMaxIter) and (r ≤ rmax) do

Add LB constraint (13) centered on Sol with radius r
(Sol′,CutPool′) = BranchAndCut(I,Sol,CutPool,LBTimeLim,LBSolLim)
Remove the LB constraint from the current model
if cost(Sol′)< cost(Sol) then

Sol = Sol′, r = rmin
else

r = r+ rdelta
end
CutPool = CutPool∪CutPool′

k = k+1
end
return (Sol, CutPool)

3.2 Benders-like (Set Covering) heuristic

Local branching has a primal nature, in the sense that it produces a sequence of fea-
sible solutions of improved cost. In addition, it needs a starting feasible solution, that
in some cases can be time consuming to construct. As a matter of fact, for some very
large/hard classes of instances we found that a dual approach is preferable, that pro-
duces a sequence of infeasible (typically, disconnected) solutions and tries to repair
them to enforce feasibility. Algorithm 4 illustrates a general dual scheme that can be
viewed as a heuristic version of the well-known Benders’ exact solution approach to
general MIPs.

In our experiments, we found that the above approach works very well for uni-
form STP instances of very large size, for which the standard MIP approach seems
not very appropriate as even the LP relaxation of the model takes an exceedingly large
computing time to be solved. Our set-covering based heuristic is an implementation
of Algorithm 4 for these hard instances, and is based on their set covering interpre-
tation. Indeed, as already observed, the basic model turns out to be a compact set
covering problem where columns correspond to Steiner nodes, rows to real terminals
not adjacent to any other real terminal, and column j covers row i iff {i, j} ∈ E. The
approach can be outlined as follows.

At each iteration of the while loop, the relaxation to be heuristically solved is
constructed through a procedure that automatically extracts a set covering relaxation

12 Fischetti et al.

Algorithm 4: A conceptual Benders-like heuristic.
Data: Instance I of the STP, time/iteration limits.
Result: Feasible solution Sol, cut pool CutPool.
Sol = dummy solution of very large cost
CutPool = /0
while (time/iteration limit not exceeded) do

Heuristically solve a set covering relaxation of the current model
(including all cuts in CutPool) and let SolR be the (possibly disconnected)
solution found
Add the LB constraint (13) centered on SolR to the unrelaxed model
(Sol′,CutPool′) = BranchAndCut(I,Sol,CutPool,TimeLim,SolLim)
Remove the LB constraint from the unrelaxed model
if cost(Sol′)< cost(Sol) then

Sol = Sol′

end
CutPool = CutPool∪CutPool′

end
return (Sol, CutPool)

from the current model. This is done by simply (1) projecting all fixed variables
(including y variables for hard terminals) out of the model, and (2) skipping all con-
straints, if any, that are not of type y(S)≥ 1 for some node set S.

We then proceed by heuristically solving the set covering relaxation through an
implementation of the Caprara-Fischetti-Toth (CFT) heuristic [7,8]. This is a very
efficient set covering heuristic based on Lagrangian relaxation, that is specifically
designed for hard/large instances.

Given a hopefully good set covering solution SolR, we repair it in a very ag-
gressive way by introducing a local branching constraint in asymmetric form with
radius r = 0, and then by applying our B&C solver (with its ad-hoc connectivity cut
separation) with a short time/node limit. As already observed, this local branching
constraint in fact corresponds to fixing y j = 1 for all j such that SolRj = 1. As a result,
the size/difficulty of the MIP model after fixing is greatly reduced, hence the node
throughput of the B&C solver becomes acceptable even for large instances—while
setting a larger radius would not result in a comparable speedup.

All violated connectivity cuts generated by the B&C procedure are added to
CutPool and hence to the current model. This makes solution SolR (if disconnected)
infeasible even for the next set covering relaxation and thus the procedure can be
iterated until an overall time/iteration limit is reached.

To improve diversification, our implementation uses the following two mecha-
nisms:

– the procedure that extracts the set covering model makes a random shuffle of
the rows/columns, so as to affect in a random way the performance of the CFT
heuristic;

Thinning out Steiner trees 13

– before the repairing phase, we randomly skip (with a uniform probability of 20%)
some variable fixings, meaning that approximately 80% of the variables y j’s with
SolRj = 1 are actually fixed.

As such, the performance of our final heuristic (though deterministic) is affected by
the initial random seed, a property that can be very useful to produce different solu-
tions in a multi-start scheme.

Finally, we observe that our current CFT implementation is sequential and can-
not exploit multiple processors. We therefore decided to also run the refining B&C in
single-thread mode, thus obtaining an overall sequential code that can be run in par-
allel and with different random seeds on each single core (in the multi-thread mode).
The best found solution is finally returned.

This Benders-like heuristic is embedded in the overall algorithmic framework
shown in Algorithm 2 as InitializationHeuristics for uniform STP instances
on bipartite graphs with a large percentage of terminals. Indeed, these kinds of graphs
are very regular and the basic model likely gives a reasonable approximation of the
STP problem—in the sense that most connectivity constraints are automatically sat-
isfied. In addition, the while-loop in Algorithm 2 that would apply standard local
branching after the set-covering based heuristic is unlikely to be effective for these
graphs, so we set LBMaxIter = 0 and skip it in this case.

We conclude this section by observing that the “relaxation” to be heuristically
solved in the Benders-like scheme is not intended to produce valid dual bounds, as
its purpose is to feed the refining procedure with good (possibly disconnected) solu-
tions. As a matter of fact, one can think of the relaxation as a “blurred” version of the
original problem, which retains some of its main features but is not bothered by too
many details (namely, connectivity conditions) that would overload the model. Fol-
lowing this general idea, we implemented the following variant of our set-covering
based heuristic, which is intended for non-uniform instances on bipartite graphs with
a large percentage of terminals.

Given a non-uniform instance of the STP, it is transformed to a uniform instance
by adapting its revenue and edge costs as follows: For each non-terminal v∈V \Tr, its
node cost c̃v is set to the average cost of its incident edges, i.e., c̃v =

1
|δ (v)| ∑e∈δ (v) ce.

Next, all edge costs and node revenues are set to zero. Intuitively, edge cost informa-
tion is moved into node costs, so as to get a “blurred” uniform instance on the same
underlying graph. Note that these modified costs/revenues are only used within the
CFT heuristic, while the original ones are used in the refining phase.

3.3 Implementation details of the (x,y)-model

The model described in Section 1 has been implemented together with several algo-
rithmic enhancements, which are detailed in the following paragraphs.

Initialization heuristic. A pool of initial feasible solutions is constructed as follows.
Several terminals are chosen as root nodes, for each of which a solution is calculated
by applying the shortest path Steiner tree heuristic (see, e.g., [4]). In the PCSTP case,

14 Fischetti et al.

for a small number of iterations the set Tp ∪Tr is perturbed and subsets of terminals
of different size are considered as fixed terminals T ′. Then for each chosen set T ′, the
same construction heuristic as for the STP is applied. Each solution is also improved
through a local search (see below).

For sparse, (almost) planar non-uniform instances of the STP, our framework
computes an additional, enhanced initial solution by applying a parallel variant of
the partitioning heuristic described in [20]. Based on a randomly chosen solution
from the pool, the input graph is partitioned into a set of smaller subgraphs (contain-
ing terminals and their closest Steiner nodes). The STP is then solved to optimality
(or with a small time limit) on each of these subgraphs independently. The obtained
disconnected (and thus, infeasible) solution is then repaired by a shortest-path like
heuristic, followed by a local search. When run in a multi-thread mode, solving the
STP on each of the subgraphs is assigned to a single thread.

Primal heuristic. We apply a few rounds of rounding on the set of y variables, with
different threshold values. Rounded up variables again define a set of fixed terminals
T ′ on which we run the shortest path Steiner tree heuristic (with a modified cost
function that reflects the LP-values at the current branch-and-bound node) and prune
Steiner leaves.

Local search heuristics. Solutions obtained by the initialization or the primal heuris-
tic are further improved by applying several local search procedures: Key-Path-
Exchange, (Key-)Node-Removal and Node-Insertion. For further implementation de-
tails about these heuristics, see [24]. We only accept strictly improving moves, except
for uniform and almost uniform instances, for which (due to existence of many sym-
metric solutions) all moves with non-increasing objective values are performed. An
instance is considered as almost uniform if the absolute difference between the mini-
mum and maximum edge weight is less than ten.

Additional valid inequalities: In [21] the authors observe that the (x,y)-model for
PCSTP contains a lot of symmetries, and propose to get rid of them by fixing the
terminal node with the smallest index (among those taken in the solution) to be the
root node. This is imposed by adding additional asymmetry constraints. The latter
constraints added by [21] were given in a disaggregated form, whereas in our imple-
mentation we add their stronger, aggregated variant: ∑i> j xri ≤ 1− y j, for all j ∈ T .
We also add 2-cycle inequalities (12) to our starting model.

Separation algorithms. For fractional solutions, connectivity constraints are
separated by the calculation of the maximum flow (implemented through
UserCutCallback of CPLEX). Algorithm (5) shows the separation procedure for
the (x,y)-model. First, a small value ε is added to the fractional LP solution x∗ of
arc variables, which are used as capacities for the maximum flow algorithm. This
approach ensures that the separated cuts are of minimum cardinality, and is known
to reduce the number of required cutting plane iterations [18,21]. Subsequently, the
maximum flow is computed between the root and each potential terminal i ∈ Tp.
Among the two cut sets (Sr and Si, r ∈ Sr, i ∈ Si) returned by the maximum flow

Thinning out Steiner trees 15

algorithm of [9], we choose the one closer to the terminal, i.e., Si (cut sets closer to
the root typically involve similar edges, and hence may imply many redundant cuts).
A technique referred to as nested/orthogonal cuts [18,22] is applied to generate more
diverse cuts in each iteration. Whenever a violated cut is identified, the capacities of
the associated arcs are set to one, which ensures that the intersection between violated
cuts separated within the same cutting plane iteration is empty.

Algorithm 5: Separation procedure for the (x,y)-model.
Data: Fractional LP solution (x∗,y∗), upper bound UB on the objective value.
Result: A set of violated connectivity cuts C.
x′ = x+ ε

Find the set of potential terminals W ⊂ Tp reachable from r.
for i ∈ Tp \W,yi ≥ 0.5 do

f = MaxFlow(G,x′,r, i,Sr,Si)
Detect cut δ−(Si) such that f = x′(δ+(Si)), i ∈ Si.
if f < yi then

if revenue(Si)>UB and problem type is PCSTP then
Add the violated cut x(δ−(Si))≥ 1 to C.

else
Add the violated cut x(δ−(Si))≥ yi to C.

end
Add all Tp reachable from i to W .

end
x′i j = 1, ∀(i, j) ∈ δ−(Si)

end
return C

To further speed up separation, we skip the maximum flow calculation for termi-
nals that are already reachable from the root in the support graph (node set W in the
algorithm). We do not separate cuts recursively [21,22], but instead separate at most
one connectivity constraint for each terminal per iteration. Avoiding the separation of
fractional solutions while branching and adding only one cut per terminal seemed to
perform best on average in preliminary experiments.

For the PCSTP we only separate cuts between the root and those terminals i such
that yi ≥ 0.5 in the given fractional solution to separate. Furthermore, instead of
adding a connectivity constraint (3) as in [21], we may replace the right-hand side
with one if the revenue on the sink side of the cut is larger than the objective of the
incumbent solution. This implies that in an optimal solution, at least one more node
on the sink side has to be connected to the root.

Infeasible integer solutions are separated by searching for connected components
in the support graph. For each subset S inducing a connected component of an infea-
sible solution, a connectivity constraint x(δ−(S))≥ yi is added to the model, for i∈ S
with the highest revenue.

16 Fischetti et al.

3.4 A unified solver and automatic parameter adjustments

To achieve the best performance over all different types of problem instances, we have
implemented a unified solver that switches between the node-based model (in the
following referred to as y-model) and the (x,y)-model presented in the introduction,
depending on the instance properties. The overall algorithmic framework given in
Algorithm 2 remains the same, with the main difference being the MIP model for the
underlying B&C procedure. To this end, our solver contains a filter that analyzes the
structure and costs of the input graph. According to these properties, the algorithm
decides the actual MIP model, as well as the kind of initialization heuristics and
preprocessing to apply. We note that in the proposed algorithm these rules are only
used for the problem types STP, PCSTP and MWCS (which are transformed to their
PCSTP representation). DC-STP and RPCSTP instances are solved solely by B&C
on the (x,y)-model without any sophisticated settings. Table 1 shows all types of
instance properties identified by the filter.

Table 2 lists general filter rules for model and parameter selection. By default,
the y-model is applied to instances with uniform edge costs, while the (x,y)-model
is applied to all others. For sparse, uniform graphs with a relatively low number of
terminals, we switch to the (x,y)-model, as preliminary experiments have shown that
the y-model is less efficient for this specific class. For the y-model, the MIP at the root
node is restarted two times in order to generate more general purpose cutting planes,
since the cutting plane generation procedures of CPLEX for such cuts are triggered
again after a restart and produce additional cuts.

For the (x,y)-model a tailing-off bound is specified, which defines the allowed
ratio between the lower bounds of two consecutive B&C iterations in the root node.
In addition, a tailing-off tolerance value is defined, which specifies the number of
times this bound is allowed to be violated in a row. If the number of violations ex-
ceeds the specified tolerance-parameter, the algorithm switches from separation of
fractional solutions to branching. The two parameters are chosen based on graph den-
sity. Instances are roughly divided into two classes, sparse (|E|/|V | ≤ 3) and dense
(|E|/|V |> 3) graphs. The tailing-off bound is only activated for dense graphs, while
for sparse graphs we avoid branching as long as possible. In addition, we identify
very dense (|E|/|V |> 5) instances, in which we set a lower tailing-off tolerance than
in the regular case.

Table 3 lists filter rules that select problem-specific settings and algorithms for
STP instances. Given that the (x,y)-model has been selected by the filter, the model
may be initialized by a set of connectivity cuts generated by a dual ascent algo-
rithm [26], and with a starting solution generated by a parallel implementation of
a partitioning heuristic (see [20]). Based on the terminal ratio, the dual ascent con-
nectivity cuts are either added at the beginning of the B&C or separated. Similarly,
flow-balance constraints and generalized subtour elimination constraints (GSEC) of
size two may be chosen to be separated if the graph is large, sparse and has a low
terminal ratio. Dense STP instances are instead preprocessed by using the special
distance test [12].

Table 4 lists additional rules for the selection of initialization heuristics. In the
case of bipartite graphs, the set-covering heuristic is applied for both uniform and

Thinning out Steiner trees 17

Table 1 Instance properties identified by the filter procedure.

Property Description

uniform all arc weights have the same weight
sparse edge-to-arc ratio |E|/|V | ≤ 3
dense edge-to-arc ratio |E|/|V |> 3
verydense edge-to-arc ratio |E|/|V |> 5
ratioT terminal ratio |T |/|V |
big number of nodes |V |> 10000
small number of nodes |V |< 1000
hypercube all nodes have the same degree
stp problem instance is of type STP
xy-model the (x,y)-model has been selected by the filter
bipartite the instance graph G is bipartite w.r.t. the node sets V \T and T

Table 2 General filter rules.

Rule Applied settings

uniform → y-model
uniform ∧ sparse ∧ ratioT< 0.1 → (x,y)-model
¬uniform → (x,y)-model

dense → use tailing-off bound, high tolerance
verydense → use tailing-off bound, low tolerance

Table 3 STP-specific rules.

Rule Applied settings

xy-model ∧ ratioT< 0.01 → separate dual ascent cuts
xy-model ∧ ratioT≥ 0.01 → add all dual ascent cuts
xy-model ∧ ratioT< 0.1 ∧ sparse ∧ big→ separate flow-balance constr., GSECs of size 2

xy-model ∧ big ∧ sparse → partition-based construction heuristic
verydense → preprocessing (special distance test)

non-uniform instances to generate high-quality starting solutions. For non-uniform
instances, each node v is assigned the weight 1

|δ (v)| ∑e∈δ (v) ce (“blurred” set-covering
heuristic). We note that also in the case of PCSTP instances we choose to apply
the blurred set-covering heuristic for the large non-uniform instances. A significant
slowdown of the (x,y)-model has been observed for larger instances, at which point
the blurred set-covering heuristic performs better. By default, the following settings
are also applied when executing local branching: The primal heuristic is executed
in every branch-and-bound node for the (x,y)-model and in each 1000 nodes for
the y-model. The GSECs of size two in the (x,y)-model are separated and stored in
the cut pool. The local branching time limit per iteration is set to 120 seconds. The
neighborhood radius is initialized with 10 and increased by 10 per iteration up to a
maximum of 30.

18 Fischetti et al.

Table 4 Initialization heuristic rules.

Rule Applied settings

bipartite ∧ uniform → set-covering heuristic
bipartite ∧ ¬uniform ∧ stp → blurred set-covering heuristic
hypercube ∧ ¬uniform ∧ ¬small ∧ pcstp→ blurred set-covering heuristic
¬bipartite → local branching

4 Computational results

Our algorithms are applied to the following problems from the DIMACS challenge:
STP, (rooted) PCSTP, MWCS, and also degree-constrained STP (DCSTP). We be-
gin by summarizing the results obtained on a set of hard (unsolved) cases of the
SteinLib [19] instance library, and on a set of non-trivial MWCS instances posted on
the DIMACS challenge website. The performance of the y and (x,y)-model is com-
pared given a two-hour time limit (based on a single run per instance with fixed seed
value). The filter from Section 3.4 is deactivated during these runs, to enable a bare-
bone comparison between the models. Since on some of the tested datasets erratic
performance could be observed during preliminary experiments, for these cases ten
independent runs with different seeds have been performed, and the best and average
running times are reported.

Detailed computational results, covering all nontrivial instances from the chal-
lenge are provided in the Appendix. Among these nontrivial instances, we distinguish
between easy and difficult ones. For this purpose, we first run all considered instances
using a pure B&C approach, for which the set-covering heuristic and local branching
are deactivated. The filter rules listed in Tables 2 and 3 are applied and a time limit of
one hour (with a fixed seed value) is imposed. All instances that remained unsolved
by this approach are considered as difficult.

Our heuristic framework (consisting of the initialization and local branching
phase, see Algorithm 2) is then applied to all difficult instances with a time limit
of one hour (ten independent runs with different seeds).

The experiments were performed on a cluster of computers, each consisting of
20 cores (Intel E5-2670v2 2.5 GHz) and with 64GB RAM available for the 20 cores.
Reported computing times are in wall-clock seconds. To limit the overall time needed
to complete our experiments, we decided to allow up to five simultaneous 4-core runs
on the same computer, which however implies a significant slowdown due to shared
memory.

All algorithms have been implemented in C++ and compiled with GCC 4.9.2. For
data structures we used OGDF [23] and the dtree library [13]. CPLEX 12.6 was used
as MIP-solver with an imposed memory limit of 12GB RAM.

4.1 Results for uniform STP instances GAPS and SP

For the subgroup “skutella” (s3-s5) of the artificially generated uniform instance set
GAPS for the STP, LP-gaps of the standard connectivity-based (x,y)-model are large.

Thinning out Steiner trees 19

Standard MIP approaches for these instances have difficulties in closing the integral-
ity gap. Table 5 reports our results obtained on instances s1 to s5 from GAPS, and
clearly demonstrates the power of our y-model.

Table 5 Uniform STP instances from the GAPS dataset. Proven optimal solutions in boldface. Column
Time gives the computing time for proving the optimality (or, the time limit, otherwise). Columns UB
and LB show upper and lower bounds obtained by the (x,y)-model, within the time limit of two hours,
respectively. (*) Reached memory limit of 12GB within the specified time limit.

y-model (x,y)-model
Instance |V | |E| |T | OPT Time (s.) UB LB Gap (%) Time (s.)

s1 64 192 32 10 0.0 10 10 0.00 0.0
s2 106 399 50 73 0.0 73 73 0.00 1.4
s3 743 2947 344 514 0.2 514 505 1.78 1090.6*
s4 5202 20783 2402 3601 1.3 3601 3523 2.21 3444.8*
s5 36415 145635 16808 25210 22.3 25210 24056 4.80 7200.0

Additionally, for two previously unsolved instances from the set SP (with uni-
form edge costs as well), namely w13c29 and w23c23, we provide optimal values.
For these two latter instances, both models were able to prove the optimality, with
significant speed-ups achieved by the y-model. Table 6 reports results using ten dif-
ferent seeds. The y-model outperforms the (x,y)-model with respect to the best and
the average running times for both instances, the average speed-up ranging between
one and two orders of magnitude. For both models, the running times vary greatly
depending on the chosen seed value. This is due to the fact that solving the instance
to optimality is highly dependent on finding an optimal solution.

Table 6 Uniform STP instances from the SP dataset. Proven optimal solutions in boldface. Previous best
known solutions given in brackets. Runs have been performed using ten seeds. The Time columns give the
best, average and the standard deviation for running time. For the y-model, no primal heuristics have been
used besides the ones by CPLEX. For the (x,y)-model, we use local search (cf. Section 3.3).

y-model (x,y)-model
Time (s.) Time (s.)

Instance |V | |E| |T | OPT BEST AVG STD BEST AVG STD

w13c29 783 2262 406 507 (508) 0.3 0.9 0.5 14.5 38.3 30.0
w23c23 1081 3174 552 689 (694) 43.9 132.6 60.0 183.9 2600.2 1362.6

4.2 Results for MWCS instances

The MWCS can be transformed into the PCSTP with uniform edge costs (see [2]).
We have tested both y- and (x,y)-model on the MWCS dataset, and the obtained

20 Fischetti et al.

computational results (for the most challenging instances) are reported in Table 7
for ten different seed values. Results on the JMPALMK dataset are available in the
Appendix - these instances have all been solved within one second.

The results show that the y-model outperforms the (x,y)-model on all in-
stances with relatively dense graphs by roughly an order of magnitude. In contrast,
on the sparser metabol expr mice instances, the performance is extremely erratic,
ranging from one second to over an hour, while the very same instances are al-
ways solved to optimality within a few seconds by the (x,y)-model. On instance
metabol expr mice 1, the y-model fails to prove optimality within the given time
limit in two out of ten runs. A closer inspection of the test run data shows that for
this instance the y-model enumerates on average more than two million branch-and-
bound nodes, while the optimal solution is usually found within the first hour of
computation. Additional test runs have been performed with an optimal solution pro-
vided from the start, however the runtime did not decrease significantly. A likely
explanation is thus that at least for this instance the bounds provided by the y-model
are simply too weak to be competitive to the (x,y)-model.

Table 7 ACTMOD instances from the DIMACS website. Runs have been performed using ten seeds and a
two-hour time limit. The Time columns give the best, average and the standard deviation for running time.
For these runs no primal heuristics have been used besides the ones by CPLEX. Instances “mice *” are
short for “metabol expr mice *”. For mice 1 the y-model fails to prove optimality within the time limit in
two out of ten runs.

y-model (x,y)-model
Time (s.) Time (s.)

Instance |V | |E| |T | OPT BEST AVG STD BEST AVG STD

HCMV 3863 29293 3863 7.554315 1.3 1.5 0.2 6.5 7.6 0.8
drosophila001 5226 93394 5226 24.385506 10.6 12.2 1.3 93.9 181.9 86.8
drosophila005 5226 93394 5226 178.663952 12.2 13.2 0.9 120.9 184.9 57.6
drosophila0075 5226 93394 5226 260.523557 9.4 10.6 1.1 105.3 168.0 65.1
lymphoma 2034 7756 2034 70.166309 0.3 0.4 0.0 1.2 1.3 0.0
mice 1 3523 4345 3523 544.948370 2748.7 4697.9 1749.8 1.2 1.6 0.4
mice 2 3514 4332 3514 241.077524 1.0 1.4 0.3 1.1 1.1 0.1
mice 3 2853 3335 2853 508.260877 3.6 5.4 1.5 0.8 0.9 0.1

4.3 Results for STP and PCSTP instances

The pure B&C manages to solve most STP instances from the SteinLib and PCSTP
instances from the DIMACS challenge website to optimality within an hour. A com-
plete list of all results is available in the Appendix. As an example and to illustrate
the limits of the pure B&C, we report results on instances solved to optimality from
the PUC dataset in Table 8. PUC remains one of the hardest dataset for the STP, with
many unsolved instances that are immune to methods effective on other types of in-
stances, e.g., reduction tests. The results show that the pure B&C only manages to

Thinning out Steiner trees 21

solve twelve out of 50 PUC instances. However, note that to the best of our knowl-
edge instance cc6-3u has not been solved to optimality prior to the challenge.

Table 8 STP PUC instances solved by the pure B&C with parameters chosen automatically by the filter
procedure (y-model for hc6u, hc7u, bip42u, bipe2u; (x,y)-model for all others). Columns ‘Nodes’, ‘Time’
and ‘Time-t’ list the number of B&B nodes, computation time of the best solution, and total runtime,
respectively.

Instance |V | |E| |T | LB UB Gap (%) Nodes Time (s.) Time-t (s.)

bip42u 1200 3982 200 236 236 0.00 1603599 466.5 1038.0
bipe2p 550 5013 50 5616 5616 0.00 4333 59.1 76.0
bipe2u 550 5013 50 54 54 0.00 123 0.1 0.5

cc3-4p 64 288 8 2338 2338 0.00 45113 1.0 43.9
cc3-4u 64 288 8 23 23 0.00 4224 0.0 7.4
cc5-3u 243 1215 27 71 71 0.00 220216 0.6 1940.3
cc6-2p 64 192 12 3271 3271 0.00 694 2.6 13.8
cc6-2u 64 192 12 32 32 0.00 108 0.0 17.0
cc6-3u 729 4368 76 197 197 0.00 10814 371.1 389.9

hc6p 64 192 32 4003 4003 0.00 4004 0.3 2.1
hc6u 64 192 32 39 39 0.00 1142 0.1 0.2
hc7u 128 448 64 77 77 0.00 816615 0.1 1372.7

For the remaining, more difficult instances, Tables 9 to 14 list the most important
results after applying the set-covering heuristic or local branching. These datasets
have been selected from the set of instances unsolved after one hour by B&C (detailed
results are available in the Appendix). Each run has been computed by starting the
algorithm with ten different seeds, each with one hour time limit. The choice between
the local branching and set-covering heuristic is performed by the filter as described
in Section 3.4. The final B&C step of the framework is always skipped.

Each table is structured as follows: The first four columns list the instance name,
the number of nodes, edges and terminals. The next pair of columns (BEST) shows
objective value and time of computation for the best found solution. The following
pairs (AVG and STD) list the average and standard deviation of these two values over
all ten runs. For tests on previously known STP datasets (PUC, I640) the column
‘Impr.’ lists the improvement w.r.t. the best known published solution (by August 1st,
2014) according to the DIMACS challenge website [10]. In all other cases, the im-
provement is given w.r.t. the best primal solutions produced during the exact runs af-
ter one hour. As is to be expected, given the same time limit, the heuristic procedures
manage to outperform the pure B&C with respect to the computed upper bounds. The
comparison on notoriously difficult instances for the STP (PUC and I640, Tables 9
and 10) particularly emphasizes the heuristics’ effectiveness, as several of the previ-
ously known upper bounds could be improved. The most noticeable and consistent
improvement can be observed for the hypercube instances, to which the set-covering
heuristic has been applied.

22 Fischetti et al.

Note that the tables report the results obtained within the time limit of one hour
only. By extending the time limit, and/or by using more than four threads in parallel,
the obtained values can further be improved. For example, for the most difficult ones
we obtain:1

Problem Instance Best UB Previous UB Time (s.) #Threads

STP hc11u 1144 1154 474 8
STP hc12u 2256 2275 4817 8
STP hc12p 236158 236949 4411 4

PCSTP hc12u2 1492 – 632 16

Furthermore, we were able to prove optimality for the following difficult in-
stances, where according to the SteinLib website [19] the instances i640-313 has
previously been unsolved (for the PCSTP version of i640-313, we report similar per-
formance):

Problem Instance OPT Time (s.) #Threads #Memory (GB)

STP i640-313 35535 16012 20 32
PCSTP i640-313 32401 15358 20 32

5 Conclusions

We have presented a simple model for the Steiner tree problem, involving only node
variables. Besides drastically reducing the number of the required variables, the re-
moval of edge variables avoids a number of issues related to equivalent (possibly
symmetrical) trees spanning a same node set. In this view, we are “thinning out” the
usual edge-based model with the aim of getting a more agile framework. Our model is
mainly intended for instances with uniform edge costs, but one could use it to derive
a heuristic for tackling the general case (left for future studies). Computational results
show that our approach can dramatically improve the performance of an exact solver,
and in some cases converts very hard problems into trivial-to-solve ones. At the recent
DIMACS challenge on Steiner trees (see [11]), the proposed algorithmic framework,
which switches intelligently between the model involving only node-variables and a
second model that uses both node and edge variables, won most of the categories of
both, exact and heuristic challenge, for the STP, PCSTP, MWCS and DCSTP.

1 For instance hc12u2, no upper bounds have been reported before the challenge.

Thinning out Steiner trees 23

Table 9 PUC STP instances. Column ‘Impr.’ shows the improvement w.r.t. the previous best known values
published on the DIMACS challenge website [10]. Results computed by the set-covering heuristic in the
case of hypercube (hc) and bipartite (bip) instances, otherwise through (x,y)-model-based local branching.
Improved solutions given in boldface. Time limits set to one hour.

BEST AVG STD
Instance |V | |E| |T | UB Time (s.) UB Time (s.) UB Time (s.) Impr.

bip42p 1200 3982 200 24657 38.4 24660.8 664.6 2.0 1125.2 0
bip52p 2200 7997 200 24549 805.6 24566.9 1403.0 13.9 1357.4 -14
bip52u 2200 7997 200 233 1390.1 233.8 287.9 0.4 598.0 1
bip62p 1200 10002 200 22906 3.6 22907.0 55.4 1.1 80.8 -36
bip62u 1200 10002 200 219 6.2 219.0 12.3 0.0 5.0 1
bipa2p 3300 18073 300 35355 547.2 35360.9 1342.9 4.4 879.6 24
bipa2u 3300 18073 300 337 185.1 337.0 310.9 0.0 215.2 4

cc10-2p 1024 5120 135 35257 875.4 35353.2 704.9 75.1 705.2 122
cc10-2u 1024 5120 135 342 206.3 342.6 818.0 0.5 1078.2 0
cc11-2p 2048 11263 244 63680 744.3 63895.7 976.4 103.4 726.6 146
cc11-2u 2048 11263 244 615 1388.7 616.9 1203.8 1.0 951.6 -1
cc12-2p 4096 24574 473 122166 1884.1 123096.0 1912.6 468.0 799.1 -1060
cc12-2u 4096 24574 473 1183 1559.5 1186.3 1937.0 1.8 804.2 -4
cc3-10p 1000 13500 50 12784 3471.2 12826.2 1801.6 43.5 1139.7 76
cc3-10u 1000 13500 50 125 61.9 125.0 615.8 0.0 683.5 0
cc3-11p 1331 19965 61 15599 458.9 15633.3 812.1 35.4 965.1 10
cc3-11u 1331 19965 61 153 29.7 153.0 269.3 0.0 580.9 0
cc3-12p 1728 28512 74 18879 1290.1 18936.6 1771.1 31.5 1139.8 -41
cc3-12u 1728 28512 74 185 59.7 185.0 900.5 0.0 985.4 1
cc3-5p 125 750 13 3661 0.8 3661.0 10.5 0.0 13.2 0
cc3-5u 125 750 13 36 0.0 36.0 0.0 0.0 0.0 0
cc5-3p 243 1215 27 7299 16.4 7299.0 238.2 0.0 208.6 0
cc6-3p 729 4368 76 20340 1266.8 20395.9 1544.0 46.0 984.0 116
cc7-3p 2187 15308 222 57080 1385.5 57328.7 1197.7 153.9 888.0 8
cc7-3u 2187 15308 222 551 383.8 554.1 1267.2 1.5 1078.5 1
cc9-2p 512 2304 64 17202 1603.4 17274.4 1579.8 28.5 984.4 94
cc9-2u 512 2304 64 167 15.0 167.3 753.1 0.5 1018.6 0

hc7p 128 448 64 7905 2480.0 7915.8 875.6 6.0 746.9 0
hc8p 256 1024 128 15337 2494.8 15349.5 1057.5 7.5 1128.9 -15
hc8u 256 1024 128 148 0.0 148.0 0.1 0.0 0.0 0
hc9p 512 2304 256 30319 1232.0 30342.3 1824.9 14.1 777.7 -61
hc9u 512 2304 256 292 0.3 292.0 0.4 0.0 0.1 0
hc10p 1024 5120 512 59981 267.5 60041.3 1013.5 33.4 817.0 513
hc10u 1024 5120 512 575 11.2 575.0 87.0 0.0 85.9 6
hc11p 2048 11264 1024 119500 3327.8 119533.0 1708.9 35.1 1129.1 279
hc11u 2048 11264 1024 1145 663.3 1145.4 1319.2 0.5 873.1 9
hc12p 4096 24576 2048 236267 2782.9 236347.1 2514.0 55.4 565.3 682
hc12u 4096 24576 2048 2261 2756.8 2262.5 2805.2 1.3 747.0 14

24 Fischetti et al.

Table 10 I640 STP instances. Column ‘Impr.’ shows the improvement w.r.t. the previous best known
values published on the DIMACS challenge website [10]. Results computed by local branching using the
(x,y)-model. Improved solutions given in boldface. Time limits set to one hour.

BEST AVG STD
Instance |V | |E| |T | UB Time (s.) UB Time (s.) UB Time (s.) Impr.

i640-311 640 4135 160 35766 117.6 35779.0 1521.0 21.7 1219.7 0
i640-312 640 4135 160 35768 1410.3 35793.2 1478.5 25.4 1104.3 3
i640-313 640 4135 160 35535 292.6 35538.2 923.7 4.1 921.4 0
i640-314 640 4135 160 35533 1610.0 35547.0 1673.7 12.5 679.5 5
i640-315 640 4135 160 35720 156.2 35733.5 866.8 21.9 695.9 21

Table 11 PUCN STP instances (uniform version of the PUC code-coverage dataset). Column ‘Impr.’
shows the improvement with respect to the best solution computed by B&C. Results computed by local
branching on the y-model. Time limits set to one hour.

BEST AVG STD
Instance |V | |E| |T | UB Time (s.) UB Time (s.) UB Time (s.) Impr.

cc10-2n 1024 5120 135 180 89.5 181.0 690.1 0.7 952.4 2
cc11-2n 2048 11263 244 327 39.8 328.0 658.6 0.7 904.0 4
cc12-2n 4096 24574 473 617 930.4 621.8 933.1 2.6 639.2 9
cc3-10n 1000 13500 50 75 0.3 75.0 1.2 0.0 1.0 0
cc3-11n 1331 19965 61 92 0.5 92.0 1.2 0.0 0.8 0
cc3-12n 1728 28512 74 111 2.1 111.0 6.6 0.0 3.8 0
cc7-3n 2187 15308 222 290 51.4 290.7 449.6 0.8 410.3 3
cc9-2n 512 2304 64 98 73.5 98.9 598.7 0.6 575.5 2

Table 12 PUCNU PCSTP instances (uniform PCSTP version of the PUC dataset). Column ‘Impr.’ shows
the improvement with respect to the best solution computed by B&C. Results computed by local branching
on the y-model. Time limits set to one hour.

BEST AVG STD
Instance |V | |E| |T | UB Time (s.) UB Time (s.) UB Time (s.) Impr.

bipa2nu 3300 18073 300 324 18.0 324.0 534.2 0.0 580.8 1
cc10-2nu 1024 5120 135 168 253.0 169.2 1059.5 0.6 1140.6 3
cc11-2nu 2048 11263 244 305 158.5 306.5 612.7 1.3 563.0 7
cc12-2nu 4096 24574 473 568 1427.2 571.0 921.5 1.5 893.8 13
cc3-10nu 1000 13500 50 61 0.5 61.0 4.2 0.0 5.6 0
cc3-11nu 1331 19965 61 79 11.6 79.3 365.4 0.5 571.8 1
cc3-12nu 1728 28512 74 95 12.2 95.0 412.3 0.0 538.5 1
cc7-3nu 2187 15308 222 271 565.0 274.1 639.5 1.3 751.4 9

Thinning out Steiner trees 25

Table 13 H and H2 PCSTP instances. Column ‘Impr.’ shows the improvement with respect to the best
solution computed by B&C. Results computed by local branching on the y-model for uniform instances
(hc*u(2)) and on the (x,y)-model for all non-uniform instances (hc*p(2)). For large non-uniform hyper-
cubes (starting from hc10p(2)), the blurred version of the set-covering heuristic is applied instead. Time
limits set to one hour.

BEST AVG STD
Instance |V | |E| |T | UB Time (s.) UB Time (s.) UB Time (s.) Impr.

hc8p 256 1024 256 15206 537.3 15228.5 1514.8 15.7 1234.1 58
hc9p 512 2304 512 30043 3062.5 30084.0 1967.6 25.2 1073.5 209
hc10p 1024 5120 1024 59866 919.1 59965.2 1078.3 46.4 922.7 728
hc10u 1024 5120 1024 559 2349.4 559.9 773.6 0.3 1081.3 3
hc11p 2048 11264 2048 119191 3600.0 119377.6 1851.1 96.4 1114.0 1806
hc11u 2048 11264 2048 1116 2284.5 1117.2 1568.6 0.8 1193.9 4
hc12p 4096 24576 4096 235860 2542.6 236103.4 2417.0 147.2 685.5 4621
hc12u 4096 24576 4096 2221 310.5 2223.1 1078.5 1.4 1035.8 5

hc8p2 256 1024 256 15231 178.3 15255.0 1271.7 17.8 996.9 60
hc9u2 512 2304 512 190 10.0 190.0 15.4 0.0 3.0 0
hc10p2 1024 5120 1024 59930 2119.8 59966.4 1849.7 21.5 983.5 601
hc10u2 1024 5120 1024 380 47.7 380.3 1287.8 0.5 1119.2 2
hc11p2 2048 11264 2048 119236 330.5 119381.8 1106.5 89.7 704.0 1762
hc11u2 2048 11264 2048 750 2009.5 751.4 1596.3 0.7 1131.7 11
hc12p2 4096 24576 4096 235687 3172.9 235985.0 2099.7 217.3 1076.0 4793
hc12u2 4096 24576 4096 1494 101.9 1494.1 671.8 0.3 1031.3 13

Table 14 I640 PCSTP instances. Column ‘Impr.’ shows the improvement with respect to the best solution
computed by B&C. Results computed by local branching on the (x,y)-model. Time limits set to one hour.

BEST AVG STD
Instance |V | |E| |T | UB Time (s.) UB Time (s.) UB Time (s.) Impr.

i640-311 640 4135 160 33503 1062.2 33518.8 2045.0 20.4 1093.3 44
i640-312 640 4135 160 32721 152.9 32721.0 1846.1 0.0 1147.9 69
i640-313 640 4135 160 32401 200.1 32403.0 1302.3 6.3 906.8 0
i640-314 640 4135 160 32871 1572.9 32893.1 1590.9 20.4 1147.9 88
i640-315 640 4135 160 32616 491.3 32631.3 1621.2 9.3 1059.4 50

i640-321 640 204480 160 28787 309.3 28788.3 1121.0 1.6 1234.3 16
i640-322 640 204480 160 28458 943.7 28461.2 989.0 3.9 828.9 9
i640-323 640 204480 160 28153 9.2 28153.5 667.8 0.5 687.5 4
i640-324 640 204480 160 28746 44.5 28747.5 864.6 1.0 1116.1 14
i640-325 640 204480 160 28385 31.3 28386.0 1588.6 0.9 1589.0 1

i640-341 640 40896 160 29702 1585.8 29720.5 1679.1 14.2 984.2 37
i640-342 640 40896 160 29806 1591.9 29828.8 1889.1 16.8 915.5 32
i640-343 640 40896 160 30056 307.3 30059.9 1093.9 8.2 691.1 0
i640-344 640 40896 160 29921 365.2 29943.8 1370.6 12.8 913.1 21
i640-345 640 40896 160 30004 2580.5 30029.6 2289.4 18.7 1141.9 78

26 Fischetti et al.

References

1. 11th DIMACS Implementation Challenge in Collaboration with ICERM: Steiner tree problems
(2014). URL http://dimacs11.zib.de/home.html

2. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In:
Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 245–270. Springer (2013)

3. Andreello, G., Caprara, A., Fischetti, M.: Embedding {0, 1/2}-cuts in a branch-and-cut framework:
A computational study. INFORMS Journal on Computing 19(2), 229–238 (2007)

4. de Aragão, M.P., Werneck, R.F.F.: On the implementation of MST-based heuristics for the Steiner
problem in graphs. In: D.M. Mount, C. Stein (eds.) ALENEX, Lecture Notes in Computer Science,
vol. 2409, pp. 1–15. Springer (2002)

5. Backes, C., Rurainski, A., Klau, G.W., Müller, O., Stöckel, D., Gerasch, A., Küntzer, J., Maisel, D.,
Ludwig, N., Hein, M., Keller, A., Burtscher, H., Kaufmann, M., Meese, E., Lenhof, H.P.: An integer
linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic
Acids Research 40, 1–13 (2012)

6. Caprara, A., Fischetti, M.: {0, 1/2}-Chvátal-Gomory cuts. Mathematical Programming 74(3), 221–
235 (1996)

7. Caprara, A., Fischetti, M., Toth, P.: A heuristic algorithm for the set covering problem. In: Integer
Programming and Combinatorial Optimization, pp. 72–84. Springer Berlin Heidelberg (1996)

8. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations
Research 47(5), 730–743 (1999)

9. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum flow prob-
lem 19, 390–410 (1994.)

10. Best bounds as of August 1, 2014 for SteinLib instances (2014). http://dimacs11.zib.de/

instances/bounds20140801.txt
11. Results of the 11th DIMACS Competition on Steiner Tree Problems (2015). http://dimacs11.

zib.de/contest/results/results.html
12. Duin, C.: Preprocessing the Steiner Problem in Graphs. In: D.Z. Du, J. Smith, J. Rubinstein (eds.)

Advances in Steiner Trees, Combinatorial Optimization, vol. 6, pp. 175–233. Springer US (2000)
13. Eisenstat, D.: dtree: dynamic trees à la carte (2014). http://www.davideisenstat.com/dtree/
14. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1-3), 23–47 (2003)
15. Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain (integer) linear

programs. Mathematical Programming Computation 4(3), 239–273 (2012)
16. Fischetti, M., Monaci, M.: Proximity search for 0-1 mixed-integer convex programming. Journal of

Heuristics 20(6), 709–731 (2014)
17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics,

Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands (2004)
18. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3), 207–

232 (1998). DOI 10.1002/(SICI)1097-0037(199810)32:3〈207::AID-NET5〉3.0.CO;2-O. URL http:

//dblp.uni-trier.de/db/journals/networks/networks32.html#KochM98
19. Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree problems in graphs. Tech.

Rep. ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, Berlin
(2000). URL http://elib.zib.de/steinlib

20. Leitner, M., Ljubić, I., Luipersbeck, M., Resch, M.: A Partition-Based Heuristic for the Steiner Tree
Problem in Large Graphs. In: M.J. Blesa, C. Blum, S. Voß (eds.) Hybrid Metaheuristics - Proceedings,
Lecture Notes in Computer Science, vol. 8457, pp. 56–70. Springer (2014)

21. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic frame-
work for the exact solution of the prize-collecting Steiner tree problem. Mathematical Programming
105(2-3), 427–449 (2006)

22. Lucena, A., Resende, M.G.: Strong lower bounds for the prize collecting Steiner problem in graphs.
Discrete Applied Mathematics 141(1), 277–294 (2004)

23. OGDF: The Open Graph Drawing Framework (2015). http://www.ogdf.net/
24. Uchoa, E., Werneck, R.F.: Fast local search for Steiner trees in graphs. In: G.E. Blelloch, D. Halperin

(eds.) ALENEX, pp. 1–10. SIAM (2010)
25. Wang, Y., Buchanan, A., Butenko, S.: On imposing connectivity constraints in integer programs

(2015). Submitted. Available at www.optimization-online.org/DB_HTML/2015/02/4768.

html
26. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Mathematical

Programming 28(3), 271–287 (1984). DOI 10.1007/BF02612335

http://dimacs11.zib.de/home.html
http://dimacs11.zib.de/instances/bounds20140801.txt
http://dimacs11.zib.de/instances/bounds20140801.txt
http://dimacs11.zib.de/contest/results/results.html
http://dimacs11.zib.de/contest/results/results.html
http://www.davideisenstat.com/dtree/
http://dblp.uni-trier.de/db/journals/networks/networks32.html#KochM98
http://dblp.uni-trier.de/db/journals/networks/networks32.html#KochM98
http://elib.zib.de/steinlib
http://www.ogdf.net/
www.optimization-online.org/DB_HTML/2015/02/4768.html
www.optimization-online.org/DB_HTML/2015/02/4768.html

	Introduction
	A node-based MIP model
	Algorithmic framework
	Computational results
	Conclusions

