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Abstract. We consider a survivable network design problem known as the 2-Node-
Connected Steiner Network Problem (2NCON): we are given a weighted undirected graph
with a node partition into two sets of customer nodes and one set of Steiner nodes. We
ask for the minimum weight connected subgraph containing all customer nodes, in which
the nodes of the second customer set are nodewise 2-connected. This problem class has
received lively attention in the past, especially with regard to exact ILP formulations
and their polyhedral properties.

In this paper, we present a transformation of this problem into a related problem con-
sidering directed graphs and use this to establish two novel ILP formulations to solve
2NCON, based on multi-commodity flow and on directed cuts, respectively. We prove
the advantages of our formulations and compare both approaches theoretically as well as
experimentally. Thereby we solve instances with up to 1600 nodes to provable optimality.

1 Introduction

Various survivable network design problems occur prominently in many real-world
fiber-optic networks and telecommunication applications, see, e.g., [11,21] for general
surveys. We concentrate on the following NP-hard problem class:

Given an undirected graph G = (V, E), a cost function ¢ : E — RT and a vector
of connectivity requirements ¢ € {0,1,...,k}V| for some constant & > 0. A solution
of the k-Node-Connected Steiner Network problem (kNCON)3 [19] is a subgraph N =

* Supported by the German Research Foundation (DFG) through the Collaborative Research Center
“Computational Intelligence” (SFB 531)
** Supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation (FWF)
3 In the literature there are various names for this problem, with sometimes slightly differing defini-
tions. kNCON is also known as {0,. .. k}-(N)SND (Node Survivable Network Design) and General-
ized Steiner Network problem.



2 Markus Chimani, Maria Kandyba, Ivana Ljubié¢, and Petra Mutzel

(Vv,En) of G which contains all nodes v € V with g, > 0, minimizes ) . By Ce
and satisfies the following connectivity property: for every pair of nodes s,t € Vi,
N contains g := min{ps, 0;} node-disjoint paths connecting them. We can relax the
problem by replacing the node-disjointness with edge-disjointness, and obtain the k-
Edge-Connected Steiner Network Problem (KECON). For simplicity, we define R; :=
{veV|o, =i} forall 0 <i <k, and call the set R := J;.( Ri the customer nodes.
We can assume that |Ra| > 2, since otherwise we obtain the traditional Steiner tree
problem.

A lot of research has been conducted on this problem, both in the fields of effective
heuristics and approximation algorithms, see [11] for an overview. However, these are
beyond the scope of this paper, as we will concentrate on the exact ILP formulations.
This is based to the fact that recent advances in computational power and ILP solvers,
when used in conjunction with strong models, allow to solve real-world instances for
other network problems to provable optimality within reasonable time bounds; see, e.g.,
[1,3,16]. Furthermore, ILP formulations also often form the basis of approximation
schemata.

For kECON and kNCON, Grotschel, Monma and Stoer [7] described cut-based
integer linear programs (ILP). Apart from such formulations, the problem can also be
formulated in terms of multi-commodity flow, as done by Raghavan [17].

Regarding 2ECON;, it has been shown that for both concepts formulations based
on oriented graphs are stronger than undirected formulations: an orientation of an
undirected graph G is a directed graph G’, which is obtained by transforming each
edge of G into a directed arc. Robbins [18] showed that a graph G is 2-edge-connected
if and only if there exists an orientation G’ with directed paths (v — w) and (w — v)
for every pair of nodes v, w. This fact has been exploited by Chopra [5] for solving
2ECON via directed graphs, who proved his formulation to be polytope-wise superior
to the undirected formulation mentioned above. Goemans [6] and Stoer [19, pp. 31-32]
extended this formulation to kECON for the case that all connectivity requirements
are 0, 1 or even; later Magnanti and Raghavan [15] extended it for general k.

It has been an open problem [17, p. 183],[19, pp. 32,134] whether a similar orienta-
tion technique can be used for KNCON-type problems. Recently, Chimani, Kandyba,
and Mutzel [4] showed that this is indeed possible for the 2-Root-Connected Steiner
Network Problem (2RSN) and its prize-collecting variant (2RPCSN), where the node-
wise 2-connectedness is required only with a special root node r € V; i.e., each node
v € R has to have g, node-disjoint paths with r. A certain orientability property for
the feasible networks of this problem was shown, and was used to obtain a novel ILP
formulation based on directed cuts for this problem.

In this paper, we present how the more prominent 2NCON problem can be trans-
formed in a variant of 2RSN (Section 2) and derive two new ILP formulations based
on different concepts: one based on multi-commodity flow (Section 3) and one based
on directed cuts, only requiring easily separable constraints (Section 4). We show the
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theoretical advantages of both new formulations compared to the previously known
ILPs. Furthermore, we prove that our approaches are equivalent from the polyhedral
point of view (Section 5). Nonetheless, the cut formulation has certain advantages in
practice, as we show in an experimental study (Section 6).

2 Directed 2NCON

The main problem with node-disjointness is that Robbins’ theorem can only be ex-
ploited for 2ECON. Furthermore, it is in general not possible to orient an undirected
2-connected graph such that for every pair of nodes v,w € Ry, there are two node-
disjoint directed paths, one from v to w and one from w to v. Up until now, this was
the main hindrance why there were no orientation-based formulations for 2NCON.
We require the following theorem, shown in [4], as a foundation to show the validity
all the formulations below. We rephrase it such that it is more useful in the following:

Theorem 1 ([4]). Let G = (V, E) be a graph with some root node r € V and the

property that each non-trivial (i.e., larger than a single edge) 2-connected component

contains r. Then there exists an orientation G’ such that:

— For each node v € V' \ {r} which does not share a common non-trivial 2-connected
component (block) with r, G' contains a directed path (r — v).

— For each node v € V' \ {r} which shares a common non-trivial block with r, G’
contains a directed path (r — v) and a directed path (v — r), which are node-
disjoint except for r and v.

The proof of this theorem allows an insight which will be of particular use for our
problem:

Corollary 1. Let the graph G be defined as in Theorem 1, and let there be only a single
non-trivial block. Then there exist two orientations G' and G" with the properties of
Theorem 1 and:

— Only one single arc in G’ is directed towards r.

— Only one single arc in G" is directed outwards from r.

Proof. The idea of the proof for Theorem 1 works as follows: we first direct all the
edges of the trivial blocks from the node nearer to r to the node farther away. We
then consider the non-trivial blocks separately and orient them as follows: We start
with a directed cycle through r and label the contained nodes in an increasing fashion.
Thereby, the root r obtains the smallest label. Hence there is only a single edge é
which is directed from a larger label number to the smaller number, i.e., the root.
Then the proof proceeds by incrementally choosing a non-oriented path between two
labeled nodes: we orient these paths and label their nodes uniquely in such a way that
the property of increasing labels remains true. Hence we require only a single edge é
per block to be directed towards r. If G only contains a single non-trivial block, we
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get the corollary’s claim for G’. By inverting all orientations in this block, we obtain
G g

Based on these results we can therefore introduce a directed variant of 2NCON and
show that it is equivalent to the original 2NCON problem.

Definition 1 (D2NCON). Given an undirected graph G = (V, E), a cost function
c: E — RT, a vector of connectivity requirements o € {0, 1, 2}“/‘, and a node r € V
with ¢, = 2. The Directed 2-Node-Connected Steiner Network Problem (D2NCON)
is to find a subgraph N = (Vy, Ex) of G and an orientation N’ = (Vn, Ay) of N
which minimize ) . Ey Ce under the restriction that N "'may only contain a single edge
oriented towards r and the following connectivity properties are satisfied for each node
veV\{rk

— If 9, = 1, N’ contains a directed path (r — v).

— If o, = 2, N’ contains a directed path (r — v) and a directed path (v — ), which

are node-disjoint except for r and v.

Theorem 2. Given an undirected graph G = (V,E), a cost function ¢ : E — RT,
and a vector of connectivity requirements o € {0, 1,2}|V|. Choose v € V' with o, =
2 arbitrarily. For this input, any solution of D2NCON can be transformed into an
equivalent solution of 2NCON with the same objective value, and vice versa.

Proof. D2NCON = 2NCON. Let N’ be an optimal orientation for D2NCON. Assume
that there are at least two non-trivial blocks B; and Bs containing the nodes vy, v €
R, respectively. Then r has to be a cut vertex contained in both blocks. But since a
valid orientation requires directed paths (v; — r) and (vy — r) there have to be at
least two edges being directed towards r, which is a contradiction to the feasibility of
the solution. Hence we know that N’ will only contain a single non-trivial block, and
therefore the corresponding subgraph N clearly is a feasible solution for 2NCON.
2NCON — D2NCON. Let N be a feasible solution for 2NCON. We show that for
every choice of r there is an orientation N’ which is feasible for D2NCON: any solution
of 2NCON has the property that all Ro nodes lie in a common block. Hence we can
choose any of these nodes as our root r and apply Theorem 1 and Corollary 1, which
guarantees the existence of an orientation required by D2NCON. ad

Hence, we can find formulations for the D2NCON problem, and by solving D2NCON
we automatically solve 2NCON as well. In the following sections, the problem input
will always be defined as given above; the root node r € Ry is chosen arbitrarily. Let
RL:=R;\ {r}, for 0 <i <2, and R' := R\ {r}. Furthermore, let G = (V, A) be the
bidirected graph obtained from G by replacing every undirected edge {u,v} € E by
two directed arcs (u,v), (v,u) € A with costs cuy = Cou = Cfy,0}-
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Remark. One may try to model node-connectivity by only computing edge-connectivity
in a modified underlying graph, by replacing each node by a directed arc. This is not
valid in our case as the orientability theorems require bidirectedness of the underlying
graphs.

3 Multi-Commodity Flow for D2NCON

We start with presenting a novel ILP formulation (DFLOW) based on multi-commodity
flow for D2NCON, and therefore for 2NCON. As there has been much research on
flow-based formulations for the latter problem, we compare our formulation to the
currently strongest one, by Raghavan [17, pp. 180-181]*, and show that our formulation
is theoretically beneficial.

The idea is to consider GG and send exactly one unit of flow from the root to each
R’ node. Furthermore, we send one unit of flow from each R, customer back to the
root. Thereby it has to be ensured that the pairs of forward- and backward-flows do
not use common nodes and edges except for v and r. We define the set of commodities
C={(r,v) |veR}IU{(v,r) | v € RL}; aflow of commodity x € C on the arc (i,5) € A
is modeled by the variable ff; Finally, we introduce the variables x;; which are 1, if
the solution network contains the arc (i,5) € A.

DFLow : min Z Cij * Tij (1)
(1,5)€A
-1, ifv=s
o=y fr= Lifv=t Vx=(s,t)eC,VveV (2)
(i,v)€A (v,i)€A 0, else
Swes (S0 IS <1 weRLVweV (v} (3)
0<f5 <y Y(i,j) € A,Vx €C (4)
Tpw + T < 1 V{v,w} € E (5)
> (iryea Tir =1 (6)
Tyw € {0,1} V(v,w) € A (7)

The flow-conservation constraints (2) define the sent flow and ensure the flow balances,
while the coupling constraints (3) ensure the node-disjointness of the pairs of forward
and backward flow, by guaranteeing that at most one unit of flow per commodity pair
is sent into any node. The inequalities (4) ensure the flow capacities and bind the flow

4 Various aspects of the considered problems were studied in papers by Stoer and Raghavan (with
coauthors) [7-9, 15]. For simplicity and common notations we reference their theses [17, 19], including
page numbers when suitable.
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variables f to the network-defining variables z. For the latter, (5) ensures that we
have a unique orientation for the selected edges, and (6) requires that only one arc is
selected which is oriented towards the root r.

Theorem 3. An optimal solution for DFLOW gives an optimal solution for the cor-
responding 2NCON problem.

Proof. Clearly, the flow-constraints guarantee the existence of the directed paths from r
to all customer nodes, and for each R/, customer we also have a directed path backwards
to 7. Due to Robbins’ theorem [18] this guarantees that every R/, customer belongs
to the same edge-biconnected component as r. Corollary 1, Theorem 2, (3) and (6)
guarantee that this component is 2-node-connected. O

Note that if we consider this ILP without the coupling constraints, all resulting feasible
solutions for & would induce feasible solutions for the 2ECON problem and vice versa.
In fact, the accordingly reduced ILP is equivalent to Raghavan’s ILP for 2ECON [17,
pp. 159-161,188]. Raghavan also presented a formulation for the 2NCON problem
by computing two multi-commodity flows ¢ and h simultaneously [17, p. 180-181]: g
represents directed flow for the induced 2ECON problem, h represents an non-oriented
flow with node-disjointness constraints.® The two flows are bound to each other only
by their common use of the z. variables, for e € E, which define whether the given
undirected edge e is contained in the solution network or not. For notational simplicity
we can write both z,,, and z,, for e = {v,w}. We denote Raghavan’s formulation as
MFLow (mixed flow):

MFLOW : min Z Ce " Ze (8)
)
-1, ifv=s
>oogh— > g5 = Lifv=t Vx=(s,t)eC,VveV (9)
(i,v)eA (vi)eA 0, else
T + G < Zow V{v,w} € B,¥x,x' €C (10)
gow >0 Y(v,w) € A,Vx €C (11)
—2,ifv=s
> hY— > RN = 2,ifv=t Vx=(s,t)eD,VveV (12)
(i,v)eA (vi)eA 0, else
0 < hw < Zuw V(v,w) € A,Yx € D (13)
> (vi)eA RY <1 Vx = (s,t) € D,v e V\{s,t} (14)
2 € {0,1} Vec E (15)

5 Note that this formulation has been developed for general k, where it is called improved undirected
flow formulation with node-disjointness constraints.
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Thereby, we consider an arbitrary ordering (vi,va,vs,...) of the nodes of Re and
define vy := v|g,|- We then obtain the “cyclic” commodity set D := {(vi,vit1) | 0 <
i < |Ra|} [17, pp. 89-92].

Let Ppr and Py be the polyhedra of the feasible solutions of the LP relaxations
for DFLOw and MFLOW, respectively. We then consider their projections into the
space of z variables, i.e., proj,(Ppr) = {z € [0,1]/Fl | (z,f) € Ppr, zj = xij +
zj; V{i,j} € B} and proj,(Pur) = {z € [0, 11 | (2,9,h) € Pyr}. We also consider
extended projections including the flow variables f € [0,1]I411€I i.e., variables not in
the objective function. Let pl‘OjZ’f(,PDF) ={(z,f) | (z,f) € Ppr,2e = xij + x5 Ve =
{i,j} € E} be the projection of Ppc into the variable space of z and retaining the
flow f. Let proj, ¢(Pur) = {(z, f) | (2,9,h) € Pur, f = g} be the projection of Py
ignoring the h flow. In other words, we identify the flows f and g.

We show that the lower bounds obtained by the LP relaxations of our new formu-
lation are at least as tight as those of the mixed flow formulation. Therefore note that
the flow f is a kind of natural fusion of the flow ¢ and the node-disjointness properties
of h.

Theorem 4. The DFLOW formulation is at least as strong as the MFLOW formu-
lation, i.e., proj,(Ppr) C proj,(Pur). Furthermore we even have proj, ;(Ppr) C
proj, r(Pur)

Proof. We show that for any feasible solution (x, f) of DFLOW we can obtain a feasible
solution (z,g,h) of MFLOW, using proj, ; as described above. Based on these, it is
easy to see that (9), (10), (11), and (15) are satisfied. It remains to show that we can
always find a feasible flow solution h within the network G with the projected edge
capacities z. Let x := (s,t) € D. If x € C, we can choose hy = f& + fe(t’s), which
satisfies (12), (13), (14) due to (4) and proj,.

Assume x ¢ C. We look at the maximum (s,t)-flow in G with capacities z and
consider any corresponding minimum (s, t)-cut; let S be the cut set containing s, and
V'\ S contains t. W.l.o.g. assume that r € S. Since (2) is satisfied for the commodities
(r,t) and (t,r), the maximum undirected (7, t)-flow, and therefore also the maximum
undirected (s, t)-flow hX, is at least 2. Assume we cannot send hX without violating (14).
Then there exists a single node w such that the total capacity o of the cut edges which
do not send their flow through w is less than one. If w # r, (3) guarantees that we
can send two (undirected) flow units between r and ¢ whereby at most one unit is sent
through w. This is a contradition to p. If w = r, (6) guarantees an in-flow into r of
exactly 1 for both the (s,r) and the (¢,7) flow. Hence, using the two 1-flows f(*) and
f&) we can send an undirected flow of at least 1 between s and ¢ without using r,
which is again a contradition to .

To establish the second claim it is enough to construct a feasible flow g in MFLOW
which sends more than one unit into the root r. This is infeasible for DFLOw as (6) is
violated. O
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Observation 1. DFLOW is more compact than MFLOW.

IL.e., our novel formulation requires less variables and less constraints than MFLOW.
Furthermore, our formulation answers the question by Raghavan [17, p. 183], whether
his flow variables g and h can be bounded together more tightly. Note that Corollary 1
is crucial for the validity of our approach, which explains why this compact formulation
could not be used legitimately before.

4 Directed-Cut for D2NCON

We now present an ILP formulation (DCuT) based on directed cuts. Its number of
variables is independent of the size of R as it only requires variables x, for all e € A.
On the other hand, it requires an exponential number of constraints. In the following,
we will see that these constraints are of the traditional cut type and therefore easily
and polynomially separable within a Branch-and-Cut approach. As seen in, e.g., [4,
12], cut formulations may clearly outperform flow formulations in practice, which has
been the main motivation to develop DCuT. The ILP itself is a variant of the ILP for
the 2RSN problem [4], guaranteeing that only one edge is directed into the arbitrarily
chosen 7.

Let S C V, then 0/(S) := {(s,t) € A| s € S,t € V'\ S} denotes the arcs leaving
S, and 0,(9) := {(s,t) € A| s € V'\ S,t € S} the arcs entering S. If the graph G is
clear from the context, we will omit the subscript. Furthermore, we use the shorthands
Gy = G\ {w}, for some w € V, and z(B) := > . . for some B C A.

DCur: min Z Cij * Tij (16)
(1,5)€A
Tow + Ty < 1 V{v,w} € E 17
z(67(S)) >1 VSCV\{ry,SNR #0 18
z(0t(S)) > 1 VSCVA\{r},SNR, #0

Yw e V\ {r}, VS, S CV\ {r,w},

265 (S1)) + (35 (S2)) =1 $11 S NR) £ 10

Z(i,r)eA Tip = 1
Tyw € {0,1} V(v,w) € A

As before, (17) guarantees the unique orientation of chosen edges. The constraints
(18) and (19) ensure the existence of the required paths, and (20) assures the node-
disjointness of these paths. Finally, (21) requires exactly one edge being directed to-
wards the root. Based on this description and Corollary 1 we obtain:

Theorem 5. An optimal solution for DCUT gives an optimal solution for the corre-
sponding 2NCON problem.



Strong Formulations for 2-Node-Connected Steiner Network Problems (TR) 9

We can compare this formulation with the common and currently best known cut-
formulation presented in [19, p. 14], which we denote by UCUT since it is based on
undirected cuts. Therefore we define 6¢(S) := {{s,t} € E| s € S,t € V' \ S} as the
edges with one incident node in S and the other one in its complement. We use the
variables z, for all e € F which are set to 1 if the corresponding edge is selected into
N, and 0 otherwise.

UCurt: min Z Ce * Ze (23)
eck

1 VSCV.0#SNR # Ry (
2 VS CV,0#SNRy #Re (
2006, (S)) > 1 Ywe V,VS CV,0# SN (R \ {w}) # Ra \ {w} (

ze € {0,1} Vee E (
We can show that our (rooted, directed) DCUT formulation is stronger than the (un-
rooted, undirected) UCUT formulation. Let Ppc and Pyc be the polyhedra of the
feasible solutions of the LP relaxations for DCuT and UCuT, respectively. We can
use the natural projection Zyy + Tywy = 2¢ for all € = {v,w} € F in order to obtain
proj.(Ppc)-

Theorem 6. We have proj,(Ppc) C Puc, i.e., the DCUT formulation is strictly
stronger than the UCUT formulation.

Proof. We can show that proj,(Ppc) # Puc using the triangle graph with ¢ = 1 for
each node. The solution z, = 0.5 for each edge e is feasible for UCUT, but there is no
corresponding flow in DCUT which would be feasible. We can obtain an example with
|R2| > 2 by attaching a feasible network of Re nodes to one of the triangle’s nodes.

Hence it remains to show that proj,(Ppc) C Puc, i.e., that we can generate the
undirected constraints from their directed counterparts. Recall that for any set S C V
we have z(6(S)) = z(6(V\S)) = (6= (V\S))+x(d~(V)). Consider any constraint (24)
with its corresponding set S. If » € S, we can use (18) and have z(67(V '\ 5)) > 1.
Analogously, if r ¢ S, we have £(67(S)) = x(67(V '\ S)) > 1. Therefore, in both cases
we have z(6(S5)) > 1 and the undirected constraint is hence satisfied.

Consider any constraint (25) with its corresponding set S; we show: z(§(S5)) =
x(67(S)) + z(67(S)) > 2. If r € V' \ S, the inequalities (18) and (19) directly give
the above formula. If » € S, we can consider the cut set V' \ S instead of S, as
2(0(S)) = z(6(V \ 9)). Using the same argument for the graph G,, we can generate
the inequalities (26) from the inequalities (20) with S; = Sa. 0
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5 Strength of D2NCON formulations

5.1 Polyhedral Comparison

Let proj,(Ppr) be the natural projection obtained from Ppr by only considering its
x variables.

Theorem 7. We have proj,(Ppr) = Ppc, i.e., the DFLOW formulation and the
DCuT formulation are equally strong.

Proof. proj,(Ppr) € Ppc : We show that if (z, f) is feasible for DFLOW, then z is
feasible for DCUT, i.e., x satisfies the constraints (18), (19), and (20).

Assume there is a set S C V' \ {r} with v € SNR' and z(6~(5)) < 1. This would
imply that the minimum (r,v)-cut is less than 1. By the max-flow min-cut theorem
this implies that the maximum (r,v)-flow is less than 1, which is a contradiction to
the corresponding flow constraint (2) with commodity (7, v). Analogously, we can show
that the constraints (19) are also satisfied.

Let v € RY. Since f satisfies DFLOW, we know that there is exactly one unit of
flow of commodity (r,v) going from r to v, and one unit commodity (v,r) going from
v to r. Hence the total amount of flow between r and v is 2. The constraints (3) ensure
that deleting any node w # r in G can decrease this amount by at most one flow
unit. Hence there is an (undirected) max-flow of at least 1 between r and v in G,
and therefore the minimum undirected cut between any v € R) and r in any G, is
at least 1. Since for any sets S; and Sp in (20), there exists an R/, customer node in
S1 M Sy, the sum of the respective cut sizes has to be at least 1.

Ppc C proj,.(Ppr) : We show that if  is feasible for DCUT, then there exists a flow
f such that (z, f) is feasible for DFLoOw. Clearly, all DFLOW constraints only dealing
with z-variables are satisfied as they are identical to the DCUT formulation. It remains
to show that we can fit flow into the network using the xz-values as capacities. Note that
the flows of each commodity are mostly independent of each other, as only the coupling
constraints (3) define a dependency between the forward and the backward flow for
each v € R). It is clear that we can find a flow from r to any v € R/, since DCuUT’s
constraint (18) guarantees a minimum cut between r and v of at least 1. Analogously,
because of (18) and (19), we can also find a forward and a backward flow (f(m’), f(”))
for each v € R}, and it remains to show that there always exists such a pair of flows
which satisfies (3) for all nodes w € V'\ {r,v}. Let us assume there exists no such pair

of flows. Then let (f(”’), f(””’)> be the flows satisfying (2) and (4) where the maximal
violation of (3) is minimal. Let @ be a node where such a maximal violation occurs, cf.
Fig. 1(a). The paths used by the flow can then be divided into multiple paths which
go through w (P), and multiple paths which do not go through @ (Q). Let o > 1 be
the amount of flow over P, then we have 8 =2 — a < 1 as the flow over Q.
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Due to constraint (20) we know that there exists a set Q1 of additional paths not
going through 1 over which we can send 87 > 0 amount of flow, such that 3+ = 1.

Hence we can look at the flow pair ( f (rv) f (””")>, where the flow over w is only 1, and

the second flow unit is sent over that paths of Q and QT.% Since the original flow was
minimal in terms of constraint violation, this new pair of flows has to have a different
node w over which at least o flow units are sent, say v > a. Clearly, w has to be part
of Q7. Even when QV contributes all of its flow units to v, we have v = ' + 3% and
have:

a<fr+y =1-+7=1-2+a+7 = 1<

The paths of Q will not contribute to -, since then we could modify the original flow
( foro) f (””")> such that (3) is less violated for w (without introducing an additional

violation of at least ). Thus we have that «' has to be contributed by paths of P.
Since the new flow sends exactly 1 unit over P we have the fact that all paths in P go
through w and w: otherwise we could choose a path going through w and not through
w and further reduce the flow through the latter.

Hence we know that in (f‘(m})’ f(vvr)) both w and w have a through-flow of o, and

the paths in P can be subdivided into subpaths between r and w, @ and w, and w and
v, assuming, w.l.o.g. that w is closer to r than w. But then, we can iterate the above
argument, send only 1 unit of flow through w and @, and find an additional node w
which has too much through-flow. This argument can be iterated ad infinitum, thus
requiring an infinitely large graph, which states a contradition. ad

5.2 Additional Cut-Constraints

Recall that UCUT without (26) is the traditional undirected cut formulation for 2ECON.
It has been shown in [19] that the latter formulation can be strengthened by adding cer-
tain classes of valid inequalities which are NP-hard to separate. Chopra [5] showed that
his directed 2ECON cut formulation inherently includes one of these classes, namely
the partition inequalities; in [19, pp. 130-134] it was shown that the latter formulation
also includes the class of the (polynomially separable) Prodon inequalities. Moreover,
Raghavan showed that his improved undirected multi-commodity flow formulation for
kKECON, which for & = 2 is equivalent to both directed flow and directed cut formula-
tions for 2ECON, also includes the odd-hole inequalities and the combinatorial-design
inequalities [17, pp. 165-180].

6 We can choose this new pair of flows such that (2) and (4) still holds, since, even if the newly routed
flow over QT sends the total amount 3" in a single direction (say from r to v), we know that f
satisfies (2) and therefore sends at least o —1 = S units into each direction. In the modified flow we
can hence remove enough directed flow per direction from P to allow valid flow using Q™ instead.
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(a) Sketch for proof part of Ppc C proj,(Ppr)

(b) The node-partition inequalities are not satisfied.

Fig. 1. In (b), all nodes have connectivity requirement 2, the root node is denoted by the black circle,
and all arcs have an z-value of 0.5.

By dropping the constraints (20) and (21) from DCUT, we obtain the directed cut
formulation for 2ECON. Hence we can conclude:

Proposition 1. DCUT and DFLOW inherently ensure the validity of the partition,
Prodon, odd-hole, and combinatorial-design inequalities.

On the other hand we can show:

Proposition 2. None of the above formulations induces the undirected node-partition
inequalities [19, pp. 91-94], i.e., undirected partition inequalities where one node is
removed from the graph. This result constitutes a negative answer for the open ques-
tion [17, p. 183] whether MFLOW would induce this constraint class.

Proof. See Figure 1(b) for an example, which denotes the x variables of the arcs. Once
more, we use the natural projection Zy, + Tyy = 2y for all {v,w} € E to obtain
an undirected network: when removing the central node, the partition inequality with
three partition sets is violated. Yet the solution is feasible for the LP relaxation of
DCur. O

5.3 Algorithmical Remarks

From the point of formulation strength, using DFLOW instead of DCUT might seem
like a reasonable choice in general, as both the number of variables and constraints are
bound by a polynomial. But in practice, the latter has certain advantages: it requires
much less variables, especially when R is large. Furthermore, its drawback of an expo-
nential number of constraints can turn out to be beneficial, as the actual computation
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of an optimal solution will in general not require all of these constraints. Therefore,
traditional Branch-and-Cut techniques can be expected to be highly efficient, since
all constraints in DCUT can be easily separated using simple polynomial max-flow
algorithms, see, e.g., [22].

6 Experiments

The main purpose of our experimental study was to obtain an unskewed comparison
between our two formulations DCUT and DFLOW. Therefore, we implemented both
formulations using CPLEX 10.0’s Branch-and-Bound framework, without any prepro-
cessing or primal heuristics. The additionally necessary separation routines for DCuUT
were implemented in C4++ using LEDA 5.1.1 and the efficient max-flow algorithm of
[2]. For specific separation strategies see [4,12]. All the tests were performed on an a
single core of an Intel Core 2 Duo E4300 with 1.80GHz, 2GB of RAM per process, and
a time limit of 2 hours per problem instance.

We use three different benchmark sets, which have also been used and thoroughly
described in [4] for the evaluation of 2RSN formulations. See Table 1 for a summary
of our experimental results and Figure 2 for diagrams visualizing them.

ClgS instances. The first benchmark set ClgS contains 25 instances based on real-world
map data of the city district Cologne-Ossendorf. The underlying graph has 190 nodes
and 377 edges. The instances differ in the customer nodes, and have 3-6 R, and 2-3
Ro customers.

Each instance of this group was solved to optimality within a few seconds, whereby
DFLow was on average 3 times faster than DCuT. This is due to the fact that the
underlying LPs of DFLOW are rather small for this small number of customer, and
the overhead of DCUT’s cut separation routines is comparably expensive. This picture
already shifts to the favor of DCUT, when we consider the related test set ClgS™ [4],
which only differs in that is has more customer nodes. Note that neither of both
approaches requires any branching.

Grid instances. We consider the artificial instances of [20] based on grid graphs with
100, 400, 900, and 1600 nodes. For each graph size there are 2x15 instances, using two
different edge cost functions, respectively. Any instance has 5-13 Ry customers, and
3-8 Ro customers.

| | ClgS [|Grid 100] Grid 400 | Grid 900 | Grid 1600 | K [ P1oo

|

DFlow][[ 0.5/0.5 |[ 11.4/22.2]209.6/281.01]1530.7/1737.2[5463.4/5569.3 (36.7%)[40.7/39.02[3013.8/2131.5

DCut |[1.1/1.65|] 0.3/0.9 |21.45/27.08 | 196.6/495.35 1739.7/1822.68 1/4.9 1.2/1.3

Table 1. Median/average CPU time in seconds. The percentage of successful instances is given in
brackets if not 100%. See Figure 2(c) for the P instances with 200 and 400 nodes.
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Fig. 2. Comparison of DFLOW and DCuT. The vertical axis gives the CPU time in seconds, while the
different instances per instance set are plotted on the horizontal axis in alphabetical order. For the
PCSTLib™" instances, the labeled names give the group and specify whether an instance has 100, 200,
or 400 nodes. If an instance was not solved to provable optimality within the time limit, the diagram
does not contain a data point for the corresponding formulation.

Eventhough the number of customer nodes is only slightly higher than for the CigS
instances, this is enough for DCUT to clearly outperform DFLoOw, cf. Table 1. There
are only 2 instances (both with 900 nodes) where DFLOW is slightly faster. The effect
of the increased number of customers is further amplified by the larger underlying
graphs, as this results in an even larger increase of variables for DFLoOw. While the
cut approach is able to solve all problems, the flow approach solves only 36.7% of the
largest instances within 2 hours.

PCSTLib"™ instances. The PCSTLib benchmark [10], was used in several studies,
e.g., [13,14], and contains originally random graphs divided into two groups K and P,
where 15%-27% and 34%-50% of the nodes are customers, respectively. The former
were generated to be similar to street map layouts. We consider the augmented PC-
STLib™ [4,20] benchmark, where roughly 1/3 of the customer nodes are selected to be
in Ro. For the experiments, we restricted ourselves to the graphs with up to 100 nodes
for group K, and up to 400 nodes for group P. Note that some of these instances are
infeasible for 2NCON as the underlying graph does not allow any two node-disjoint
paths between certain customers. Hence we report only on the feasible instances.

Again, DCUT is clearly faster than DFLOW: roughly 8 times for the K instances;
and over 1600 times faster for the P instances with 100 nodes, on average. The larger
graphs cannot be solved by DFLOW, but DCUT finds provably optimal solution for all
of them; cf. Fig. 2(c).
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