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Abstract

The Uncapacitated Facility Location (UFL) problem is one of the most
famous and most studied problems in the Operations Research literature.
Given a set of potential facility locations, and a set of customers, the goal
is to find a subset of facility locations to open, and to allocate each cus-
tomer to a single open facility, so that the facility opening plus customer
allocation costs are minimized. For each customer, the allocation cost is
assumed to be a linear or separable convex quadratic function. In this
paper we “‘thin out” the classical models from the literature, and use
generalized Benders cuts to replace a huge number of allocation variables
by a small number of continuous variables that model the customer al-
location cost directly. Although the idea of using Benders cuts for UFL
is not new (at least, when linear costs are considered), it was apparently
never computationally investigated in recent years. Instead, we show that
the approach allows for a significant boost in the performance of a Mixed-
Integer Programming solver, and report the optimal solution of a large set
of previously unsolved benchmark. In particular, dramatic speedups are
achieved for UFL’s with separable quadratic allocation costs—which turns
out to be much easier than their linear counterpart when our approach is
used.

The Uncapacitated Facility Location (UFL) problem is one of the most fa-
mous and most studied problems in the Operations Research literature. Given
a set I of potential facility locations, and a set J of customers, the goal is to find
a subset of facility locations to open, and to allocate each customer to a single
open facility, so that the facility opening plus customer allocation costs are min-
imized. In its classical version, the allocation cost for each customer is assumed
to be a linear function of the demand served by open facilities. The problem
can be easily formulated as a compact Mixed-Integer Linear Program (MILP).
In the last 50 years, two variants of this model (with aggregated and disaggre-
gated constraints) have been traditionally used in the literature. Both variants
however rely on a huge number of allocation variables, which is one of the main
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reasons why UFL still imposes a challenge for modern general-purpose MILP
solvers and Lagrangian relaxation techniques are generally preferred [4, 30, 37].

Recent experience with the Steiner Tree Problem [8] showed that some known
MILP models can be “thinned out” by removing unnecessary variables and con-
straints, with a very significant performance boost. In this paper we apply the
same approach to UFL, and use (generalized) Benders cuts to actually thin out
the classical models. In the resulting formulation, the huge number of allocation
variables is replaced by a linear number of continuous variables that model the
customer allocation cost directly, or even by a single continuos variable. For
UFL with linear costs, our Benders model is compact as it involves |I| + |J |
variables and |J | · (|I|+ 1) constraints.

In addition to UFL, we also study the quadratic UFL (qUFL) problem in
which customer demands are equal to one and allocation costs are proportional
to the square of the fraction of the demand allocated to a given facility. This
problem, also known as separable convex quadratic UFL, has been introduced in
[18]. Due to its simple structure, qUFL has been a subject of intensive studies
in the recent years. Many of the recently proposed methods for mixed integer
nonlinear programming (MINLP) consider qUFL as an inevitable part of their
computational studies, see e.g., [6, 7, 19, 20]. The importance of understanding
computational techniques for qUFL is also confirmed by its presence in the
Conic Benchmark library (CBLIB [13]), which is a library of the most relevant
and challenging benchmark problems for conic optimization.

Although the idea of using Benders cuts for UFL with linear costs is definitely
not new and can be considered folklore, to the best of our knowledge it was not
computationally investigated in recent years. The outcome of our research is
twofold:

1. On the one hand, the “thinning out” approach allows for a very significant
boost in the performance of the MILP solver, as we were able to solve to
proven optimality 7 previously unsolved benchmark instances for UFL,
and to improve the best-known heuristic value for 22 additional instances.
These instances were out of reach for any state-of-the-art MILP solver,
as the underlying models would involve tens of millions of variables and
constraints.

2. On the other hand, speedups of 4 orders of magnitude or more are re-
ported for qUFL with respect to previous solution methods—to our sur-
prise, qUFL turned out to be much easier than its linear counterpart when
our approach is properly implemented.

The paper is organized as follows. The classical UFL models are reported in
Section 1 for both the linear and separable quadratic cost cases. Nonlinear Ben-
ders cuts for convex optimization are reviewed in Section 2. Section 3 outlines
our overall solution scheme, with a discussion of actual implementation issues
that played a fundamental role for the effectiveness of our final solution algo-
rithm. Computational results for UFL with both linear and separable quadratic
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allocation costs are given in Section 4, while concluding remarks and possible
future works are finally addressed in Section 5.

1 MIP models

Let I be the index set of facility locations (|I| = n), let fi ≥ 0 be opening costs
for each facility i ∈ I, and let J be the index set of customers (|J | = m) with
allocation costs cij ≥ 0 defined for each pair (i, j) ∈ I × J . We will assume
without loss of generality that each customer can be allocated to every facility
(if this is not the case, we will assume cij = ∞). In the traditional compact
MILP formulation for UFL, n+m · n variables are used to model the problem.
For each i ∈ I, binary variable yi is set to one if facility i is open, and to zero,
otherwise. For each i ∈ I and j ∈ J , allocation variable xij is set to one, if
customer j is served by facility i, and to zero otherwise.

Linear case

The classical UFL model for the linear case then reads

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij (1)

s.t.
∑
i∈I

xij = 1 ∀j ∈ J (2)

xij ≤ yi ∀i ∈ I, j ∈ J (3)

xij ≥ 0 ∀i ∈ I, j ∈ J
yi ∈ {0, 1} ∀i ∈ I

The objective is to minimize the sum of facility opening costs, plus the customer
allocation costs. Constraints (2) make sure that every customer is assigned to
exactly one facility, and capacity constraints (3) make sure that allocation to
a facility i is only possible if this facility is open. Note that the integrality
condition on variables xij is redundant, i.e., for any integer y∗ each customer j
will set x∗ij = 1 for the closest facility i with y∗i = 1.

The model shown above is known as the disaggregated formulation, whereas
in its aggregated counterpart m · n constraints of type (3) are replaced by n
weaker constraints

∑
j∈J xij ≤ m · yi, for all i ∈ I.

There is a large body of work available in the existing literature on exact
and heuristic approaches for UFL. Recent survey articles focus on applications of
facility location in design of distribution systems [24], or supply chain manage-
ment [35], and a more general survey on UFL is given in [38]. Approaches applied
to UFL range from approximation algorithms [32], over (semi-) Lagrangian re-
laxations [4], and metaheuristics (see, e.g., a survey in [3]), to branch-and-bound
based algorithms in which lower bounds are calculated using dual ascent proce-
dures (see, e.g. the most recent one in [31]). The state-of-the-art exact algorithm
for UFL is given in [37]: the algorithm is based on a message passing approach
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in which a metaheuristic calculates the upper bounds and passes the informa-
tion to a branch-and-bound algorithm in which lower bounds are obtained by
a Lagrangian relaxation solved using a bundle method. A more comprehensive
overview of the most relevant recent literature can also be found in [37].

Separable convex quadratic case

UFL with separable convex quadratic allocation costs (denoted as qUFL in
the following), has been introduced in [18]. In this version of the problem, one
assumes cij > 0 for all i ∈ I and j ∈ J , and the allocation costs are proportional
to the square of a customer’s demand served by an open facility. More precisely,
the objective function (1) is replaced by:

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijx
2
ij (4)

Contrarily to the linear case, each variable xij will now represent the fraction
of demand of customer j served by facility i (in general, these values will no
longer assume integer values in the optimal solutions).

Given a binary vector y∗, there is a simple closed formula to compute optimal
allocation values for each customer. More specifically, for each customer j ∈ J
an optimal solution will set x∗ij = 0 for all i with y∗i = 0, and x∗ij = δ∗j /cij
for all i with y∗i = 1, where the normalization factor δ∗j = 1/

∑
i∈I:y∗

i =1(1/cij)

guarantees the fulfillment of (2); see e.g. [18] for details.
Sophisticated linearization and bounding techniques for qUFL have been

proposed in [18]. More recently, a very tight convex (second-order cone) MIP
formulation has been given in [19], namely:

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijzij (5)

s.t.
∑
i∈I

xij = 1 ∀j ∈ J (6)

xij ≤ yi ∀i ∈ I, j ∈ J (7)

x2ij ≤ zij yi ∀i ∈ I, j ∈ J (8)

xij ≥ 0 ∀i ∈ I, j ∈ J (9)

zij ≥ 0 ∀i ∈ I, j ∈ J (10)

yi ∈ {0, 1} ∀i ∈ I (11)

where (8) are second-order cone (hence convex) constraints as the right-hand-
side is the product of nonnegative variables. The model above is called per-
spective reformulation (see, e.g., [12]) as it strengthens the obvious definition of
the zij variables through constraints x2ij ≤ zij , by replacing the left-hand side

convex function x2ij with its perspective defined by yi(xij/yi)
2 if yi > 0, and

zero if yi = 0; see again [19] for details.
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Computational experience reported in [19] shows that continuous relaxation
of model (5)-(11), though very large, produces much tighter lower bounds than
its counterpart based on (4), so we used it in our study.

2 Benders decomposition for convex optimiza-
tion

Despite this broad set of solution approaches for UFL, it seems that Benders-like
decomposition methods have been neglected so far—at least from a computa-
tional viewpoint. As already mentioned, the aim of the present paper is to close
this gap and asses the computational performance of Benders decomposition for
UFL and its quadratic counterpart with separable convex objective function.

Our overall framework works as follows: as xij variables are a bottleneck for
MIP solvers, we just remove them from the model, and introduce in the objective
function a new set of continuous variables wj representing the allocation-cost
for all j ∈ J . The resulting master problem is then given by

min
∑
i∈I

fiyi +
∑
j∈J

wj (12)

s.t.
∑
i∈I

yi ≥ 2 (13)

wj ≥ Φj(y) ∀j ∈ J (14)

yi ∈ {0, 1} ∀i ∈ I (15)

where the convex function Φj(y) appearing in (14) gives the minimum allocation
cost for customer j for any given (possibly noninteger) point y ∈ [0, 1]I with∑

i∈I yi ≥ 2 (which is the only case of interest for branch-and-cut separation).
Note that we require to open, at least, 2 facilities in (13), as the the single-

facility case can be easy handled in a preprocessing phase. Actually, when the
number of facilities is not too large, one can even require to open 3 or more
facilities after having efficiently enumerated all 1- and 2-facility solutions (in
our implementation, this latter option is activated only for instances with linear
costs and n ≤ 1000).

Due to the convexity of the Φj(y)’s, master problem (12)-(15) is in fact
a convex MINLP that can be solved as a MILP by a branch-and-cut approach
where linear outer-approximations of constraints (14) are generated on the fly as
follows. Let y∗ ∈ [0, 1]I be a given (possibly noninteger) point with

∑
i∈I y

∗
i ≥ 2,

and consider a generic customer j. Barring subscript j to ease notation, because
of convexity, function Φ(y) can be underestimated by a supporting hyperplane
at y∗, so we can write

w ≥ Φ(y) ≥ Φ(y∗) +
∑
i∈I

∂Φ(y∗)

∂yi
(yi − y∗i ) (16)
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Note that (16) can be interpreted as a sensitivity analysis of Φ(y) in y∗, so it is
not surprising that its computation actually requires dual information according
to the following scheme.

Each term Φ(y) is computed by solving a convex slave subproblem. For the
sake of generality, let this slave be generically written as

Φ(y) = min{f(x, y) : gk(x, y) ≤ 0, k = 1, · · · ,K, x ∈ X} (17)

where f and g1, · · · , gk are convex and twice differentiable functions and X is
a closed convex set.

Given y∗, one can solve efficiently the slave problem (17) for y = y∗. Let x∗

be the optimal primal solution found, and let u∗k ≥ 0 be the optimal dual vari-
ables associated with gk(x, y) ≤ 0. (In our notation, dual variables correspond
to Lagrangian multipliers and are nonnegative even for minimization problems
with ≤ constraints.)

Using Lagrangian duality and KKT conditions, and assuming constraint
qualifications hold, Geoffrion [14] (see also [1]) proved that

∂Φ(y∗)

∂yi
=
∂f(x∗, y∗)

∂yi
+

K∑
k=1

u∗k
∂gk(x∗, y∗)

∂yi
(18)

An intuitive explanation of this result is as follows. By Lagrangian duality and
because of convexity (that plays a fundamental role here), for a given optimal
dual vector (u∗1, · · · , u∗K) the local behavior of Φ(y) in y∗ is determined by the
Lagrangian function in u∗, namely for y sufficiently close to y∗ one has

Φ(y) ≈ min{f(x, y) +

K∑
k=1

u∗kgk(x, y) : x ∈ X} = f(x∗, y∗) +

K∑
k=1

u∗kgk(x∗, y)

hence taking partial derivatives of the the right-hand side leads to (18).
The above considerations lead to the following Generalized Benders (GB)

cuts [14] to be used within a branch-and-cut MIP solver:

w ≥ Φ(y∗) +
∑
i∈I

α∗i (yi − y∗i )

where

α∗i =
∂f(x∗, y∗)

∂yi
+

K∑
k=1

u∗k
∂gk(x∗, y∗)

∂yi

2.1 Benders cuts for linear case

For the linear case, Benders decomposition has been already mentioned in [33]
along with the fact that the family of Benders cuts is of polynomial size. How-
ever, for the last 30+ years, this result has been forgotten and, to the best of
our knowledge and to our surprise, no computational studies were done to asses
the practical usefulness of this approach.
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For the linear case, a generic slave has the form of the following knapsack
problem (in minimization form)

Φ(y∗) = min
∑
i∈I

cixi (19)

s.t.
∑
i∈I

xi = 1 (20)

xi ≤ y∗i ∀i ∈ I (21)

xi ≥ 0 ∀i ∈ I (22)

For a given y∗ ∈ [0, 1]I with
∑

i∈I y
∗
i ≥ 2, let x∗ be an optimal primal

solution, β∗ be the optimal dual variable for constraint (20), and u∗i be nonneg-
ative optimal dual variables for constraints (21). The Lagrangian function in
(x∗, β∗, u∗) then reads∑

i∈I
cix
∗
i + β∗(1−

∑
i∈I

x∗i ) +
∑
i∈I

u∗i (x∗i − yi)

hence
∂Φ(y∗)

∂yi
= −u∗i

so the Benders cut reads

w ≥ Φ(y∗)−
∑
i∈I

u∗i (yi − y∗i )

and only requires the computation of the optimal dual variables u∗i ≥ 0 associ-
ated with constraints (21).

It is well known from knapsack theory that the following Dantzig algorithm
produces an optimal primal solution x∗ and optimal dual variables u∗i ≥ 0
associated with constraints (21) for a given y∗ ∈ [0, 1]I with

∑
i∈I y

∗
i ≥ 2.

Let us assume costs have been sorted to get c1 ≤ · · · ≤ cn, and let the index
of the critical item be defined as the index k ∈ I such that

k−1∑
i=1

y∗i < 1 ≤
k∑

i=1

y∗i

Then an optimal primal solution x∗ is obtained by setting

x∗i =


y∗i for i < k

1−
∑k−1

i=1 y
∗
i for i = k

0 for j > k

i ∈ I

As to the dual solution, the optimal dual variable for constraint (20) is
β∗ = ck, while the optimal dual variables for constraint (21) are u∗i = ck − ci
for i < k, and u∗i = 0 for i ≥ k.
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Optimality comes from the feasibility of the primal and dual solutions for
their problems, and from the fact that the primal cost

∑
i∈I cix

∗
i =

∑k−1
i=1 ciy

∗
i +

ck(1−
∑k−1

i=1 y
∗
i ) is equal to the dual cost β∗−

∑n
i=1 u

∗
i y
∗
i = ck−

∑k−1
i=1 (ck−ci)y∗i .

It then follows that

Φ(y∗) = ck −
k−1∑
i=1

(ck − ci)y∗i

so there are only n distinct Benders cuts for a given customer j, one for each
k ∈ I, each of the form

w +

k−1∑
i=1

(ck − ci)yi ≥ ck ∀k ∈ I

(assuming locations have been permuted so as to have c1 ≤ · · · ≤ cn).

2.2 Generalized Benders cuts for quadratic case

In this case, for a given y∗, the slave is the convex program (recall that ci > 0
for all i ∈ I).

Φ(y∗) = min
∑
i∈I

cizi (23)

s.t.
∑
i∈I

xi = 1 (24)

xi ≤ y∗i ∀i ∈ I (25)

x2i ≤ zi y∗i ∀i ∈ I (26)

xi ≥ 0 ∀i ∈ I (27)

zi ≥ 0 ∀i ∈ I (28)

To avoid technicalities, we assume y∗i > 0 for all i ∈ I, and refer to Section 3.1
for the general case. Also, we relax = into ≥ in (24), and we observe that
non-negativity constraints (27) and (28) are redundant and can be relaxed.

Let (x∗, z∗) be an optimal primal solution, and β∗, u∗i and v∗i be nonnegative
optimal dual variables for constraints (24), (25) and (26), respectively. The
Lagrangian function in (x∗, z∗, β∗, u∗, v∗) reads∑

i∈I
ciz
∗
i + β∗(1−

∑
i∈I

x∗i ) +
∑
i∈I

u∗i (x∗i − yi) +
∑
i∈I

v∗i (x∗i
2 − z∗i yi)

hence
∂Φ(y∗)

∂yi
= −u∗i − v∗i z∗i

and the GB cut reads

w ≥ Φ(y∗)−
∑
i∈I

(u∗i + v∗i z
∗
i ) (yi − y∗i ) (29)
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As in the linear case, one can derive a specialized algorithm for a fast (and
numerically accurate) solution of the slave problem, and for the construction of
the corresponding GB cut (29).

Observe that, because of the positive costs in (23) and of (26), the optimal
z∗ satisfies z∗i = (x∗i )2/y∗i for all i ∈ I. Being y∗ fixed, we can just remove those
variables and work on the associated problem

Φ(y∗) = min
∑
i∈I

γix
2
i (30)

s.t.
∑
i∈I

xi ≥ 1 (31)

xi ≤ y∗i ∀i ∈ I (32)

with respect to the new “perspective costs” γi = ci/y
∗
i > 0.

Once the primal solutions x∗ and the optimal dual variables u∗ associated
with (32) have been determined, the optimal primal variables z∗i for model (23)-
(28) are easily computed as

z∗i = (x∗i )2/y∗i for all i ∈ I

while the optimal dual variables v∗i ≥ 0 corresponding to (26) can be computed
as ci/y

∗
i so as to satisfy the first order condition ci − v∗i y∗i = 0.

Finally, the most violated GB cut for the given y∗ can be computed as in
(29).

Implementing an ad-hoc QP algorithm

Fast algorithms for solving simple QP problems with a knapsack-like constraint
and box constraints are available in the literature (see, e.g., [21, 36]). To make
our results reproducible, we next describe the actual algorithm we used for
solving QP problem (30)-(32) and, for the sake of completeness, provide a proof
of its correctness.

Let us consider first the following residual problem where the x variables
have no upper bounds, R ⊆ I is a given residual set of facilities, and r ∈ [0, 1]
is a given residual request :

min
∑
i∈R

γix
2
i (33)

s.t.
∑
i∈R

xi ≥ r (34)

Let β∗ ≥ 0 be the dual multiplier for inequality (34). It is well known
[18]—and easy to prove using KKT optimality conditions—that an optimal
primal-dual pair (x∗, β∗) can be computed as:
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Input : A point y∗ > 0 with
∑

i∈I y
∗
i ≥ 2 along with the cost vector

γ > 0
Output: Optimal value vopt, optimal primal solution x∗ ≥ 0, and

optimal dual solution (u∗, β∗) ≥ 0 for the quadratic model
(30)-(32)

1 /* compute optimal primal solution x∗ along with β∗ */

2 R← I;
3 r ← 1;
4 again← TRUE;
5 while ( r > 0 and again ) do
6 β∗ ← 2 r/

∑
i∈R(1/γi);

7 again← FALSE ;
8 foreach i ∈ R do
9 x∗i ← β∗ / (2 γi);

10 if ( x∗i > y∗i ) then
11 x∗i ← y∗i ;
12 r ← r − y∗i ;
13 R← R \ {i};
14 again← TRUE;

15 end

16 end

17 end

18 /* compute optimal value vopt and dual solution u∗ */

19 if ( r ≤ 0 or R = ∅ ) then β∗ ← 0 ;
20 vopt← 0;
21 for i ∈ I do
22 if i ∈ R then u∗i ← 0 else u∗i ← β∗ − 2 γi y

∗
i ;

23 vopt← vopt + γi (x∗i )2 ;

24 end

Algorithm 1: Our specialized QP solver
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β∗ =
2r∑

i∈R 1/γi
x∗i =

β∗

2 γi
for all i ∈ R (35)

Our algorithm to solve the quadratic model with bounded variables (30)-
(32) derives the optimal solution by subsequently solving the residual problem
(33)-(34) for various values of r and R; see Algorithm 1.

The primal optimal solution x∗ is computed at Steps 1-17 together with β∗.
To this end, we first set R = I and r = 1 (Steps 2-3) and use (35) to compute
the optimal values of x∗i (and β∗) by disregarding their upper bounds in (32).
If it happens that all upper bounds are in fact fulfilled, we are done. Otherwise,
for each x∗i > y∗i we clip x∗i to y∗i (Step 11), update r and R accordingly (Steps
12-13), and repeat. The optimal nonnegative dual variables u∗i corresponding
to (32) are finally defined at Step 22.

To prove the correctness of Algorithm 1, we need the following

Lemma 2.1. Values β∗ computed at each iteration of Step 6 define a strictly
monotonically increasing sequence.

Proof. Let us assume, without loss of generality, that in a given iteration only
a single i is removed from R. Let β′ and β′′ be the value of β∗ at Step 6 before
and after the removal of i from R arising at Step 13, respectively, and let r′ and
r′′ be the corresponding values of r. To simplify notation, let us define ρi = 1/γi
and d =

∑
t∈R(1/γt). We have to show that β′′ > β′, where β′ = 2r′/d and

β′′ = 2(r′ − y∗i )/(d − ρi). To this end, observe that the removal of i from R
implies x∗i = β′/(2γi) > y∗i at Step 10, i.e., 2y∗i < β′ρi holds. So

β′′ =
2r′ − 2y∗i
d− ρi

>
2r′ − β′ρi
d− ρi

= β′
2r′/β′ − ρi
d− ρi

= β′
d− ρi
d− ρi

= β′

as claimed.

Theorem 2.1. Algorithm 1 returns an optimal primal solution x∗ and an op-
timal dual solution (u∗, β∗) of problem (30)-(32).

Proof. The Lagrangian function for problem (30)-(32) is defined as

L(x, u, β) =
∑
i∈I

γixi
2 + β (1−

∑
i∈I

xi) +
∑
i∈I

ui (xi − y∗i )

As we have a convex quadratic problem with linear inequalities, all we have to
show is that (x∗, u∗, β∗) satisfies the KKT conditions:

∇xL(x∗, u∗, β∗) = 0 (36)

(x∗, u∗, β∗) ≥ 0 (37)∑
i∈I

x∗i ≥ 1 (38)

β∗ (1−
∑
i∈I

x∗i ) = 0 (39)

u∗i (x∗i − y∗i ) = 0 ∀i ∈ I (40)
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Let notation R and r refer to the quantities available at the end of the algorithm.
For condition (36), we have two cases:

• i ∈ R: in this case, u∗i = 0 (Step 22) and x∗i = β∗ / (2γi) (Step 9), hence
∂L(x∗, u∗, β∗)/∂xi = 2γix

∗
i − β∗ = 0;

• i 6∈ R: in this case, u∗i = β∗ − 2γiy
∗
i (Step 22) and x∗i = y∗i (Step 11),

hence ∂L(x∗, u∗, β∗)/∂xi = 2γix
∗
i − β∗ + u∗i = 0.

Conditions (37) are obvious except for u∗i and i 6∈ R, when u∗i = β∗− 2 γi y
∗
i

is defined at Step 22. Let β′ be the value of β∗ computed at Step 6 at the
iteration when i is removed from R at Step 13. Then x∗i = β′/(2 γi) > y∗i at
Step 10. Due to Lemma 2.1, β∗ ≥ β′. By combining this with the rewritten
form β′ > 2 γi y

∗
i of the previous inequality, we obtain β∗ > 2 γi y

∗
i , from which

u∗i ≥ 0 follows.
Also obvious is the complementary slackness condition (39), while (40) de-

rives from u∗i = 0 for all i ∈ R (Step 22) and x∗i = y∗i for all i 6∈ R (Step
11).

Thinning out wj’s variables in the master

In the aim of thinning out irrelevant variables from the master, one can think
of replacing all wj ’s by a single continuous variable

wsum =
∑
j∈J

wj

and of aggregating the individual GB cuts (2) for each customer j ∈ J , namely

wj ≥ Φj(y
∗) +

∑
i∈I

α∗ij(yi − y∗i ) (41)

into a single cumulative GB cut

wsum ≥
∑
j∈J

Φj(y
∗) +

∑
i∈I

(
∑
j∈J

α∗ij)(yi − y∗i ) (42)

In this setting, for each y∗ of the master one generates (at most) one violated
cut, as opposed to the (at most) |J | individual cuts that can be generated by
keeping the disaggregated variables wj ’s.

In what follows, the model with the individual w′js variables will be called
the fat model, while the model with the single wsum variable will be referred to
as the slim model.

The slim model has both pros and cons with respect to the fat one.
From the positive side, one does not really need to know the individual wj ’s

values associated with a given y, as the actual solution cost only depends on their
sum. By removing the individual wj ’s one can therefore remove potentially-
disturbing information. In addition, by using the single wsum variable one ex-
pects to generate fewer cuts during the branch-and-cut solution process, hence
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the LP relaxations of the master will be smaller in terms of variables and (hope-
fully) of explicitly-generated GB cuts.

From the negative side, cuts (42) tend to be denser than (41). In addition,
we know that each cumulative cut (42) is just implied (à la Farkas) by their
individual counterparts (41), and people working with MIP’s have a Pavlov’s
unconditioned aversion to aggregated formulations. However, in our setting the
quality of the lower bound of the master is theoretically the same as they both
are the projection on different w-subspaces of the same formulation, so we are
not really losing anything in terms of lower bound if we opt for the cumulative
cut.

As it will be discussed in the next section, what matters is in fact the avail-
ability of a sound cutting plane scheme that can effectively produce good lower
bounds even when a single cut is generated at each separation call. As a matter
of fact, at least for quadratic UFL, the slim variant is much more effective than
the fat one; see Subsection 3.4 for details.

3 The overall solution framework

Once the GB cut separators for both the linear and quadratic cases have been
implemented, one has to design the overall solution framework for the master
MILP problem.

A natural choice is to use a state-of-the-art commercial MILP solver—we
used IBM ILOG Cplex 12.6 in our implementation. Using a state-of-the-art
MILP solver does in fact simplify a lot the implementation, as one relies on
a very robust and efficient external framework for the parametric solution of
the node LP’s, primal heuristics, generation of general MILP cuts, branching,
cut pool handling, etc. So, for a quick shot one only has to plug the GB cut
separator in the framework, and see how it works.

This simple approach is in fact rather effective, as it already allowed us to
solve previously unsolved UFL instances for both linear and quadratic cases.
However, we obtained much better results (in particular, for the quadratic case)
by adding some more ingredients to the basic recipe, as outlined below.

3.1 Numerically accurate GB cuts for the quadratic case

In the quadratic case, when the point y∗ to separate contains zero entries we
face theoretical issues in the definition of the “perspective costs” γi = ci/y

∗
i and

hence of the most-violated GB cut. Although in theory there are elegant ways
to cope with the non-differentiability at such points (see [19]), in practice we
observed that the GB cut becomes numerically unreliable even when y∗i ≈ 0 for
some i, hence the risk of producing invalid cuts becomes a real issue.

We have therefore implemented a very simple way to encompass the above
difficulty which is based on the fact that, in our separation framework, y∗ is in
fact a known quantity—while in the compact MILP (5)-(11) it plays the role
of a variable. We introduced a (not too small) internal threshold ε = 10−5 to
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decide whether a given y∗ is close enough to integrality. Then, for each i ∈ I
with y∗i < ε we just resist the temptation and do not apply the perspective
strengthening of x2ij . This means that we replace x2ij ≤ zij yi by x2ij ≤ zij in
(26). In this way we have γi = ci in (30), and the dual variable v∗i will no longer
appear in the GB cut as the new constraint does not depend on y anymore.

Although not strictly required, we also apply the same procedure when
y∗i > 1 − ε, as in this case what we gain from the perspective strengthening
is negligible. In a sense, we view the components of y∗ that are “almost inte-
ger” as good enough, and we do not believe it is worth to penalize them through
the (numerically risky) perspective reformulation.

There is a second way to deal with zero entries in y∗, that we call 2 ε trick :
just replace each y∗i with y∗i + 2 ε and apply GB separation to this perturbed
point—an idea used by many authors, including [5]. This is mathematically
correct because the GB cut we generate is always valid—though its violation
with respect to original y∗ is slightly underestimated. Although it may appear
naive, this approach is rather effective and can significantly improve the overall
convergence of the cut loop, as shown in the next subsection. In fact, this idea
is closely related to the approach proposed by [17] of “perturbing” perspective
inequalities by moving y towards a point “sufficiently inside” the perspective
cone—the main difference being that we face a much simpler situation where y∗

is given, whereas in [17] one needs to treat y as a variable.

3.2 Cut loop stabilization and the curse of Kelley

This is perhaps the most important ingredient in our recipe. In the MIP com-
munity, a lot of attention is generally paid to the polyhedral strength of the
generated cuts (e.g., the fact of being facet defining), giving for granted that
the external cutting plane loop will follow Kelley’s scheme [23]. According to
this scheme, at each cut loop iteration one generates one or more cuts that are
violated by the current (fractional) solution y∗, adds them to the current relax-
ation, reoptimizes it and gets a new optimal solution y∗ to be cut at the next
iteration.

However, the convergence behavior of the overall cut loop heavily depends
also on the strategy for generating the next point to cut. As a matter of fact,
the famous ellipsoid method has a very good (theoretical) convergence prop-
erty, but the single valid cut it generates at each iteration can be very weak in
polyhedral terms (actually, it does not even need to be violated but just tight
at the separation point). This is because the role of the cut is not to let integer
points emerge as vertices of the LP relaxation, but just to exclude a large sub-
space from further considerations. Evidently, one can design a sound cutting
plane loop even with very weak/dense cuts, provided that the “Kelley’s curse”
is escaped and a different cutting plane scheme is adopted.

In the LP relaxation of our MILP master problem, we have a very simple
set of constraints in the y space (essentially, only the 0-1 bounds on the vari-
ables), and we have to minimize the convex function

∑
j∈J Φj(y). This setting

is very close (in fact, identical) to the one arising in the usual Lagrangian dual
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minimization (assuming a convex primal problem in maximization form), where
“stabilized” approaches such as the bundle method [29] are known to outper-
form Kelley’s one by a large margin. Thus, the implementation of stabilized
cutting plane at the root node (at least) is expected to be of crucial importance,
in particular when a single (possibly weak) cut is separated for each point, as it
is the case of our slim master model with a single wsum variable.

In our current version, we did not implement a real bundle method, but
a simple in-out variant very much in the spirit of [5, 11]. At each cut loop
iteration, we have two points: the optimal solution (y∗, w∗) of the current master
LP (as in Kelley’s method), and a stabilizing point (ỹ, w̃) which is initialized to
ỹ = (1, · · · , 1) and w̃ = (Φ1(ỹ), · · · ,Φm(ỹ)) (or to w̃sum =

∑
j∈J Φj(ỹ) in case

the slim model is used).
At each step, we move (ỹ, w̃) towards (y∗, w∗) by setting

(ỹ, w̃) = 0.5 (ỹ, w̃) + 0.5 (y∗, w∗)

and then apply our GB separator in the attempt to cut the “intermediate point”

λ (y∗, w∗) + (1− λ) (ỹ, w̃) + δ(1, · · · , 1)

Parameters λ ∈ (0, 1] and δ ≥ 0 are initially set to 0.2 and 2 ε, meaning that
we initially try to cut off points very close to the stabilizer. If a violated cut is
found, it is statically added to the current LP. After 5 consecutive iterations in
which the LP bound does not improve, parameter λ is reset to 1 and the cut loop
continues. After 5 more consecutive iterations with no LP bound improvement,
parameter δ is reset to 0 (so we are back to Kelley’s scheme). After 5 more
consecutive iterations without improvement, the procedure is aborted and all
cuts with a positive slack in the final LP are removed. To speedup computation,
slack cuts from the current LP are also removed at every 5-th iteration.

According to our computational experience, the above cut loop is very effec-
tive for the slim model where GB separation returns (at most) one single cut at
each call, in particular for the quadratic case where the difference with respect
to the straightforward Kelley’s is striking.

In Figure 1 we plot the behavior of three cut loop strategies (single-thread
run) on a sample instance with quadratic costs, namely, the Koerkel-Ghosh
[25] instance gs250a-1 with 250 locations and 250 clients whose optimal value
is 12,633.858555. All methods are based on exactly the same GB separator,
and only differ on the policy to select the point y∗ to cut at each iteration.
Kelley refers to the standard approach, while Kelley+ adopts the 2 ε trick and
slightly perturbs the point to cut before invoking the GB separator. Finally,
inout refers to our simple scheme using the stabilizer (ỹ, w̃) as described above.
Note that in the horizontal axis we had to use a logarithmic scale due to the
dramatically different performance of the three methods. We consider both the
fat (top subfigure) and the slim (bottom subfigure) models.

When the fat model is used (top subfigure), Kelley has a very poor per-
formance: we stopped it after 15,000 sec.s (still at the root node) with a lower
bound of just 1,781.035992, and more than 100,000 cuts generated. Kelley+
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Figure 1: Performance of three cut loop strategies with fat (top subfigure)
and slim (bottom subfigure) models on the sample Koerkel-Ghosh [25] instance
gs250a-1 with n = m = 250 (quadratic costs). We compare standard Kelley,
Kelley+ (i.e., Kelley enhanced by the 2 ε trick), and our inout scheme. Label
*nc reports the number of generated cuts at the end of the root node. Time
axis given in logarithmic scale.
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has a much better performance than Kelley, showing the importance of the 2 ε
trick. Its root node takes 948.86 sec.s to generate 55,004 cuts, and produces a
very tight bound of 12,633.118973. Enumeration to prove optimality takes 48
branching nodes and is completed at time 978.53. The performance of inout is
however dramatically better: its root node requires just 0.19 sec.s and produces
a lower bound of 12,633.280331 with 748 cuts, while enumeration ends at time
0.41 after 6 nodes.

The performance differences are even more striking for the slim model (bot-
tom subfigure). Kelley has again a very poor performance: we stopped it after
500 nodes (8,208.67 sec.s) with a lower bound of 1,875.111861 and 6,037 cuts
generated. Kelley+ has a better performance: its root node takes 98.27 sec.s
to generate 1,496 cuts, and produces a bound of 12,632.092567; enumeration
to prove optimality takes 44 branching nodes and is completed at time 100.66.
The performance of inout is so good that its plot is barely visible in the figure:
its root node requires 0.04 sec.s and produces a lower bound of 12,633.101453
after adding only 4 cuts, while enumeration ends at time 0.06 after 11 nodes.

3.3 Cut loop along the tree

At each branch-decision node, the MILP framework automatically invokes our
GB cut separator (within a so-called user cut callback) just before branch-
ing, after having solved the current node LP and having added possible violated
cuts from its internal cut pool and/or generated by internal procedures. The
current LP solution (y∗, w∗) is passed to our GB cut separator, that possibly
returns one or more violated cuts.

The violated GB cuts returned by our separation procedure, if any, are
added to the internal cut pool and eventually to the current-node LP, which is
reoptimized to provide a new solution (y∗, w∗), and the approach is iterated.
Thus, the solver natively implements the Kelley cutting plane scheme, which is
not necessarily the best possible option for weak/dense cuts. Implementing a
more clever cut loop within Cplex is however not immediate, so we preferred to
keep the default Kelley’s scheme within the MILP solver.

To avoid tailing off, we imposed a limit of 20 consecutive cut loop iterations
for each node (2,000 for the root node).

Although globally valid, at each node all generated cuts are added as “local
cuts” as this allows the solver to remove more cuts from its pool—this turned
out to be mainly useful in the case with linear costs, where lots of cuts are
generated.

3.4 Slim or fat model?

According to our tests, the slim version with wsum variable is a clear winner
for the quadratic case. In our view, this is due to two main reasons. First of
all, the stabilized cut loop of the previous subsection performs very well for the
quadratic case, and allows us to compute a really tight root-node lower bound
with a very small LP with just n + 1 variables and very few cuts. Second, the
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Figure 2: Comparison of the fat and slim models (quadratic costs) on the sample
instance MT1 with n = m = 2000 when the in-out cut loop is used at the root
node. Label *nc reports the number of generated cuts at the end of the root
node, while label nc gives the same information at the end of the branch-and-cut
algorithm. Time axis is in logarithmic scale.

lower bound is so tight that very few branching nodes are generated, so the fact
that the poor Kelley’s cut loop is applied at the non-root nodes is not really an
issue.

On the contrary, for the linear case the fat version with the individual wj ’s
variables turns out to be much better. A main reason is that the root-node
lower bound is not really tight, so a considerable amount of nodes are enumer-
ated anyway. So Kelley’s curse prevents an effective recomputation of the node
bounds when a single cut at the time is generated (wsum version), while it per-
forms reasonably well when several cuts are generated (version with individual
wj ’s). Another reason is that the stabilized cut loop at the root with a single
cut at the time (wsum version) is more effective when the convex function to
optimize is smooth, which is true only for the quadratic case—while in the linear
case Benders’s cuts have a discrete nature.

In Figure 2 we plot the behavior of the fat and slim models on the sample
instance MT1 with n = m = 2000 and quadratic costs and 4-thread run. At the
root node, our in-out cut loop scheme is adopted in both cases. Note that times
are reported in logarithmic scale.

3.5 Optimality cuts for integer solutions

Within the MILP branch-and-cut framework, master solutions ỹ with integer
ỹi’s can be generated by primal heuristics or when the current-node solution
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happens to be integer. In all cases, before updating the incumbent the solution
needs to be checked for validity, hence it is passed to a so-called lazy cut

callback that certificates its validity, or returns one or more valid cuts that
prevent the incumbent update. In the latter case, the violated cuts could be
obtained by applying our GB separator, that however can return several cuts in
case the model with individual wj ’s is used, thus overloading the cut pool with
cuts that are likely be active only at the current point ỹ.

Instead, we found it is computationally more efficient to generate a single
optimality cut for integer solutions within the lazy cut callback, namely

wsum ≥ (
∑
j∈J

Φj(ỹ)) (1−
∑

i∈I:ỹi=0

yi) (43)

stating the obvious property that an allocation cost smaller than
∑

j∈J Φj(ỹ)
can only be obtained by opening one or more additional facilities.

As the cut involves the wsum variable, in the model with individual wj ’s we
added variable wsum to the master together with its defining equation wsum =∑

j∈J wj .
Of course, GB cuts are still generated within the user cut callback for

cutting the fractional optimal LP solutions at the various branching nodes.

3.6 Primal heuristics

For the linear case we implemented the following primal heuristics:

a) at each branching node, within the so-called heuristic callback, a sim-
ple rounding heuristic is applied. Given the current LP solution y∗, we
consider all possible thresholds θ ∈ {y∗i : i ∈ I}, in increasing order, round
down all y∗i ’s below θ and up all the other y∗i ’s, and evaluate the cost of
the integer solution found. By using a parametric technique for cost re-
computation (working for the linear case only), this approach just requires
O(σ log σ+ σm) time, where σ is the number of nonzero entries in y∗, so
it is very fast.

b) local branching: right after the cut loop at the root node, we apply the
local branching heuristic [9] with neighborhood radius starting from k = 5
and then increased to 10, using a small time limit for each call (5000 ticks,
corresponding to approximately 5 sec.s on our hardware). The heuristic
is aborted when no improved solution is found in the neighborhood of size
10.

c) proximity search: right after local branching, we apply proximity search
heuristic [10] until no improved solution can be found within the small
time limit imposed for each call (5000 ticks).

As to the quadratic case, according to our experience the performance of
our method is so good that there is not really need to design specific primal
heuristics. So for the quadratic case only the rounding heuristic a) above is
applied, with a fixed threshold θ = max{y∗i : i ∈ I} − 0.2.
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3.7 Numerical tolerances and cut validity

In our implementation, we were very conservative and used very small toler-
ances for numerical and integrality tests. To be specific, we set Cplex’s inte-
grality tolerance CPX PARAM EPINT to 0, and the optimality/violation tolerances
CPX PARAM EPGAP and CPX PARAM EPRHS to 10−9. Our own internal numerical
tolerance was set to 10−9 as well.

To assert the validity of the GB cuts we generate in our code, we implemented
the following check in the spirit of Margot’s proposal [34]. At the end of the
run (or at the time limit), we fix all (binary and continuous) variables to their
value in the incumbent solution, and enter a cut loop where (1) we apply our
GB cut separator to a point y∗ obtained from the incumbent by a small random
perturbation (applied to 80% random entries) ranging from 10−9 to 10−1, (2)
we statically add the generated cuts to the current MILP, and (3) we optimize
the MILP to verify its feasibility. If the current MILP becomes infeasible, we
write down the current model in a file for further analysis and report a failure,
otherwise we repeat for 10,000 times. The above check was applied extensively
during the development of our code, and helped up in detecting and correcting
some tolerance issues present in the earlier versions. Needless to say, our final
code passed the test for all instances we tried.

4 Computational results

In this section we report on our computational experience on a subset of most
difficult instances for UFL. As to qUFL, we consider instances used in the pre-
vious literature, extended by a family of much larger instances that cannot be
approached by existing methods (mainly due to the fact that the underlying
models would consist of millions of variables and constraints). The computa-
tional study is conducted on a cluster of identical machines each consisting of
an Intel Xeon E3-1220V2 CPU running at 3.10 GHz, with 16GB of RAM each.
Reported times reported are wall-clock seconds and refer to 4-thread runs.

We report computational results with basic parameter settings, without tun-
ing our code with respect to proximity search and/or local branching parameters
that could theoretically further improve the obtained results.

4.1 Benchmark instances

The set of UFL benchmark instances used in this paper stems from the UFLLIB
[22], which is a well-established library of instances for capacitated and uncapac-
itated facility location problems. The library is a diverse collection of bipartite
graphs, some of them being just small and easily solvable cases. In our study on
UFL, we focus on a subset instances from UFLLIB representing the most chal-
lenging ones even for the most recent state-of-the-art approaches, like the ones
proposed by [31, 37, 4]. These are randomly generated instances M* (proposed
in [26]) and KG (proposed in [15, 25]). Instances M* are of size 100 × 100 up
to 2000 × 2000, whereas KG instances can be divided into three groups, with
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n = m ∈ {250, 500, 750}. Within each KG group, there are two classes, symmet-
ric and asymmetric ones, denoted by gs* and ga*, respectively. Additionally,
each class contains three subclasses, “a”, “b” and “c”, representing different
cost settings: in “a”, allocation costs are an order of magnitude higher than the
facility opening costs; in “b”, these costs are of the same order; and in “c”, fa-
cility opening costs are an order of magnitude higher than the allocation costs.
As we will report below, these differences in the costs structure significantly
influence their computationally difficulty.

For testing the impact of Benders decomposition to the separable quadratic
case, we consider two families of benchmark instances: (1) UFLLIB instances
mentioned above plus the instances from the ORLIB (with original allocation
costs equal to 0 being replaced by 10−5), and (2) randomly generated instances
used in previous computational studies in [6, 18, 19]. The latter instances are
randomly generated graphs with potential facility and customer locations being
placed uniformly at random within a unit square, with allocation costs calcu-
lated as the Euclidean distance multiplied by a factor of 50, and facility opening
costs generated uniformly in [1, 100]. Tables shown in this section and in the
Appendix report the total running time in wall-clock seconds (t[s]), the time
needed to solve the LP-relaxation at the root node (troot[s]), the total num-
ber of branch and bound nodes needed to prove the optimality (nodes) and
the percentage gap at the root node (gr[%]) and the bound at the root node
(rootbound).

4.2 Linear costs

For solving UFL, we opted for the branch-up-first setting (Cplex’s parameter
CPX PARAM BRDIR set to 1), as this tends to produce branching trees with fewer
open nodes—hence reducing the overhead incurred when writing node files.

Table 1 summarizes results for the previously unsolved UFL instances for
which we were able to prove optimality. In total, optimal solutions are provided
for seven previously unsolved instances.

Two of them belong to the benchmark set of 18 instances proposed by
Barahona-Chudak [2]. The semi-Lagrangian approach by [4] solved 16 of them,
whereas the approach by [37] managed to solve only 8 of these 16. We provide
the optimal values for the remaining two unsolved instances, namely, 2500-10
and 3000-100, of size 2500× 2500 and 3000× 3000, respectively.

Concerning the 30 instances of size 250×250 proposed by Koerkel-Gosh [25],
27 were solved by [37], and an additional one (ga250a-1) was solved by [4]. We
now provide optimal values for the two previously unsolved instances, namely,
ga250a-3 and ga250a-5. Among the KG instances of size 500 × 500, optimal
values were known only for 7 (out of 10) instances of the subclass g∗500c∗. We
were able to prove the optimality for the missing 3 instances from this subclass,
namely ga500c-5 and gs500c-3 and gs500c-5.

The 50 KG instances of subclasses g∗500a, g∗500b, g∗750∗ still remain out
of reach for existing exact methods. However, we managed to improve the
best known upper bounds for 22 of these instances. To this end, we slightly
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inst. bestknown opt t[s] rootbound troot[s] gr[%] nodes

ga250a-3 257985 257953 493.49 257554.773407 12.77 0.15 200184
ga250a-5 258225 258190 585.93 257790.245068 9.65 0.15 229446
ga500c-5 621313 621313 9226.86 601500.282332 12.31 3.19 195191
gs500c-3 621204 621204 11448.19 601980.526816 13.44 3.09 194657
gs500c-5 623180 623180 26828.91 603115.401650 14.20 3.22 270147
2500-10 3101800 3099907 824.76 3097480.189279 104.67 0.08 1362

3000-100 1602335 1602154 225.25 1601733.816607 82.67 0.03 441

Table 1: Previously unsolved UFL instances solved to optimality using our
approach (linear costs).

modified the initial local-branching heuristic described in Subsection 3.6 by
removing the 5000-tick timelimit for each subMIP solution. We implemented
two local branching variants: in variant (A), the neighborhood radius is 5 or
10, while in variant (B) the radius is 2, 4, 6, 8 or 10. For both versions, if no
improved solution can be found in the neighborhood of size 10, we randomize the
incumbent and start again from the smallest radius. To better exploit the 4-core
architecture of our PC’s, we concurrently ran 4 times our algorithm in 1-thread
mode, with 4 different input random seeds, and collected the best solution found.
Our results are summarized in Table 2, and refer to a timelimit of 600 and 3600
wall-clock sec.s for each instance, respectively. Column bestknown gives the
previous best upper bound from the literature, while UB is the heuristic value
we computed within the given time limit. The remaining columns report a 0/1
flag saying whether we strictly improved (win) or matched (tie) the previous
best known solution. Finally, columns under the Best header refer to the best
of the two 3600-sec.s runs with variants (A) and (B). According to the table,
600 sec.s are enough for variant (A) to strictly improve 14 (and match 13)
best-known solutions, while in 3600 sec.s we strictly improved 19 (and matched
21) solutions. Running variant (B) for 3600 more sec.s slightly improved our
results, and leads to 22 strictly improved (and 22 matched) solutions. For the
6 instances (out of 50) where our UB is worse that bestknown, the gap between
these two values is always below 0.04%.

4.3 Separable quadratic costs

For testing qUFL, we first report results obtained on a set of smaller randomly
generated instances created according to the procedure described in [18]. Ta-
ble 3 reports the average values over 10 instances generated with the fixed
number of facilities and customers (shown in columns n and m, respectively).
We compare our slim and fat models against the perspective reformulation pro-
posed in [19]. The latter model was solved by Cplex after setting parameter
CPX PARAM MIQCPSTRAT to 1, meaning that a QCP relaxation is solved at each
node—this setting turned out to be much better than the default one where
cone cuts are generated.
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The obtained results clearly demonstrate the power of Benders decomposi-
tion for quadratic separable objective functions. Recall that the main bottleneck
of the perspective reformulation of [19] is its O(n ·m) number of variables and
constraints. Table 3 shows that both our formulations scale extremely well with
the increasing size of the input data. All problem instances with up to 250 facil-
ities and 250 customers shown in this table could be solved within a fraction of
a second. Compared to the performance of the perspective reformulation, our
models allow for computational speedups of up to four orders of magnitude. For
n,m ≥ 200, the perspective reformulation already hits the memory limit, and
it is even impossible to solve the QP/QCP relaxation at the root node.

In our next experiment, we decided to push our decomposition approaches
to their limits, and for that purpose we created a set of much larger instances
following the same graph generation procedure used for the instances shown in
Table 3. To this end, we considered input graphs with n ∈ {500, 1000, 2000} and
m ∈ {500, 1000, 5000, 10000}. Table 4 shows the comparison of the performance
of our slim and fat models. We notice that fat model is outperformed by slim
model, and that the difference in the running times increases with the increasing
number of customers. For example, the fat model is only a few times slower than
slim for m ≤ n, but for the larger values of m, slim model is significantly faster
than its fat counterpart. Solving even the largest instances of this group (with
2000 facilities and 10000 customers) using our slim approach requires only about
5 minutes on average. The quality of the root gap (that is computed by our in-
out algorithm followed by the usual root-node processing) is quite remarkable—
the average root gap is consistently below 0.04%. The small difference in the
quality of the LP-relaxation gaps between the two models can be explained by
tailing off. Comparing the time required to solve the LP-relaxation at the root
node, we observe that our both models spent most of their computing time
at the root node (except for the largest instances). The required number of
branch-and-bound nodes remains quite moderate for all instances, except for
the largest ones, where its average value exceeds 10000.

To our big surprise, even the most difficult UFLLIB instances (e.g., those
from KG of size 500 × 500 and 750 × 750), are easily solvable as qUFL’s by
our slim model. More precisely, all of M and KG instances can be solved to
optimality in about half a minute or much less. The most difficult instance
appears to be MT1 (of size 2000 × 2000) for which our slim model requires
just 81.99 seconds. As a comparison, the same instance requires 4889.77 sec.s
and 10675 branching nodes when given on input to our UFL code (linear case).
This behavior is of course explained by the fact that, for a same input, the
lower bounds are typically much tighter for qUFL than for (linear) UFL, so
much fewer branching nodes are required.

A summary of the obtained results on KG instances (containing average
values for each subclass of five instances) is shown in Table 5. More detailed
results are reported in the Appendix.
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Local Branching (A) Local Branching (B) Best
600 seconds 3600 seconds 3600 seconds 7200 seconds

instance bestknown UB win tie UB win tie UB win tie UB win tie

ga500a-1 511422 511401 1 0 511383 1 0 511388 1 0 511383 1 0
ga500a-2 511333 511288 1 0 511255 1 0 511255 1 0 511255 1 0
ga500a-3 510817 510810 1 0 510810 1 0 510810 1 0 510810 1 0
ga500a-4 511047 511008 1 0 511008 1 0 511008 1 0 511008 1 0
ga500a-5 511258 511239 1 0 511239 1 0 511239 1 0 511239 1 0
ga500b-1 538060 538656 0 0 538060 0 1 538060 0 1 538060 0 1
ga500b-2 537850 537850 0 1 537850 0 1 537850 0 1 537850 0 1
ga500b-3 538077 538144 0 0 537924 1 0 537924 1 0 537924 1 0
ga500b-4 537925 538038 0 0 537925 0 1 537925 0 1 537925 0 1
ga500b-5 537482 537642 0 0 537482 0 1 537482 0 1 537482 0 1
gs500a-1 511229 511201 1 0 511188 1 0 511188 1 0 511188 1 0
gs500a-2 511179 511179 0 1 511179 0 1 511179 0 1 511179 0 1
gs500a-3 511120 511129 0 0 511112 1 0 511112 1 0 511112 1 0
gs500a-4 511137 511137 0 1 511137 0 1 511137 0 1 511137 0 1
gs500a-5 511293 511293 0 1 511293 0 1 511293 0 1 511293 0 1
gs500b-1 537931 537941 0 0 537931 0 1 537931 0 1 537931 0 1
gs500b-2 537763 537823 0 0 537763 0 1 537763 0 1 537763 0 1
gs500b-3 537874 538095 0 0 537926 0 0 537854 1 0 537854 1 0
gs500b-4 537742 537779 0 0 537742 0 1 537779 0 0 537742 0 1
gs500b-5 538270 538270 0 1 538270 0 1 538270 0 1 538270 0 1

ga750a-1 763576 763537 1 0 763537 1 0 763528 1 0 763528 1 0
ga750a-2 763674 763679 0 0 763653 1 0 763674 0 1 763653 1 0
ga750a-3 763765 763748 1 0 763697 1 0 763699 1 0 763697 1 0
ga750a-4 764033 764043 0 0 763945 1 0 763976 1 0 763945 1 0
ga750a-5 763905 763857 1 0 763794 1 0 763786 1 0 763786 1 0
ga750b-1 796480 796506 0 0 796454 1 0 796454 1 0 796454 1 0
ga750b-2 796056 796003 1 0 795963 1 0 795963 1 0 795963 1 0
ga750b-3 796130 796439 0 0 796384 0 0 796359 0 0 796359 0 0
ga750b-4 797080 797013 1 0 797013 1 0 797013 1 0 797013 1 0
ga750b-5 796387 796549 0 0 796549 0 0 796549 0 0 796549 0 0
ga750c-1 902026 902026 0 1 902026 0 1 902026 0 1 902026 0 1
ga750c-2 899651 899732 0 0 899651 0 1 899732 0 0 899651 0 1
ga750c-3 900010 900019 0 0 900019 0 0 900019 0 0 900019 0 0
ga750c-4 900044 900044 0 1 900044 0 1 900044 0 1 900044 0 1
ga750c-5 899235 899235 0 1 899235 0 1 899235 0 1 899235 0 1
gs750a-1 763671 763683 0 0 763683 0 0 763671 0 1 763671 0 1
gs750a-2 763548 763590 0 0 763552 0 0 763548 0 1 763548 0 1
gs750a-3 763764 763759 1 0 763748 1 0 763727 1 0 763727 1 0
gs750a-4 763887 763942 0 0 763932 0 0 763922 0 0 763922 0 0
gs750a-5 763616 763614 1 0 763614 1 0 763616 0 1 763614 1 0
gs750b-1 797026 797688 0 0 797347 0 0 797329 0 0 797329 0 0
gs750b-2 796170 796498 0 0 796170 0 1 796170 0 1 796170 0 1
gs750b-3 796589 796589 0 1 796589 0 1 796589 0 1 796589 0 1
gs750b-4 796734 797020 0 0 797020 0 0 797087 0 0 797020 0 0
gs750b-5 796365 796365 0 1 796365 0 1 796365 0 1 796365 0 1
gs750c-1 900454 900454 0 1 900454 0 1 900363 1 0 900363 1 0
gs750c-2 897886 897886 0 1 897886 0 1 897886 0 1 897886 0 1
gs750c-3 901714 901947 0 0 901786 0 0 901656 1 0 901656 1 0
gs750c-4 901339 901239 1 0 901239 1 0 901239 1 0 901239 1 0
gs750c-5 900216 900216 0 1 900216 0 1 900216 0 1 900216 0 1

sum 14 13 19 21 20 22 22 22

Table 2: Local branching for UFL on the 50 unsolved KG instances (linear
costs). We strictly improved 22 (and matched 22 more) best known values from
the literature. 24



Our slim model Our fat model Perspective reformulation [19]
n m t[s] gr[%] troot[s] nodes t[s] gr[%] troot[s] nodes t[s] gr[%] troot[s] nodes

10 30 0.01 0.21 0.01 0.0 0.01 0.26 0.00 0.0 1.97 0.00 1.79 3.6
10 50 0.01 0.17 0.01 0.0 0.03 0.17 0.02 0.0 3.59 0.00 3.25 4.4
10 100 0.03 0.30 0.02 2.5 0.09 0.22 0.05 1.8 7.23 0.00 6.21 6.2
10 200 0.03 0.25 0.02 2.0 0.23 0.22 0.13 3.6 16.50 0.00 14.23 6.1
20 30 0.03 0.49 0.01 2.9 0.03 0.42 0.02 2.8 5.20 0.16 4.38 6.1
20 50 0.03 0.39 0.02 3.1 0.05 0.32 0.03 3.0 8.21 0.04 6.98 6.1
20 100 0.04 0.31 0.02 4.5 0.12 0.28 0.06 4.6 19.96 0.19 16.00 8.2
20 200 0.05 0.18 0.03 5.0 0.21 0.15 0.11 5.6 32.91 0.18 23.12 8.7
30 30 0.03 0.38 0.01 1.5 0.03 0.27 0.01 1.0 11.12 0.01 8.75 7.1
30 50 0.03 0.29 0.02 1.4 0.04 0.17 0.03 1.0 17.45 0.00 15.41 3.6
30 100 0.05 0.21 0.03 2.5 0.10 0.22 0.06 2.7 27.51 0.18 19.66 7.1
30 200 0.07 0.25 0.05 4.8 0.26 0.23 0.15 5.6 69.49 0.21 39.58 9.8
40 30 0.03 0.38 0.02 1.8 0.03 0.39 0.01 1.9 17.58 0.00 14.24 5.8
40 50 0.04 0.24 0.02 2.9 0.05 0.22 0.03 3.2 25.52 0.01 20.33 4.9
40 100 0.05 0.22 0.03 3.8 0.12 0.16 0.06 3.8 53.79 0.19 35.76 9.2
40 200 0.09 0.14 0.06 6.1 0.27 0.14 0.12 5.6 104.94 0.16 56.04 10.1
50 50 0.04 0.14 0.03 1.6 0.05 0.13 0.03 1.6 41.08 0.03 33.04 4.4
50 100 0.06 0.13 0.04 2.6 0.10 0.11 0.06 2.7 88.09 0.15 50.02 8.4
50 200 0.11 0.13 0.08 6.7 0.29 0.12 0.16 7.5 159.82 0.14 71.45 11.0
60 50 0.05 0.29 0.03 3.1 0.06 0.27 0.03 2.6 56.64 0.26 37.71 6.4
60 100 0.06 0.12 0.04 1.6 0.10 0.10 0.06 1.5 99.44 0.16 54.41 6.6
60 200 0.12 0.11 0.09 4.6 0.25 0.11 0.15 5.2 280.67 0.14 113.92 15.4
70 30 0.05 0.28 0.03 2.8 0.04 0.26 0.03 2.4 47.65 0.37 25.32 10.5
70 50 0.06 0.23 0.04 3.1 0.06 0.21 0.03 2.7 79.52 0.25 49.09 6.7
70 100 0.09 0.23 0.07 4.3 0.14 0.20 0.09 4.2 186.35 0.27 81.57 10.1
70 200 0.09 0.04 0.08 0.8 0.19 0.03 0.13 1.4 293.19 0.04 176.88 5.9
80 30 0.05 0.22 0.03 1.7 0.05 0.16 0.03 1.1 59.25 0.39 36.57 6.9
80 50 0.08 0.36 0.05 5.7 0.07 0.34 0.04 5.5 108.71 0.57 42.71 13.5
80 100 0.10 0.21 0.08 5.9 0.14 0.21 0.08 5.3 245.21 0.28 104.64 10.0
80 200 0.14 0.13 0.11 5.2 0.27 0.14 0.16 6.4 462.30 2.06 160.77 12.0

100 100 0.23 0.21 0.19 6.6 0.16 0.20 0.10 6.0 482.12 8.63 174.57 15.3
150 150 0.24 0.17 0.19 7.8 0.32 0.16 0.20 9.0 2012.07 3.15 648.82 14.1
200 200 0.33 0.06 0.28 6.7 0.45 0.06 0.32 4.1 — — — —
250 250 0.46 0.05 0.42 4.3 0.71 0.04 0.60 4.1 — — — —

Table 3: Comparing our slim and fat models with the perspective reformulation [19], on a set of randomly generated qUFL
instances proposed in [18, 19]. Perspective reformulation hits memory limit for n,m ≥ 200.
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Our slim model Our fat model
n m t[s] gr[%] troot[s] nodes t[s] gr[%] troot[s] nodes

500 500 1.39 0.03 1.31 16.2 3.30 0.03 2.82 9.5
500 1000 3.02 0.03 2.75 54.7 8.90 0.03 7.81 20.8
500 5000 11.59 0.01 10.41 87.2 132.89 0.02 127.27 32.4
500 10000 36.98 0.01 22.09 558.2 673.93 0.02 646.97 106.5

1000 500 3.80 0.04 3.32 76.0 4.60 0.04 3.86 26.1
1000 1000 5.78 0.03 5.25 65.3 15.18 0.03 13.74 28.2
1000 5000 20.70 0.01 19.32 44.3 193.76 0.02 181.87 180.3
1000 10000 64.01 0.01 34.74 603.0 799.02 0.02 748.56 399.8
2000 500 6.73 0.03 6.10 66.7 8.95 0.03 7.83 29.8
2000 1000 14.86 0.02 12.72 194.4 35.41 0.02 32.65 65.9
2000 5000 115.09 0.01 42.07 1649.0 405.85 0.02 361.69 629.3
2000 10000 309.36 0.01 76.88 10735.8 2646.69 0.03 1246.60 13114.0

Table 4: Comparing the performance of slim versus fat model on a larger set of
benchmark instances for qUFL generated as in [18, 19].

5 Conclusions

The Uncapacitated Facility Location (UFL) problem is one of the most famous
and studied Operations Research problems. This problem can easily be formu-
lated as a MILP, whose size is however exceedingly large for many practical
applications, making the direct use of a MILP solver rather ineffective (or even
impossible). As a matter of fact, the most powerful technique at present for
solving large scale UFL instances is Lagrangian relaxation, that allows one to
quickly compute lower bounds that are close enough to the LP relaxation ones.
The implementation of a sound Lagrangian relaxation method is however far
from trivial, and a number of sophisticated ideas need to be implemented to get
satisfactory results. This was the main motivation for us to consider a simpler
approach built on top of an off-the-shelf MILP solver.

We therefore decided to investigate a MILP approach based on Benders
decomposition, a technique that can be considered folklore but apparently not
used in recent computational studies for UFL. We also addressed a nonlinear
version of the problem, namely, separable convex quadratic UFL (qUFL) that
has been the subject of intensive computational studies in the recent years.

From the methodological point of view, our approach uses generalized Ben-
ders cuts for convex problems, and embeds them in a branch-and-cut scheme.
A number of important features are introduced, that are instrumental for the
practical effectiveness of the overall approach. In particular, we discuss how
to speedup the root-node cut loop through simple stabilization techniques that
make it orders of magnitude faster than standard cutting plane loops.

Using our approach, we were able to solve to proven optimality 7 previously
unsolved benchmark instances for UFL, and to improve the best-known heuristic
value for 22 additional instances. These instances were out of reach for previous
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group t[s] gr[%] troot[s] nodes

ga250a 0.40 0.00 0.39 4.4
ga250b 0.28 0.03 0.22 71.2
ga250c 0.40 0.03 0.36 39.4
gs250a 0.21 0.00 0.20 3.4
gs250b 0.27 0.02 0.21 80.6
gs250c 0.46 0.03 0.42 21.6
ga500a 0.76 0.00 0.73 3.0
ga500b 2.12 0.04 1.95 58.0
ga500c 19.46 0.16 1.49 49911.6
gs500a 0.81 0.00 0.77 12.4
gs500b 2.47 0.03 2.31 72.8
gs500c 15.05 0.14 1.26 12721.6
ga750a 2.03 0.00 1.62 107.4
ga750b 2.08 0.01 1.82 65.2
ga750c 35.79 0.08 2.41 64338.0
gs750a 1.94 0.00 1.65 53.2
gs750b 3.24 0.01 1.82 414.0
gs750c 26.94 0.07 2.98 16837.0

Table 5: All KG instances for qUFL are solved to optimality by our slim model
(quadratic costs). Each row shows average values over 5 instances per subclass.

MILP approaches, as the underlying models would involve tens of millions of
variables and constraints, and they turned out to be too hard even for the best
Lagrangian methods from the literature.

Even more interesting results are reported for qUFL: compared to previous
methods, our approach enables speedups of 4 orders of magnitude or more, and
allowed us to tackle much larger qUFL instances than any previous approach.

The potential impact of our work is twofold:

• On the one hand, we believe our results will motivate researchers to re-
think/reinvent decomposition approaches for many optimization problems
involving location, allocation and network design decisions. “Thinning
out” can be done by reformulating “location subproblems” through a lin-
ear number of constraints and variables to model allocation decisions.
Problems that can directly benefit from such reformulations and elimi-
nation of variables through Benders cuts are: connected facility location
[16], the ring-star problem [27], the median cycle problem, or the traveling
purchaser problem [28], to mention only a few.

• On the other hand, our specially designed stabilization cutting-plane schemes
are of tremendous importance not only for MILPs, but also for the emerg-
ing area of convex MINLPs. Exploiting this scheme together with gener-
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alized Benders decomposition and/or perspective reformulations may lead
to the next boost of performance of convex MINLP solvers.

Although very closely related to UFL, application of our methods to capac-
itated facility location is not immediate, and will be subject of future research.
We will also focus on other non-trivial MINLPs that could benefit from gener-
alized Benders cuts, including nonlinear Stochastic Programming.
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[16] S. Gollowitzer and I. Ljubić. MIP models for connected facility location: A
theoretical and computational study. Computers & Operations Research,
38(2):435–449, 2011.

[17] I. E. Grossmann and S. Lee. Generalized convex disjunctive programming:
Nonlinear convex hull relaxation. Computational Optimization and Appli-
cations, 26(1):83–100, 2003.
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Appendix

For the sake of completeness and for future references, Tables 9-17 below contain
detailed results of our computations for both (linear) UFL and qUFL.

inst. n m opt t[s] rootbound troot[s] gr[%] nodes

MO1 100 100 1305.951410 1.83 1267.611394 1.47 2.94 45
MO2 100 100 1432.357320 1.66 1384.516719 1.42 3.34 32
MO3 100 100 1516.773000 2.76 1468.264089 2.44 3.20 47
MO4 100 100 1442.236430 1.44 1418.142416 1.29 1.67 10
MO5 100 100 1408.766380 1.59 1368.742892 1.29 2.84 33
MP1 200 200 2686.479460 5.40 2587.332224 4.41 3.69 58
MP2 200 200 2904.859010 5.25 2782.423128 3.37 4.21 76
MP3 200 200 2623.708880 2.74 2549.153223 2.33 2.84 26
MP4 200 200 2938.750020 9.29 2806.496012 7.54 4.50 142
MP5 200 200 2932.331110 7.74 2765.469658 5.47 5.69 272
MQ1 300 300 4091.009460 7.92 3943.844272 5.68 3.60 42
MQ2 300 300 4028.325730 11.20 3877.718770 7.50 3.74 119
MQ3 300 300 4275.431670 7.79 4128.671150 5.73 3.43 56
MQ4 300 300 4235.147010 7.76 4066.516145 5.35 3.98 72
MQ5 300 300 4080.742900 13.66 3860.071913 9.12 5.41 367
MR1 500 500 2608.148329 30.22 2438.570062 17.79 6.50 505
MR2 500 500 2654.734663 28.16 2517.943208 16.39 5.15 138
MR3 500 500 2788.250186 75.79 2592.583683 16.53 7.02 1069
MR4 500 500 2756.038599 49.88 2549.634566 15.38 7.49 1087
MR5 500 500 2505.047753 32.48 2344.396409 18.10 6.41 682
MS1 1000 1000 5283.757284 142.80 4930.109190 15.82 6.69 603
MT1 2000 2000 10069.802769 4889.77 9145.596419 41.11 9.18 10675

Table 6: All M instances for UFL solved to optimality (linear costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

ga250a-1 250 250 257957 48.42 257621.391000 6.32 0.13 15408
ga250a-2 250 250 257502 16.21 257256.620721 7.27 0.10 3402
ga250a-3 250 250 257953 493.49 257554.773407 12.77 0.15 200184
ga250a-4 250 250 257987 94.90 257661.649685 8.96 0.13 31253
ga250a-5 250 250 258190 585.93 257790.245068 9.65 0.15 229446
ga250b-1 250 250 276296 459.35 273304.607325 9.57 1.08 79837
ga250b-2 250 250 275141 88.12 272725.591893 10.93 0.88 15382
ga250b-3 250 250 276093 294.31 273465.959876 13.01 0.95 44751
ga250b-4 250 250 276332 309.76 273674.972210 9.66 0.96 42305
ga250b-5 250 250 276404 239.05 273685.605552 11.31 0.98 34390
ga250c-1 250 250 334135 43.73 322972.561366 11.62 3.34 2022
ga250c-2 250 250 330728 29.89 321247.027668 12.86 2.87 766
ga250c-3 250 250 333662 37.86 322883.944855 13.17 3.23 1506
ga250c-4 250 250 332423 31.80 322223.157025 11.64 3.07 995
ga250c-5 250 250 333538 42.42 323060.428106 15.68 3.14 1406
gs250a-1 250 250 257964 44.41 257646.226693 7.75 0.12 15113
gs250a-2 250 250 257573 17.13 257295.404020 4.75 0.11 4160
gs250a-3 250 250 257626 143.30 257261.406140 6.24 0.14 56551
gs250a-4 250 250 257961 51.86 257612.040938 9.14 0.14 14474
gs250a-5 250 250 257896 105.20 257576.359942 14.76 0.12 35982
gs250b-1 250 250 276761 1553.22 273706.706855 11.62 1.10 274090
gs250b-2 250 250 275675 197.25 273039.140052 11.51 0.96 30610
gs250b-3 250 250 275710 265.83 273055.856146 11.46 0.96 37434
gs250b-4 250 250 276114 117.96 273744.809146 9.99 0.86 16871
gs250b-5 250 250 275916 170.12 273376.947727 10.71 0.92 25977
gs250c-1 250 250 332935 36.91 322714.264989 11.87 3.07 1064
gs250c-2 250 250 334630 55.20 323223.399647 17.60 3.41 2613
gs250c-3 250 250 333000 49.72 322004.934883 16.54 3.30 1623
gs250c-4 250 250 333158 34.35 322939.375070 13.18 3.07 1092
gs250c-5 250 250 334635 53.79 322663.655073 19.59 3.58 3279

Table 7: All g∗250 instances for UFL solved to optimality (linear costs). Previ-
ously unknown optimal solutions shown in boldface.
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

ga500c-1 500 500 621360 4101.73 602860.484161 20.24 2.98 72942
ga500c-2 500 500 621464 8321.40 602811.779639 20.06 3.00 146412
ga500c-3 500 500 621428 12470.10 602379.469815 15.00 3.07 199101
ga500c-4 500 500 621754 9350.25 603259.772223 13.43 2.97 150378
ga500c-5 500 500 621313 9226.86 601500.282332 12.31 3.19 195191
gs500c-1 500 500 620041 7801.28 601985.824485 16.03 2.91 74511
gs500c-2 500 500 620434 4694.93 602299.966508 13.37 2.92 78969
gs500c-3 500 500 621204 11448.19 601980.526816 13.44 3.09 194657
gs500c-4 500 500 620437 7409.22 602136.181935 12.12 2.95 122315
gs500c-5 500 500 623180 26828.91 603115.401650 14.20 3.22 270147

Table 8: All g∗500c instances for UFL solved to optimality (linear costs). Pre-
viously unknown optimal solutions shown in boldface.

inst. n m opt t[s] rootbound troot[s] gr[%] nodes

B1.1 50 100 14032.005519 0.63 13696.521548 0.58 2.39 16
B1.2 50 100 13847.672000 0.36 13325.513467 0.25 3.77 49
B1.3 50 100 13388.124870 0.61 13214.726597 0.59 1.30 13
B1.4 50 100 12942.112566 0.92 12548.628511 0.83 3.04 32
B1.5 50 100 14207.725955 0.74 13860.584643 0.66 2.44 20
B1.6 50 100 12529.701053 0.73 12444.523201 0.71 0.68 0
B1.7 50 100 12781.344338 0.93 12550.229173 0.87 1.81 18
B1.8 50 100 12751.823705 0.67 12293.441936 0.56 3.59 43
B1.9 50 100 15674.462718 0.81 15203.088161 0.72 3.01 28
B1.10 50 100 13069.052954 0.56 12772.900090 0.49 2.27 24
C1.1 50 100 11000.439904 2.45 10368.787513 0.90 5.74 552
C1.2 50 100 10601.088985 1.82 9808.458064 0.74 7.48 539
C1.3 50 100 11330.445944 4.00 10657.286238 1.05 5.94 780
C1.4 50 100 10789.320016 2.00 10105.355062 0.85 6.34 394
C1.5 50 100 10967.008192 6.85 10241.066325 0.77 6.62 1895
C1.6 50 100 11296.490996 7.32 10514.043797 0.99 6.93 2330
C1.7 50 100 10980.997547 5.23 10292.306829 0.67 6.27 1654
C1.8 50 100 11058.606218 2.21 10469.183633 1.09 5.33 407
C1.9 50 100 11310.256519 4.13 10600.234180 0.63 6.28 1085
C1.10 50 100 11178.977525 3.28 10560.313565 0.80 5.53 737

Table 9: Performance of our slim qUFL model on B and C instances from
ORLIB (quadratic costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

D1.1 30 80 9284.373199 21.68 8531.717761 0.31 8.11 6723
D1.2 30 80 9237.865767 7.11 8559.684886 0.84 7.34 2836
D1.3 30 80 9185.572495 5.27 8627.387837 0.55 6.08 1203
D1.4 30 80 8783.343134 2.17 8155.361064 0.13 7.15 965
D1.5 30 80 8401.322106 0.38 7893.231472 0.10 6.05 153
D1.6 30 80 8988.476690 2.17 8480.254075 0.16 5.65 660
D1.7 30 80 9031.369277 2.86 8438.537164 0.18 6.56 977
D1.8 30 80 9000.747514 4.13 8325.166951 0.20 7.51 1606
D1.9 30 80 9048.394344 6.89 8401.782259 0.26 7.15 1897
D1.10 30 80 9208.919872 10.68 8582.566276 0.36 6.80 2862
D2.1 30 80 13021.521001 0.76 12004.378657 0.12 7.81 337
D2.2 30 80 13310.868193 3.72 12230.797282 0.16 8.11 1335
D2.3 30 80 13466.964045 3.14 12388.707324 0.19 8.01 1184
D2.4 30 80 13178.451378 2.92 12018.880338 0.18 8.80 1211
D2.5 30 80 13502.916063 4.06 12369.795737 0.16 8.39 1462
D2.6 30 80 13627.609516 3.90 12503.552184 0.18 8.25 1784
D2.7 30 80 13180.518073 0.84 12203.928546 0.13 7.41 324
D2.8 30 80 13484.419498 5.70 12277.824963 0.22 8.95 2324
D2.9 30 80 12964.500513 1.16 11788.404712 0.11 9.07 536
D2.10 30 80 12923.134799 1.68 11859.961446 0.13 8.23 831
D3.1 30 80 17026.170560 1.74 15396.699321 0.15 9.57 1137
D3.2 30 80 16848.371397 1.20 15424.453102 0.13 8.45 516
D3.3 30 80 16856.230221 0.97 15417.038262 0.10 8.54 464
D3.4 30 80 16388.369073 0.52 15081.064236 0.12 7.98 247
D3.5 30 80 16897.791661 1.45 15683.208172 0.17 7.19 403
D3.6 30 80 16536.742505 2.63 14908.235833 0.21 9.85 1069
D3.7 30 80 16603.090803 1.36 15301.280139 0.20 7.84 478
D3.8 30 80 16869.103468 1.56 15482.636643 0.17 8.22 572
D3.9 30 80 17158.999382 2.75 15614.544827 0.19 9.00 1229
D3.10 30 80 16394.007948 0.73 14987.718959 0.13 8.58 341
D4.1 30 80 20125.393247 2.29 18115.903476 0.15 9.98 1282
D4.2 30 80 19648.401006 0.85 17963.641987 0.10 8.57 424
D4.3 30 80 19904.577425 1.08 18395.187066 0.16 7.58 350
D4.4 30 80 20199.034055 1.35 18541.135732 0.13 8.21 611
D4.5 30 80 19349.624516 0.62 17870.799537 0.15 7.64 203
D4.6 30 80 19636.006145 0.73 17817.346871 0.10 9.26 424
D4.7 30 80 19350.866030 0.76 17714.257670 0.12 8.46 313
D4.8 30 80 20038.454210 0.98 18329.796590 0.16 8.53 556
D4.9 30 80 19554.801682 0.45 18035.086879 0.07 7.77 163
D4.10 30 80 19348.352767 0.42 17943.602055 0.09 7.26 156
D5.1 30 80 22888.887775 0.65 20946.639577 0.12 8.49 498
D5.2 30 80 23064.519598 0.69 21027.934505 0.10 8.83 434
D5.3 30 80 22627.595840 0.93 20545.200704 0.13 9.20 629
D5.4 30 80 22718.908473 0.70 20515.170664 0.10 9.70 560
D5.5 30 80 23022.942003 1.01 20778.991093 0.12 9.75 813
D5.6 30 80 21587.627368 0.38 19711.299984 0.10 8.69 239
D5.7 30 80 22989.638497 0.87 21173.076612 0.13 7.90 424
D5.8 30 80 22321.942170 0.49 20412.544074 0.11 8.55 393
D5.9 30 80 22919.303899 0.97 20743.544989 0.12 9.49 1048
D5.10 30 80 22461.918942 0.52 20671.296042 0.11 7.97 333

Table 10: Performance of our slim qUFL model on D instances from ORLIB
(quadratic costs).
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inst. n m opt t[s] rootbound troot[s] rootgap nodes

D6.1 30 80 24678.920149 0.45 22505.961208 0.11 8.80 341
D6.2 30 80 25732.813136 1.03 23330.051121 0.18 9.34 772
D6.3 30 80 25122.264112 0.65 22579.264192 0.09 10.12 554
D6.4 30 80 25618.360201 1.17 23002.200197 0.14 10.21 1044
D6.5 30 80 26031.865385 1.00 23142.839464 0.13 11.10 1508
D6.6 30 80 25695.227321 1.03 23089.676676 0.13 10.14 1031
D6.7 30 80 25611.090028 0.78 22864.890972 0.09 10.72 796
D6.8 30 80 25442.084997 1.15 22863.173759 0.14 10.14 939
D6.9 30 80 25343.086094 1.01 22967.146724 0.14 9.38 610
D6.10 30 80 26223.032633 1.56 23670.539552 0.15 9.73 1281
D7.1 30 80 27002.443610 0.47 24675.731394 0.09 8.62 298
D7.2 30 80 27605.644559 0.56 25134.022297 0.11 8.95 403
D7.3 30 80 27386.712016 0.50 25230.915368 0.11 7.87 234
D7.4 30 80 28283.319555 0.86 25695.115422 0.13 9.15 778
D7.5 30 80 26403.466731 0.35 24731.858032 0.10 6.33 111
D7.6 30 80 27929.294395 0.77 25405.487965 0.13 9.04 620
D7.7 30 80 27326.000877 0.43 25153.435844 0.10 7.95 209
D7.8 30 80 26515.027216 0.22 24949.003833 0.08 5.91 71
D7.9 30 80 27589.745300 1.30 24765.889939 0.16 10.24 977
D7.10 30 80 27199.743532 0.55 24677.714521 0.14 9.27 389
D8.1 30 80 29141.169395 0.36 26951.454796 0.09 7.51 142
D8.2 30 80 29247.565012 0.41 27097.239568 0.10 7.35 124
D8.3 30 80 29825.561122 0.68 27224.999883 0.12 8.72 390
D8.4 30 80 29772.060194 0.33 27439.194733 0.08 7.84 191
D8.5 30 80 30660.545469 0.70 27971.526384 0.12 8.77 444
D8.6 30 80 29885.577120 0.59 27182.766531 0.11 9.04 397
D8.7 30 80 29679.568945 0.30 27064.552302 0.08 8.81 228
D8.8 30 80 29178.829180 0.32 26711.566384 0.09 8.46 155
D8.9 30 80 30192.659652 0.76 27172.532681 0.13 10.00 569
D8.10 30 80 29487.436510 0.27 27231.291497 0.09 7.65 191
D9.1 30 80 32410.989472 0.40 29962.436486 0.09 7.55 211
D9.2 30 80 30624.047673 0.24 28404.421095 0.08 7.25 86
D9.3 30 80 31347.453645 0.43 29043.508623 0.10 7.35 115
D9.4 30 80 31982.973804 0.40 29516.771505 0.10 7.71 192
D9.5 30 80 31417.137240 0.26 28975.939885 0.06 7.77 129
D9.6 30 80 31667.617861 0.27 29265.235771 0.09 7.59 144
D9.7 30 80 31198.246667 0.68 28813.150827 0.15 7.64 188
D9.8 30 80 32391.068672 0.68 29531.715443 0.15 8.83 524
D9.9 30 80 31193.617388 0.27 29196.222413 0.10 6.40 117
D9.10 30 80 31697.508219 0.48 29269.083360 0.10 7.66 267
D10.1 30 80 33554.380582 0.39 31128.189530 0.12 7.23 185
D10.2 30 80 33350.621280 0.33 30822.613884 0.10 7.58 188
D10.3 30 80 31872.225127 0.24 30391.708179 0.10 4.65 27
D10.4 30 80 33774.768267 0.34 31219.318070 0.11 7.57 205
D10.5 30 80 33040.626061 0.32 30760.626431 0.10 6.90 118
D10.6 30 80 33411.062732 0.38 31130.271189 0.09 6.83 115
D10.7 30 80 33347.673651 0.46 31075.721620 0.14 6.81 133
D10.8 30 80 34067.144655 0.52 31420.806099 0.14 7.77 244
D10.9 30 80 34386.529487 0.70 31619.967510 0.15 8.05 396
D10.10 30 80 33227.195483 0.30 30988.861190 0.08 6.74 101

Table 11: Performance of our slim qUFL model on D instances from ORLIB
(quadratic costs).

36



inst. n m opt t[s] rootbound troot[s] gr[%] nodes

E1.1 50 100 9929.156583 209.09 9156.177668 0.52 7.78 664692
E1.2 50 100 9742.682326 80.89 8903.187316 0.62 8.62 21894
E1.3 50 100 9866.224109 77.25 9069.251206 0.50 8.08 9781
E1.4 50 100 9444.198122 12.54 8658.017009 0.43 8.32 2483
E1.5 50 100 9537.061284 40.12 8771.527942 0.55 8.03 4976
E1.6 50 100 9503.301403 14.48 8896.167086 0.49 6.39 1526
E1.7 50 100 9630.576179 27.36 8870.376248 0.49 7.89 4496
E1.8 50 100 9422.206703 15.43 8682.932771 0.45 7.85 2995
E1.9 50 100 9644.957935 13.99 8952.729258 0.41 7.18 1881
E1.10 50 100 9670.795716 442.15 8746.101228 0.47 9.56 1853869
E2.1 50 100 14534.587758 24.72 13433.681971 0.43 7.57 3020
E2.2 50 100 14335.112341 19.67 13188.032580 0.50 8.00 2135
E2.3 50 100 14486.774849 25.05 13129.714027 0.40 9.37 3844
E2.4 50 100 14553.684124 9.37 13404.539309 0.40 7.90 1354
E2.5 50 100 14267.719588 31.58 13030.586416 0.55 8.67 3429
E2.6 50 100 14611.020505 55.43 13362.722269 0.43 8.54 6587
E2.7 50 100 14624.495393 19.58 13405.151738 0.36 8.34 2730
E2.8 50 100 14587.225829 28.89 13262.099961 0.40 9.08 4490
E2.9 50 100 14556.708968 30.53 13215.493845 0.42 9.21 5002
E2.10 50 100 14860.081534 44.09 13428.857525 0.52 9.63 8206
E3.1 50 100 18313.542127 12.09 16539.942534 0.49 9.68 2817
E3.2 50 100 18539.324556 16.36 16793.331388 0.33 9.42 3237
E3.3 50 100 18519.084064 23.94 16763.985185 0.35 9.48 3855
E3.4 50 100 18587.284615 25.29 16883.920170 0.40 9.16 4459
E3.5 50 100 18536.855073 50.40 16642.114865 0.43 10.22 8464
E3.6 50 100 18408.644369 54.45 16378.232605 0.43 11.03 13240
E3.7 50 100 18504.032907 17.85 16626.283525 0.42 10.15 4800
E3.8 50 100 18192.988827 9.81 16546.078963 0.36 9.05 2215
E3.9 50 100 18257.866537 19.93 16381.046460 0.34 10.28 4028
E3.10 50 100 18255.735669 8.21 16409.589478 0.31 10.11 2805
E4.1 50 100 21938.856834 16.31 19914.977413 0.44 9.23 2800
E4.2 50 100 20577.661850 2.24 18887.660669 0.26 8.21 360
E4.3 50 100 20891.425609 1.79 19169.206800 0.32 8.24 410
E4.4 50 100 21257.474682 5.00 19425.219820 0.33 8.62 851
E4.5 50 100 21458.851100 9.17 19475.430435 0.33 9.24 1659
E4.6 50 100 21728.120485 6.18 19902.316345 0.30 8.40 1116
E4.7 50 100 21793.987030 13.63 19560.738579 0.41 10.25 3235
E4.8 50 100 21507.933737 8.45 19426.331399 0.36 9.68 2025
E4.9 50 100 21625.919329 12.41 19452.080523 0.35 10.05 2314
E4.10 50 100 21136.577294 4.97 19141.688805 0.30 9.44 1077
E5.1 50 100 24318.745489 6.80 21994.897970 0.38 9.56 1634
E5.2 50 100 24149.635771 2.98 21874.182446 0.26 9.42 851
E5.3 50 100 24895.332124 8.27 22589.645681 0.37 9.26 1944
E5.4 50 100 24327.653048 2.38 22196.098205 0.26 8.76 676
E5.5 50 100 24797.810470 7.28 22387.803887 0.29 9.72 2029
E5.6 50 100 24713.466670 6.57 22434.911632 0.33 9.22 1683
E5.7 50 100 23955.752674 1.53 21815.393350 0.21 8.93 369
E5.8 50 100 24826.221438 5.46 22624.773688 0.32 8.87 1055
E5.9 50 100 24662.629818 4.66 22554.089607 0.33 8.55 806
E5.10 50 100 24667.232023 5.32 22267.057816 0.33 9.73 1423

Table 12: Performance of our slim qUFL model on E instances from ORLIB
(quadratic costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

E6.1 50 100 27245.865153 3.21 24574.546091 0.33 9.80 1089
E6.2 50 100 27618.608596 5.87 25131.504571 0.32 9.01 1694
E6.3 50 100 28093.999469 7.03 25305.643966 0.26 9.93 2326
E6.4 50 100 27831.991802 8.99 24870.412030 0.34 10.64 2919
E6.5 50 100 27105.307497 3.30 24499.136430 0.27 9.61 1240
E6.6 50 100 27680.075708 13.38 24889.993643 0.45 10.08 3010
E6.7 50 100 28365.709173 12.57 25513.847453 0.43 10.05 4619
E6.8 50 100 27305.100107 3.34 24661.508366 0.26 9.68 1149
E6.9 50 100 27577.795348 6.91 24628.499479 0.31 10.69 2139
E6.10 50 100 27980.777074 5.47 25147.654422 0.27 10.13 2076
E7.1 50 100 30862.777552 6.44 27483.703051 0.33 10.95 4803
E7.2 50 100 30728.535541 10.85 27250.593590 0.39 11.32 5135
E7.3 50 100 30521.324742 6.45 26752.800427 0.31 12.35 5841
E7.4 50 100 30680.614284 5.65 27392.980867 0.35 10.72 3206
E7.5 50 100 31240.979424 12.15 27775.354648 0.33 11.09 6077
E7.6 50 100 30504.794201 10.80 26770.014191 0.40 12.24 5698
E7.7 50 100 30487.241879 4.93 27217.882581 0.29 10.72 2220
E7.8 50 100 29699.466786 2.08 27091.657461 0.29 8.78 661
E7.9 50 100 30377.444112 5.41 27149.156563 0.25 10.63 2428
E7.10 50 100 30962.017491 8.89 27451.003328 0.30 11.34 4614
E8.1 50 100 32441.820572 3.11 29053.431034 0.29 10.44 1217
E8.2 50 100 32796.427832 3.46 29563.379136 0.29 9.86 1350
E8.3 50 100 32610.486601 3.05 29131.722520 0.29 10.67 1852
E8.4 50 100 32481.548094 2.17 29570.629612 0.28 8.96 691
E8.5 50 100 32870.424399 4.11 29222.882972 0.32 11.10 2007
E8.6 50 100 32632.269750 2.93 29241.030072 0.31 10.39 1225
E8.7 50 100 33620.975452 9.59 29640.958711 0.32 11.84 7099
E8.8 50 100 32691.540818 3.97 29121.385089 0.28 10.92 1733
E8.9 50 100 34038.569387 8.13 30063.528729 0.31 11.68 9186
E8.10 50 100 32763.642530 2.78 29306.571503 0.27 10.55 1878
E9.1 50 100 35385.680159 2.92 31508.104162 0.26 10.96 2331
E9.2 50 100 35246.889116 3.73 32080.466853 0.38 8.98 1170
E9.3 50 100 34733.180932 2.07 31522.101142 0.29 9.24 790
E9.4 50 100 34593.013200 2.27 31589.879797 0.40 8.68 777
E9.5 50 100 34911.205798 2.08 31744.425987 0.35 9.07 1022
E9.6 50 100 33992.013923 0.90 30720.323308 0.18 9.62 521
E9.7 50 100 34737.834473 1.93 31213.104096 0.30 10.15 1195
E9.8 50 100 35450.469761 3.29 32073.927413 0.33 9.52 1369
E9.9 50 100 35073.964306 3.32 31601.538240 0.31 9.90 1512
E9.10 50 100 34632.709909 2.26 31635.521968 0.31 8.65 715
E10.1 50 100 36844.713067 2.27 33655.589959 0.32 8.66 646
E10.2 50 100 37526.691156 2.27 33927.429038 0.29 9.59 1264
E10.3 50 100 36689.234782 1.73 33344.844749 0.34 9.12 532
E10.4 50 100 36627.580809 1.67 33419.329042 0.27 8.76 486
E10.5 50 100 37838.851838 3.38 34486.239254 0.27 8.86 1004
E10.6 50 100 36330.698056 0.88 33595.452997 0.23 7.53 262
E10.7 50 100 37075.482787 2.24 33769.623091 0.31 8.92 742
E10.8 50 100 36686.460103 1.43 33554.653678 0.22 8.54 349
E10.9 50 100 37382.126357 2.14 34210.942526 0.32 8.48 736
E10.10 50 100 37813.965988 3.42 34106.139690 0.40 9.81 1579

Table 13: Performance of our slim qUFL model on E instances from ORLIB
(quadratic costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

cap101.txt 25 50 198198.872443 0.01 198198.872444 0.01 -0.00 0
cap102.txt 25 50 249809.185072 0.01 249808.125659 0.01 0.00 0
cap103.txt 25 50 290945.894297 0.03 290571.850341 0.01 0.13 4
cap104.txt 25 50 341163.118782 0.02 341121.871252 0.02 0.01 0
cap111.txt 50 50 196692.072237 0.02 196682.095733 0.02 0.01 3
cap112.txt 50 50 248407.264312 0.03 248272.090741 0.02 0.05 5
cap113.txt 50 50 289641.492435 0.04 289423.224848 0.02 0.08 6
cap114.txt 50 50 340489.888416 0.03 340234.698044 0.02 0.07 5
cap121.txt 50 50 196692.072237 0.02 196682.095733 0.02 0.01 3
cap122.txt 50 50 248407.264312 0.03 248272.090741 0.02 0.05 5
cap123.txt 50 50 289641.492435 0.04 289423.224848 0.02 0.08 6
cap124.txt 50 50 340489.888416 0.03 340234.698044 0.02 0.07 5
cap131.txt 50 50 196692.072237 0.02 196682.095733 0.02 0.01 3
cap132.txt 50 50 248407.264312 0.03 248272.090741 0.02 0.05 5
cap133.txt 50 50 289641.492435 0.04 289423.224848 0.02 0.08 6
cap134.txt 50 50 340489.888416 0.03 340234.698044 0.02 0.07 5
cap41.txt 16 50 209147.513131 0.02 209078.381192 0.01 0.03 6
cap42.txt 16 50 258384.012313 0.01 258218.353676 0.00 0.06 0
cap43.txt 16 50 297469.742386 0.01 297440.144593 0.00 0.01 0
cap44.txt 16 50 346437.300838 0.01 346432.943779 0.00 0.00 0
cap51.txt 16 50 297469.742386 0.01 297440.144593 0.00 0.01 0
cap61.txt 16 50 209147.513131 0.02 209078.381192 0.01 0.03 6
cap62.txt 16 50 258384.012313 0.01 258218.353676 0.00 0.06 0
cap63.txt 16 50 297469.742386 0.01 297440.144593 0.00 0.01 0
cap64.txt 16 50 346437.300838 0.01 346432.943779 0.00 0.00 0
cap71.txt 16 50 209147.513131 0.02 209078.381192 0.01 0.03 6
cap72.txt 16 50 258384.012313 0.01 258218.353676 0.00 0.06 0
cap73.txt 16 50 297469.742386 0.01 297440.144593 0.00 0.01 0
cap74.txt 16 50 346437.300838 0.01 346432.943779 0.00 0.00 0
cap81.txt 25 50 198198.872443 0.01 198198.872444 0.01 -0.00 0
cap82.txt 25 50 249809.185072 0.01 249808.125659 0.01 0.00 0
cap83.txt 25 50 290945.894297 0.03 290571.850341 0.01 0.13 4
cap84.txt 25 50 341163.118782 0.02 341121.871252 0.02 0.01 0
cap91.txt 25 50 198198.872443 0.01 198198.872444 0.01 -0.00 0
cap92.txt 25 50 249809.185072 0.01 249808.125659 0.01 0.00 0
cap93.txt 25 50 290945.894297 0.03 290571.850341 0.01 0.13 4
cap94.txt 25 50 341163.118782 0.02 341121.871252 0.02 0.01 0
capa.txt 100 1000 11060090.523934 2.59 10898396.110654 1.62 1.46 71
capb.txt 100 1000 6891132.403879 4.24 6803190.552973 2.08 1.28 286
capc.txt 100 1000 5777026.274077 3.69 5726328.020829 2.27 0.88 99

Table 14: Performance of our slim qUFL model on cap∗ instances from ORLIB
(quadratic costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

gs250a-1 250 250 12633.858555 0.21 12633.271955 0.19 0.00 7
gs250a-2 250 250 12723.318779 0.20 12723.218469 0.19 0.00 0
gs250a-3 250 250 12636.391724 0.24 12636.338503 0.22 0.00 5
gs250a-4 250 250 12628.620604 0.20 12628.439925 0.19 0.00 5
gs250a-5 250 250 12604.942212 0.21 12604.783766 0.20 0.00 0
gs250b-1 250 250 38625.725625 0.24 38618.122355 0.21 0.02 21
gs250b-2 250 250 38934.394122 0.25 38928.793683 0.21 0.01 18
gs250b-3 250 250 38675.929807 0.21 38672.148776 0.19 0.01 0
gs250b-4 250 250 38777.891611 0.41 38761.526533 0.24 0.04 339
gs250b-5 250 250 38719.501675 0.25 38708.792989 0.22 0.03 25
gs250c-1 250 250 120474.797667 0.52 120439.921239 0.48 0.03 13
gs250c-2 250 250 122031.956567 0.49 121981.751982 0.44 0.04 30
gs250c-3 250 250 120863.499762 0.45 120819.787084 0.42 0.04 13
gs250c-4 250 250 121217.929629 0.34 121188.172224 0.30 0.02 11
gs250c-5 250 250 121316.362556 0.53 121273.396543 0.46 0.04 41
gs500a-1 500 500 17578.186397 0.82 17578.122078 0.77 0.00 10
gs500a-2 500 500 17645.410713 0.81 17645.316518 0.77 0.00 10
gs500a-3 500 500 17510.760092 0.85 17510.636113 0.76 0.00 35
gs500a-4 500 500 17529.727138 0.78 17529.663411 0.77 0.00 1
gs500a-5 500 500 17654.985621 0.80 17654.943824 0.76 0.00 6
gs500b-1 500 500 54221.008053 2.48 54218.481084 2.46 0.00 0
gs500b-2 500 500 54641.496690 2.68 54626.975702 2.61 0.03 21
gs500b-3 500 500 54385.233438 1.85 54349.634874 1.55 0.07 126
gs500b-4 500 500 54290.557516 3.53 54285.146373 3.23 0.01 190
gs500b-5 500 500 54539.325360 1.82 54509.909369 1.69 0.05 27
gs500c-1 500 500 170495.752651 21.97 170239.543935 1.23 0.15 14156
gs500c-2 500 500 171044.987106 2.45 170860.982585 1.18 0.11 656
gs500c-3 500 500 171236.065342 27.28 170987.933058 1.54 0.14 35441
gs500c-4 500 500 170740.764114 16.58 170492.376791 0.97 0.15 9880
gs500c-5 500 500 171170.211422 6.95 170905.040422 1.36 0.15 3475
gs750a-1 750 750 21481.746742 1.97 21480.716490 1.71 0.00 35
gs750a-2 750 750 21395.527255 2.20 21394.215388 1.64 0.01 143
gs750a-3 750 750 21484.689396 1.90 21483.591903 1.64 0.01 34
gs750a-4 750 750 21426.082803 1.94 21424.852668 1.64 0.01 51
gs750a-5 750 750 21488.509512 1.68 21488.358552 1.64 0.00 3
gs750b-1 750 750 66621.039307 1.97 66619.107840 1.82 0.00 29
gs750b-2 750 750 66463.658421 8.54 66456.042264 1.82 0.01 2011
gs750b-3 750 750 66734.171061 1.82 66733.713927 1.79 0.00 0
gs750b-4 750 750 66626.128388 2.00 66623.377493 1.84 0.00 28
gs750b-5 750 750 66506.140140 1.86 66501.966024 1.83 0.01 2
gs750c-1 750 750 209089.008287 19.68 208946.188003 2.39 0.07 5933
gs750c-2 750 750 209023.548416 36.53 208870.169230 3.03 0.07 19103
gs750c-3 750 750 209357.291160 10.46 209215.563124 4.47 0.07 2109
gs750c-4 750 750 209438.506671 30.04 209286.575163 2.80 0.07 7446
gs750c-5 750 750 209229.646295 37.98 209073.658210 2.23 0.07 49594

Table 15: Performance of our slim qUFL model on gs∗ instances from UFLLIB
(quadratic costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

ga250a-1 250 250 12719.533977 0.428786 12719.530507 0.415388 0.000027 0
ga250a-2 250 250 12552.936248 0.456415 12552.849390 0.443985 0.000692 0
ga250a-3 250 250 12701.173983 0.465590 12700.554603 0.445361 0.004877 9
ga250a-4 250 250 12596.578129 0.491309 12596.111277 0.465797 0.003706 13
ga250a-5 250 250 12619.414974 0.173889 12619.313419 0.162894 0.000805 0
ga250b-1 250 250 38836.625923 0.220798 38832.838550 0.206783 0.009752 0
ga250b-2 250 250 38457.705301 0.278533 38441.757806 0.230750 0.041468 38
ga250b-3 250 250 38854.416851 0.245665 38849.804970 0.208089 0.011870 25
ga250b-4 250 250 38818.594279 0.267422 38805.975132 0.216957 0.032508 58
ga250b-5 250 250 38660.119334 0.371695 38643.367602 0.240501 0.043331 235
ga250c-1 250 250 121804.946988 0.329247 121794.550774 0.318951 0.008535 3
ga250c-2 250 250 120202.866912 0.297556 120158.102300 0.267686 0.037241 18
ga250c-3 250 250 121328.316329 0.340634 121283.752051 0.296418 0.036730 38
ga250c-4 250 250 121831.490417 0.524049 121778.886045 0.442793 0.043178 93
ga250c-5 250 250 121081.938730 0.517018 121023.722668 0.473089 0.048080 45
ga500a-1 500 500 17728.229656 0.759997 17728.105721 0.736688 0.000699 0
ga500a-2 500 500 17601.647513 0.759103 17601.555149 0.736135 0.000525 0
ga500a-3 500 500 17628.411284 0.801732 17628.151470 0.762048 0.001474 7
ga500a-4 500 500 17608.899247 0.771241 17608.726077 0.731291 0.000983 8
ga500a-5 500 500 17553.849070 0.731572 17553.768482 0.704281 0.000459 0
ga500b-1 500 500 54617.814966 1.773924 54592.516651 1.714924 0.046319 2
ga500b-2 500 500 54309.398377 1.919447 54280.401192 1.804601 0.053393 13
ga500b-3 500 500 54510.983133 3.179420 54506.301100 3.056560 0.008589 61
ga500b-4 500 500 54453.425408 2.008263 54421.595522 1.584899 0.058453 196
ga500b-5 500 500 54248.375667 1.731638 54223.277515 1.604858 0.046265 18
ga500c-1 500 500 171440.595530 9.849523 171189.753151 1.443641 0.146314 3998
ga500c-2 500 500 170966.289717 31.460599 170648.578446 1.992068 0.185833 135122
ga500c-3 500 500 171064.595331 4.383382 170827.714508 1.031294 0.138474 2325
ga500c-4 500 500 171355.977333 25.158046 171051.316116 1.997193 0.177794 87276
ga500c-5 500 500 170732.019561 26.468147 170445.056411 1.002103 0.168078 20837
ga750a-1 750 750 21454.097467 1.796982 21453.272117 1.628245 0.003847 15
ga750a-2 750 750 21312.186688 2.342660 21310.706487 1.634806 0.006945 195
ga750a-3 750 750 21343.820134 2.702123 21342.737437 1.625286 0.005073 324
ga750a-4 750 750 21540.541353 1.685356 21540.473492 1.629486 0.000315 3
ga750a-5 750 750 21294.696772 1.629846 21294.669133 1.591675 0.000130 0
ga750b-1 750 750 66457.646067 1.978090 66455.331052 1.834522 0.003483 26
ga750b-2 750 750 66189.378762 2.321838 66183.596058 1.831737 0.008737 144
ga750b-3 750 750 66295.153760 2.175801 66290.530620 1.830254 0.006974 79
ga750b-4 750 750 66658.392142 1.808612 66656.073961 1.760198 0.003478 3
ga750b-5 750 750 66409.403295 2.131812 66403.465973 1.824355 0.008940 74
ga750c-1 750 750 208746.415344 36.124844 208560.918557 2.597722 0.088862 26329
ga750c-2 750 750 208328.530052 39.892769 208171.648820 2.236358 0.075305 28426
ga750c-3 750 750 208625.496768 36.297678 208489.573312 2.957719 0.065152 13775
ga750c-4 750 750 209338.346423 18.939491 209162.272345 2.368603 0.084110 5100
ga750c-5 750 750 209122.698081 47.718554 208947.757154 1.868571 0.083655 248060

Table 16: Performance of our slim qUFL model on ga∗ instances from UFLLIB
(quadratic costs).
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inst. n m opt t[s] rootbound troot[s] gr[%] nodes

MO1 100 100 618.042992 0.09 617.279304 0.08 0.12 4
MO2 100 100 667.118745 0.09 666.543774 0.08 0.09 3
MO3 100 100 716.883255 0.09 710.594541 0.06 0.88 12
MO4 100 100 680.847385 0.10 679.902555 0.09 0.14 3
MO5 100 100 714.424108 0.09 714.020554 0.08 0.06 2
MP1 200 200 1279.256448 0.29 1275.587063 0.25 0.29 10
MP2 200 200 1416.571645 0.35 1402.774815 0.28 0.97 22
MP3 200 200 1256.660588 0.30 1254.901421 0.28 0.14 1
MP4 200 200 1376.371490 0.24 1373.406966 0.21 0.22 5
MP5 200 200 1398.789178 0.28 1394.092315 0.26 0.34 5
MQ1 300 300 1950.890622 0.47 1947.433944 0.46 0.18 1
MQ2 300 300 1851.116781 0.55 1846.760328 0.49 0.24 8
MQ3 300 300 2061.005740 0.61 2046.729810 0.51 0.69 16
MQ4 300 300 2067.886319 0.54 2059.745723 0.47 0.39 9
MQ5 300 300 1892.504952 0.65 1888.245346 0.58 0.23 10
MR1 500 500 1289.878712 3.09 1277.654170 2.60 0.95 36
MR2 500 500 1420.464199 3.48 1401.644119 2.82 1.32 58
MR3 500 500 1431.199847 3.56 1415.799274 2.90 1.08 39
MR4 500 500 1402.027193 2.43 1393.565153 2.13 0.60 16
MR5 500 500 1254.645421 2.36 1246.912227 2.07 0.62 17
MS1 1000 1000 2672.562217 8.28 2664.219242 7.86 0.31 6
MT1 2000 2000 5133.779083 81.99 5075.996465 65.24 1.13 165

Table 17: Performance of our slim qUFL model on M instances from UFLLIB
(quadratic costs).
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