
Mathematical Programming, Series B manuscript No.
(will be inserted by the editor)

Orientation-based Models for {0,1,2}-Survivable Network Design:

Theory and Practice

Markus Chimani · Maria Kandyba ·

Ivana Ljubić · Petra Mutzel

the date of receipt and acceptance should be inserted later

Abstract We consider {0,1,2}-Survivable Network Design problems with node-connectivity constraints. In the

most prominent variant, we are given an edge-weighted graph and two customer sets R1 and R2; we ask for a

minimum cost subgraph that connects all customers, and guarantees two-node-connectivity for the R2 customers.

We also consider an alternative of this problem, in which 2-node-connectivity is only required w.r.t. a certain root

node, and its prize-collecting variant.

The central result of this paper is a novel graph-theoretical characterization of 2-node-connected graphs via

orientation properties. This allows us to derive two classes of ILP formulations based on directed graphs, one

using multi-commodity flow and one using cut-inequalities. We prove the theoretical advantages of these directed

models compared to the previously known ILP approaches. We show that our two concepts are equivalent from

the polyhedral point of view. On the other hand, our experimental study shows that the cut formulation is much

more powerful in practice. Moreover, we propose a collection of benchmark instances that can be used for further

research on this topic.

Preliminary parts of this paper appeared in the Proceedings of the European Symposium on Algorithms (ESA) 2007 and Proceedings of the

International Conference on Combinatorial Optimization and Applications (COCOA) 2008.

Maria Kandyba was supported by the German Research Foundation (DFG) through the Collaborative Research Center “Computational Intel-

ligence” (SFB 531).

Ivana Ljubić was supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation (FWF).

Petra Mutzel was partially supported by the Austrian Research Promotion Agency (FFG) under grant 811378 (NetQuest project)

Markus Chimani, Maria Kandyba, Petra Mutzel

Chair XI Algorithm Engineering, TU Dortmund; Otto-Hahn-Str. 14, 44227 Dortmund, Germany

E-mail: {markus.chimani,maria.kandyba,petra.mutzel}@tu-dortmund.de

Ivana Ljubić

Dep. of Statistics and Decision Support Systems, University of Vienna; Brünnerstr. 72, 1210 Vienna, Austria

E-mail: ivana.ljubic@univie.ac.at

1 Introduction

Survivable Network Design problems have been an important research topic in the last decades. Thereby, we ask

for a topology design of, e.g., telecommunication networks. The task is to connect a given set of customers using a

set of potential route-segments, satisfying certain connectivity requirements, and minimizing the investment costs.

Resulting networks may be required to be robust against failures: after a certain number of arbitrarily chosen

connection or node failures, alternative connections should still exist in order to guarantee the functionality of the

whole network.

1.1 Considered Problems

Recall that a graph is 2-node-connected (2-edge-connected) if after the removal of any node (edge) it is still

connected. A maximal 2-node-connected subgraph of a graph—i.e., a 2-node-connected component—containing

more than one edge is referred to as a block.

Given an undirected graph G = (V,E), a cost function c : E → R+, and a vector of connectivity require-

ments ρ ∈ {0,1,2}|V |. A solution of the {0,1,2}-Node-Connected Steiner Network problem (2NCON)1 [26] is a

subgraph N = (VN ,EN) of G which contains all nodes v ∈V with ρv > 0, minimizes ∑e∈EN ce and satisfies the fol-

lowing connectivity property: for every pair of nodes s, t ∈VN , N contains ρst := min{ρs,ρt} node-disjoint paths

connecting them. We can relax the problem by replacing the node-disjointness with edge-disjointness, and obtain

the {0,1,2}-Edge-Connected Steiner Network Problem (2ECON). For simplicity, we define Ri := {v∈V | ρv = i}

for all 0≤ i≤ 2, and call the set R := R1∪R2 the customer nodes. We can assume that |R2| ≥ 2, since otherwise

we obtain the traditional Steiner tree problem. When speaking about both 2ECON and 2NCON problems, we

summarize them under the term 2CON.

Some real-world tasks require a survivable connection between a customer and a special root node r ∈ V .

This can be formalized by the {0,1,2}-root-connected Steiner network problem (2RSN), which is closely related

to the 2NCON but requires the nodewise 2-connectedness only with the root r. Each node v ∈R has to have ρv

node-disjoint paths with r. Such a root node can represent an important connection hub or an already existing

infrastructure network which should be extended by connecting new customers as it was the case in [30,31].

For the latter problem we also consider a prize-collecting variant, called the 2-root-connected prize-collecting

Steiner network problem (2RPCSN). In this case, we are given a prize function p : R → R+, representing the

potential gain of revenue if node v ∈ R is included into the solution network. The overall goal is to maximize

the profit defined as the difference between the gains of the nodes contained in the solution and the total network

installation costs. This is equivalent to finding a subgraph N = (VN ,EN) that minimizes ∑e∈EN ce −∑v∈VN pv.

Thereby, connectivity requirements of those customers taken into the network need to be satisfied as this is the

case for the 2RSN.

1 In the literature there are various names for this problem, with sometimes slightly differing definitions. 2NCON is also known as {0,1,2}-

(N)SND (Node Survivable Network Design) and Generalized Steiner Network problem.

2

(a) 2ECON (b) 2R(PC)SN

(c) 2NCON

Fig. 1 Feasible networks for different {0,1,2}-SND problems. Bold edges belong to the solution networks whereas the dashed ones not.

Double circles represent R2 nodes, white circles correspond to R1 and small circle to R0. (b) The black node in the middle represents the

root r.

In the following, we summarize 2ECON, 2NCON and 2R(PC)SN under term {0,1,2}-SND problems. Fig-

ures 1(a), 1(b) and 1(c) illustrate examples of feasible solutions of 2ECON, 2R(PC)SN and 2NCON, respectively.

1.2 Previous Work

{0,1,2}-SND problems are in general NP-hard, as they, e.g, contain the NP-hard Steiner tree problem as a special

case. A lot of research has been conducted on {0,1,2}-SND problems, both in the fields of effective heuristics and

approximation algorithms, see [14] for an overview. Within the scope of this paper, we will concentrate on exact

integer linear programming (ILP) formulations. We are motivated by the fact that strong ILP models, when used

in conjunction with recent advances in CPU power and ILP solvers, allow to solve large real-world instances for

other network problems to provable optimality within reasonable time bounds; see, e.g., [4,23]. In particular, for

the case of the k-Cardinality tree problem, it was shown in [4] that for instances with up to 1000 nodes, exact

algorithms outperform metaheuristics even in terms of computation time. Furthermore, ILP formulations often

form the basis of approximation schemata.

ILPs based on undirected graphs. For 2CON problems Grötschel, Monma and Stoer [10] described cut-based

ILPs. The central idea thereby is to express the connectivity requirements by undirected cuts. Wagner et al. [31]

formulated an ILP for 2R(PC)SN using basically the same idea2. Apart from such formulations, the problem can

also be formulated in terms of multi-commodity flow, as done by Raghavan [24] for 2CON and by Wagner et al.

in [30] for 2R(PC)SN. The corresponding polytopes for 2CON have been widely investigated and different classes

of valid inequalities have been derived, i.p., in papers by Stoer and Raghavan (with coauthors Grötschel, Monma

and Magnanti) [10–12,20]. In the following, we will reference their theses [24,26] for simplicity and consistent

notations. A survey on polyhedral results can be found in [15].

2 Although the paper’s title uses the term “directed cut”, it turns out to be equivalent to the traditional undirected approach discussed in

Section 5.

3

Orientation based ILPs. An orientation of an undirected graph G′ is a directed graph Ĝ, which is obtained

by transforming each edge of G′ into a (single) directed arc. For 2ECON, it was shown by Chopra [7] and

Raghavan [24] that considering a certain orientability of feasible solutions leads to ILP formulations that are

polytope-wise stronger than the undirected formulations mentioned above. These ILPs exploit the following char-

acterization of 2-edge-connected graphs that was shown by Robbins in 1939:

Theorem 1 (Characterization of 2-edge-connected graphs [25]) An undirected graph G′ = (V ′,E ′) is 2-edge-

connected if and only if there exists an orientation Ĝ of G′ such that for every pair of nodes u,v ∈ V ′ there are

directed paths (u→ v) and (v→ u) in Ĝ.

It has been a long-standing open problem whether a similar characterization for 2-node-connected graphs ex-

ists. Unfortunately, Theorem 1 cannot be exploited in order to characterize 2-node-connected graphs. This was

the main hindrance why there were no orientation-based formulations for {0,1,2}-SND problems with node-

connectivity constraints [24, p. 183],[26, pp. 32,134] .

1.3 Our contribution

In this paper, we mainly consider {0,1,2}-SND problems with node-connectivity constraints. Whereas problems

with edge-connectivity requirements have been widely treated in the literature, providing numerous theoretical

and algorithmical results, less results are known regarding the node-connectivity, in general.

The central result of this paper is the characterization of 2-node-connected graphs via orientation properties.

This new graph-theoretical result allows us to derive two classes of ILP formulations for 2RSN, 2RPCSN and

2NCON, based on directed graphs: DFLOW is based on multi-commodity flow, DCUT is based on directed cuts.

We prove the theoretical advantages of these directed models compared to the previously known ILP approaches.

On the other hand, we show that our two concepts are equivalent from the polyhedral point of view. Nonetheless,

our experimental study shows that the cut formulation is much more powerful in practice: Based on DCUT, we

develop a Branch-and-Cut algorithm for {0,1,2}-SND problems which allows us to solve test instances with up to

4900 nodes to provable optimality. Moreover, we propose a collection of benchmark instances for {0,1,2}-SND

problems that can be used for further research on this topic.

Although the main focus of this paper lies on the node-connectivity aspect of {0,1,2}-SND problems, com-

bining our results with the results on 2ECON in [7,24], we are for the first time able to develop a common

Branch-and-Cut framework based on directed graphs which solves the 2ECON, 2NCON and 2R(PC)SN prob-

lems.

2 Orientation-based Characterization of 2-Node-Connected Graphs

In general, it is not possible to orient an undirected 2-node-connected graph G′ such that for every pair of nodes

v,w ∈ V ′ there are two node-disjoint directed paths, one from v to w and one from w to v. However, choosing a

reference node r—called root node in the following—and orienting the graph with respect to r allows us to find

4

a general characterization for all 2-node-connected graphs. The result bears some similarity to st-numbering (see

e.g. [2]), which is defined relative to some edge {s, t}. A characterization of biconnected graphs using this concept

requires a numbering for each edge of the graph, and hence cannot be directly used in the context of orientation-

based formulations. Our characterization on the other hand is constructed such that it is directly applicable in our

context:

Theorem 2 (Characterization of 2-node-connected graphs) An undirected graph G′ = (V ′,E ′) is 2-node-

connected if and only if for an arbitrary chosen root node r ∈ V ′ there exists an orientation Ĝ such that the

in-degree of the root node is exactly 1 and for each node v ∈ V ′ \ {r}, Ĝ contains a directed path (r→ v) and a

directed path (v→ r), which are node-disjoint except for r and v.

In order to prove this theorem, we first have to introduce an algorithm for which we will show that it establishes

such an orientation for a 2-node-connected graph G′.

Definition 1 (Orienting Procedure) We use ` : V ′→ [0,1]∪{∞} as a labeling function. Initially we set `(v) := ∞

for all v ∈V . We start by identifying a simple cycle Z in G′ containing r, and orient its edges consistently in one

of the two possible directions. We then label each node on Z with increasing fractional numbers between 0 and

1, according to this orientation, starting with `(r) := 0. Hence, all edges of Z (except its last edge ê) are oriented

from the smaller towards the larger label number. We will now orient the remaining undirected edges in such a

way that this invariant is valid for all oriented edges:

We define an augmenting path P = (a→ b) as a simple path of unoriented edges where only the disjoint start

and end nodes are labeled, and `(a) < `(b). To orient G′, we repeatedly find an augmenting path P = (a→ b) and

orient it from a to b, labeling all inner nodes with increasing fractional numbers greater than `(a) but smaller than

`(b); these labels are to be unique over all labelings so far.

Observation 1 By the above construction, we guarantee that each labeled node has at least one incoming and

one outgoing edge. Furthermore, each oriented edge (except for ê) is oriented from the smaller towards the larger

label number. Hence, each oriented path will always contain monotonously increasing label numbers (with the

exception of ê). This means that any directed circle starting from r and going through any labeled node v will be

simple, and we therefore have node-disjoint paths (r→ v) and (v→ r).

Proof (of Theorem 2) We first show that for every 2-node-connected graph G′ = (V ′,E ′), there exists a valid

orientation. We apply the orienting procedure and due to Observation 1, it remains to show that every edge gets

oriented by this process. Assume that at some point there is at least one unoriented edge e left, but we cannot find

any augmenting path. Clearly, e has to be part of some path Q = (c→ d) of unoriented edges with labeled nodes

c and d. Since neither Q nor its reversal is an augmenting path, we have `(c) = `(d) and therefore c = d, i.e., Q

is a cycle of unoriented edges, and none of its nodes except for c are labeled. Since G′ is 2-node-connected, there

has to be an additional unoriented path from some node q ∈ Q to some labeled node p (p,q 6= c). But then, the

path (p→ q→ c) (or its reversal) would be an augmenting path, which is a contradiction.

5

The orienting procedure used above guarantees that there is only a single edge ê to be directed towards r. We

therefore can observe that the root has an in-degree 1. Hence, the above algorithm correctly orients any 2-node-

connected graph.

On the other hand, we show that, given a valid orientation Ĝ, the graph G′ is 2-node-connected. For any pair of

nodes u,w ∈V ′ there exists a path (u→ w) that is, e.g., the concatenation of directed paths (u→ r) and (r→ w)

and analogously a backward path (w→ u). Due to Theorem 1 the underlying undirected graph G′ is hence 2-

edge-connected and does not contain any bridges. We show that all nodes v ∈V ′ \{r} share a common block with

r. Assume that there are at least two blocks B1 and B2 containing the nodes v1,v2 ∈V ′ \{r}, respectively. Then r

has to be a cut vertex contained in both blocks. But since a valid orientation requires directed paths (v1→ r) and

(v2→ r) there have to be at least two edges being directed towards r which is a contradiction to the validity of the

orientation Ĝ. Hence we know that Ĝ will only contain a single block and therefore it is 2-node-connected. ut

3 Solution Structure of the {0,1,2}-SND Problems

The above theorem provides us with an important tool to characterize all feasible solutions of our {0,1,2}-SND

problems.

Definition 2 Let (G′,U) be a tuple of an undirected connected graph G′ = (V ′,E ′) and U ⊆V ′ with |V ′| ≥ 3 and

|U | ≥ 2. G′ with respect to U is:

– (1,2)-edge-connected, if all nodes u ∈U lie in the same non-trivial 2-edge-connected component.

– (1,2)-root-node-connected, if for a given root node r ∈ V ′ each node u ∈ U belongs to a block that also

contains r.

– (1,2)-node-connected, if all nodes u ∈U lie in the same block.

Observation 2 Let (G′,U) be a tuple as defined above.

– If G′ is (1,2)-root-node-connected w.r.t. U , then it is also (1,2)-edge-connected w.r.t. U .

– G′ is (1,2)-node-connected w.r.t. U if and only if G′ is (1,2)-root-node-connected w.r.t. U , for all possible

choices of r ∈U .

Observation 3 Given an instance of a {0,1,2}-SND problem with customer sets R1 and R2. Let N be any

solution of the 2ECON, 2RSN, or 2NCON problem. We can observe that R ⊆ VN and (N,R2) is (1,2)-edge-

connected, (1,2)-root-node-connected, or (1,2)-node-connected, respectively.

Due to the existence of Theorem 1, it was possible to give the characterization of feasible 2ECON networks ([7,

24]). We now briefly rephrase it here:

Theorem 3 Let (G′,U) be a tuple as defined above. G′ is (1,2)-edge-connected with respect to U if and only if

for any node r ∈U there exists an orientation Ĝ such that:

(P1) For each node v ∈V ′ \U, Ĝ contains a directed path (r→ v).

(P2) For each node v ∈U \{r}, Ĝ contains a directed path (r→ v) and a directed path (v→ r).

6

With our Theorem 2 we are now able to give a characterization of all feasible solutions for 2RSN and 2NCON,

i.e., graphs that contain R1 and are (1,2)-root-node-connected and (1,2)-node-connected with respect to R2.

Theorem 4 For a given tuple (G′,U) and a root node r ∈V ′, G′ is (1,2)-root-node-connected with respect to U

if and only if there exists an orientation Ĝ of G′ that satisfies the properties (P1), (P2) and:

(P3) For each node v ∈U \{r} the directed paths (v→ r) and (r→ v) are node-disjoint except for r and v.

Proof Given a valid orientation, it is trivial to show that (G′,U) is (1,2)-root-node-connected. Hence, assume

(G′,U) is (1,2)-root-node-connected, and we show that there exists a valid orientation Ĝ of G′. Let Bi, i ∈ I, be

the blocks of G′ with Bi∩U 6= /0. For each i∈ I we have by definition that r ∈Bi and clearly, U ⊆
⋃

i∈I Bi. We orient

each Bi according to the orienting procedure defined above. Theorem 2 guarantees that for all nodes v∈
⋃

i∈I Bi the

properties (P1), (P2) and (P3) are satisfied. The nodes v /∈
⋃

i∈I Bi form subgraphs attached to
⋃

i∈I Bi. By starting a

DFS from the corresponding cut nodes and orienting all edges from the lower to the higher DFS index, we obtain

directed paths (r→ v) for all v ∈ V \ {r} which concludes the construction of Ĝ. Note that if G′ represents an

optimal solution for the 2RSN problem, these subgraphs will form a tree and are therefore easily orientable by a

DFS procedure. ut

Theorem 5 Given a tuple (G′,U) as described above. G′ is (1,2)-node-connected with respect to U if and only

if for any root node r ∈U there exists an orientation Ĝ of G′ with the properties (P1)–(P3) and additionally:

(P4) In-degree of r is equal to one.

Proof Given a valid orientation, (G′,U) is clearly (1,2)-node-connected. Hence, assume (G′,U) is (1,2)-node-

connected, and we show that there exists a valid orientation Ĝ of G′.

By definition, all nodes u ∈U lie in the same block. According to Observation 2, for any chosen root r ∈U it

is also (1,2)-root-node-connected with respect to U \{r}. Using the orienting procedure above for any arbitrarily

chosen root r ∈U , we obtain an orientation satisfying (P1)–(P3). As there is only one block containing all nodes

v ∈U , the orientation procedure guarantees that r has only one ingoing arc. ut

4 Orientation-Based ILP Models

We reformulate the 2RSN and 2NCON problems into directed D2RSN and D2NCON problems, respectively, and

provide novel ILP formulations based on two different concepts: one of them uses principles of multi-commodity

flow, the other one is based on directed cuts. Finally, we modify the cut-based model for the prize-collecting

variant 2RPCSN. Generally, both flow- and cut-based concepts are traditional tools in network design problems.

Although their practical performance may differ a lot, both variations often turn out to be theoretically equivalent.

See, e.g., [8] for a related overview concerning the traditional Steiner tree problem.

Here and in the following sections, we are given a graph G = (V,E) with edge costs c and the sets R1∪̇R2 =

R ⊆ V as described in Section 1.1. Let Ḡ = (V,A) be the bidirected graph obtained from G by replacing every

undirected edge {u,v}∈E by two directed arcs (u,v),(v,u)∈A with costs cuv = cvu = c{u,v}. To model the directed

7

2NCON problem, we first choose an arbitrary root node r ∈ R2. In the case of the directed 2RSN problem the

root node r is already specified. As a shorthand, we define R ′i := Ri \{r} for 0≤ i≤ 2, and R ′ := R \{r}.

The optimal solution of D2RSN is a weight-minimal oriented subgraph N̂ = (VN ,AN) in Ḡ with R ⊆ VN

which is (1,2)-root-node-connected—i.e., it satisfies the properties (P1)–(P3)—with respect to r and U = R2.

Analogously, if we require (1,2)-node-connectedness—i.e., properties (P1)–(P4)—then N̂ is an optimal solution

of D2NCON. Note that if we ignore both (P3) and (P4), N̂ is an optimal solution of the D2ECON problem.

From Theorems 4 and 5 we have:

Corollary 1 Any feasible solution for 2RSN and 2NCON can be transformed into a corresponding feasible solu-

tion for D2RSN and D2NCON, respectively, with the same objective value, and vice versa.

Remark. One may try to model node-connectivity by only computing edge-connectivity in a modified under-

lying graph, by replacing each node by a directed arc. This is not valid in our case as the orientability theorems

require bidirectedness of the underlying graph.

4.1 A Multi-Commodity Flow Approach

We start with presenting a multi-commodity flow ILP formulation (denoted by DFLOW) for D2RSN, and therefore

for 2RSN. We then show how this ILP can be extended to solve the 2NCON problem.

Connecting each customer v ∈R ′ to a root node r can be expressed by sending exactly one unit of flow from

the r to v in Ḡ. To guarantee the redundant connection for each customer v ∈R ′2, we send one unit of flow back

to the root. Thereby it has to be ensured that the pairs of forward- and backward-flows do not use common nodes

and edges except for v and r. The arcs with a positive amount of flow then define our solution network.

We therefore define the set of commodities C = {(r,v) | v ∈ R ′}∪ {(v,r) | v ∈ R ′2}. A flow of commodity

χ ∈ C on the arc (i, j) ∈ A is modeled by the continuous variable f χ

i j . Finally, we introduce binary variables xi j

which are 1, if the solution network contains the arc (i, j) ∈ A and 0 otherwise.

DFLOW : min ∑
(i, j)∈A

ci j · xi j (1)

∑
i:(i,v)∈A

f χ

iv − ∑
i:(v,i)∈A

f χ

vi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C ,∀v ∈V (2)

∑
i:(i,w)∈A

(
f (v,r)
iw + f (r,v)

iw

)
≤ 1 ∀v ∈R ′2,∀w ∈V \{r,v} (3)

0≤ f χ

i j ≤ xi j ∀(i, j) ∈ A,∀χ ∈ C (4)

xvw + xwv ≤ 1 ∀{v,w} ∈ E (5)

xvw ∈ {0,1} ∀(v,w) ∈ A (6)

8

The flow-conservation constraints (2) define the sent flow and ensure the flow balances, while the coupling con-

straints (3) ensure the node-disjointness of the pairs of forward and backward flow, by guaranteeing that at most

one unit of flow per commodity pair is sent into any node. The inequalities (4) ensure the flow capacities and

bind the flow variables f to the network-defining variables x. For the latter, (5) ensures that we have a unique

orientation for the selected edges. Due to Theorem 1, the constraints (2), (4), (5) and (6) ensure that every R ′2

customer belongs to the same edge-biconnected component as r. Theorem 2 and 4, and constraint (3) guarantee

that this component is (1,2)-root-node-connected with respect to R ′2.

According to Theorem 5, adding the following equation (7) leads to a multi-commodity flow ILP for the

2NCON problem. It ensures that we select only a single arc that is oriented towards the root r:

∑
(i,r)∈A

xir = 1. (7)

Without (3) and (7), our DFLOW formulation is equivalent to the directed flow formulation for 2ECON originally

presented by Raghavan [24, p. 188].

4.2 A Directed Cut Approach

Our second ILP formulation is based on directed cuts; we denote it by DCUT. Its number of variables is indepen-

dent of R as it only requires variables xi j for all (i, j) ∈ A. On the other hand, it has an exponential number of

constraints. We will see that these are of the traditional cut type and therefore easily and polynomially separable

within a Branch-and-Cut approach. A main motivation for DCUT is that cut formulations often outperform flow

formulations in practice, as e.g. in [6,17].

Let S ⊂ V , then δ
+
G (S) := {(s, t) ∈ A | s ∈ S, t ∈ V \S} and δ

−
G (S) := {(s, t) ∈ A | s ∈ V \S, t ∈ S} denote the

arcs leaving and entering S, respectively. We may omit the subscript if G is clear from the context. Furthermore,

we use the shorthands Gw := G\{w}, for some w ∈V , and x(B) := ∑e∈B xe, for some B⊆ A.

DCUT : min ∑
(i, j)∈A

ci j · xi j (8)

xvw + xwv ≤ 1 ∀{v,w} ∈ E (9)

x(δ−(S))≥ 1 ∀S⊆V \{r},S∩R ′ 6= /0 (10)

x(δ+(S))≥ 1 ∀S⊆V \{r},S∩R ′2 6= /0 (11)

x(δ−Ḡw
(S1))+ x(δ+

Ḡw
(S2))≥ 1

∀w ∈V \{r},∀S1,S2 ⊆V \{r,w},

S1∩S2∩R ′2 6= /0
(12)

xvw ∈ {0,1} ∀(v,w) ∈ A (13)

As before, (9) guarantees the unique orientation of chosen edges. The constraints (10) and (11) are called forward-

and backward-cuts, respectively. They ensure the existence of the required paths, and (12) assures the node-

disjointness of these paths: After removing any node w, either the forward of the backward path still has to exist.

9

Thus an optimal solution of the above ILP defines an optimal solution of the 2RSN problem. Analogous to

DFLOW, extending DCUT with (7) gives us a cut-based ILP on bidirected graphs for the 2NCON problem. Again,

without (12) and (7), our DCUT formulation is equivalent to the directed cut formulation for 2ECON given by

Chopra [7].

4.3 Extension to the Prize-Collecting Model

For prize-collecting variants of 2CON problems we cannot easily choose a root node in advance since we do not

know any node that will definitively be selected. The situation becomes clear for 2RSN, since even in the prize-

collecting setting the prespecified root will always have to be contained in the solution network. We show how

the DCUT model can be extended to model this prize-collecting variant 2RPCSN. Observe that we can extend the

DFLOW model analogously. As introduced in Section 1.1, we are given a prize pv for each vertex v.

Additionally to (13), we introduce a second set of binary variables

yv ∈ {0,1},∀v ∈V.

The variable yv is 1, if v is in the solution network N̂, and 0 otherwise. By definition, yr = 1. We obtain the

following objective function:

min ∑
(i, j)∈A

ci j · xi j−∑
v∈V

pv · yv. (14)

We not only require a unique orientation of the edges, but observe that selecting an edge requires both incident

nodes to be selected as well:

xuv + xvu ≤ yv ∀v ∈V,∀(v,u) ∈ A. (15)

The cut constraints only require a non-zero cut if a vertex in the considered cut set is selected:

x(δ−(S))≥ yv ∀S⊆V \{r},∀v ∈ S∩R (16)

x(δ+(S))≥ yv ∀S⊆V \{r},∀v ∈ S∩R2 (17)

x(δ+
Gw

(S1))+ x(δ−Gw
(S2))≥ yv

∀w ∈V \{r},∀S1,S2 ⊆V \{r,w},

∀v ∈ S1∩S2∩R ′2

(18)

5 Polyhedral Comparison

The polyhedral comparison provided in this section is done for 2NCON. The results related to 2R(PC)SN can

be derived correspondingly, so we omit their proofs. We first compare the strength of the two concepts proposed

above, DCUT and DFLOW. We then compare them with previously known ILP formulations and conclude this

section with a hierarchy of the strength of LP relaxations for 2NCON.

10

5.1 Strength of DCUT and DFLOW

Let

PDF = {(x, f) ∈ [0,1]|A|× [0,1]|A|·|R| | (x, f) satisfies (2)–(5) and (7)}, and (19)

PDC = {x ∈ [0,1]|A| | x satisfies (9)–(12) and (7)} (20)

be the polyhedra corresponding to LP relaxations of DFLOW and DCUT for 2NCON, respectively. To be able to

compare these polyhedra we consider the projection of PDF into the space of x variables, i.e.,

projx(PDF) = {x | (x, f) ∈PDF}.

Theorem 6 We have projx(PDF) = PDC, i.e., the DFLOW formulation and the DCUT formulation are equally

strong for 2NCON.

Proof projx(PDF)⊆PDC : It is a classical and direct consequence of the max-flow min-cut theorem that if an

assignment (x̄, f̄) for (x, f) is feasible for DFLOW, then x̄ is feasible for DCUT, i.e., x̄ satisfies the constraints (10)–

(12). Assume there is a set S ⊆ V \ {r} with v ∈ S∩R ′ and x̄(δ−(S)) < 1. Then the minimum (r,v)-cut—and

therefore the maximum (r,v)-flow—is less than 1. This is a contradiction to the corresponding flow constraint (2)

with commodity (r,v). Therefore, the constraints (10) and, analogously also (11), are satisfied.

Let v ∈ R ′2. Since f satisfies DFLOW, there is exactly one unit of commodity (r,v) going from r to v, and

one unit of (v,r) going from v to r: the total amount of flow between r and v is 2. The constraints (3) ensure that

deleting any node w 6= r in G can decrease this amount by at most one flow unit. Hence there is an (undirected)

max-flow—and therefore a minimum undirected cut—of at least 1 between r and v in any Gw, which induces (12).

PDC ⊆ projx(PDF) : We show that if an assignment x̄ for x is feasible for DCUT, then there exists a flow f̄

such that (x̄, f̄) is feasible for DFLOW. Clearly, all DFLOW constraints only dealing with x-variables are satisfied

as they are identical to the DCUT formulation. It remains to show that we can fit flow into the network using the

x-values as capacities. Note that the flows of each commodity are mostly independent of each other, as only the

coupling constraints (3) define a dependency between the forward and the backward flow for each v ∈R ′2. It is

clear that we can find a flow from r to any v ∈R ′1, since (10) guarantees a minimum cut between r and v of at

least 1. Analogously, because of (10) and (11), we can also find a forward and a backward flow
(

f̄ (r,v), f̄ (v,r)
)

for

each v ∈R ′2, and it remains to show that there always exists such a pair of flows which satisfies (3) for all nodes

w ∈V \{r,v}.

Let us assume there exists no such pair of flows. Let
(

f̂ (r,v), f̂ (v,r)
)

be the flows satisfying (2) and (4) such

that the maximal violation of (3) is minimal. Let ŵ be a node where such a maximal violation occurs. The paths

used by the flow can then be divided into multiple paths which go through ŵ and multiple paths which do not go

through ŵ. We denote these path sets by P and Q, respectively. Let α > 1 be the amount of flow over P, and we

have β = 2−α < 1 as the flow over Q.

Due to (12) we know that there exists a set Q+ of additional paths not going through ŵ over which we can

send β+ > 0 amount of flow, such that β +β+ = 1. Consider the flow pair
(

f̃ (r,v), f̃ (v,r)
)

, where the flow over ŵ

11

(a)

Fig. 2 Sketch for the proof of Theorem 6, part of PDC ⊆ projx(PDF).

is only 1, and the second flow unit is sent over that paths of Q and Q+.3 Since the original flow was minimal in

terms of constraint violation, this new pair of flows has a different node w̃ over which at least α flow units are

sent, say γ ≥ α . Clearly, w̃ is part of Q+. Even if Q+ contributes all of its flow units to γ , we have γ = γ ′+ β+

and thus: α ≤ β+ + γ ′ = 1−β + γ ′ = 1−2+α + γ ′ =⇒ 1≤ γ ′

The paths of Q cannot contribute to γ , since then we could modify the original flow
(

f̂ (r,v), f̂ (v,r)
)

such that

(3) is less violated for ŵ (without introducing an additional violation of at least α). Thus γ ′ has contributions from

paths of P. Since the new flow sends exactly 1 unit over P, all paths in P have to go through ŵ and w̃: otherwise we

could choose a path going through ŵ and not through w̃ and further reduce the flow through the latter. Hence, in(
f̂ (r,v), f̂ (v,r)

)
both ŵ and w̃ have a through-flow of α , and the paths in P can be subdivided into subpaths between

r and w̃, w̃ and ŵ, and ŵ and v, assuming w.l.o.g. that w̃ is closer to r than ŵ. But then we can iterate the above

argument, send only 1 unit of flow through ŵ and w̃, and find an additional node w̌ with too much through-flow.

This argument can be iterated ad infinitum, requiring an infinitely large graph. ut

By analogous proofs we obtain:

Corollary 2 The DFLOW and DCUT formulations are equally strong for 2RSN and for 2RPCSN.

5.2 Comparison to the Undirected Cut Formulation

We compare our DCUT formulation with the currently best known and widely used cut-formulation presented

in [26, p. 14], denoted by UCUT: It is based on undirected cuts in the original (undirected) graph, and uses binary

variables ze, for all e ∈ E, that are set to 1 if the corresponding edge is selected into N, and to 0 otherwise. For

each pair of Ri nodes, it requires all their cuts to be at least i (i ∈ {1,2}). For all pairs of R2 nodes, it further

requires all cuts to be at least 1, considering all graphs resulting from removing a single node, in order to ensure

2-node-connectedness. With δ (S) = {{i, j} ∈ E | i∈ S, j ∈V \S}, we denote the undirected cut induced by S⊂V ,

and we use z(F) = ∑e∈F ze for sets F ⊆ E.

UCUT : min ∑
e∈E

ce · ze (21)

3 We can choose this new pair of flows such that (2) and (4) still holds, since, even if the newly routed flow over Q+ sends the total amount

β+ in a single direction (say from r to v), we know that f̂ satisfies (2) and therefore sends at least α−1 = β+ units into each direction. In the

modified flow we can hence remove enough directed flow per direction from P to allow valid flow using Q+ instead.

12

z(δ (S))≥ 1 ∀S⊆V, /0 6= S∩R1 6= R (22)

z(δ (S))≥ 2 ∀S⊆V, /0 6= S∩R2 6= R2 (23)

z(δGw(S))≥ 1 ∀w ∈V,∀S⊆V, /0 6= S∩ (R2 \{w}) 6= R2 \{w} (24)

ze ∈ {0,1} ∀e ∈ E (25)

For 2ECON it is known (cf. [7,24]) that directed formulations are stronger than undirected ones, as long as R1 6= /0.

For 2NCON, we can also show that our (rooted, directed) DCUT formulation is stronger than the (unrooted,

undirected) UCUT formulation. Furthermore, this even holds if R1 = /0.

Let PUC be the polyhedron corresponding to the LP-relaxation of UCUT. For PDC, we can use the natural

projection

projz(PDC) = {z ∈ [0,1]|E| | x ∈PDC,zi j = xi j + x ji ∀e = {i, j} ∈ E}.

Theorem 7 We have projz(PDC)⊂PUC, i.e., the DCUT formulation is strictly stronger than UCUT for 2NCON.

This also holds if R1 = /0.

Proof We first show that projz(PDC) ⊆PUC, i.e., that we can generate the undirected constraints from their

directed counterparts. Recall that for any set S ⊂ V we have z(δ (S)) = z(δ (V \ S)) = x(δ−(V \ S))+ x(δ−(V)).

Consider any constraint (22) with its corresponding set S. If r ∈ S, we can consider (10) and have x(δ−(V \S))≥ 1.

Analogously, if r /∈ S, we have x(δ−(S)) = x(δ+(V \S)) ≥ 1. Therefore, in both cases we have z(δ (S)) ≥ 1 and

the undirected constraint is hence satisfied.

Consider any constraint (23) with its corresponding set S; we show: z(δ (S)) = x(δ−(S))+ x(δ+(S)) ≥ 2. If

r ∈ V \ S, the inequalities (10) and (11) directly give the above formula. If r ∈ S, we can consider the cut set

V \ S instead of S, as z(δ (S)) = z(δ (V \ S)). Using the same argument for the graph Gw we can generate the

inequalities (24) from the inequalities (12) with S1 = S2.

It remains to show that projz(PDC) 6= PUC. We therefore use a triangular graph with ρ = 1 for each node.

The solution z̄e = 0.5 for each edge e is feasible for UCUT, but there is no corresponding flow in DCUT which

would be feasible. We can obtain an example with |R2| ≥ 2 by attaching a feasible network of R2 nodes to one

of the triangle’s nodes, cf. Figure 3(a).

Figure 3(b) shows that projz(PDC) 6= PUC even if R1 = /0. The drawing represents a feasible fractional

solution z̄∈PUC, whereby all nodes are R2 customers. The black node denotes the root. Due to the constraint (7)

there exists no corresponding feasible solution x ∈PDC with x̄vw + x̄wv = z̄vw for all {v,w} ∈ E. ut

Note, however, that in general there are instances and root node selections such that both polytopes are equivalent.

An undirected-cut-based formulation that is quite similar to UCUT also exists for 2R(PC)SN. The main dif-

ference is that the cuts are defined with respect to a given root. However, it is easy to show that, in general, when

R1 6= /0 this formulation gives weaker lower bounds compared to our DCUT formulation for 2R(PC)SN [6]. For

R1 = /0, DCUT and UCUT are equivalent for 2R(PC)SN. We can summarize our findings as:

13

(a) R1 6= /0: The network is infeasible

for sc DCut, but feasible for UCUT.

(b) R1 = /0: The network is infeasible

for sc DCut, but feasible for UCUT.

(c) The node-partition inequalities

are not satisfied.

Fig. 3 In the above figures, the root node is denoted by the black circle. A empty circle denotes a R1 node, a double circle denotes a R2 node.

Single edges correspond to a fractional solution of 0.5, double edges correspond to a fractional solution of 1.

Corollary 3 For our considered problem classes, the relationship between DCUT and UCUT is established as

below.
√

means that the DCUT formulation is stronger,⇔ means that both are equivalent. The relationships hold

true independent on whether R0 = /0 or not; clearly, |R2| ≥ 2.

2ECON 2NCON 2RSN, 2RPCSN

R1 = /0 ⇔
√

⇔

R1 6= /0
√ √ √

5.3 Comparison to the Undirected Flow Formulation

There also exists a flow-based multi-commodity ILP on undirected graphs (UFLOW) which is equivalent to UCUT

from the polyhedral point of view [24, p. 26]. It has been strengthened by Raghavan [24, pp. 180–181] to obtain the

previously strongest formulation for 2NCON. It uses two multi-commodity flows g and h simultaneously: g rep-

resents directed flow for the induced 2ECON problem, h represents an non-oriented flow with node-disjointness

constraints.4 The two flows are bound to each other only by their common use of the ze variables. We denote

Raghavan’s formulation as MFLOW (mixed flow) and show that our new formulation is beneficial.

MFLOW : min ∑
e∈E

ce · ze (26)

4 Note that this formulation has been developed for general kNCON problems, where it is called improved undirected flow formulation with

node-disjointness constraints.

14

∑
i:(i,v)∈A

gχ

iv− ∑
i:(v,i)∈A

gχ

vi =

−1, if v = s

1, if v = t

0, else

∀χ = (s, t) ∈ C ,∀v ∈V (27)

gχ
vw +gχ ′

wv ≤ zvw ∀{v,w} ∈ E,∀χ,χ
′ ∈ C (28)

gχ
vw ≥ 0 ∀(v,w) ∈ A,∀χ ∈ C (29)

∑
i:(i,v)∈A

hχ

iv− ∑
i:(v,i)∈A

hχ

vi =

−2, if v = s

2, if v = t

0, else

∀χ = (s, t) ∈D ,∀v ∈V (30)

0≤ hχ
vw ≤ zvw ∀(v,w) ∈ A,∀χ ∈D (31)

∑i:(v,i)∈A hχ

vi ≤ 1 ∀χ = (s, t) ∈D ,v ∈V \{χ} (32)

ze ∈ {0,1} ∀e ∈ E (33)

Thereby, we consider an arbitrary ordering 〈v1,v2,v3, . . .〉 of the nodes of R2 and define v0 := v|R2|. We then

obtain the “cyclic” commodity set D := {(vi,vi+1) | 0≤ i < |R2|} [24, pp. 89–92]. The set of commodities C is

defined as in DFLOW.

Let PMF be the polyhedron of the feasible solutions of the LP-relaxation MFLOW. We consider the projec-

tions of PDF and PMF into the space of z variables, i.e.:

projz(PDF) = {z ∈ [0,1]|E| | (x, f) ∈PDF , zi j = xi j + x ji ∀{i, j} ∈ E}, and (34)

projz(PMF) = {z ∈ [0,1]|E| | (z,g,h) ∈PMF}. (35)

We also consider extended projections including the flow variables f ∈ [0,1]|A|·|C |, i.e., variables not in the objec-

tive function. Let

projz, f (PDF) = {(z, f) | (x, f) ∈PDF ,ze = xi j + x ji ∀e = {i, j} ∈ E}

be the projection of PDF into the variable space of z and retaining the flow f . Let

projz, f (PMF) = {(z, f) | (z,g,h) ∈PMF , f = g}

be the projection of PMF ignoring the h flow. In other words, we identify the flows f and g.

We show that the lower bounds obtained by the LP-relaxations of our DFLOW formulation are at least as tight

as those of the mixed flow formulation. Therefore note that the flow f is a kind of natural fusion of the flow g and

the node-disjointness properties of h.

Theorem 8 DFLOW is at least as strong as MFLOW, i.e., projz(PDF)⊆ projz(PMF). Furthermore we even have

projz, f (PDF)⊂ projz, f (PMF).

Proof We show that for any feasible solution (x̄, f̄) of DFLOW we can obtain a feasible solution (z̄, ḡ, h̄) of

MFLOW, using projz, f as described above. Based on these projections, it is easy to see that (27), (28), (29), and

(33) are satisfied. It remains to show that we can always find a feasible flow solution h within the network G with

15

the projected edge capacities z. Let χ = (s, t) ∈D . If χ ∈ C , we can choose h̄χ
e := f̄ χ

e + f̄ (t,s)
e , which satisfies (30),

(31), (32) due to (4) and projz.

Assume χ 6∈ C . We look at the maximum (s, t)-flow in G with capacities z and consider any corresponding

minimum (s, t)-cut; let S be the cut set containing s, and V \S contains t. W.l.o.g. assume that r ∈ S. Since (2) is

satisfied for the commodities (r, t) and (t,r), the maximum undirected (r, t)-flow, and therefore also the maximum

undirected (s, t)-flow hχ , is at least 2. Assume we cannot send hχ without violating (32). Then there exists a single

node w such that the total capacity κ of the cut edges which do not send their flow through w is less than one. If

w 6= r, (3) guarantees that we can send two (undirected) flow units between r and t whereby at most one unit is

sent through w. This is a contradiction to κ . If w = r, (7) guarantees an in-flow into r of exactly 1 for both the

(s,r) and the (t,r) flow. Hence, using the two 1-flows f̄ (s,r) and f̄ (t,r) we can send an undirected flow of at least 1

between s and t without using r, which is again a contradiction to κ .

To establish the second claim it is enough to construct a feasible flow g in MFLOW which sends more than

one unit into the root r. This is infeasible for DFLOW as (7) is violated. ut

DFLOW requires less variables and constraints than MFLOW, hence:

Observation 4 DFLOW is more compact than MFLOW.

Our formulation answers the question by Raghavan [24, p. 183] whether his flow variables g,h can be bounded

together more tightly. Note that Theorem 2 is crucial for the validity of our approach, which explains why this

compact formulation could not be used legitimately before.

5.4 Additional Cut-Constraints

Recall that UCUT without (24) is the traditional undirected cut formulation for 2ECON. It has been shown in [26]

that the latter formulation can be strengthened by adding certain classes of valid inequalities that are NP-hard to

separate. Chopra [7] showed that his directed 2ECON cut formulation inherently includes one of these classes,

namely the partition inequalities; in [26, pp. 130–134] it was shown that the latter formulation also includes

the class of the (polynomially separable) Prodon inequalities. Moreover, Raghavan showed that his improved

undirected multi-commodity flow formulation for kECON, which for k = 2 is equivalent to both directed flow

and directed cut formulations for 2ECON, also includes the odd-hole inequalities and the combinatorial-design

inequalities [24, pp. 165–180]. By dropping the constraints (12) and (7) from DCUT, we obtain the directed cut

formulation for 2ECON. Hence we can conclude:

Proposition 1 DCUT and DFLOW inherently ensure the validity of the partition, Prodon, odd-hole, and combi-

natorial-design inequalities.

For a node v ∈V let {W1, . . . ,Wp} be a proper partition of V \{v} into p non-empty sets such that Wi∩R2 6= /0 for

each 1≤ i≤ p. The node-partition inequalities—i.e., undirected partition inequalities where one node is removed

from the graph—strengthen the UCUT formulation and can be written as:

z(δGv(W1, . . . ,Wp))≥ p−1 (36)

16

Thereby, δGv(W1, . . . ,Wp) defines the set of edges separating the sets W1, . . . ,Wp in the graph G− v.

These inequalities were first proposed by [9] and then generalized in [26, pp. 91–94]. It was an open question

[24, p. 183] whether MFLOW would induce this constraint class. Our following result constitutes a negative

answer for this question:

Proposition 2 In general, none of the above formulations induces the node-partition inequalities (36).

Proof See Figure 3(c) for an example, which denotes the x variables of the arcs. Once more, we use the natural

projection xvw + xwv = zvw for all {v,w} ∈ E to obtain an undirected network: When removing the central node,

the partition inequality with three partition sets is violated. Yet the solution is feasible for the LP-relaxation of

DCUT. ut

Some of the undirected node-partition inequalities are, however, inherently included in DCUT for 2NCON:

Proposition 3 Let x̄ ∈PDC. Then x̄ satisfies the node-partition inequalities for valid partitions of V \{r}.

Proof Consider any partition W1, . . . ,Wp, p≥ 2, of the node set V \{r} such that Wi∩R2 6= /0. From (10) und (7)

it follows:

z(δGr(W1, . . . ,Wp)) = ∑
1≤i≤p

x(δ+(Wi))− x(δ+(r))≥ p−1. ut

Observation 5 For nodes v ∈R2 with deg(v) = 2 in G, the node-partition inequalities are always induced. This

holds even for UCUT. Hence, such nodes in general do not represent good choices as the root nodes in DCUT, as

we gain more by choosing another R2 node with larger degree.

We obtain the following hierarchy of formulations for 2NCON:

Corollary 4 The following hierarchical scheme summarizes the relationships between the LP-relaxations of the

ILP models considered throughout this paper for 2NCON.

DCut+

DCut DFlow

UCut

UCut+

MFlow

UFlow

A filled arrow specifies that the target formulation is strictly stronger than the source formulation. An empty arrow

specifies that the target formulation is at least as strong as the source formulation. Thereby, UCut+ denotes UCUT

with partition inequalities, and DCut+ denotes DCUT with node partition inequalities.

17

6 The Branch-and-Cut Algorithm

Based on the DCUT approach we developed a Branch-and-Cut code. For a general description of the Branch-

and-Cut scheme see, e.g., [32]: In such an algorithm, we start with an initial partial LP, i.e., the ILP without the

integrality properties and only considering a certain subset of all constraints. We solve the partial LP in order to

obtain a current fractional solution. A separation routine then tries to identify constraints of the full constraint set

of the ILP which the current fractional solution violates. We add these constraints to our partial LP and reiterate

these steps. If at some point we cannot find any violated constraints, we have to resort to branching, i.e., we

generate two disjoint subproblems, e.g., by fixing a variable to 0 or 1. By using the fractional solutions as lower

bounds, and some heuristic solution as an upper bound (cf. last paragraph of this section), we can prune irrelevant

subproblems. In every node of the resulting Branch-and-Bound tree, we apply the separation strategy again.

From the point of formulation strength, using DFLOW instead of DCUT might seem like a reasonable choice

in general, as both the number of variables and constraints are bound by a polynomial. But in practice, the latter

has certain advantages: it requires much less variables, especially when R is large. Furthermore, its drawback of

an exponential number of constraints can turn out to be beneficial, as the actual computation of an optimal solution

will in general not require all of these constraints. The required constraints in DCUT can be easily separated using

simple polynomial max-flow algorithms, see below. Hence, we can obtain the optimal fractional solution of the

LP-relaxation at the root of the Branch-and-Bound tree in polynomial time, based on the theorem regarding the

equivalence of optimization and separation; cf., e.g., [32].

We use the same Branch-and-Cut strategy for all problems, 2R(PC)SN and 2NCON.

Initialization. We start with the constraints (9) and the subset of the constraints (10), (11) for |S|= 1. Even for

2NCON and 2RSN, we use an extended DCUT formulation, involving yv binary variables for v ∈R0. Although

they do not strengthen the DCUT model, the following flow-preservation constraints significantly speed up the

computation time:

∑
k:(k,i)∈A

xki ≥ yi and ∑
k:(i,k)∈A

xik ≥ yi, ∀i ∈R0.

These inequalities specify that no node from R0 will ever have only incoming or only outgoing arcs. They are

especially useful for instances with few customers and comparably long paths connecting them in the optimal

solution.

Separation. The cut constraints (10) can be separated in polynomial time via the traditional max-flow separation

scheme: after obtaining some LP-relaxation for our partial ILP, we compute the maximum flow from r to each

v ∈ R in Ḡ using the arc values of the current solution as capacities. If the resulting value is less then one (or

yv, in case of 2RPCSN), we extract one or more of the induced minimum r-v-cuts—considering nested- and

reversal-cuts, as, e.g., described in [18,16]—and add the corresponding constraints to our ILP model. The cut

constraints (11) can be separated analogously.

If there are no violated constraints of type (10) or (11), we solve the separation problem for the constraints of

type (12) in an analogous way: for each node v ∈R2 and for each node w ∈V , w 6= v we compute both the v-r and

18

r-v maximal flows in Ḡw. If the sum of these flows is less than one (or yv, for 2RPCSN), we add the corresponding

inequalities.

Furthermore, to speed up the separation of node-disjointness constraints, we use the following idea: let us

consider an integer solution where the constraints (10) and (11) are valid, i.e., we have edge-disjoint paths (r→ v)

and (v→ r) for any v ∈ R2. If we assume that these paths have a common node w, then there are at least two

incoming and two outgoing edges at w. Therefore, when separating constraints (12), we first try nodes w ∈V with

x̄(δ−(w)) > 1 and x̄(δ+(w)) > 1 in our fractional solution. Finally, it turns out to be beneficial to select the cut

sets containing the smallest number of arcs among all violated cuts of type (10), (11) or (12). In fact, this simple

property is crucial for solving large graphs efficiently in practice.

Primal Heuristic. A fractional solution of an LP-relaxation is used to construct a feasible solution, thus obtaining

upper bounds for the optimal solution. We proceed in three steps: after all customers R are connected by a Steiner

tree, we ensure 2-node-connectivity by extending the current solution with shortest paths from r to all R2 nodes. In

a local improvement step, we remove redundant edges, or chains of edges, that decrease the cost without violating

the connectivity of the solution. For more details on our primal heuristic see [5,6].

7 Computational Results

We implemented both formulations DCUT and DFLOW—able to solve 2ECON, 2NCON, 2RSN, and 2RPCSN—

using CPLEX 9.0’s Branch-and-Bound framework. The additionally necessary separation routines for DCUT are

implemented in C++ using LEDA 5.1.1 and the efficient max-flow algorithm of [3]. All tests were performed on

an Intel Xeon 2.33Ghz CPU with 2GB of RAM per process, and a time limit of 2 hours per problem instance.

Our computational study concentrates on the instances of the {0,1,2}-SND problems with node-connectivity

requirements for which the directed formulations are stronger from polyhedral point of view, cf. Corollary 3. In

general, until now only few computational results for {0,1,2}-SND problems with node-connectivity requirements

were published in literature and there is no common benchmark set of instances for them. Therefore, one of our

additional aims was to create such a benchmark library.5 We therefore collected the available test instances used

by various authors for different problem settings and included them in our TSNDLib (Topological Survivable

Network Design Library) [27]. On the cited webpage, one can also find information on the computational results

conducted on each of the benchmark sets. In the following section, we briefly describe these instances and discuss

their usefulness for our computational study.

Rationale. In this section, we give a brief overview on the experiments performed for all the combinations of

instance sets, formulations and problem classes. The focus of this paper is to formally establish the soundness and

strength of orientation-based formulations for node-connectivity, and show its general applicability in practice.

5 A known library of test instances SNDLib [22] provides instances for survivable capacitated network design problems, i.e., problems

where the aim is not only to topologically design a network, but demand routing and capacity issues have to be considered.

19

We therefore only describe the main findings of these experiments. More thorough analysis specific to certain

problem classes can be found in [5,6].

7.1 Benchmark Instances

Complete euclidean graphs. In [15], Kerivin et al. published their results on the 2-node-connected spanning net-

work problem, the special case of 2NCON where R2 = V . Thereby, they used graphs from the TSPLib [28]

which are complete graphs with euclidean distances as edge costs. For these special problems instances, the

optimal 2-edge-connected solution is also 2-node-connected [21]. Therefore, the 2ECON model is sufficient

for solving them and it follows from Corollary 3 that in this case the (more compact) undirected model is

preferable from theoretical point of view. Hence we will not consider these problems in the following.

However, most real-world applications of {0,1,2}-SNDP seem to be based on rather sparse graphs [1,26]. For

the 2R(PC)SN problems, Bachhiesl [1] proposed the following three different benchmark sets that also have been

used in [30,31]:

ClgS and ClgM. These instances use the real-world access net data of the city district Cologne-Ossendorf. For

our experiments we consider the small (ClgS) and medium (ClgM) sized instance sets. Thereby, each set

contains 25 instances. The underlying graphs have 190 nodes and 377 edges, and 1757 nodes and 3877 edges,

respectively. The instances differ in the customer nodes, and have 3–6 R1, and 2–3 R2 customers.

Grid. This set contains artificial instances based on grid graphs with 100, 400, 900,. . . , 4900 nodes. For each

graph size there are 2×15 instances, using two different cost functions, respectively. They have 5–13 R1 and

3–8 R2 customers.

PCSTLib+. The PCSTLib benchmark [13], was used in several studies, e.g., [18,19], and contains graphs divided

into two groups K and P, where 15%–27% and 34%–50% of the nodes are customers, respectively. The

former are similar to street map layouts. In each group, the underlying graphs have 100 and 400 nodes. For the

{0,1,2}-SND problems, PCSTLib has been augmented to PCSTLib+ such that roughly 1/3 of the customer

nodes are selected to be in R2.

The above three benchmark sets can be used not only for the 2R(PC)SN but also for the 2NCON problem, inter-

preting the given root node as an R2 customer. Due to the diversity of these instances and the partial real-world

aspect, we take them as a basis for our computational study. As the original Cologne and Grid instances have

rather few customers—which seems unusual in practice—we also generated modified instances:

ClgS+ These are the ClgS instances, selecting 20% (10 % R1 and 10% R2) of the nodes as customers.

Grid+ These are the Grid instances, selecting 20% (10 % R1 and 10% R2) of the nodes as customers.

Besides, Wagner [29] proposed an additional artificial benchmark set:

TSPLIB+. Considering the aforementioned TSPLib, these instances are corresponding euclidean Delauney trian-

gulations on varying graph sizes where 25% (10%) of all nodes are R1 (R2) customers.

20

Problem ILP ClgS ClgS+ G 100 G 400 G 900 G 1600 G+ 100 K 100 P 100

2NCON DCut 0.1 0.6 0.2 2.0 22.9 74.2 0.3 0.7 0.5

DFlow 0.3 446.3 7.0 226.0 1505 (6209)* 22.4 19.9 1500

2RSN DCut 0.07 0.4 0.08 1.3 17.36 94.0 0.09 1.0 0.7

DFlow 0.4 154.5 6.4 240.2 1554 — 30 13.08 2194

2RPCSN DCut 0.06 0.02 0.2 2.5 34.5 114.0 0.06 0.4 0.5

DFlow 0.3 7.63 5.94 261.3 1778 — 8.6 19.1 1136

Table 1 Average CPU time in seconds. G(+) denotes the Grid(+) instances; K and P denote the groups of PCSTLib+. (*) DFLOW solves

67% of the instances. None of the instances not in this table could be solved by DFLOW within 2 hours.

For the 2NCON problem, Stoer [26] used a set of sparse real-world instances with up to 116 nodes. Unfortunately,

this data is not available anymore6. On the other hand, our results indicate that such small and sparse networks

are usually solved within less than a second.

7.2 Comparison of DFLOW and DCUT

We first compare the performance of a default Branch-and-Bound algorithm based on our compact DFLOW for-

mulation to our Branch-and-Cut algorithm based on DCUT. To obtain an unskewed comparison, we turned off

all automatic cut-generation etc., usually performed by CPLEX. Our experiments show that DCUT outperforms

DFLOW in terms of running time and success ratio on all instance sets and for all considered {0,1,2}-SND prob-

lems.

Running times. See Table 1 for the overview of the corresponding average running times. We only report on

instances which could—at least in part—be solved to optimality by both DCUT and DFLOW. Table 2 shows the

results for the other (larger) instances that could be solved only by DCUT.

We observe that the runtime performance of DCUT is quite similar on the different problem classes 2NCON,

2RSN and 2RPCSN. The same holds for DFLOW. All instances with less than 200 nodes are solved to optimality

by DCUT in less than a second on average. The only instance set where both algorithms perform comparably well

is ClgS, which is due to the fact that the underlying LPs of DFLOW are rather small due to the small number

of customers, and the overhead of DCUT’s cut separation routines is comparably expensive. Note that neither

approach requires any branching for ClgS and small Grid instances. Already a slight increase in the number of

customers is sufficient for DCUT to outperform DFLOW, see, e.g., the results for Grid instances of size 100. This

effect is further amplified by larger underlying graphs, as this results in an even larger increase of variables for

DFLOW. While the cut approach is able to solve all Grid instances with up to 3600 nodes to optimality within 1

hour, the largest instances which can be completely solved by DFLOW in 2 hours contain 900 nodes. We see that,

due to their high number of customers, DCUT is highly advantageous even for small graphs of PCSTLib+: for the

P group with 100 nodes, it is 2000–3000 times faster than DFLOW.

For the TSPLib+ instances, the findings are analogous to the ones reported before, as only DCUT was able to

solve instances. Interestingly, DCUT solves all instances with up to 1000 nodes within two hours in the context of

6 Personal communication.

21

Problem ClgM G 2500 G 3600 G 4900 G+ 400 K 400 P 400

2NCON average (969) 24/25 334 930 (3216) 29/30 170 (38) 3/6 260

median (56) 219 6871 (2763) 39 (41) 29

2RSN average (828) 24/25 143 628 (2547) 24/30 29 (130) 3/6 142

median (53) 109 480 (2156) 8.0 (52)

2RPCSN average (643) 24/25 153 658 (3014) 25/30 7.0 382 11/11 243

median (33) 83 494 (2356) 3.6 55 202

Table 2 Average and median running time for instances only solved by DCUT. Times in brackets denote that not all instances could be solved

within 2 hours: the corresponding second column gives the ratio of solved instances. None of these instances left of the triple vertical line

require branching. For PCSTLib+, we report only on feasible instances.

2RPCSN, while some of these instances turned to be more difficult for the 2RSN and 2NCON settings. Figure 4

shows the respective running times of DCUT for the different problem settings.

LP-relaxations. A common measure to assess and compare ILP formulations is to look at the lower bounds

resulting from their LP-relaxations, i.e., the solution at the root node of the branch-and-bound tree (LPr). In our

case, these values are identical as the corresponding polytopes are equivalent, cf. Theorem 6.

DCUT also outperforms DFLOW in terms of running times needed to solve the (equivalent) LP-relaxation.

When DFLOW is not able to solve the given instance to optimality within 2 hours, it is due to a large size of

the LP and the most part of the computation time is needed to solve the root relaxation. By contrast, when

branching is required, DCUT uses only a comparably small percentage of the total running time to solve the root

relaxation. For the Grid+ instances with 400 nodes, DFLOW cannot even solve the first LP-relaxation within the

given time bound. DCUT, on the other hand, requires only 170 seconds on average to solve the ILP, whereby the

LP-relaxation is solved within 10–30 seconds. In Figure 5 we visualize these observations w.r.t. 2NCON and the

PCSTLib+ instances. The results for 2R(PC)SN are analogous.

7.3 Analysis of DCut Performance

As the performance of our DCUT algorithm is similar for different problem settings, we only consider its per-

formance for the most prominent 2NCON problem in the following. We observe that the LP-relaxation of our

ILPs usually gives a strong lower bound. For many instances—i.p. all Grid and ClgS instances—the relaxation

already gives an integer, and thus optimal, solution. In Table 3, we report on the quality and time (tLP) of the

solutions at the root node, i.e., the LP-relaxation of the full model. For each set we compute the average relative

gap := (OPT−LPr)
OPT in percent, whereby OPT denotes the optimal objective value of the ILP. Additionally, we give

the average total runtime tILP, the average percentage of instances that require branching (req.br.), and the average

number of Branch-and-Bound nodes (#BB).

22

0
,0

1

0
,1 1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

bays29
dantzig4

att48
eil51

berlin52
st70

eil76
pr76
rat99

kroC100
kroD100
kroA100
kroE100

rd100
kroB100

eil101
lin105
pr107
gr120
pr124

bier127
ch130
pr136
pr144

kroB150
kroA150

ch150
pr152
u159

rat195
d198

kroA200
kroB200

tsp225
pr226
gil262
pr264
a280

pr299
lin318
rd400
fl417

pr439
pcb442

d493
att532
pa561
u574

rat575
p654
d657
u724

rat783
pr1002

2
N

C
O

N

2
R

S
N

2
R

P
C

S
N

Fig. 4 Running time (in seconds) of DCUT for TSPLib+, comparing different problem settings. Missing data points denote that the corre-

sponding problem was not solved to provable optimality within 2 hours.

23

K
1
0
0
-2

K
1
0
0
-6

K
4
0
0

K
4
0
0
-7

K
4
0
0
-8

K
4
0
0
-9

P
1
0
0

P
1
0
0
-1

P
1
0
0
-3

P
1
0
0
-4

P
2
0
0

P
4
0
0
-2

LP DCut

ILP DCut

LP DFlow

ILP DFlow

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 LP DCut

ILP DCut

LP DFlow

ILP DFlow

Fig. 5 Consider 2NCON for PCSTLib+. Time required (in seconds) to solve the DFLOW and DCUT ILPs and their corresponding LP-

relaxations. Data points are missing, when the computation exceeded the 2 hours timeout limit.

ClgS+ G+ 100 K 100 P 100 G+ 400 K 400* P 400

tILP 0.6 0.3 0.7 0.5 170 38.1 — 233

tLP 0.4 0.2 0.6 0.3 21.0 32.3 22.5 27.1

gap 0.12% 0.16% 0.06% 0.18% 0.35% 0.12% (0.53%) 0.34%

req.br. 42.1% 16.7% 22.2% 100% 100% 33.3% 100% 100%

#BB 1.0 2.0 1.9 17.8 101.3 5.33 (641.3) 253

Table 3 Results for 2NCON computed via DCUT, when branching was required. (*) 50% solved (left column); the right column gives the

statistics of the unsolved instances after 2h, using a heuristic upper bound to estimate the gap.

7.4 Directed vs. Undirected Models for 2RPCSN

For the 2RPCSN problem we compared our results for DFLOW and DCUT with the running times of the undi-

rected formulations published in [30,31]7. For this setting, DCUT clearly outperforms undirected formulations: It

solves all Grid instances with up to 3600 nodes and most of the instances with 4900 nodes to provable optimality.

For the previous approaches, the largest solvable instance has 400 nodes and the required running times are much

longer, cf. Figure 6. See [6] for more details on this comparison.

8 Conclusion

In this paper, we showed a new graph-theoretical orientation property for 2-node-connected graphs, and we

demonstrated how this can be exploited to obtain new, provably stronger ILP formulations for various classes

of {0,1,2}-SND problems. Furthermore, we showed that using the orientation-based formulations is beneficial

in practice. To this ends, we introduced a collection TSNDLib of known benchmark sets to allow standardized

comparisons of various and future approaches. Although the focus of this paper was on the node-connectivity as-

pect of {0,1,2}-SND problems, our Branch-and-Cut implementation is the first one that solves arbitrary 2ECON,

2NCON and 2R(PC)SN problems using strong directed models.

7 The algorithms by Wagner et al. were run on a stronger Intel Xeon 3.6 GHz machine with CPLEX 10.0.1 and LEDA 5.1

24

0

1

10

100

1000

10000
4
0
0
-I

1
-0

1

4
0
0
-I

1
-0

2

4
0
0
-I

1
-0

3

4
0
0
-I

1
-0

4

4
0
0
-I

1
-0

5

4
0
0
-I

1
-0

6

4
0
0
-I

1
-0

7

4
0
0
-I

1
-0

8

4
0
0
-I

1
-0

9

4
0
0
-I

1
-1

0

4
0
0
-I

1
-1

1

4
0
0
-I

1
-1

2

4
0
0
-I

1
-1

3

4
0
0
-I

1
-1

4

4
0
0
-I

1
-1

5

4
0
0
-I

2
-0

1

4
0
0
-I

2
-0

2

4
0
0
-I

2
-0

3

4
0
0
-I

2
-0

4

4
0
0
-I

2
-0

5

4
0
0
-I

2
-0

6

4
0
0
-I

2
-0

7

4
0
0
-I

2
-0

8

4
0
0
-I

2
-0

9

4
0
0
-I

2
-1

0

4
0
0
-I

2
-1

1

4
0
0
-I

2
-1

2

4
0
0
-I

2
-1

3

4
0
0
-I

2
-1

4

4
0
0
-I

2
-1

5

ti
m

e
 i

n
 s

e
c
.

UCut UFlow DFlow DCut

(a) Grid instances with 400 nodes

0,01

0,1

1

10

100

1000

10000

K
1

0
0

K
1

0
0

-1

K
1

0
0

-1
0

K
1

0
0

-2

K
1

0
0

-3

K
1

0
0

-4

K
1

0
0

-5

K
1

0
0

-6

K
1

0
0

-7

K
1

0
0

-8

K
1

0
0

-9

K
2

0
0

K
4

0
0

K
4

0
0

-1

K
4

0
0

-1
0

K
4

0
0

-2

K
4

0
0

-3

K
4

0
0

-4

K
4

0
0

-5

K
4

0
0

-6

K
4

0
0

-7

K
4

0
0

-8

K
4

0
0

-9

P
1

0
0

P
1

0
0

-1

P
1

0
0

-2

P
1

0
0

-3

P
1

0
0

-4

P
2

0
0

P
4

0
0

P
4

0
0

-1

P
4

0
0

-2

P
4

0
0

-3

P
4

0
0

-4

ti
m

e
 i

n
 s

e
c
.

UCut

UFlow

DFlow

DCut

(b) PCSTLib+ instances

0,01

0,1

1

10

100

C
lg

S
-0

1

C
lg

S
-0

2

C
lg

S
-0

3

C
lg

S
-0

4

C
lg

S
-0

5

C
lg

S
-0

6

C
lg

S
-0

7

C
lg

S
-0

8

C
lg

S
-0

9

C
lg

S
-1

0

C
lg

S
-1

1

C
lg

S
-1

2

C
lg

S
-1

3

C
lg

S
-1

4

C
lg

S
-1

5

C
lg

S
-1

6

C
lg

S
-1

7

C
lg

S
-1

8

C
lg

S
-1

9

C
lg

S
-2

0

C
lg

S
-2

1

C
lg

S
-2

2

C
lg

S
-2

3

C
lg

S
-2

4

C
lg

S
-2

5

ti
m

e
in

 s
ec

.

UCut UFlow DFlow DCut

(c) ClgS instances

Fig. 6 Diagrams comparing UCUT and UFLOW approaches to our DCUT and DFLOW formulations.

Acknowledgment. We want to thank Daniel Wagner for running his UCUT and UFLOW implementations on

our benchmark instances, and Mechthild Opperud, née Stoer, for insightful discussions.

References

1. P. Bachhiesl. The OPT- and the SST-problems for real world access network design – basic definitions and test instances. Working

Report NetQuest 01/2005, Carinthia Tech Institute, Klagenfurt, Austria, 2005.

2. U. Brandes. Eager st-ordering. In Proceedings of the 10th European Symposium on Algorithms (ESA 02), volume 2461 of LNCS, pages

247–256. Springer, 2002.

3. B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the maximum flow problem. Algorithmica, 19:390–410,

1997.

4. M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Obtaining optimal k-cardinality trees fast. Journal of Experimental Algorithmics.

Accepted. A preliminary version appeared in: Proceedings of the Ninth Workshop on Algorithm Engineering and Algorithms (ALENEX

2008), pages 27–36, SIAM, 2008.

5. M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Strong formulations for 2-node-connected Steiner network problems. In Proceedings

of the 2nd Annual International Conference on Combinatorial Optimization and Applications (COCOA 2008), volume 5165 of LNCS,

pages 190–200. Springer, 2008.

25

6. M. Chimani, M. Kandyba, and P. Mutzel. A new ILP formulation for 2-root-connected prize-collecting Steiner networks. In Proceedings

of the 15th European Symposium on Algorithm (ESA 2007), volume 4698 of LNCS, pages 681–692. Springer, 2007.

7. S. Chopra. Polyhedra of the equivalent subgraph problem and some edge connectivity problems. SIAM J. Discrete Math., 5(3):321–337,

1992.

8. M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23:19–28, 1993.

9. M. Grötschel and C. L. Monma. Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J.

Discret. Math., 3(4):502–523, 1990.

10. M. Grötschel, C. L. Monma, and M. Stoer. Polyhedral Approaches to Network Survivability. In Reliability of Computer and Communi-

cation Networks, Proc. Workshop 1989, volume 5 of Discrete Mathematics and Theoretical Computer Science, pages 121–141. American

Mathematical Society, 1991.

11. M. Grötschel, C. L. Monma, and M. Stoer. Computational results with a cutting plane algorithm for designing communication networks

with low-connectivity constraints. Operatios Research, 40(2):309–330, 1992.

12. M. Grötschel, C. L. Monma, and M. Stoer. Facets for polyhedra arising in the design of communication networks with low-connectivity

constraints. SIAM Journal on Optimization, 2(3):474–504, 1992.

13. D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting steiner tree problem: Theory and practice. In Proceedings of 11th

ACM-SIAM Symposium on Distcrete Algorithms, pages 760–769, 2000.

14. H. Kerivin and A. R. Mahjoub. Design of survivable networks: A survey. Networks, 46(1):1–21, 2005.

15. H. Kerivin, A. R. Mahjoub, and C. Nocq. (1,2)-Survivable networks: facets and branch-and-cut. In M. Grötschel, editor, The Sharpest

Cut, MPS-SIAM Series in Optimization, pages 121–152. SIAM, 2004.

16. T. Koch and A. Martin. Solving steiner tree problems in graphs to optimality. Networks, 32(3):207–232, 1998.

17. I. Ljubić. Exact and Memetic Algorithms for Two Network Design Problems. PhD thesis, TU Vienna, 2004.

18. I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework for the exact solution of the

prize-collecting steiner tree problem. Math. Prog., Ser. B, 105(2–3):427–449, 2006.

19. A. Lucena and M. G. C. Resende. Strong lower bounds for the prize-collecting steiner problem in graphs. Discrete Applied Mathematics,

141(1-3):277–294, 2003.

20. T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with connectivity requirements. Networks, 45(2):61–

79, 2005.

21. C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-weight two-connected spanning networks. Math. Program., 46(2):153–

171, 1990.

22. S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable Network Design Library. In Proceedings of the 3rd

International Network Optimization Conference (INOC 2007), 2007. http://sndlib.zib.de.

23. T. Polzin and S. V. Daneshmand. Improved algorithms for the Steiner problem in networks. Discrete Applied Mathematics, 112(1-3):263–

300, 2001.

24. S. Raghavan. Formulations and Algorithms for the Network Design Problems with Connectivity Requirements. PhD thesis, MIT, Cam-

bridge, MA, 1995.

25. H.E. Robbins. A theorem on graphs with an application to a problem of traffic control. American Mathematical Monthly, 46:281–283,

1939.

26. M. Stoer. Design of Survivable Networks, volume 1531 of LNCS. Springer, 1992.

27. TSNDLib: Collection of benchmark instances for Topological {0,1,2}-Survivable Network Design problems, 2008.

http://ls11-www.cs.tu-dortmund.de/TSNDLib/.

28. TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

29. D. Wagner. Generierung und Adaptierung von Testinstanzen für das OPT und SST Problem. Technical Report 03/2007, Carinthia Tech

Institute, Klagenfurt, Austria, 2007. In german.

30. D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A multi-commodity flow approach for the design of the last mile in

real-world fiber optic networks. In Proc. OR ’06, pages 197–202. Springer, 2006.

31. D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A directed cut for the design of the last mile in real-world fiber optic

networks. In Proceedings of the International Network Optimization Conference 2007, 2007.

32. L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

26

