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Abstract. Given a connected node-weighted (di)graph, with a root node
r, and a (possibly empty) set of nodes R, the Rooted Maximum Node-
Weight Connected Subgraph Problem (RMWCS) is the problem of finding
a connected subgraph rooted at r that connects all nodes in R with max-
imum total weight. In this paper we consider the RMWCS as well as its
budget-constrained version, in which also non-negative costs of the nodes
are given, and the solution is not allowed to exceed a given budget. The
considered problems belong to the class of network design problems and
have applications in various different areas such as wildlife preservation
planning, forestry, system biology and computer vision.
We present three new integer linear programming formulations for the
problem and its variant which are based on node variables only. These
new models rely on a different representation of connectivity than the one
previously presented in the RMWCS literature that rely on a transfor-
mation into the Steiner Arborescence problem. We theoretically compare
the strength of the proposed and the existing formulations, and show
that one of our models preserves the tight LP bounds of the previously
proposed cut set model of Dilkina and Gomes. Moreover, we study the
rooted connected subgraph polytope in the natural space of node vari-
ables. We conduct a computational study and (empirically) compare the
theoretically strongest one of our formulations with the one previously
proposed using ad-hoc branch-and-cut implementations.

1. Introduction

In this work we study a variant of the connected subgraph problem in which we
are given a graph with a pre-specified root node (and possibly an additional set
of terminals). Nodes of the graph are associated with (not necessarily positive)
weights. The goal is to find a connected subgraph containing the root and the ter-
minals that maximizes the sum of node-weights. In addition, a budget constraint
may be imposed as well: in this case, each node is additionally associated with a
non-negative cost, and the cost of connecting the nodes is not allowed to exceed
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the given budget. Both problem variants are NP-hard, unless all node weights
are non-negative and no budget is imposed, in which case the problem is trivial.
The problem is called the Rooted Maximum Node-Weight Connected Subgraph
Problem (RMWCS), or the RMWCS with Budget Constraint (B-RMWCS), re-
spectively.

The problem has been introduced by Lee and Dooly [12] in the context of the
design of fiber-optic communication networks over time, where the authors refer
to the problem as the constrained maximum weight connected graph problem.
The authors impose K-cardinality constraints, i.e., they search for a connected
subgraph containing K nodes (including a predetermined root) that maximizes
the collected node-weights. Obviously, K-cardinality constraints are a special
form of the budget constraints in which every node is associated a cost equal to
one, and the budget is equal to K.

A budgeted version arises in the wildlife conservation planning, where the
task is to select land parcels for conservation to ensure species viability, also
called corridor design (see, e.g. [4, 5]). Here, the nodes correspond to land parcels,
their weights are associated with the habitat suitability, and node costs are
associated with land value. The task is to design wildlife corridors that maximize
the suitability with a given limited budget. Also in forest planning, the connected
subgraph arises as subproblem, e.g., for designing a contiguous site for a natural
reserve or for preserving large contiguous patches of mature forest [2]. Moss
and Rabani [15] have proposed an O(log n) approximation algorithm for the B-
RMWCS with non-negative node-weights, where n is the number of nodes in the
graph. For more details on the problems related on the RMWCS, see e.g., the
literature review given in [5].

In this paper we will address the RMWCS in digraphs as well. This is mo-
tivated by some applications in systems biology where regulatory networks are
represented using (not necessarily bidirected) digraphs and with node weights
that can also be negative. The goal is to find a rooted subgraph in which there is
a directed path from the root to any other node that maximizes the sum of node
weights. In systems biology, the roots are frequently referred to as “seed genes”
as they are assumed to be involved in a particular disease. In Backes et al. [1],
for example, the authors search for the connected subgraph in a digraph without
a prespecified root node (i.e., determination of the seed gene, also called the key
player, is part of the optimization process). To solve the problem of Backes et al.
[1] one can, for example, iterate over a set of potential key players, solve the
corresponding RMWCS and choose the best solution.

Our Contribution. Previously studied mixed integer programming (MIP) for-
mulations for the (B-)RMWCS use arc and possibly flow variables to model the
problem (see Dilkina and Gomes [5]). In this paper we propose three new MIP
models for the (B-)RMWCS derived in the natural space of node variables. We
first provide a theoretical comparison of the quality of lower bounds of these
models. We also show that one of our models which is based on the concept of
node separators, preserves the tight LP bounds of the previously proposed cut
set model of Dilkina and Gomes [5]. In the second part of the paper we study the
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rooted connected subgraph polytope (in the natural space of node variables) and
show under which conditions the node separator inequalities are facet-defining.
In an extensive computational study, we compare the node-separator and the
cut-set model on a set of benchmark instances for the wildlife corridor design
problem used in [5] and on a set of network design instances.

Outline of the Paper. Three new MIP models for the (B-)RMWCS are pro-
posed in Section 2. A comparison of the MIP models and results regarding the
facets of the rooted connected subgraph polytope are given in Section 3 and
computational results are presented in Section 4.

2. MIP Formulations for the RMWCS

In this section we present three new MIP models for the RMWCS and its budget-
constrained variant. Before that, we first review the model recently proposed
by Dilkina and Gomes [5] which is based on the reformulation of the problem
into the (budget-constrained) Steiner arborescence problem. The latter model is
derived on the space of arc variables, while the remaining ones are defined in the
natural space of node variables.

Since every RMWCS on undirected graphs can be considered as the same
problem on digraphs (by replacing every edge with two oppositely directed arcs),
in the remainder of this paper we will present the more general results for di-
graphs. The corresponding results for undirected graphs can be easily derived
from them.

Definitions and Notation. Formally, we define the RMWCS as follows: Given a
digraph G = (V ∪ {r}, A), with a root r, a set of terminals R ⊂ V , and node
weights p : V → R, the RMWCS is the problem of finding a connected subgraph
T = (VT , AT ), that spans the nodes from {r} ∪ R and such that every node
j ∈ VT can be reached from r by a directed path in T , and that maximizes the
sum of node weights p (T ) =

∑
v∈VT

pv. Additionally, in the B-RMWCS, node
costs c : V → R+ and a budget limit B > 0 are given. The goal is to find
a connected subgraph T that maximizes p (T ) and such that its cost does not
exceed the given budget, i.e., c (T ) =

∑
v∈VT

cv ≤ B.

A set of vertices S ⊂ V (S 6= ∅) and its complement S̄ = V \ R, induce
two directed cuts: (S, S̄) = δ+ (S) =

{
(i, j) ∈ A | i ∈ S, j ∈ S̄

}
and (S̄, S) =

δ− (S) =
{

(i, j) ∈ A | i ∈ S̄, j ∈ S
}

. For a set C ⊂ V , let D−(C) denote the set
of nodes outside of C that have ingoing arcs into C, i.e., D−(C) = {i ∈ V \ C |
∃(i, v) ∈ A, v ∈ C}.

A digraph G is called strongly connected (or simply, strong) if for any two
distinct nodes k and ` from V , there exists a (k, `) path in G. A node i is a cut
point in a strong digraph G if there exists a pair of distinct nodes k and ` from
V such that there is no (k, `) path in G− i. A node i is a cut point with respect
to r if there exists a node k 6= i, r such that there is no (r, k) path in G− i. For
two distinct nodes k and ` from V , a subset of nodes N ⊆ V \ {k, `} is called



4

(k, `) (node) separator if there exists a (k, `) path in G and after eliminating N
from V there is no (k, `) path in G. A (k, `) separator N is minimal if N \ {i} is
not a (k, `) separator, for any i ∈ N . Let N (k, `) denote the family of all (k, `)
separators. Obviously, if ∃(k, `) ∈ A or if ` is not reachable from k, we have
N (k, `) = ∅.

For variables a defined on a finite set F , we denote by a(F ′) the sum
∑
i∈F ′ ai

for any subset F ′ ⊆ F . Throughout the paper, let the graph G = (V ∪ {r}, A),
n = |V |, and m = |A|.

2.1 Directed Steiner Tree Model of Dilkina and Gomes [5]

Dilkina and Gomes [5] propose to solve the B-RMWCS as a budget-constrained
directed Steiner tree problem rooted at r. Their models are based on the ob-
servation that it is sufficient to search for a subtree (subarborescence) since no
costs are associated to arcs in G, hence every solution containing cycles can be
reduced without changing the weight. It is sufficient to use arc variables to model
the problem since in a directed tree, the in-degree of every node is equal to one,
so that the objective function can be expressed as max

∑
i∈V piz(δ

−(i)), where
z are binary variables associated with the arcs of A that encode the subarbores-
cence. Dilkina and Gomes [5] proposed three MIP models for the B-RMWCS.
Two of them are flow based formulations (a single-commodity flow and a multi-
commodity flow based one). The authors showed that the flow-based formula-
tions are computationally outperformed by the cut-set model which is presented
below.

We further use a set of auxiliary binary variables y for the vertex set V ,
where yi will be equal to one if node i is part of the subtree, and zero, otherwise.
In other words, we basically perform the substitution yi = z(δ−(i)). The set of
feasible B-RMWCS solutions can be described using inequalities (1)-(4). Con-
straints (1) and (2) ensure that the solution is a Steiner arborescence rooted at
r, equations (3) make sure that all terminals are connected and (4) is the budget
constraint:

z(δ−(i)) = yi ∀i ∈ V \ {r} (1)

z(δ− (S)) ≥ yk ∀k ∈ S, ∀S ⊆ V \ {r}, S 6= ∅ (2)

yi = 1 ∀i ∈ R (3)

cT y ≤ B (4)

Constraints (2), also known as cut or connectivity inequalities ensure that there
is a directed path from the root r to each node k such that yk = 1. In-degree
constraints (1) guarantee that the in-degree of each vertex of the arborescence
is equal to one. Thus, the rooted Steiner arborescence model for the B-RMWCS
(denoted by (SAr)) is given as

(SA)r max
{
pT y | (y, z) satisfies (1)-(4), (y, z) ∈ {0, 1}n+m

}
.

We notice that in Ljubić et al. [14] these sets of constraints and the transfor-
mation into the directed Steiner tree were used for solving the Prize-Collecting
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Steiner Tree problem (PCStT). A connection between the PCStT and the un-
rooted MWCS has been observed by Dittrich et al. [7]: the authors showed that
the unrooted MWCS can be transformed into the PCStT and used the branch-
and-cut approach from [14] to solve the MWCS on a large protein-protein inter-
action network. Consequently, the same relation holds for the rooted MWCS as
well.

The previous model uses node and arc variables (y and z) given that it relies
on a transformation into the Steiner arborescence problem. However it seems
more natural to find a formulation based only in the space of y variables since
no arc costs are involved in the objective function. In the next section we will
discuss several models that enable elimination of arc variables in the MIP models.

2.2 Node-Based Formulations for the RMWCS

We now propose three MIP models that are derived in the natural space of y
variables defined as above. We search for an arborescence rooted at r, but this
time, we avoid explicit use of arc variables.

Model Based on Subtour Elimination Constraints. This model is an adaptation
of the model by Backes et al. [1] that was recently proposed for the unrooted
MWCS on directed graphs. The following inequalities will be called the in-degree
constraints:

y(D− (i)) ≥ yi, ∀i ∈ V \ ({r} ∪D+(r)) (5)

They ensure that, whenever a node i is taken into a solution, at least one of
its incoming neighbors has to be in the solution as well (notice that we do
not need to impose this constraint for the outgoing neighbors of the root node).
Constraints (5) however do not guarantee that the obtained solution is connected
to the root. Let C denote the family of all directed cycles in G that do not contain
the root node and are not “neighbors” of the root, i.e.:

C = {C | C is a cycle in G, s.t. r 6∈ C, and r 6∈ D−(C)}.

In order to ensure connectivity of the solution, Backes et al. [1] add the following
constraints, that we will refer to as the subtour elimination constraints:

y(C)− y(D−(C)) ≤ |C| − 1, ∀C ∈ C. (6)

These constraints state that for each cycle C ∈ C whose node set is contained
in the solution, at least one of the neighboring nodes outside of that cycle needs
to belong to the solution as well. The model, that we will denote by CYCLE r

reads as follows:

(CYCLE r) max
{
pT y | y satisfies (3)-(6), y ∈ {0, 1}n

}
.
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A Flow-Based Model. Alternatively to the previous model, to ensure connec-
tivity, we can use multi-commodity flows where the available arc capacities are
defined as the minimum node capacities at each end of an arc. Finding a feasi-
ble solution now means allocating node capacities that will enable to send one
unit of flow from the root to each of the nodes taken into the subnetwork. In
this context, constraints (5) and (6) can be replaced by the following set of con-
straints that ensure that there is enough capacity on the nodes so that a unit
of flow can be sent from the root to any other node i ∈ V \ {r} with yi = 1.
These constraints state that (i) whenever an arc is part of a feasible solution of
the RMWCS, both of its end nodes are included into the solution and (ii) the
induced subgraph is connected:∑

(i,j)∈δ−(S)

min{yi, yj} ≥ yk, ∀k 6∈ {r} ∪D+(r), ∀S ⊆ V \ {r}, k ∈ S. (7)

Constraints (7) represent just a compact way of writing 2|δ
−(S)| inequalities

(see also [3] where these constraints have been proposed for a problem arising in
the design of telecommunication networks). They can be separated in polynomial
time by solving a maximum-flow problem in an auxiliary support graph. Observe
finally that indegree constraints (5) are also implied by these constraints: For
each node i 6∈ r ∪D+(r), we have y(D−(i)) ≥

∑
(j,i)∈δ−(i) min{yj , yi} ≥ yi. We

can now define the B-RMWCS as

(CUTm) max
{
pT y | y satisfies (3),(4),(7) and y ∈ {0, 1}n

}
.

Formulation Based on Node Separators. The other way of modeling the connec-
tivity of a solution using only node variables is to consider node separators. This
idea has been recently used in Fügenschuh and Fügenschuh [8], Carvajal et al.
[2] and Chen et al. [3] to model connectivity in the context of sheet metal de-
sign, forest planning, and telecommunication network design, respectively. The
following inequalities will be called node-separator constraints:

y(N) ≥ yk, ∀k 6∈ {r} ∪D+(r), N ∈ N (r, k). (8)

These constraints ensure that for each node k taken into the solution, either k
is a direct neighbor of r, or there has to be a path from r to k such that for each
node i on this path, yi = 1. Notice that whenever N (k, `) 6= ∅, D−(k) ∈ N (k, `)
and in this case the in-degree inequalities (5) are contained in (8). Thus, we can
formulate the B-RMWCS as

(CUT r) max
{
pT y | y satisfies (3),(4),(8), y ∈ {0, 1}n

}
.

2.3 Some More Useful Constraints

In case that the budget constraint (4) is imposed, the following family of cover
inequalities can be used to cut off infeasible solutions.
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Cover Inequalities. We say that a subset of nodes VC ⊂ V is a cover if the sum of
node costs in VC is greater than the allowed budget B. In that case, at least one
node from VC has to be left out in any feasible solution. A cover VC is minimal if
C \ {i} for any i ∈ VC is not a cover anymore. Let VC be a family of all minimal
covers with respect to B. Then, the following cover inequalities are valid for the
B-RMWCS: ∑

i∈VC

yi ≤ |VC | − 1, ∀VC ∈ VC (9)

For further details on cover inequalities, see e.g. [10].

3. Polyhedral Results

In this section we compare the proposed MIP formulations with respect to their
quality of LP bounds and we show that, under certain conditions, the newly in-
troduced node-separator inequalities are facets of the rooted connected subgraph
polytope.

3.1 Theoretical Comparison of MIP Models

Let PLP(.) denote the polytope of the LP-relaxations of the MIP models pre-
sented above and vLP (.) their optimal LP-values. We can show that:

Proposition 1 We have PLP(CUT r) ( PLP(CUTm) ( PLP(CYCLE r), and
there exist instances for which the strict inequality holds.

Proof. PLP(CUTm) ( PLP(CYCLE r): Consider a feasible solution ŷ of the LP
relaxation of model CUTm. We will show that each such solution is feasible for
the model CYCLE r. Let C be an arbitrary cycle from C. Then, obviously, for
any node k ∈ C, we have ŷi(D

−(C)) ≥
∑

(i,j)∈δ−(C) min{ŷi, ŷj} ≥ ŷk. Adding

up this inequality with inequalities 1 ≥ ŷi, for each i ∈ C \ {k}, we obtain:
ŷ(D−(C)) + |C| − 1 ≥ ŷ(C) which is exactly the subtour elimination inequality
associated to C. To see that the strict inequality holds, consider the directed
graph shown in Figure 1(a).
PLP(CUT r) ( PLP(CUTm): Consider a feasible solution ŷ of the LP relaxation
of the CUT r model. Let k ∈ V \ ({r} ∪D+(r)) be an arbitrary node such that
ŷk > 0 and let S ⊂ V \ {r} be a set such that k ∈ S. Then, we will show that∑

(ij)∈δ−(S) {ŷi, ŷj} ≥ ŷk, i.e., ŷ satisfies (7). Let N1 = {i | (i, j) ∈ δ−(S)}.
Observe that r 6∈ N1 and by definition, N1 is a node separator for k, i.e., N1 ∈
N (r, k). Let N2 = {j | (i, j) ∈ δ−(S)}: (i) If k /∈ N2, then N2 is a node separator
for k (N2 ∈ N (r, k)). Consider the bipartite graph defined by δ−(S). Each
possible vertex cover N ′ ⊂ N1 ∪N2 on this graph, induces a node separator for
k, i.e., N ′ ∈ N (r, k). There are 2|δ

−(S)| vertex covers in total, and constraints (8)
associated to them imply constraint (7); (ii) if k ∈ N2, then all vertex covers
involving k trivially satisfy ŷ(N ′) ≥ ŷk for k ∈ N ′. Together with the remaining
vertex covers, inequality (7) is implied. An example shown in Figure 1(b) shows
an instance for which the strict inequality holds. ut
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Fig. 1. Examples that prove the strength of the new formulations. (a) The LP-solution
of CYCLE r sets y2 = y3 = y4 = 2/3 and y1 = 0, and this solution is infeasible for the
model CUTm. (b) The LP-solution of CUTm satisfies y1 = · · · = y5 = 1/2 and y6 = 1.
This solution is infeasible for CUT r.

Proposition 2 The (SAr) model and the (CUT r) model are equally strong, i.e.,
vLP (SAr) = vLP (CUT r).

Proof. We first show that vLP (SAr) ≥ vLP (CUT r): Let (ẑ, ŷ) be a feasible
solution for the relaxation of the SAr model. Let k ∈ V \{r} be a node such that
ŷk > 0 and let N ∈ N (r, k). Because of in-degree constraints of the SAr model,
we have that

∑
i∈N ŷi =

∑
i∈N ẑ(δ−(i)). If N is removed from G, k cannot be

reached from r. Let Sr ⊆ V , r ∈ Sr, be all the nodes i that can be reached from r
after removing N , and let Sk = V \ (N ∪Sr), k ∈ Sk. Because of inequalities (2),
it holds that ẑ(δ+(Sr)) ≥ ŷk. Moreover, observe that for each (i, j) ∈ δ+(Sr)
we have that i ∈ Sr and j ∈ N , which means that

∑
i∈N ẑ(δ−(i)) ≥ ẑ(δ+(Sr)).

Therefore,
∑
i∈N ŷi ≥ ŷk, which proves that any LP solution of the SAr model

can be projected into a feasible solution of the CUT r with the same objective
value.

To show that vLP (CUT r) ≥ vLP (SAr) consider a solution y̌ ∈ PLP(CUT r).
We will construct a solution (ŷ, ẑ) ∈ PLP(SAr) such that y̌ = ŷ. On the graph
G′ (see Section 4.1, separation of separator inequalities) with arc capacities of
(i1, i2) set to y̌i for each i ∈ V \ {r} and to 1 otherwise, we are able to send y̌k
units of flow from the root r to every (k1, k2) such that y̌k > 0. Let fkij denote
the amount of flow of commodity k, sent along an arc (i, j) ∈ A′. Let f be the
minimal feasible multi-commodity flow on G′ (i.e., the effective capacities on G′

used to route the flow cannot be reduced without violating the feasibility of this
flow). We now define the values of (ŷ, ẑ) as follows:

ẑij =

{
maxk∈V \{r} f

k
i2j1

, i, j ∈ V \ {r}
maxk∈V \{r} f

k
i,j1
, i = r, j ∈ V \ {r}

,∀(i, j) ∈ A, and

let ŷi = ẑ(δ−(i)), for all i ∈ V \ {r}. Obviously, the constructed solution (ŷ, ẑ)
is feasible for the (SAr) model, and, due to the assumption that f is minimal
feasible, it follows that y̌ = ŷ, which concludes the proof. ut

Finally, regarding the strength of the three MIP models studied by Dilkina
and Gomes [5], we notice that their single-commodity flow model is weaker than
the multi-commodity model, which is equally strong as the cut-set model (SAr)
(see, e.g., [13]).
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3.2 Facets of the RCS Polytope

In this section we consider the RMWCS with R = ∅, and let P denote the rooted
connected subgraph (RCS) polytope defined in the natural space of y variables:

P = conv{y ∈ {0, 1}n | y satisfies (8)}.

In this section we establish under which conditions some of the presented in-
equalities are facets of the RCS polytope.

Lemma 1. The RCS polytope is full-dimensional (i.e., dim(P) = n) if and only
if there exists a directed path between r and any i ∈ V .

Proof. We first generate a spanning arborescence T in G rooted at r. We will
then apply a tree pruning technique in order to generate n+1 affine independent
feasible RMWCS solutions. We start with the arborescence T in which case y
consists of all ones. We iteratively remove one by one leaf from T , until we end up
with a single root node (in which case y is a zero vector). Thereby, we generate
a set of n+ 1 affinely independent solutions. Conversely, if P is full dimensional,
then in order to create a feasible solution containing an arbitrary node i ∈ V ,
there has to be a directed path between r and i in G. ut

Lemma 2. Inequality yi ≥ 0 for i ∈ V is facet defining if and only if in the
graph G− i, any node j ∈ V \ {i} can be reached from r.

Lemma 3. Inequality yi ≤ 1 for i ∈ V is facet defining if and only if every node
in V can be reached from r and there either exists (r, i) ∈ A, or there exist two
node disjoint paths between r and i in G. [Proof: see Appendix]

Given some k ∈ V and N ∈ N (r, k), let us now consider the corresponding
node separator inequalities: y(N) ≥ yk. Let Sr ⊂ V denote the subset of nodes
that can be reached from r in G − N , and let Sk be the remaining nodes, i.e.,
Sk = V \ (N ∪ Sr). Then, we have:

Proposition 3 Given some k ∈ V and N ∈ N (r, k), the associated node sep-
arator inequality y(N) ≥ yk is facet defining if N is minimal, every node in V
can be reached from r and every node in Sk can be reached from k.

Proof. For a given k ∈ V and N ∈ N (r, k), that satisfy the above properties
we prove the statement using the indirect method. Let F (k,N) = {y ∈ {0, 1}n |∑
i∈N yi = yk}. Consider a facet defining inequality of the form aty ≥ a0. We

will show that if all points in F (k,N) satisfy

aty = a0 (10)

then aty ≥ a0 is a positive multiple of (8). Observe first that the zero vector
belongs to F (k,N). By plugging it into (10), we get a0 = 0. Consider now an
arbitrary node ` ∈ Sr. Consider a path P from r to ` in Sr, and its subpath Q
obtained by deleting `. Characteristic vectors of both of them belong to F (k,N),
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and by subtracting them, we obtain a` = 0, for all ` ∈ Sr. Consider now an
arbitrary ` ∈ Sk. Let P be a path from r to ` that passes through exactly one
node i ∈ N and through k. We can find such a path for the following reasons: (i)
A path from r to k over a single node i ∈ N exists because N is minimal. (ii) A
path from k to ` fully contained in Sk also exists by our assumption. Let Q be a
subpath of P obtained by deleting `. Characteristic vectors of P and Q belong
to F (k,N), and by subtracting them, we obtain a` = 0, for all ` ∈ Sk. Finally,
consider an arbitrary i ∈ N and a path P ′ from r to k passing through i and
no other nodes from N . Characteristic vector of P ′ belongs to F (k, n) and after
plugging it into (10), we obtain ai + ak = 0, for all i ∈ N . Therefore, we have
ai = −ak = α, and (10) can be written as α(y(N) − yk) = 0, which concludes
the proof. ut

4. Computational Results

In this section, we study the computational performance of Branch-and-Cut
(B&C) algorithms for the models (SAr) and (CUT r) for both the RMWCS and
the B-RMWCS.

4.1 Branch-and-Cut Algorithms

Constraint Separation. At each node of the branch-and-bound tree, constraints (2)
of the (SAr) formulation are separated by solving a max-flow problem (see Ljubić
et al. [14] for further details). For the (CUT r) model, inequalities (8) can be sep-
arated in polynomial time on an auxiliary support graph G′ that splits all nodes
except the root into arcs so that each i ∈ V is replaced by an arc (i1, i2). All
ingoing arcs into i are now connected to i1, and all outgoing arcs from i are now
connected from i2. For a given node fractional solution ỹ and k ∈ V \({r}∪D+(r))
such that ỹk > 0, to check whether there are violated inequalities of type (8) we
calculate the maximum flow between r and (k1, k2) in G′ whose arc capacities
are defined as ỹi for splitted arcs and to zero, otherwise. For both cases, we also
use nested, back-flow and minimum cardinality cuts in order to insert as many
violated cuts as possible (see Koch and Martin [11], Ljubić et al. [14]). At each
separation callback, we limit the number of inserted cuts to 25.

For the B-RMWCS, the cover inequalities (9) are separated by solving a
knapsack problem (which is weakly NP-hard) for each fractional solution ỹ:

(PCI) min{
∑
i∈V

(1− ỹi)ai |
∑
i∈V

ciai > B, ai ∈ {0, 1}n};

if the optimal value of (PCI) is less than one, the nodes i ∈ V such that ai = 1 are
the nodes of a cover VC for which the corresponding inequality (9) is violated.
Finally, once the violated cover inequality is detected, we insert the following
extended cover inequality in the MIP:∑

i∈VC∪V ∗(C)

yi ≤ |VC | − 1, ∀VC ∈ VC (11)
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where V ∗(C) = {i ∈ V \ VC | ci ≥ maxj∈VC
cj}. We solve the knapsack problem

PCI within the B&C using CPLEX. Only at the root node of the branch-and-
bound tree the problem PCI is solved to optimality; in the remaining nodes it is
solved until reaching a 0.01% gap.

Primal Heuristic. At a given node of the branch-and-bound tree, we use the
information of the current LP solution ỹ in order to construct feasible primal
solutions for the (B-)RMWCS. The procedure, which is equivalent for both (SAr)
and (CUT r), consists of a (restricted) breadth-first search (BFS) that starts from
the root node r and constructs a connected component. A node is incorporated
into this component if its weight p̃v := pv ỹv is non-negative and its cost cv added
to the cost of the current component does not violate the budget B.

MIP Initialization. As described in §4.2, part of our benchmark set consists of
4-grid graphs. In this case, all 4-cycles are easily enumerated by embedding the
grid into the plane and iterating over all faces except for the outer face. Let C4
be the set of all 4-cycles C such that r 6∈ C ∪D−(C) and let A[C] be the set of
arcs associated to it. Therefore, in case of 4-grids, the (SAr) model is initialized
with the following 4-cycle inequalities:

z(A[C]) ≤ y(C \ i), ∀i ∈ C, ∀C ∈ C4. (12)

The corresponding 4-cycle inequalities for the (CUT r) model are:

y(D−(C)) ≥ yi, ∀i ∈ C, ∀C ∈ C4. (13)

Additionally, indegree constraints (1) (or (5)) and zij+zji ≤ yi ∀e : {i 6=r, j} ∈ E
are added to the MIP.

Implementation. The B&C algorithms were implemented using CPLEXTM12.3
and Concert Technology. All CPLEX parameters were set to their default values,
except that: (i) CPLEX cuts, CPLEX heuristics, and CPLEX preprocessing were
turned off, and (ii) higher branching priorities were given to y variables in the
case of the (SAr) model. All the experiments were performed on a Intel Core2
Quad 2.33 GHz machine with 3.25 GB RAM, where each run was performed
on a single processor. We denote as “Basic” the B&C implementation for which
neither the separation of CI nor the addition of 4-cycle inequalities, (12) or (13),
is considered.

4.2 Benchmark Instances

Wildlife Corridor Design Instances. We have considered three real instances
provided in [5] that are instances of the corridor design problem for grizzly
bears in the Rocky mountains, labeled as CD-40×40-sq (242 nodes, 469 edges),
CD-10×10-sq (3299 nodes, 6509 edges) and CD-25-hex (12889 nodes, 38065
edges). In all of them, three reserves are given and the root is chosen as one of
them.
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We have also considered 4-grid instances generated using the instance gener-
ator of Dilkina and Gomes [5]. The description of the parameters used for setting
up the instances and the generator itself are available online at [6]. These in-
stances are labeled as CD-O-C-T (see [6] for further details). In our experiments
we have generated instances with n + 1 = O2, where O ∈ {10, 15, 20}. We also
generated both, correlated and uncorrelated instances (C = {U,W}). Weights and
costs are independently and uniformly taken from {1, . . . , 10}. We also consid-
ered T = {2fR,R} and, in addition to the root, we consider two more terminals.
For each combination of these parameters we have generated 20 instances.

These instances were used for both the RMWCS and the B-RMWCS. For
the B-RMWCS, for a given instance I with set of terminals R, let Ĉmin be the
cost of the minimum Steiner Tree on R with arc costs ĉij = cj . Values of the

available budget B are defined using slacks over Ĉmin (see also [5]). For example,
a 10% of budget slack corresponds to B = 1.10 × Ĉmin. For the RMWCS, we
redefine weights as w′v = pv − cv, which can be done because pv and cv have
comparable units. That way, w′v somehow represents the net-profit of including
node v into the solution. For the RMWCS we set R = ∅ and we take as root
node the reserve node with the smallest index.

Network Design Instances. These Euclidean instances with a topology similar
to street networks are generated as proposed in Johnson et al. [9]: First, n nodes
are randomly located in a unit Euclidean square. A link between two nodes i
and j is established if the Euclidean distance dij between them is no more than
α/
√
n, for a fixed α > 0. For a given n and a given α, weights and costs are

independently and uniformly taken from {1, . . . , 10}.
We generated instances using n = {500, 750, 1000} and α = {0.6, 1.0}; in

case that for a given distribution of n nodes in the plane the value of α is not
enough for defining a connected graph, it is increased by 0.01 until connecting
all components. For each combination of n and α, 20 instances are generated.
We take as root the node with index 0 and when considering a set of terminals,
these correponds to those nodes with labels 1 and 2.

4.3 Analyzing the Computational Performance

Results for the B-RMWCS. Table 1 shows a comparison of (SAr) and (CUT r)
models (including 4-cycle and CI) on the set of corridor design instances. The first
three rows correspond to the real instances provided by [5], so for each of them
we report statistics over a set of 18 problems (obtained for different budget slacks
taken from {10, 15, . . . , 95}). For the remaining rows, since we create 20 instances
for each parameter setting, the reported values correspond to statistics over
18×20 = 360 instances. In columns Tav(s) and Tmed(s) we report the average
and median running times (in seconds), respectively, of those instances solved to
optimality, in columns Gap we show the gaps (as percentages) of those instances
that were not solved to optimality within 1800 seconds. Columns #(2) and
#(8) show the number of connectivity cuts of the (SAr) and (CUT r) model,
respectively. Column #NOpt shows the number of instances that are not solved
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SAr CUT r

Instance Tav(s) Tmed(s) Gap #(2) #NOpt Tav(s) Tmed(s) Gap #(8) #NOpt

CD-40×40-sq 5.28 4.45 0.00 388 0 4.28 3.27 0.00 90 0
CD-10×10-sq 619.58 332.40 0.07 1262 10 1389.07 1441.68 1.39 871 14
CD-25-hex – – 5.17 11524 18 – – 4.81 2958 18
CD-10-U-2fR 1.67 1.12 – 527 0 2.71 1.82 – 360 0
CD-10-W-2fR 1.80 1.00 – 535 0 2.22 1.50 – 389 0
CD-10-U-3R 0.91 0.71 – 362 0 0.63 0.38 – 157 0
CD-10-W-3R 3.08 0.50 – 389 0 0.82 0.42 – 190 0
CD-15-U-2fR 12.47 7.71 – 1085 0 26.33 13.78 – 883 0
CD-15-W-2fR 12.40 8.08 – 1222 0 26.61 10.98 – 1071 0
CD-15-U-3R 4.56 2.98 – 814 0 7.84 2.81 – 513 0
CD-15-W-3R 4.86 2.88 – 809 0 7.34 3.24 – 539 0

Table 1. Computational performance on B-RMWCS (+C4+CI) instances from [5].

to optimality within 1800 seconds. We observe that for all 4-grid instances,
except for the CD-10×10-sq graph for which a more detailed analysis is given
below, both approaches are able to solve all instances in more or less reasonable
times, although the (SAr) model is slightly better than the (CUT r) model. On
the other hand, the number of inserted violated cuts of the (CUT r) model is
in all of the cases significantly smaller than the corresponding number for the
(SAr) model. The efficacy of the (SAr) model can be explained by the sparsity of
4-grid graphs. On the contrary, for the only more dense instance of this group,
namely CD-25-hex, which is a 6-grid with 12889 nodes and 38065 edges, the
(CUT r) model performs better than the (SAr) model. More precisely, the avg.
gap and its standard deviation for the (SAr) model are 5.17% and 1.11%, resp.,
while for the (CUT r) model these values are 4.81% and 0.81%, resp.’

To analyze the effects of special inequalities, namely 4-cycle and CI, we com-
pare three approaches: Basic, Basic plus 4-cycle inequalities (denoted by “+C4”)
and Basic plus 4-cycle and CI (denoted by “+C4+CI”). In Figure 2 we present
the box-plots of the gaps attained within 1800 seconds when solving real instance
CD-10×10-sq for budget slacks taken from {10, 15, . . . , 95}. The values marked
with an asterisk and × correspond to the mean and maximum running time,
respectively. Below the bottom of each box the number of instances solved to
optimality is indicated, and next to “#Cuts:” we report the average number of
detected cuts of type (2) and (8), respectively.

The box-plots indicate that for the Basic setting the (CUT r) model signif-
icantly outperforms the (SAr) model on this instance, in terms of the quality
of the solutions (smaller gaps), the stability of the approach (smaller disper-
sion), and the number of instances solved to optimality. This is mainly due to
the fact that in the (CUT r) model there are less variables, so the optimization
becomes easier and more stable. However, when including 4-cycle inequalities,
although both approaches perform better, (SAr) now outperforms (CUT r). The
average number of inserted cuts of type (2) decreases from 5989 to 1264 when 4-
cycle inequalities are added, while for the (CUT r) model this reduction is more
attenuated (only 18%). This means that for this instance constraints (12) are
empirically more effective than (13) in reducing too frequent calls of the maxi-
mum flow procedure. When adding the separation of CI (“+CI”) we observe that
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Fig. 2. Box-plots of the gaps [%] reached within 1800 sec for the CD-10×10-sq instance
considering (SAr) and (CUT r) and three different settings of the B&C (Budget slack
[%] taken from {10, 15, . . . , 95}).

these constraints are more beneficial for the (SAr) model than for the (CUT r)
model - the latter one even slows down with addition of these cuts. This can
be explained by some numerical instability that can appear when dealing with
the separation of CI. We conclude that the advantage of the (CUT r) model of
having less variables vanishes when more sophisticated ideas are considered.

For the Network Design instances (whose complete results are not reported
due to space limitation), the graph density plays a role in the performance of
the two models. For instance, for n = {500, 750} and α = 0.6, the (SAr) model
solves 536 instances out of 760 within the time limit, while the (CUT r) model
solves 443. However, when α = 1.0, the (SAr) approach solves 483 while the
(CUT r) approach solves 502. In both cases, the average running times of the
(CUT r) model needed to prove optimality are smaller than those of the (SAr)
model.

Results for the RMWCS. For the RMWCS we have considered the same corridor
design instances and, in addition, the network design instances with a weight
transformation as described in § 4.2. In Table 2, equivalent to Table 1, we report
the results obtained for the corridor design instances. In this case, time limit is
set to 3600 seconds. We observe that the (CUT r) model outperforms the (SAr)
model on real instances, and on random lattices it is the other way around,
although the differences are less visible.

The results on the network design instances are reported in Table 3. For a
given n and α equal to 0.6 and 1.0, respectively, column #nodes shows n + 1
and column #edges shows the average number of edges for a set of 20 instances
created using this setting. All instances of this group were solved to optimality,
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SAr CUT r

Instance Time(sec) Gap(%) #(2) #NOpt Time(sec) Gap(%) #(8) #NOpt
CD-40×40-sq 0.70 – 254 0 0.16 – 10 0
CD-10×10-sq 316.11 – 3998 0 88.70 – 60 0
CD-25-hex 3600.00 1.99 20304 1 2611.13 – 14756 0

CD-10-U-2fR 0.15 – 231 0 0.14 – 34 0
CD-10-W-2fR 0.14 – 239 0 0.18 – 40 0
CD-10-U-3R 0.13 – 226 0 0.13 – 28 0
CD-10-W-3R 0.15 – 241 0 0.12 – 26 0
CD-15-U-2fR 1.28 – 720 0 11.59 – 99 0
CD-15-W-2fR 1.35 – 755 0 3.66 – 94 0
CD-15-U-3R 1.24 – 763 0 2.02 – 73 0
CD-15-W-3R 1.45 – 809 0 2.26 – 78 0
CD-20-U-2fR 7.67 – 1618 0 166.32 – 223 0
CD-20-W-2fR 7.41 – 1615 0 74.46 – 234 0
CD-20-U-3R 7.57 – 1667 0 16.90 – 133 0
CD-20-W-3R 8.39 – 1765 0 86.18 – 195 0

Table 2. Computational performance on instances from [5] when solving the RMWCS.

SAr CUT r

#nodes #edges Time(sec) #(2) Time(sec) #(8)
500 2535 11.42 1218 2.29 22.8
500 6484 3.50 211 0.84 <10
750 3845 57.07 2541 5.67 25.8
750 9944 7.69 287 1.71 <10
1000 5180 97.41 3188 15.59 36.3
1000 13397 10.16 302 2.77 <10

Table 3. Computational performance on the RMWCS network design instances.

therefore in Table 3 we only report the average running times and the average
number of detected connectivity cuts. For these instances, the (CUT r) approach
clearly outperforms the (SAr) approach; for these instances, the ratio between
the number of edges and the number of nodes is, depending on the value of α,
around 5 or 13, in contrast to the corridor design instances, where this ratio
is close to two. This characteristic implies a practical difficulty for the (SAr)
model due to the increase of the number of variables. Besides, for this group of
instances, 4-cycle constraints and CI cannot be used in the initialization.

Conclusion. The obtained computational results let us conclude that both mod-
els (CUT r) and (SAr) perform very well in practice, and that their performance
is complementary. Using the (CUT r) model (i.e., having less variables ) pays
off for denser graphs with many zero-weight nodes for both, B-RMWCS and
RMWCS.
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J. Küntzer, D. Maisel, N. Ludwig, M. Hein, A. Keller, H. Burtscher,
M. Kaufmann, E. Meese, and H. Lenhof. An integer linear programming
approach for finding deregulated subgraphs in regulatory networks. Nucleic
Acids Research, 1:1–13, 2011.

[2] R. Carvajal, M. Constantino, M. Goycoolea, J.P. Vielma, and A. Weintraub.
Imposing connectivity constraints in forest planning models. Submitted,
2011.
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