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Abstract

In this article we consider the Node-Weighted Dominating Steiner
Problem. Given a graph with node weights and a set of terminal nodes,
the goal is to find a connected node-induced subgraph of minimum weight,
such that each terminal node is contained in or adjacent to some node in
the chosen subgraph. The problem arises in applications in the design of
telecommunication networks.

Integer programming formulations for Steiner problems usually em-
ploy a variable for each edge. We introduce a formulation that only uses
node variables and that models connectivity through node-cut inequali-
ties, which can be separated in polynomial time. We discuss necessary
and sufficient conditions for the model inequalities to define facets and we
introduce a class of lifted partition-based inequalities, which can be used
to strengthen the linear relaxation. Finally, we show that the polyhedron
defined by these inequalities is integral if the underlying graph is a cycle
where no two terminals are adjacent. In the general cycle setting, we show
that we can get a complete description of the feasible solutions by lifting
and projecting into a polytope with no more than twice the dimension.
Finally, we show that the well-known indegree equalities are implied by
the lifted partition inequalities.

1 Introduction

We consider the Node-Weighted Dominating Steiner Problem, denoted by NWD-
STP, which is defined as follows: Given a graph G = (V,E), a set T ⊂ V, |T | ≥ 2
of terminal nodes, and a weight function c : V → R on the nodes of G, we seek
for a connected subgraph of minimum node weight such that each terminal is
contained in the chosen subgraph or adjacent to a node in the subgraph. We
denote n = |V |, m = |E| and k = |T |. In graph theory, a node is said to dom-
inate itself and all its neighbors. Hence, NWDSTP seeks for a least expensive
connected subset of V that dominates T . We will also refer to a solution of
NWDSTP as a connected T -dominating subset. Note that, due to the nature of
the objective function, we are only interested in the node set of the optimal so-
lution. In terms of the characteristics of this node set, it is sufficient to look for
a subgraph induced by these nodes that satisfies the following side constraints:
(1) the induced subgraph must be connected and (2) it has to dominate the set
of terminals. Figure 1 illustrates an input graph and its feasible solution.
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(a) Input graph. (b) A feasible solution.

Figure 1: An exemplary instance. Terminal nodes are shown as squares. Filled
circles are the nodes selected to be part of the T -dominating set.

This problem arises in several practical applications related to the design of
telecommunication or logistics networks. Such networks typically consist of two
(or more) administrative or technology levels. Nodes of the higher level typically
represent a core node or a hub and must be equipped with a higher-level tech-
nology or provide some features which require additional setup costs. Customer
traffic enters the network at the lower access network level and then is sent to a
core node, where it is aggregated with other customers’ traffic to be transported
through the core network more efficiently. After traversing the core network,
the traffic is disaggregated and sent again within the access network level to its
destination. In many applications, transportation within the access network is
restricted to use direct connections between customers and core/hub nodes for
technological or administrative reasons. In situations, where the overall network
costs consist only or are strongly dominated by the costs of setting up core/hub
nodes, the task of finding a minimum cost network naturally leads to the node-
weighted dominating Steiner problem. In the area or telecommunications, this
is the case in the planning of virtual networks and virtual function placement in
the context of cloud services or in the planning of optical overbuilds for existing
copper-based access networks, for example. Customer nodes represent the set
of terminals T , and the node subset corresponding to the optimal NWDSTP
solution provides the optimal location for core/hub nodes.

There are several related problems, which have been studied in the literature.
In the Group Steiner Tree Problem, we are given several groups of nodes and
seek for a tree that contains at least one node from each group. One easily
verifies that the node weighted variant of this problem, where we seek for a tree
that minimizes the weight of the nodes contained in the tree, is polynomially
equivalent to NWDSTP. Any given instance of NWDSTP can be transformed
into an equivalent instance of the Group Steiner Tree Problem by replacing
each terminal node t by the terminal group consisting of t and all its neighbors.
Reversely, an instance of of the Group Steiner Tree Problem can be reduced to
an NWDSTP instance which is obtained by adding for each terminal group Ti
one additional node i connected to all nodes in Ti to the graph, replacing the
requirement to contain one node from the terminal group Ti by the requirement
to dominate this individual node i, and setting the cost of the added nodes to a
value that is larger than the sum of the costs of all original nodes. This ensures
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that no optimal solution will actually contain any of the added nodes. Instead,
they will be dominated by one of their neighbors from the given terminal group
and, hence, the solution contains a Group Steiner tree within the original graph.
Garg, Konjevod, and Ravi [11] gave a polylogarithmic approximation algorithm
for the problem. Demaine, Hajiaghayi, and Klein [6] improved the ratio when
the graph is planar embedded and each group is the set of nodes on a face. A
fault-tolerant version of the problem is considered by Khandekar, Kortsarz, and
Nutov [17]. Lower bounds for the approximability of the problem are studied
by Halperin and Krauthgamer [15].

Another problem closely related to NWDSTP is the Minimum Dominating
Set Problem (MDS). In this problem, the goal is to find a minimum-cost vertex
set that dominates the entire graph. The problem is one of the classic NP-
complete problems considered by Garey and Johnson [10]. The MDS problem as
well as its connected version, where the dominating set must induce a connected
subgraph, are shown to be NP-complete. Furthermore, Bar-Yehuda and Moran
[2] showed that the MDS problem is polynomially equivalent to the set cover
problem. Thus, the strong logarithmic inapproximability threshold for the set
cover problem shown by Feige [7] carries over in a straightforward way to the
MDS problem. Finally, Hedetniemi, Laskar, and Pfaff [16] proposed a linear-
time algorithm for the special case where G is a cactus graph.

Minimum Connected Dominating Set Problem (MCDS) is the problem in
which we seek for a least cost subset of nodes that dominates the whole graph.
Recently, Gendron et al. [12] proposed a branch-and-cut algorithm, a Benders
decomposition approach, and a hybridization of the latter two for solving the
problem to optimality. Strong logarithmic inapproximability bounds hold for
the MCDS as well. Guha and Khuller [13] presented a (3 lnn)-approximation
algorithm for the the node-weighted MCDS, which they improved in [14] to a
((1.35+ε) ln k)-approximation algorithm. A (ln δ+2)-approximation algorithm,
where δ denotes the maximum degree in the graph, is presented in [20]. For a
more comprehensive literature overview on the MCDS and its relation to the
Maximum Leaf Spanning Tree Problem (which unfortunately does not carry
over to the NWDSTP), see [12].

Finally, the classical Steiner Tree Problem and its node-weighted variant are
very closely to related to NWDSTP. In these problems we are given a graph
G = (V,E) and a subset T ⊂ V of terminals and wish to find a tree of minimum
weight that includes all terminals. The classical edge-weighted problem version
is known to be NP-hard for many metrics. The node weighted version is consid-
ered by Klein and Ravi [18], where the authors developed (2 ln k)-approximation
algorithm and proved that the problem is as hard to approximate as the set cover
problem. A (1.5 ln k)-approximation was given in [14].

In this paper, we are interested in “thin” integer linear programming (ILP)
formulations for NWDSTP using only O(n) variables. Many well established
ILP formulations for Steiner trees and related problems are based on undi-
rected or directed edge variables and (multi-commodity) flow or connectivity
constraints. Such models typically lead to a very large number of variables
in the resulting formulations. However, for applications where costs arise only
at the nodes or even only at the internal transit nodes contained in the solu-
tions (as this is the case for NWDSTP), edge variables introduce an unneces-
sary modeling overhead that may harm the computational performance. We

3



therefore propose a formulation that uses node variables only and that models
connectivity through node-cut inequalities that can be separated in polynomial
time. The resulting model contains a substantially smaller number of variables
than the commonly used edge based models. Thus, our model is expected to
lead to a better computational performance when solving very large problem
instances using cutting plane approaches. We should mention that only very
recently, node-based ILP models gained in popularity in modeling Steiner-trees
and related problems. For example, node-based models for the (prize-collecting)
Steiner tree were one of the most important ingredients of the implementation
of Fischetti et al. [8], with which the authors managed to solve to provable opti-
mality some of the long standing unsolved benchmark instances from the public
libraries. Node-based models have also been used in forestry applications [3]
and in bioinformatics [1]. Finally, a polyhedral study for the related connected
subgraph polytope based on node-variables is given in [21].

The remainder of this paper is organized as follows. In Section 2 we in-
troduce the basic notation used in this paper, our node variable based integer
linear programming formulation of NWDSTP, and the polyhedron P defined
by all feasible solutions. The fundamental properties of feasible solutions and
the NWDSTP polyhedron P are then discussed in Section 3. In Section 4 we
study under which conditions the original model inequalities define facets of P .
In Section 5, we introduce and analyze partition inequalities based on node-
separators, which can be added to the original model in order to strengthen its
linear relaxation. We show that these inequalities are valid for P and in fact
do strengthen the linear relaxation of the model. For the special case where the
underlying graph is a cycle and no two terminals are adjacent, we prove that
a formulation containing all partition inequalities yields an exact description
of P , that is, already the linear programming relaxation of such a formulation
yields integer optimal solutions. This result generalizes to cactus graphs in a
straightforward way. In Section 6 we draw our conclusions.

2 Integer programming formulations

Before we can formally define the model considered in this paper, we need to
introduce some basic notation.

For a node set U ⊆ V , we denote by G[U ] the subgraph induced by U . A
subset S ⊂ V is called a separator (of G) if G[V \ S] is disconnected. A node
subset S ⊂ V is called k, `-separator if k, ` ∈ V \ S and the nodes k and ` lie
in different components of G[V \ S]. The set of all k, `-separators is denoted
by Sk`. For notational simplicity, we typically write G − S for G[V \ S]. A
separator or a k, `-separator S is called minimal if no proper subset S′ ( S is
a separator or k, `-separator, respectively. Given a separator S and v ∈ V \ S,
we denote by Cv ⊆ V the (nodes of the) connected component of G − S that
contains v.

For a node v ∈ V , we denote by Γ∗v the set of all nodes adjacent to v.
Furthermore, we let

Γv := Γ∗v ∪ {v}

be the set of all neighbors of v and v itself.
Now we are ready to introduce an integer programming formulation for

NWDSTP. Our model uses only the binary node variables yv ∈ {0, 1}, v ∈ V .
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These are interpreted as

yv =

{
1 if v is contained in the dominating Steiner tree

0 otherwise.

Note that the set Iy := {v ∈ V | yv = 1} of nodes contained in the chosen
dominating Steiner tree is not required to contain all terminals in T , but only
to be a dominating set for T . Given a vector y ∈ RV and a set S ⊆ V , we
typically write y(S) :=

∑
v∈S yv in order to simplify notation.

Using these variables, we can formulate NWDSTP as follows:

(NWDSTP): min
∑
v∈V

cvyv

y(S) ≥ yk + y` − 1 ∀k, ` ∈ V \ T, k 6= `, S ∈ Sk` (1)

y(S) ≥ yk ∀k ∈ V \ T, ` ∈ T, S ∈ Sk` (2)

y(S) ≥ 1 ∀k, l ∈ T, S ∈ Skl (3)

y(Γv) ≥ 1 ∀v ∈ T (4)

yv ∈ {0, 1} ∀v ∈ V

One easily verifies that (NWDSTP) is a correct integer linear programming
model for the node-weighted dominating Steiner tree problem. Clearly, all in-
equalities (1)–(4) are valid for all incidence vectors of T -dominating Steiner
trees and the objective function properly models the node weight. To see that
the given constraints are sufficient, let I = Iy := {v ∈ V | yv = 1} be the
set of nodes defined by a solution of (NWDSTP). Inequalities (3) ensure that
for each terminal node pair k, ` ∈ T and each k, `-separator S with k and ` in
different components of G− S at least one node from S is contained in I. This
implies that I intersects each terminal separator. So, for all k, ` ∈ T that are
not direct neighbors, I contains a neighbor of k, a neighbor of `, and both are
connected within I. Similarly, inequalities (1) and (2) require that I intersects
each k, `-separator for any node pair k, ` ∈ T ∪ I. Together with inequalities (3)
this implies that the chosen nodes I induce a connected subgraph of G. Finally,
inequalities (4) imply that each terminal node i ∈ T is itself contained or has
a neighbor in I. Thus, I forms a connected set dominating T , a dominating
Steiner tree. Figure 2 illustrates infeasible cases that may occur by leaving out
some of the constraints (1)–(4).

The convex hull of all integer solutions of (NWDSTP) defines the polyhedron

P := conv{y ∈ {0, 1}V | y satisfies (1)–(4) }.

Clearly, P is nothing but the convex hull of the characteristic vectors of all
connected sets I ⊆ V that dominate the terminal set T . We call P the NWDSTP
polyhedron.

3 Basic properties

In the following section, we will study which of the constraints (1)–(4) define
facets of polyhedron P . Prior to that, we discuss some of the basic properties
of P and of separators.
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(a) feasible solution without (1) (b) feasible solution without (2)

(c) feasible solution without (3) (d) feasible solution without (4)

Figure 2: Necessity of model inequalities. Red circles are Steiner nodes taken
into “solution”, green triangles are terminals, filled nodes are terminals that are
part of the “solution”.

Lemma 3.1. If G is 2-connected, then dim(P ) = n.

Proof. Obviously, we have dim(P ) ≤ n. To see that dim(P ) ≥ n, we now
construct n+ 1 affinely independent vectors in P .

Let v ∈ V be arbitrary. As G is 2-connected, G−v is connected. Clearly, all
nodes in V are either contained in G− v or adjacent to a node in G− v. Thus,
for each v ∈ V , the vector xv with

xvu :=

{
1 v 6= u

0 v = u
, u ∈ V

is a feasible solution of (NWDSTP) and hence contained in P . The same trivially
holds for the vector 1n of all-ones. Since 1n−xv = ev, the n+ 1 vectors 1n and
xv, v ∈ V , are affinely independent. Thus dim(P ) ≥ n.

We assume throughout the remainder of this paper that G is 2-connected.
This can be done without loss of generality. If the underlying graph is not 2-
connected, we can easily decompose the problem on the overall graph into the
corresponding problems on its 2-connected components, the blocks, and con-
sider each of them separately.

Next, assume we are given a separator or a k, `-separator S that is not
minimal and consider the corresponding separator inequality (1)-(3). As S is
not minimal, there exists a smaller (in fact, even a minimal) separator or k, `-
separator S′ ( S. Obviously, the corresponding separator inequality (1)-(3)
for S′ dominates the one for S: The inequality for S can be obtained by the
inequality for S′ by adding the non-negativity constrains for all v ∈ S \ S′.
Hence, only minimal separators can induce facet-defining inequalities of P .

In order to characterize which minimal separators actually do induce facets
of P , we need some further properties.

Lemma 3.2. Let G be 2-connected, S be a minimal separator and v ∈ S. Then
there is a spanning tree B on G such that v is the only inner (i.e. non-leaf)
node of B that is contained in S.

Proof. As S is minimal, G′ := G − (S \ {v}) is connected, while G − S is not.
Let B′ be a spanning tree in G′. Since G−S is not connected, v cannot be a leaf
node of B′ but must be an inner node. Otherwise B′ − v would be a spanning
tree of G− S.
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v

Figure 3: Illustration for 3.2: A possible tree B′ is shown in red

As S is a minimal separator, each i ∈ S \ {v} is contained in an edge leaving
S. Now pick one such edge for each i ∈ S \ {v} and denote it by ei. Finally, set

B := B′ ∪
⋃

i∈S\{v}

ei.

With this construction, every node i ∈ S \ {v} has degree 1 with respect to
B and, as B′ spans G − (S \ {v}), B spans G. Hence, B has the claimed
properties.

Finally, we observe that each node in a minimal separator S contains edges
to all connected components of G− S.

Lemma 3.3. Let S be a minimal separator and let C1, . . . , Ck be the connected
components of G − S. Then, for each v ∈ S and each j ∈ {1, . . . , k}, there is
an edge uv with u ∈ Cj.

Proof. Assume the claim was wrong. Then there is a node v ∈ S and a com-
ponent Cj of G − S such that uv 6∈ E for all u ∈ Cj . Let w ∈ Cj . As Cj is a
component of G − S with w ∈ Cj , v 6∈ Cj , and uv 6∈ E for all u ∈ Cj , the set
S′ := S \ {v} is a w, v-separator. This contradicts the minimality of S.

4 Investigation of the model inequalities

We now investigate under which conditions the model inequalities (3) and (4)
define facets of P . Note that inequalities of type (2) and (1) are lifted variants of
(3). They are obtained for the cases where only one or none of the components
of G − S contain a terminal nodes in a straightforward way via lifting the
variables yk or the variables yk and y` that occur in the right hand side of
the corresponding inequality from value 1 to value 0. Conditions for these
inequalities to be facet defining can be derived from those for inequality (3)
for the same separator S and terminal set T ′ = T ∪ {k} or T ′ = T ∪ {k, `},
respectively.
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In the case that every node in G is a terminal, conditions for (3) to be facet-
defining were given in Theorem 3.9 of Fujie [9]. We now discuss the conditions
for the general case.

Recall that, given a separator S and v ∈ V \ S, Cv denotes the connected
component of G− S that contains v. We call a node v ∈ V \ S S-replaceable if
there exists a node j ∈ S such that the subgraph G[(Cv \ {v}) ∪ {j}] induced
by nodes of Cv without v but with j instead is connected. In other words,
the connected component Cv remains connected, if we replace node v ∈ Cv by
j ∈ S.

Theorem 4.1. Let G be 2-connected and S be a minimal separator. If each
v ∈ V is S-replaceable, then (3) is a facet of P .

Proof. Let FS := {y ∈ P | y(S) = 1} be the face of P that is induced by the
inequality (3) for S. Assume that FS is contained in a facet F induced by some
valid inequality

∑
i∈V αiyi ≥ α0 for P , i.e.,

FS ⊆ F :=

{∑
i∈V

αiyi = α0

}
.

We will show that this implies

αv =

{
α0 v ∈ S
0 v 6∈ S ,

which, in turn, implies that FS = F and FS is a facet.
Our proof consists of two parts: First, we show that αv = 0 for all v 6∈

S. Then, in the second part, we show that for all v ∈ S we have αv = α0.
Throughout this proof we will often interpret binary vectors y ∈ {0, 1}V as
node sets Iy := {v ∈ V | yv = 1} ⊆ V and a node sets I ⊆ V as their
characteristic vectors yI = χI ∈ {0, 1}V . Given a binary vector y ∈ P , the set
Iy then corresponds to the chosen connected dominating set. For a given binary
vector y that is not necessarily in P , we say that y or its node set Iy dominates
all nodes in the neighborhood of I, i.e., all nodes in {v ∈ V | v ∈ I or uv ∈
E for some u ∈ I}.

Clearly, for any spanning tree B ⊆ E of G, the set I(B) ⊆ V of inner (non-
leaf) nodes of B defines a connected dominating set. Using this observation, we
will now construct different spanning trees in G, whose inner node sets define
vectors proving our claims.

To show the first claim, namely that αv = 0 for all v 6∈ S, it suffices to
construct a spanning tree that has exactly one inner node in S and node v as a
leaf. So, let v ∈ V \ S. We denote the node sets of the connected components
of G− S by C1, . . . , Cr. Without loss of generality we may assume v ∈ C1. Let
j ∈ S be a replacement node for v, i.e., a node j ∈ S such that G[(Cv∪{j})\{v}]
is connected. Let M := |S| − 1.

We choose an arbitrary spanning tree B1 = (V1, E1) within G[C1 ∪ {j} −
{v}] and arbitrary spanning trees B2 = (V2, E2), . . . , Br = (Vr, Er) within the
connected components C2, . . . , Cr, respectively. Lemma 3.3 implies that there
exists an edge from j to each component Ck, k = 2, . . . , r, because S is minimal.
For each component Ck, k = 2, . . . , r, we choose one of these edges and denote
it by ck.
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Figure 4: Illustration for proof of Theorem 4.1

Next, we choose edges f2, . . . , fM such that each n ∈ S \ {v} is part of at
least one edge to some component Ci. Finally, we set

E′ :=

r⋃
i=1

Ei ∪ {ci | i = 1 . . . r} ∪ {fi | i = 2 . . .M}.

Figure 4 illustrates this construction.
One easily verifies that E′ is a tree that it spans all nodes in V except for

v. Hence, the set I = I(E′) ∪ {V1 \ v} consisting of all inner nodes I(E′) of E′

plus all nodes in C1 except v is a connected dominating set. Consequently, its
characteristic vector yI belongs to P . As all nodes in S \ {j} are leaf nodes in
E′, yI also satisfies the equality yI(S) = 1, and hence yI ∈ FS .

As v is adjacent to a node in I, also J := I ∪ {v} is a connected dominating
set and its characteristic vector yJ satisfies yJ ∈ P and yJ(S) = 1.

Consequently, both vectors yI and yJ are contained in FS ⊆ F , which implies∑
i∈V

αi(y
I
i − yJi ) = αv = 0 .

This concludes the first part of the proof.

To prove the second claim, namely αv = α0 for all v ∈ S, let v ∈ S. Note
that S is inclusion-wise minimal. Thus, Lemma 3.2 implies that there exists a
spanning tree B of G such that v is the only inner node of B within S. Let
yI be the characteristic vector of the inner nodes I := I(B) of B. Clearly, I
defines a connected dominating set, so we have yI ∈ P . Since there is only one
inner node within S, we have

∑
i∈S y

I
i = 1, which implies yI ∈ FS ⊆ F . Finally,

I ∩ S = {v} implies
∑
i∈S αiy

I
i = αv = α0, which concludes the proof of the

second claim.
Consequently, any inequality inducing F has the form

∑
i∈S α0yi = α0 and,

hence, FS = F is a facet.
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Next, we study the inequalities of type (4).
Consider inequality (4) for some terminal node r ∈ T and assume there

exists another terminal node j ∈ V \ Γr. If Γ∗r is not a minimal separator, then
inequality (4) for r is trivially dominated by the separator inequality (3) for any
minimal separator S which is a (proper) subset of Γ∗r and, hence, (4) cannot
define a facet of P . If, on the other hand, Γ∗r is a minimal separator, a sufficient
condition for inequality (3) and thus also for (4) to be facet-defining is given in
Theorem 4.1.

In the following, we thus assume that V \Γr does not contain any terminal.
This case may occur if the set of terminals forms a highly connected cluster in
the underlaying graph, for example. For this special case, a complete character-
ization of the cases when inequalities of type (4) define facets of P is given by
the the following two theorems. In the first theorem, we define the conditions
that must be satisfied and prove that these are sufficient for inequality (4) to
be facet-defining. The necessity of the constraints is then shown in the second
theorem.

Theorem 4.2. Let G be 2-connected, r ∈ T , and T ⊆ Γr. For each node
j ∈ V \ Γr, let Cj denote the component of G− Γr that contains node j. Then
inequality y(Γr) ≥ 1 defines a facet of P if both conditions (C1) and (C2) hold:

(C1) For all j ∈ V \ Γr, the graph G contains a tree B that

(i) spans all terminals,

(ii) contains at least one node from the component Cj,

(iii) does not use j as an inner node, and

(iv) uses exactly one node from Γr as an inner node.

(C2) For all j ∈ Γr, the graph G contains a tree B that

(i) spans all terminals,

(ii) contains j, and

(iii) uses j and only j as an inner node in Γr.

Note that condition (C1-ii) is equivalent to the condition that node j itself
is used a as a leaf-node in the tree B.

Proof. Let Fr = {y ∈ P | y(Γr) = 1} be the face of P induced by the inequal-
ity y(Γr) ≥ 1. Let furthermore F be a facet of P containing Fr and as-
sume that F is induced by the inequality

∑
i∈V αiyi ≥ α0, i.e., Fr ⊆ F ={

y ∈ P |
∑
i∈V αiyi = α0

}
. We show that the two conditions (C1) and (C2)

imply

αj =

{
α0 j ∈ Γr
0 j 6∈ Γr

,

which, in turn, implies that inequality
∑
αiyi ≥ α0 is a multiple of inequality

y(Γr) ≥ 1. As P is bounded and full-dimensional, it then follows that Fr = F
is a facet.

The proof consists of two parts: In the first part, we show that αj = 0 for
j ∈ V \ Γr. Then, in the second part, we show that αj = α0 for each j ∈ Γr.
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For the first part, we let j ∈ V \ Γr and choose a tree B = (Vj , Ej) that
satisfies condition (C1).

With (C1-i), we clearly have T ⊆ Vj . Due to (C1-iii), B does not use j as an
inner node. If j ∈ B, then node j is a leaf of B. Otherwise, we need to modify
the tree B. Let R = (r1, f1, r2, f2, . . . , fk−1, rk = j) be a shortest path within
component Cj that connects some arbitrary node of B to j, where ri denote the
nodes and fi denote the edges of R. Such a path exists, because (C1-ii) implies
that B contains at least one node from Cj , and Cj is a connected component.
As we chose a shortest path, r1 ∈ B and r2, . . . , rk 6∈ B. Now we add the path
R to B. Clearly, this yields a new tree B that contains j as a leaf node. Also
note that we did not add any node from Γr to B.

Next, let I = I(B) be the set of all internal nodes of B. Because B spans all
terminals, I is a connected dominating set for T and its characteristic vector yI

defines a feasible point in the polyhedron P . Because B uses exactly one node
in Γr as an inner node, we also have |Γr ∩ I| = 1. Thus, yI ∈ Fr ⊆ F .

Note that yIj = 0, because j was a leaf node in the tree B. Thus, j is adjacent
to some node in I and J := I ∪ {j} defines a connected dominating set for T
as well. Consequently, also the characteristic vector yJ is contained in P . As
j 6∈ Γr, y

J also satisfies yJ(Γr) = 1 and, consequently, also
∑
i∈V αiy

J
i ≥ α0.

Subtracting the two equalities for yI and yJ , we obtain our first claim∑
i∈V

αi(y
J
i − yIi ) = αj = 0.

To prove the second claim, let j ∈ Γ∗r . By condition (C2), there exists a tree
B spanning j and all terminals, whose only inner node in Γr is j. We choose
one such tree B and let I := I(B) again be the set of its inner nodes. As B
spans all terminals, I is a connected dominating set for T and its characteristic
vector yI is contained in P . As j is the only inner node of B within Γr, we also
have yI ∈ Fr ⊆ F , which implies our second claim αj = α0 and concludes the
proof.

We now show that the conditions (C1) and (C2) of Theorem 4.2 are also
necessary.

Theorem 4.3. Let G be 2-connected, r ∈ T , and T ⊆ Γr. If the inequality
y(Γr) ≥ 1 defines a facet of P , then both conditions (C1) and (C2) must hold.

Proof. Assume that there exists a node j that violates either condition (C1) or
condition (C2), depending on whether j ∈ Γr or not. We show that then the
stronger inequality

y(Γr) ≥ 1 + yj (5)

holds for all y ∈ P . As the polyhedron P is full-dimensional and inequality (5)
clearly dominates y(Γr) ≥ 1, this implies that the latter inequality is not a facet
of P .

Since P is defined as the convex hull of all integer solution of (NWDSTP),
is suffices to show that (5) holds for all integer solutions y of (NWDSTP), that
is, for all characteristic vectors of connected dominating sets.

Clearly, (5) holds for all integer solutions y ∈ P with yj = 0, for which it is
equivalent to the model inequality y(Γr) ≥ 1. So, we may restrict our attention
to integer solutions y ∈ P with yj = 1.
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First, we consider the case j ∈ Γr, which means that condition (C2) is
violated for j. If there was a connected dominating set I with j ∈ I and
I ∩Γr = j, one easily obtains a tree B with internal nodes I that spans T and j
and contains only j as an internal node within Γr by extending a spanning tree
on I with edges from I to the terminals T . As (C2) is violated and, thus, such
a tree does not exist, there exists no connected dominating set I with j ∈ I
and I ∩ Γr = j. Hence, any connected dominating set I with j ∈ I contains at
least two nodes in Γr. Consequently, any integer solution y ∈ P with yj = 1 for
j ∈ Γr satisfies y(Γr) ≥ 2 and, thus, (5).

Now, assume j ∈ V \ Γr, which means that condition (C1) is violated for
j. Let N := {v ∈ V | uv ∈ E for some u ∈ Cj} be the set of nodes that are
adjacent to some node in Cj . Note that any connected dominating set that also
dominates the node j must contain at least one node of N . Otherwise N would
separate j from r. Analogously to the previous case we now observe that there
exists no connected dominating set I with j 6∈ I, I ∩N 6= ∅, and |I ∩ Γr| = 1,
because any such set I would result in a tree B that meets the requirements
of constraint (C1). Hence, any connected dominating set I with j 6∈ I and
I ∩N 6= ∅ contains at least two nodes in Γr, implying that any integer solution
y ∈ P with yj = 1 for j ∈ V \ Γr satisfies y(Γr) ≥ 2 = 1 + yj .

Hence, if node j violates the corresponding constraint (C1) or (C2), then all
integer solutions y ∈ P satisfy (5). As discussed above, this conflicts with the
assumtion that the inequality y(Γr) ≥ 1 defines a facet of P .

5 Partition inequalities

In this section, we show how the well-known Steiner partition inequalities stud-
ied by Chopra and Rao [4, 5] for edge-based formulations of the classical Steiner
tree problem can be adapted to our setting. The classical edge-based Steiner
partition inequalities are based on the observation that, given a partition of the
node set of the graph, any feasible solution must contain at least as many edges
between different components of the partition as are needed to connect all those
components that contain terminals.

In order to apply this observation to our node-based setting, we consider
separator node sets whose removal partitions the remaining graph into several
components, instead of edge sets. Given a graph G = (V,E) and a subset
S ⊂ V , we denote by C(S) the set of connected components of G− S. This set
consists of the subsets

C(S) = T (S) ∪̇N(S),

where T (S) denotes the set of components containing terminals and N(S) de-
notes the subset of components without terminals. For simplicity, we will refer
to the components in T (S) as terminal components and to those in N(S) as
terminal-free components. We also let tS := |T (S)| and nS := |N(S)|.

Instead of simply counting the number of edges between different compo-
nents, as in the classical edge-based Steiner partition inequalities, we must take
care of the fact that the nodes in S may actually connect more than two com-
ponents of G − S and S in a solution. Clearly, any Steiner tree B that spans
all terminals must contain at least tS − 1 many edges between S and the dif-
ferent components of G− S in order to connect all terminal components. Each
node v ∈ S, however, is adjacent only to a certain number of components, and
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it provides connectivity to those components only if it is chosen to be in the
solution. Furthermore, any Steiner tree B defines a forest within G[S]. Hence,
the number of edges that B contains within each component of G[S] is bounded
by the size of this component minus one, and this bound reduces if some nodes
of the component are not contained in the solution. The latter two observations
allow us to bound the total contribution of a single node v ∈ S to the overall
connectivity of any Steiner tree B and motivate the following definitions.

Definition 5.1. Let G = (V,E), S ⊂ V , and s ∈ S. Denoting the connected
component of s in G[S] by Cs, we call

qS(s) :=
|Cs| − 1

|Cs|

the tree quotient of the node s with respect to the separator S.

Definition 5.2. Let G = (V,E), S ⊂ V , and C(S) = T (S) ∪̇N(S) as defined
above. For v ∈ S, we define its S-degree as

δS(v) := |{C ∈ C(S) | uv ∈ E for some u ∈ C}|+ qS(v)

Note that δS(v) is exactly the number of components of G − S that v is
adjacent to if v is not adjacent to any other node in S. Otherwise, if v also has
neighbors in S, its S-degree is the number of adjacent components in G − S
plus a certain fraction pertaining to the number of edges it needs to use to build
connections inside S.

Using this notation, we can formulate the basic Steiner partition inequalities
for our node-based ILP model.

Theorem 5.3. For each subset S ⊂ V , the following Steiner partition inequal-
ity is valid for P : ∑

v∈S
(δS(v)− 1) yv ≥ tS − 1 (6)

Proof. Consider any subset S ⊂ V and a feasible solution y. We would like to
show that y satifies inequality (6).

In any feasible solution y, the set Iy := {v ∈ V | yv = 1} forms a single
connected component dominating all terminals. Let now B be a Steiner tree
that spans the nodes of Iy and all terminal nodes. To simplify the calculations,
we assume w.l.o.g. that any terminal component of G − S only contains the
terminal. Otherwise, we can contract these components to single terminals.

The tree B then contains at least |T |+
∑
i∈S yi many nodes.

We now bound the number of edges of B. Let δ+
S (s) for s ∈ S denote the out-

degree of the node s with respect to S, that is, the number of edges whose other
endpoint lies outside S. The number of edges in B between S and components
of G− S clearly is upper-bounded by∑

i∈S
δ+
S (i)yi.

Furthermore, a tree or a forest on n nodes can contain at most n − 1 edges.
Denoting the connected components of G[S] by S1, . . . , Sk, this implies that B
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contains at most |Si|−1 edges within each Si. Hence, the total number of edges
of B with both end-nodes in S cannot exceed∑

i∈S
qS(i)yi.

As the number of nodes cannot be higher than the number of edges plus one,
we get ∑

i∈S
(δ+
S (i) + qS(i))yi ≥ −1 + |T |+

∑
i∈S

yi ,

which implies ∑
i∈S

(δS(i)− 1)yi ≥ |T | − 1 .

Thus, any y ∈ P must satisfy the Steiner partition inequality (6).

Note that, given a minimal k, `-separator S ∈ Sk,` for arbitrary distinct
terminals k, ` ∈ T , its associated Steiner partition inequality (6) is implied
by the minimal separator inequality (3): Due to minimality of S, Lemma 3.3
implies that all nodes in S are adjacent to all components in C(S) and, hence,
(δS(v) − 1) ≥ tS − 1. Multiplying (3) with tS − 1, one obtains a stronger
inequality than (6).

However, there are graphs and families of separators S ⊂ V for which the
Steiner partition inequalities are not implied by the inequalites of (NWDSTP)
and where they actually strengthen the linear relaxation of this formulation.

Example 5.4. Consider the example shown in Figure 5. The values shown next
to the nodes correspond to the LP-relaxation values of the model (1)-(4) for the
objective function cv = 1 for all v ∈ V . Notice that each minimal separator
is a subset S′ ⊂ V of cardinality two, hence all minimal separator inequalities
are satisfied. Consider now an arbitrary subset S of three non-terminal nodes
such that the number of terminal-components in G − S is tS = 3, for example
S = {2, 4, 6}. Then the Steiner partition inequality (6) associated to S is violated
by the depicted fractional solution.

Increasing the length of the cycle graph in Example 5.4 to 2k nodes, one eas-
ily verifies that the ratio between the linear relaxation value obtained with the
original formulation (NWDSTP) and the formulation with additional Steiner
partition inequalities can be as large as 2 − 1

k for any k > 2. More precisely,
the solution y′ with y′v = 1/2 for all v ∈ V is an optimal solution for the LP-
relaxation of (NWDSTP) for the objective function c = 1, with objective value
equal to k. On the other hand, the solution ỹ with ỹv = (k− 1)/k is an optimal
LP-solution for the relaxation including the Steiner partition inequalities, with
the objective value of 2(k − 1).

In those cases where some components of G − S contain no terminals,
the corresponding Steiner partition inequality can be strengthened easily. Let
N(S) = {N1(S), . . . , NnS

(S)}, Ni(S) ⊂ V be the set of terminal=free com-
ponents of G − S and consider ordered nS-tuples (v1, . . . , vnS

) of nodes such
that vi ∈ Ni(S) for i = 1, . . . , nS . The set of all such nS-tuples is denoted by
N (S). Lifting the variables corresponding to one such nS tuple into the Steiner
partition inequality for S, we obtain a stronger inequality.
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Figure 5: A valid solution for the NWDSTP relaxation (1)-(4) that is cut off by
the Steiner partition inequalities (6).

Theorem 5.5. For each subset S ⊂ V and each tuple (v1, . . . , vnS
) ∈ N (S),

the following lifted Steiner partition inequality is valid for P :∑
v∈S

(δS(v)− 1) yv −
nS∑
i=1

yvi ≥ tS − 1 (7)

Proof. The validity of lifted Steiner partition inequalities (7) can be shown anal-
ogously to the validity of the Steiner partition inequalities (6). Note that the
tuple (v1, . . . , vnS

) contains one representative node for each terminal-free com-
ponent Ni(S) of G− S. If yvi = 1 for one such representative node vi, then the
component containing vi needs to be connected to the rest of the solution. In
this case, this component can be treated as if it contained a terminal. Conse-
quently, the number of components that need to be connected by the solution y
increases to tS for the terminal-components plus

∑nS

i=1 yvi for the terminal-free
components that contain chosen nodes. Hence, inequality (7) holds.

There exist problem instances where the addition of lifted Steiner partition
inequalities (7) strengthens the linear relaxation of (NWDSTP), even when
compared to the relaxation obtained after adding the basic Steiner partition
inequalities (6).

Example 5.6. Consider the example shown in Figure 6. In the figure, we see an
example of a valid solution for the NWDSTP relaxation. As one easily verifies,
this solution is not cut away by the inequalities given in the (NWDSTP) formu-
lation including Steiner partition inequalities (7). Consider now the separator
S = {1, 3, 6, 9}. The lifted partition inequality for this separator is

y1 + y3 + y6 + y9 − y0 − y2 ≥ 1,

which the given solution violates.
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Figure 6: A valid solution for the NWDSTP relaxation The solution values are
marked inside the circle, the separator S = {1, 3, 6, 9} is depicted in black.

In the remainder of this section we show that in the special case where G
is a cycle, the lifted Steiner partition inequalities (6) combined with the model
constraints (1)-(4) are sufficient to describe the dominant of P .

5.1 A complete description of P on a cycle

Throughout this section we assume that G = (V,E) is a cycle.

Definition 5.7. Let G = (V,E) be a cycle, S ⊂ V and C(S) = T (S) ∪̇N(S)
as defined above. For v ∈ S, we define its circular S-degree as

δCS (v) := |{C ∈ C(S) | uv ∈ E for some u ∈ C}|+

{
1 if {u ∈ S | uv ∈ E} 6= ∅
0 otherwise

.

We switch to this weaker definition instead of the S-degree because this
simplifies the proofs and yields the same results in cycle graphs.

We begin by studying the case where G consists of alternating terminal and
non-terminal nodes. So, in the following let V = {0, . . . , 2k−1}, E = {{i, i+1} |
i = 0, . . . , 2k − 1}, and T = {v0, v2, . . . , v2k−2} for k ≥ 2.

To simplify notation, we assume that the node index 2k is equivalent to the
node index 0, or in other words, all calculations with node indices are to be
understood as being executed in Z/2kZ.

We consider the linear programming relaxation of (NWDSTP) that is defined
by the set of all lifted Steiner partition inequalities (7) and the variable boundary
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constraints only, i.e.,

(PART*): min cT y∑
v∈S

yv −
nS∑
i=1

yni
≥ tS − 1 ∀S ∈ S, (n1, . . . , nnS

) ∈ N (S)

1 ≥ yv ≥ 0 ∀ v ∈ V

It is easy to verify that all inequalities (1)-(4) of (NWDSTP) are implied
by the inequalities of (PART*) if G is a cycle of alternating terminals and non-
terminals. Hence, the polytope defined by the linear relaxation of (NWDSTP)
is a relaxation of the polytope defined by (PART*). On the other hand, the
polytope defined by (PART*) is a relaxation of P , because all lifted Steiner
partition inequalities (7) are valid for P .

In the following, we show that the polytope defined by (PART*) is inte-
gral, that is, for each objective c there exists an integer optimal solution y∗ for
(PART*). This then directly implies that (PART*) is a complete description of
P .

First, we observe that the lifted partition inequalities corresponding to non-
stable sets S are redundant.

Lemma 5.8. Let S ∈ S and (n1, . . . , nnS
) ∈ N (S). If S is not a stable set,

then inequality (7) is redundant in (PART*).

Proof. Since S is a separator andG is a cycle, S consists of at least two connected
components. If S is not a stable set, then at least one of these components
contains more than one node. As G is a circle, this component is a path P in
G. Without loss of generality we assume that the nodes are numbered in such
a way that P = (i, i + 1, . . . , i + `). Let S′ := S \ {i, . . . , i + ` − 1}. In words,
S′ is the separator obtained from S by replacing all nodes of P with the single
node i+ `.

Clearly, G−S′ contains exactly as many components as G−S. Furthermore,
all components of G−S that are not adjacent to i are also components of G−S′.
Only the one component C of G−S that is adjacent to i increases in G−S′ to
a component C ′ = C ∪ {i, . . . , i+ `− 1}.

If C is a terminal component, then C ′ is a terminal component too. In
this case, consider the lifted Steiner partition inequality (7) defined by S′ and
(n1, . . . , nnS

). As the terminal-free of G− S are exactly the terminal-free com-
ponents of G − S′, we have (n1, . . . , nnS

) ∈ N (S) = N (S′). Hence, the lifted
partition inequality defined by S′ and (n1, . . . , nnS

) is valid and contained in
the system (PART*). As S′ ( S, the inequality for S′ clearly dominates the
one for S.

If C is a terminal-free component, then the larger C ′ must be a terminal
component. In this case, we have nS′ = nS − 1 and t′S = tS + 1. W.l.o.g.
let C be the last terminal-free component of G − S, i.e., nnS

∈ C. As all
other terminal-free components of G − S remain terminal-free in G − S′, we
have (n1, . . . , nnS−1) ∈ N (S′). Hence, the lifted Steiner partition inequality (7)
defined by S′ and (n1, . . . , nnS−1) is valid and contained in the system (PART*).
Together with the inequalities ynnS

≤ 1 and yv ≥ 0 for v = i, . . . , i+ `− 1, this
inequality implies the lifted Steiner partition inequality for S and (n1, . . . , nnS

).
Consequently, inequality (7) is redundant if S contains a path.
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Due to Lemma 5.8, we may instead of PART* consider the formulation
PART, which contains lifted Steiner partition inequalities only for stable sets S.
This relaxation then defines the same polytope as PART*.

(PART): min cT y∑
v∈S

yv −
nS∑
i=1

yni
≥ tS − 1 ∀ stable S ∈ S, (n1, . . . , nnS

) ∈ N (S)

1 ≥ yv ≥ 0 ∀ v ∈ V

In our next step, we show that, for any nonnegative objective function c,
there exists an optimal solution for (PART) that satisfies the additional equal-
ities

yi = yi−1 + yi+1 − 1 ∀ i ∈ T, (8)

To facilitate this, we introduce the notion of an irreducible solution.

Definition 5.9. A solution y ∈ RV of (PART) is called irreducible if there is
no solution y′ ∈ RV of (PART) with y′ ≤ y and y′ 6= y.

Clearly, for any nonnegative objective function c, an optimal and irreducible
solution y of (PART) exists. In the following two lemmas we show that irre-
ducible solutions satisfy (8).

Lemma 5.10. Let c ∈ QV≥0 be a nonnegative objective function and y ∈ RV be
an irreducible, optimal solution of (PART). Then we have

yi ≥ yi−1 + yi+1 − 1 ∀ i ∈ T . (9)

Proof. Assume the claim was wrong. We have yi < yi−1 + yi+1 − 1 for some
i ∈ T . To simplify notation, let u := i− 1, v := i, and w := i+ 1. Then

ε := yu + yw − 1− yv > 0 . (10)

We will show that ȳ ∈ RV defined as

ȳi :=

{
yi − ε

2 if i ∈ {u,w}
yi otherwise

for i ∈ V (11)

satisfies (PART). As ȳ ≤ y and ȳ 6= y, this implies that y is not irreducible for
(PART), which contradicts the preconditions of the lemma.

Obviously, ȳ satisfies all boundary constraints 0 ≤ yi ≤ 1 of (PART). It
remains to show that ȳ also satisfies all non-redundant lifted Steiner partition
inequalities (7).

So, let S ∈ S, (n1, . . . , nnS
) ∈ N (S), and consider the lifted Steiner partition

inequality defined by S and (n1, . . . , nnS
).

We now distinguish several cases, depending on which nodes belong to S.
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Figure 7: Lemma 5.10, Case 1

Case 1: u,w ∈ S
Due to Lemma 5.8, we may assume v 6∈ S. Otherwise the lifted Steiner

partition inequality defined by S and (n1, . . . , nnS
) is redundant (as S would

then contain a path between u and w).
Let S′ := (S \ {u,w}) ∪ {v}, as illustrated in Figure 7.
If S′ is not a separator, we must have S = {u,w}. In this case G−S contains

two terminal components (one is {v}, and the other contains all the remaining
terminals T \ {v}). The (lifted) Steiner partition inequality defined by S then
reads

yu + yw ≥ 1 .

With (10) and (11), this inequality is trivially satisfied by ȳ.
If S′ is a separator, the terminal-free components in G − S′ and G − S

are equal. Therefore, also the lifted Steiner partition inequality for S′ and
(n1, . . . , nnS

) ∈ N (S) = N (S′) is part of the system (PART) and holds for y,
i.e., ∑

x∈S′
yx −

nS∑
i=1

yni
≥ t′S − 1 .

On the other hand, the number tS′ of terminal components in G−S′ is one less
than the number tS of terminal components in G−S, as the terminal component
{v} disappears. This implies

yu + yw − ε+
∑

i∈S′,i6=v

yi −
nS∑
i=1

yni
≥ tS − 1

and, together with (10) and (11),

∑
i∈S

ȳi −
nS∑
i=1

ȳni
≥ tS − 1 .

Hence, ȳ fulfills the lifted Steiner partition inequality for S and (n1, . . . , nnS
).
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Case 2: u 6∈ S, w 6∈ S
As u,w are not in S, the only way they can be involved in the lifted Steiner

partition inequality is as one of the lifted non-terminal variables yni
. As these

variables have a negative oefficient, however, the inequality trivially holds for ȳ
if it holds for y.

Case 3: u ∈ S, w 6∈ S (or, analogously, u 6∈ S, w ∈ S)
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Figure 8: Lemma 5.10, Case 3

Let z be the neighbor of w which is not v and x be the neighbor of u which
is not v, as illustrated in Figure 8. By Lemma 5.8 we may assume that v 6∈ S
and x 6∈ S.

We consider the separator S′ := (S \ {u}) ∪ {v} obtained by replacing node
u by node v in S. If S is a separator, then S′ is as well, because w 6∈ S.
Replacing u by v enlarges the component containing x, reduces the component
containing w, and leaves all other components of G− S unchanged. While the
component containing x will be a terminal component in both G−S and G−S′,
the component containing w is a terminal component in G−S, but the reduced
component in G− S′ might be a terminal-free component.

If z 6∈ S, then the component that contains w also contains the terminal
x and is terminal component in both G − S and G − S′. Thus, the number
of terminal components and node sets of the terminal-free components are the
same for G−S and G−S′. In this case, also the lifted Steiner partition inequality
for S′ and (n1, . . . , nnS

) ∈ N (S) = N (S′) is part of the system (PART) and
holds for y, i.e., ∑

i∈S′
yi −

nS∑
i=1

yni
≥ t′S − 1 = tS − 1 .

Adding (10) and 1 ≤ yw to this inequality, we obtain

∑
i∈S

yi −
nS∑
i=1

yni
≥ tS − 1 + ε ,
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and, with (11),

∑
i∈S

ȳi −
nS∑
i=1

ȳni ≥ tS − 1 .

Otherwise, if z ∈ S, then the number t′S of terminal components in G − S′
is one less than the number tS of terminal components in G− S. Also, G− S′
contains the terminal-free component {w}, which has not been a terminal-free
component in G− S. In this case, the lifted Steiner partition inequality for S′

and (n1, . . . , nnS
, w) ∈ N (S)× {w} = N (S′), namely

∑
i∈S′

yi −
nS∑
i=1

yni
− yw ≥ t′S − 1 = tS − 2

is part of the system (PART) and holds for y. Together with (10) this implies

∑
i∈S′

yi + yu − yv −
n′S∑
i=1

yni
− yw + yw ≥ tS − 2 + 1 + ε ,

and with (11) finally

∑
i∈S

ȳi −
nS∑
i=1

ȳni
≥ tS − 1 .

Hence, ȳ fulfills the lifted Steiner partition inequality for S and (n1, . . . , nnS
)

also in this case, which concludes the proof.

The validity of the reverse inequalities is shown in the following lemma.

Lemma 5.11. Let c ∈ QV≥0 be a nonnegative objective function and y ∈ RV be
an irreducible optimal solution of (PART). Then we have

yi ≤ yi−1 + yi+1 − 1 ∀ i ∈ T . (12)

Proof. Assume the claim was wrong and that there is some i ∈ T with yi >
yi−1 + yi+1 − 1. Denoting again u := i− 1, v := i, and w := i+ 1, this means

ε := yv − yu − yw + 1 > 0 . (13)

Similar to the proof of Lemma 5.10, we will show that ȳ ∈ RV defined as

ȳi :=

{
yi − ε if i = v

yi otherwise
for i ∈ V (14)

satisfies (PART), which cannot be the case if y is an irreducible solution of
(PART).

Note that (PART) contains the lifted Steiner partition inequality yu+yw ≥ 1
corresponding to S = {u,w}. With (13) this implies 1 ≥ yv−ε = yu+yw−1 ≥ 0
and thus 1 ≥ ȳv = yv − ε ≥ 0. Hence, ȳ satisfies all boundary constraints
0 ≤ yi ≤ 1 of (PART).
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To show that ȳ also satisfies all lifted Steiner partition inequalities (7) of
(PART), let let S ∈ S and (n1, . . . , nnS

) ∈ N (S) define a non-redundant lifted
Steiner partition inequality. We may assume that S is a stable set, because
otherwise the lifted Steiner partition inequality would be redundant.

If v 6∈ S, then the lifted Steiner partition inequality trivially holds for ȳ,
because it holds for y and, as v ∈ T , the coefficient of variable yv is 0. Hence,
we may assume v ∈ S for the rest of the proof.

Again, we distinguish several cases depending on S.

Case 1: x, z ∈ S
Let S′ := S − {v}, as illustrated in Figure 9. Note that u,w 6∈ S, because S

is assumed to be a stable set.
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Figure 9: Lemma 5.11, Case 1

If S′ is not a separator, we must have x = z, S = {x, v}, and V = {x, u, v, w}.
Otherwise S would not be a stable set or not be a separator. In this case, the
inequality belonging to S is

yv + yx − yu − yw ≥ −1 .

which is trivially satisfied by ȳ.
If S′ is a separator, then G−S′ contains one more terminal component than

G−S, namely the component {u, v, w}, while the two terminal-free components
{u} and {w} of G−S are no longer components of G−S′. All other components
of G − S are also components of G − S′. As the two components {u} and
{w} of G − S contain only a single node each, the two non-terminal variables
yu and yw necessarily occur in the lifted Steiner partition inequality for S and
(n1, . . . , nnS

) with a coefficient of −1. We may assume w.l.o.g. that the terminal-
free components of G − S are numbered in such a way that u = nnS−1 and
w = nnS

. As all other terminal-free components remained unchanged, we have
N (S) = N (S′)× {u} × {w}. Thus, S′ and (n1, . . . , nnS−2) ∈ N (S′) define the
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lifted Steiner partition inequality

∑
i∈S′

yi −
nS′∑
i=1

yni ≥ tS′ − 1 ,

which is part of the system (PART) and hence valid for y. Adding (13), we get

∑
i∈S′

yi + yv −
nS′∑
i=1

yni
− yu − yw ≥ tS′ − 2 + ε = tS − 1 + ε .

With (14) this implies

∑
i∈S

ȳi −
nS∑
i=1

ȳni
≥ tS − 1 .

In other words, ȳ satisfies the lifted Steiner partition inequality for S and
(n1, . . . , nnS

).

Case 2: z ∈ S, x 6∈ S (or, analogously, z 6∈ S, x ∈ S)

v

u

w

z

x

S v

u

w

z

x

S’

Figure 10: Lemma 5.11, Case 2

In this case, we let S′ := S \ {v} ∪ {u}, as shown in Figure 10. Since S is
assumed to be a stable set, we have u,w 6∈ S.

Replacing v by u in the separator, the terminal-free component {w} of G−S
becomes a terminal component {v, w} in G − S′, and the terminal component
containing x in G − S becomes smaller in G − S′, as node u is removed from
this component. All other components of G − S remain unchanged in G − S′.
As {w} is a single node terminal-free component of G−S, the variable yw must
occur in the lifted Steiner partition inequality for S and (n1, . . . , nnS

) with a
coefficient of −1. Assuming that w = nnS

corresponds to the last terminal-free
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component in N(S), we have (n1, . . . , nnS−1) ∈ N (S′). Thus, lifted Steiner
partition inequality for S′ and (n1, . . . , nnS−1)

∑
i∈S′

yi −
nS−1∑
i=1

yni
≥ tS′ − 1

is part of (PART) and holds for y. Adding (13), we get

∑
i∈S′

yi + yv − yu −
nS−1∑
i=1

yni
− yw ≥ tS′ − 2 + ε = tS − 1 + ε .

With (14) this implies

∑
i∈S

ȳi −
nS∑
i=1

ȳni
≥ tS − 1 ,

so the lifted Steiner partition inequality for S and (n1, . . . , nnS
) holds for ȳ.

Case 3: x, z 6∈ S

v

u

w

z

x

S v

u

w

z

x

S’

Figure 11: Lemma 5.11, Case 3

Because S is a stable set, we have u,w 6∈ S in this case. We let S′ :=
(S \ {v})∪{u,w}, as illustrated in Figure 11. Note that S′ must be a separator
in this case, because x and z must belong to different components of G− S′ as
S is a separator.

Note that G−S′ contains one terminal component more than G−S, namely
the component {v}, and that the terminal-free components of G−S and of G−S′
are exactly the same. Hence, the lifted Steiner partition inequality for S′ and
(n1, . . . , nnS

) ∑
i∈S′

yi −
nS∑
i=1

yni
≥ t′S − 1 = tS
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is contained in (PART) and satisfied by y. Adding (13) and plugging in (14) we
obtain first∑

i∈S′
yi + yv − yu − yw −

nS∑
i=1

yni
≥ tS − 1 + ε and then

∑
i∈S

ȳi −
nS∑
i=1

ȳni
≥ tS − 1 .

Hence, ȳ fulfills the lifted Steiner partition inequality for S and (n1, . . . , nnS
)

also in this case, which concludes the proof.

Together, Lemma 5.10 and Lemma 5.11 imply that the equalities (8) hold
for all irreducible optimal solutions of (PART) for all nonnegative objective
functions. This now allows us to prove the main result of this section.

Theorem 5.12. Let G = (V,E) be a cycle with V = {v1, . . . , v2k, v2k+1 = v0},
E = {vivi+1 | i = 1, . . . , 2k}, and T = {v0, v2, . . . , v2k−2} for k ≥ 2. Then
the lifted Steiner partition inequalities (7) and the non-negativity constraints
yv ≥ 0 for all v ∈ V completely describe the dominant of P . In other words, for
each nonnegative objective function c ∈ RV≥0 there exists an optimal solution of
(PART) that is integer.

Proof. For each nonnegative objective function c, there exists an optimal solu-
tion of (PART) that is irreducible. As we have seen in the previous two lemmata,
any irreducible optimal solution satisfies yvi = yvi−1

+ yvi+1
− 1 for all terminal

nodes vi ∈ T . Hence, it suffices to show that the linear program (PARTE)
obtained by adding these equalities to (PART) has integer optimal solutions.
This system reads

(PARTE) min cT y∑
v∈S

yv −
nS∑
i=1

yni
≥ tS − 1 ∀S ∈ S, (n1, . . . , nnS

) ∈ N (S) (15)

yt −
∑

v∈Γ∗(t)

yv = −1 ∀ t ∈ T (16)

1 ≥ yv ≥ 0 ∀v ∈ V (17)

To prove that this formulation has integer optimal solutions, we show how
the associated polyhedron is obtained from the minimum spanning tree polytope
of a smaller graph. To this end, we consider the graph G′ = (V ′, E′) with

V ′ := {v0, v2, . . . , v2k−2} = T and

E′ := {e1, e3, . . . , e2k−1} with ei = vi−1vi+1 for i = 1, . . . , 2k − 1.

This graph G′ is a cycle on the k terminals of G, whose edges correspond
to the non-terminal nodes. This allows us to associate each edge ei with the
corresponding non-terminal vi. On this graph G′, we define the edge-based
objective function c′ ∈ RE′ as

c′ei := cvi−1
+ cvi + cvi+1

for all ei ∈ E′.
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Obviously, c′ ≥ 0.
It is not hard to see that there is a simple correspondence between irreducible

solutions for the NWDST problem on G and minimum spanning trees in G′:
Any given spanning tree B′ ⊆ E′ in G′ defines a connected dominating Steiner
tree I = I(B′) := {vi | ei ∈ B′} ∪ {vi | both ei−1, ei+1 ∈ B′} with objective
c(I) = c′(B′) − c(T ). Reversely, the set I ⊂ V of (internal) nodes of any
irreducible connected dominating Steiner tree in G defines a spanning tree B′ =
B′(I) := {ei | vi ∈ I \ T} with objective c′(B′) = c(I) + c(T ). Note that
the objective values c(I) and c′(B′) of a connected dominating Steiner tree
and its corresponding spanning tree differ by c(T ), which is constant for any
given problem instance. This allows us to derive the polyhedral description of
the irreducible connected dominating Steiner trees in G from the polyhedral
description of the minimum spanning trees in G′.

Given a partition V1 ∪̇ . . . ∪̇ Vk = V of the nodes of some graph G = (V,E),
we denote by δ(V1, . . . , Vk) := {uv ∈ E | u ∈ Vi, v ∈ Vj for i 6= j} the set of
edges between different node sets of the partition. It has been shown in [4] that
the minimum spanning tree polytope for any graph G is completely described
by the boundary constraints 1 ≥ xe ≥ 0 for all e ∈ E and the Steiner partition
inequalities

∑
e∈δ(V1,...,Vk) xe ≥ k − 1 for all partitions V1 ∪̇ . . . ∪̇ Vk = V . In

fact, it is sufficient to consider so-called valid partitions, where each component
Vi is connected. Partition inequalities corresponding to non-valid partitions
are redundant. Applying this result to our graph G′, we find that the following
linear program is integral, i.e., has an integer optimal solution for each objective
function:

min
∑
e∈E′

c′eye∑
e∈δ(V ′1 ,...,V ′k)

ye ≥ k − 1 ∀ valid partitions V ′1 ∪̇ . . . ∪̇ V ′k = V ′

1 ≥ ye ≥ 0 ∀ e ∈ E′

Interpreting the edges ei of G′ as non-terminal nodes vi in G, valid partitions
V ′1 ∪̇. . .∪̇V ′k of the nodes of G′ can be interpreted as separator node sets S ⊆ V \T
in G. Given a valid partition V ′1 ∪̇ . . . ∪̇ V ′k = V ′, the corresponding separator
is S := {vi | ei ∈ δ(V ′1 , . . . , V

′
k)} and the number of resulting components is

k. Note that each of the resulting components is a terminal component and
that each (terminal) node set V ′i is fully contained in one of these components.
Reversely, any subset S ⊆ V \ T defines a partition V ′1 ∪̇ . . . ∪̇ V ′k of V ′ with
k = tS . Hence, we can equivalently write the above linear program as follows:

min
∑

v∈V \T

c′vyv∑
v∈S

yv ≥ tS − 1 ∀S ⊆ V \ T

1 ≥ yv ≥ 0 ∀ v ∈ V \ T

Clearly, also this linear program is integer. However, it only contains the vari-
ables for the non-terminal nodes v ∈ V \T . Introducing the missing variables yt
for the terminal nodes t ∈ T together with the equalities yt−

∑
v∈Γ∗(t) yv = −1
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linking them to the variables of their neighboring non-terminal nodes and adding
the constant −c(T ) to the objective, we obtain the following linear program:

(MT) min
∑

v∈V \T

c′vyv − c(T )
(

=
∑
v∈V

cvyv
)

(18)

∑
v∈S

yv ≥ tS − 1 ∀S ⊆ V \ T (19)

xt −
∑

v∈Γ∗(t)

xv = −1 ∀ t ∈ T (20)

1 ≥ yv ≥ 0 ∀ v ∈ V

Note that the newly introduced variables yt for t ∈ T neither occur in the objec-
tive function (with respect to c′) nor in the partition inequalities (19). In fact,
the variable yt for terminal node t ∈ T only occurs in its boundary constraints
and in the equality (20) linking it to its two neighboring non-terminals. Given
integer values for the variables yv for v ∈ V \ T , one can thus set the values
of the yt for t ∈ T in such a way that (20) and the boundary constraints are
satisfied. Hence, also the linear program (MT) has an integer optimal solution
for each objective function c′.

For nonnegative objective functions c, also c′ is nonnegative. Hence, as
shown in the previous lemmas, the irreducible solutions y of (PARTE), which
coincide with the irreducible solutions of (MT), satisfy the additional equalities
(8), i.e., we have yv = yv−1 + yv+1 − 1 for all v ∈ T . This immediately implies
that these solutions y also satisfy

∑
v∈V \T c

′
vyv =

∑
v∈V cvyv + c(T ). Hence,

(MT) has integer optimal solutions also for the objective cT y if c is nonnegative.
To conclude the proof, we now show that (MT) and (PARTE) are equivalent

and define the same set of feasible solutions. Obviously, both models contain the
same boundary constraints and the same equalities (16) and (20), respectively.
Furthermore, the inequalities of type (19) are a subset of the larger class of lifted
Steiner partition inequalities (15), which implies that (MT) is a relaxation of
(PARTE). Hence, it suffices to show that all lifted Steiner partition inequalities
(15) are implied by the constraints of (MT).

So, let S ∈ S and (n1, . . . , nnS
) ∈ N (S) and consider the lifted Steiner

partition inequality (15) defined by S and (n1, . . . , nnS
). Due to Lemma 5.8 we

may assume without loss of generality that S is a stable set, as otherwise the
inequality would be redundant.

Let S+ := {v ∈ Γ∗(t) | t ∈ S ∩ T} be the set of nodes that are adjacent to
a terminal node in S. Since S is stable, we have S+ ∩ S = ∅. Because G is a
cycle, nodes in S+ may be neighboring either one or two terminal nodes in S.
For simplicity, we denote by S+

2 := {vi ∈ S+ | vi−1, vi+1 ∈ S} the set of nodes
that are adjacent to two terminal nodes is S.

Finally, let S′ := S \ (S ∩ T ) ∪ S+ be the separator obtained by replacing
all terminals in S by their two neighbors. Obviously, we have t′S = tS + |S ∩T |.
Also, as terminals and non-terminals alternate on the cycle G, the terminal-free
components of G−S must be exactly the single nodes in S+

2 , i.e., (n1, . . . , nnS
)

is just some ordering of the nodes in S+
2 . Since S′ ⊆ V \ T , the corresponding

partition inequality (19) ∑
v∈S′

yv ≥ t′S − 1
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is part of (MT). Adding the equalities (20) for all t ∈ S ∩ T , one obtains∑
v∈S′

yv −
∑

vi∈S∩T
(yi − yi−1 − yi+1) ≥ t′S − 1− |S ∩ T | = tS − 1 .

Rearranging terms, we get( ∑
v∈S′

yv +
∑
v∈S+

yv −
∑

v∈S∩T
yv
)
−
∑
v∈S+

2

yv ≥ tS − 1 ,

which finally leads to

∑
v∈S

yv −
nS∑
i=1

yni
≥ tS − 1 .

Hence, the lifted Steiner partition inequality for S and (n1, . . . , nnS
) is implied

by the constraints of (MT).
Consequently, both (MT) and (PARTE) describe the same set of solutions

and, as (MT) has integer optimal solutions, so does (PARTE).

We can extend the characterization to instances in circles where more than
one non-terminals form a path. We say that a non-terminal v lies between the
terminals t1 and t2 if walking along the circle in both possible directions, these
are the first terminals we encounter.

Lemma 5.13. Let G = (V,E) be a cycle, T ⊂ V be a terminal set that forms a
stable set in G (i.e., no two terminals are adjacent), and c : RV≥0 be nonnegative.
Then, for any component C of G−T and any irreducible integer solution y, all
nodes v ∈ C have the same value yv.

Proof. Note that the components of G− T consist of non-terminal nodes only.
Furthermore, any terminal node t ∈ T is adjacent to exactly two components
of G − T . Clearly, an integer solution y must choose all nodes of all but one
component of G−T in order to be feasible. Otherwise at least two nodes of two
different components of G−T would not be chosen, and these non-chosen nodes
would define a terminal separator. With this observation, one easily verifies
that an integer solution y is irreducible if and only if it chooses all nodes of
G except for those of one component C of G − T and the two terminal nodes
adjacent to this component C. Hence, the variables of all non-terminals in the
same component are either all equal to 1 or all equal to 0.

In cycles where terminals are adjacent, the lifted partition inequalities are
insufficient to fully describe the dominant of P . A simple example is given
in Figure 5.1. In this example, the inequality

∑
x∈V xi ≥ 3 is needed in the

description of the dominant of P , but it is not implied by the (lifted) Steiner
partition inequalities.

However, for instances where terminals are adjacent, the solutions do not
change structurally if we insert non-terminals with zero cost between every ad-
jacent terminal-pair. One easily verifies that the optimal irreducible solutions for
the modified instance including these extra non-terminals exactly correspond to
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Figure 12: A valid basic solution for P that is not cut away by the lifted Steiner
partition inequalities

optimal irreducible solutions of the original problem: An artificial non-terminal
will be chosen if and only if one of its adjacent terminals is chosen.

Hence, we immediately get a complete description for the case with adjacent
terminals using an extended formulation with at most twice as many variables.

Theorem 5.14. The dominant of P is completely described by the lifted parti-
tion inequalities and the variable bounds in the case where the underlying graph
G is a cycle and no two terminals are adjacent.

In the case where adjacent terminals exist, these inequalities yield a com-
plete description of an extended formulation, where we lift in one artificial non-
terminal variables for each adjacent terminal pair.

In the case where adjacent terminals exist, one can construct a complete
description in the original variable space by projecting this extended description
back onto the original variable space in a straightforward way, using Fourier-
Motzkin-Elimination for example.

5.2 Indegree inequalities

In this section, we will derive a connection between the lifted Steiner partition
inequalities and the indegree inequalities. The well-known indegree inequalities
are valid for the description of connected subgraphs. Let V = {1, . . . , n} and
d ∈ Rn. We call d an indegree-vector if there is an orientation O of G such that
for this orientation, di is the vector of indegrees of G oriented by O. For each
such vector d, the corresponding indegree inequality∑

i∈V
(1− di)yi ≤ 1

is then valid. Korte, Lovász, and Schrader [19] have shown that these inequali-
ties induce all nontrivial facets of the connected subgraph polytope when G is

29



a tree. Further conditions under which these inequalities are facet defining for
the connected subgraph polytope have been studied by Wang, Buchanan, and
Butenko [21].

For the NWDSTP polytope P on a cycle graph, we will now show that the
indegree inequalities are implied by the other inequalities studied in this paper.

Theorem 5.15. If G = (V,E) is a simple cycle, the indegree inequalities are
implied by the lifted Steiner partition inequalities (7).

Proof. Let G = (V,E) denote a simple cycle and let O be an orientation of G.
Let d denote the indegree vector corresponding to O. Let V := V0 ∪̇ V1 ∪̇ V2,
where Vi := {v ∈ V | dv = i}. We set S := V2, and, as above, let tS be the
number of terminal components in G − S. Because G is a simple cycle, every
component of G− S contains exactly one node from V0. We set these nodes as
the ni. Let T (S) be the terminal components from G− S. The resulting lifted
partition inequality is given as:∑

i∈V2

yi ≥
∑

i∈V0\T (S)

yni
+ tS − 1.

After adding
∑
i∈V1∪V2

yi to both sides, we obtain:∑
i∈V2

2yi +
∑
i∈V1

yi ≥
∑

i∈V1∪V2

yi +
∑

i∈V0\T (S)

yni
+ tS − 1.

Finally, after rewriting, we have:∑
i∈V

diyi =
∑
i∈V2

2yi +
∑
i∈V1

yi +
∑
i∈V0

0 · yi ≥
∑

i∈V1∪V2∪(V0\T (S))

yi + tS − 1 ≥
∑
i∈V

yi − 1

which concludes the proof.

6 Conclusion

In this article we introduced the Node Weighted Dominating Steiner Tree Prob-
lem, a generalization of the Minimum Connected Dominating Set Problem in
graphs, in which a least cost subset of nodes is to be found such that the
given set of terminals is dominated. We provided a “thin” integer programming
model that uses node variables only, and requires polynomial separation of an
exponential number of connectivity cuts. For the underlying polytope, we gave
the conditions under which these inequalities are facet defining. In the second
half of the paper, we introduced a new family of Steiner partition inequalities
and showed how to lift them to provide stronger linear programming relaxation
bounds. For the special case when the input graph is a cycle, we showed that
the dominant of the underlying polytope is either integral, or can be lifted and
projected to easily obtain integral solutions.

Finally, we believe that for this new and challenging problem which is of
particular importance in the design of communication networks dealing with
cloud services, much more studies need to be done. On the one hand, exact
methods for handling the large-scale instances are needed. The practical rel-
evance and computational strength of the minimal node-separator inequalities
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studied in this paper has been demonstrated in [8], where these inequalities are
shown to play an important role for the related Steiner tree problems. How-
ever, for the new families of (lifted) Steiner partition inequalities introduced in
this paper, it remains an open question how they can influence the performance
of branch-and-cut algorithms. On the other hand, further polyhedral studies
could support the development of exact methods, by investigating other families
of valid inequalities that strengthen the LP-relaxation bounds.
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