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Abstract

Given an undirected graph G = (V, E) with edge weights and
a positive integer number k, the k-Cardinality Tree problem
consists of finding a subtree T of G with exactly k edges and
the minimum possible weight. Many algorithms have been
proposed to solve this NP-hard problem, resulting in mainly
heuristic and metaheuristic approaches.

In this paper we present an exact ILP-based algo-
rithm using directed cuts. We mathematically compare the
strength of our formulation to the previously known ILP
formulations of this problem, and give an extensive study
on the algorithm’s practical performance compared to the
state-of-the-art metaheuristics.

In contrast to the widespread assumption that such a
problem cannot be efficiently tackled by exact algorithms for
medium and large graphs (between 200 and 5000 nodes), our
results show that our algorithm not only has the advantage
of proving the optimality of the computed solution, but also
often outperforms the metaheuristic approaches in terms of
running time.

1 Introduction

We consider the k-Cardinality Tree problem (KCT):
given an undirected graph G = (V, E), an edge weight
function w : E — R, and a positive integer number k,
find a subgraph T of G which is a minimum weight tree
with exactly k edges. This problem has been extensively
studied in literature as it has various applications, e.g.,
in oil-field leasing, facility layout, open pit mining, ma-
trix decomposition, quorum-cast routing, telecommuni-
cations, etc [9]. A large amount of research was devoted
to the development of heuristic [5, 14] and, in particular,
metaheuristic methods [4, 8, 11, 7, 25]. An often used
argument for heuristic approaches is that exact methods
for this NP-hard problem would require too much com-
putation time and could only be applied to very small
graphs [9, 10].

The problem also received a lot of attention in the
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approximation algorithm community [1, 3, 17, 18]: a
central idea thereby is the primal-dual scheme, based
on integer linear programs (ILPs), which was pro-
posed by Goemans and Williamson [19] for the prize-
collecting Steiner tree problem. An exact approach was
presented by Fischetti et al. [15], by formulating an
ILP based on general subtour elimination constraints
(GsEC). This formulation was implemented by Ehrgott
and Freitag [13] using a Branch-and-Cut approach. The
resulting algorithm was only able to solve graphs with
up to 30 nodes, which may be mainly due to the com-
parably weak computers in 1996.

In this paper we show that the traditional argu-
ment for metaheuristics over exact algorithms is de-
ceptive on this and related problems. We propose
a novel exact ILP-based algorithm which can indeed
be used to solve all known benchmark instances of
KCTLIB [6]—containing graphs of up to 5000 nodes—
to provable optimality. Furthermore, our algorithm of-
ten, in particular on mostly all graphs with up to 1000
nodes, is faster than the state-of-the-art metaheuristic
approaches, which can neither guarantee nor assess the
quality of their solution.

To achieve these results, we present Branch-
and-Cut algorithms for KCT and NKCT—the node-
weighted variant of KCT. Therefore, we transform
both KCT and NKCT into a similar directed and
rooted problem called k-Cardinality Arborescence prob-
lem (KCA), and formulate an ILP for the latter, see Sec-
tion 2. In the section thereafter, we provide polyhedral
and algorithmic comparison to the known Gsec formu-
lation. In Section 4, we describe the resulting Branch-
and-Cut algorithm in order to deal with the exponential
ILP size. We conclude the paper with the extensive ex-
perimental study in Section 5, where we compare our
algorithm with the state-of-the-art metaheuristics for
the KCT.

2 Directed Cut Approach

2.1 Transformation into the k-Cardinality Ar-
borescence Problem. Let D = (Vp,Ap) be a di-
rected graph with a distinguished root vertex r €
Vp and arc costs ¢, for all arcs a € Ap. The k-
Cardinality Arborescence problem (KCA) consists of
finding a weight minimum rooted tree Tp with k arcs
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which is directed from the root outwards. More for-
mally, Tp has to satisfy the following properties:

(P1) Tp contains exactly k arcs,

(P2) for all v € V(Tp) \ {r}, there exists a directed
path r — v in Tp, and

(P3) for all v € V(Tp) \ {r}, v has in-degree 1 in Tp.

We transform any given KCT instance (G
(V,E),w,k) into a corresponding KCA instance
(Gr,r,c,k + 1) as follows: we replace each edge {i,j}
of G by two arcs (i,7) and (j,), introduce an artifi-
cial root vertex r and connect r to every node in V.
Hence we obtain a digraph G, = (VU{r}, AU A,) with
A={(i,),(j,i) | {i,j} € E} and A, = {(r,j) | j € V}.
For each arc a = (i,j) we define the cost function
c(a) :=01if i =r, and ¢(a) := w({4,7}) otherwise.

To be able to interpret each feasible solution T¢, of
this resulting KCA instance as a solution of the original
KCT instance, we impose an additional constraint

(P4) Tg, contains only a single arc of A,.

If this property is satisfied, it is easy to see that a
feasible KCT solution with the same objective value can
be obtained by removing r from T, and interpreting
the directed arcs as undirected edges.

2.2 The Node-weighted k-Cardinality Tree
Problem. The Node-weighted k-Cardinality Tree
problem (NKCT) is defined analogously to KCT but
its weight function w’ : V' — R uses the nodes as its
basic set, instead of the edges (see, e.g., [10] for the list
of references). We can also consider the general All-
weighted k-Cardinality Tree problem (AKCT), where a
weight-function w for the edges, and a weight-function
w’ for the nodes are given.

We can transform any NKCT and AKCT instance
into a corresponding KCA instance using the ideas
of [24]: the solution of KCA is a rooted, directed tree
where each vertex (except for the unweighted root)
has in-degree 1. Thereby, a one-to-one relationship
between each selected arc and its target node allows
us to precompute the node-weights into the arc-weights
of KCA: for all (4,j) € AU A, we have ¢((4,7)) := w'(j)
for NKCT, and ¢((4, 7)) := w({i,j}) +w’'(j) for AKCT.

2.3 ILP for the KCA. In the following let the
graphs be defined as described in Section 2.1. To
model KCA as an ILP, we introduce two sets of binary
variables:

Ta,Yy € {0,1} Va€ AUA, YveEV
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Thereby, the variables are 1, if the corresponding vertex
or arc is in the solution and 0 otherwise.

Let S C V. The sets E(S) and A(S) are the edges
and arcs of the subgraphs of G and G, respectively,
induced by S. Furthermore, we denote by §7(S5)
{(i,j) e AUA, |ie S, e V\S}and 6 (S) ={(4,j) €
AUA, | i€ V\S,je S} the outgoing and ingoing
edges of a set S, respectively. We can give the following
ILP formulation, using x(B) := ), .5 23, with B C A,
as a shorthand:

(2.1) DCur: min Z c(a) - xq
acA
(2.2)  z(67(9)) >y VSCV\{r},Yves
(2.3) z2(6(v)) =y YoeV
(2.4) z(A) =k
(2.5) z(6T(r)) =1
(2.6) Tay Yy € {0,1} Vac AUA,. YveV

The dcut-constraints (2.2) ensure property (P2) via
directed cuts, while property (P3) is ensured by the
in-degree constraints (2.3). Constraint (2.4) ensures
the k-cardinality requirement (P1) and property (P4)
is modeled by (2.5).

LEMMA 2.1. By replacing all in-degree constraints
(2.3) by a single node-cardinality constraint

(2.7) y(V) =k +1,
we obtain an equivalent ILP and an equivalent LP-
relaxation.

Proof. The node-cardinality constraint can be gener-
ated directly from (2.3) and (2.4), (2.5). Vice versa,
we can generate (2.3) from (2.7), using the dcut-
constraints (2.2). O

Although the formulation using (2.7) requires less
constraints, the ILP using in-degree constraints has
certain advantages in practice, see Section 4.

3 Polyhedral Comparison

In [15], Fischetti et al. give an ILP formulation for
the undirected KCT problem based on general subtour
elimination constraints (GSEC). We reformulate this
approach and show that both Gsec and DCuT are
equivalent from the polyhedral point of view.

In order to distinguish between undirected edges
and directed arcs we introduce the binary variables
ze € {0,1} for every edge e € E, which are 1 ife € T
and 0 otherwise. For representing the selection of the
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nodes we use the y-variables as in the previous section.
The constraints (3.9) are called the gsec-constraints.

min Z c(e) - ze

eclE

(3.8) GSEC :

9) 2(E(S)) <y(S\{t})
10) 2(E) =k
1) y(V)=k+1
12)  ze,y, €{0,1}

(3. VS CV,|S| >2,vte S
(3.

(3.

(3. VYVee E\NveV

Let Pp and Pg be the polyhedra corresponding to
the DCuT and GSEC LP-relaxations, respectively. l.e.,

Pp:={ (z,y) e RAVAIHVI|0< .y, <1
and (z,y) satisfies (2.2)—(2.5) }

Pg = { (273/) € RIZIHIVI | 0<ze,y, <1
and (z,y) satisfies (3.9)—(3.11) }

THEOREM 3.1. The GSEC and the DCUT formulations
have equally strong LP-relazations, i.e.,

Pa = proj.(Pp),

whereby proj,(Pp) is the projection of Pp onto the
(2,y) variable space with zg; jy = (. j) + x4 for all
{i,j} € E.

Proof. We prove equality by showing mutual inclusion:

e proj,(Pp) C Pg: Any (2,y) € proj,(Pp) satisfies
(3.10) by definition, and (3.11) by (2.3) and Lemma
2.1. Let = be the vector from which we projected
the vector Z, and consider some S C V with |S| > 2
and some vertex ¢ € S. We show that (Z, %) also
satisfies the corresponding gsec-constraint (3.9):

Z(E(S)) = 2(A(S)) =

(2.3) (2.2)

e Pg C proj,(Pp): Consider any (Z,7) € P and a set

X:={ =ze€ RleOUATl | = satisfies (2.5)
and Tij + X5 = E{ij} V(i,j) cA }

Every such projective vector € X clearly satisfies
(2.4). In order to generate the dcut-inequalities
(2.2) for the corresponding (Z,7), it is sufficient to
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show that we can always find an £ € X, which
together with 7 satisfies the indegree-constraints
(2.3). Since then, for any S CV and t € S:

£(07(9)) = 2ves 2(67 (v)) — £(A(S))
(2 3) _ B (3.9) B

y(S) - 2(E(S)) = -

We show the existence of such an & using a proof

technique similar to [20, proof of Claim 2|, where

it was used for the Steiner tree problem.

An & € X satisfying (2.3) can be interpreted as the
set of feasible flows in a bipartite transportation
network (N, L), with N := (EU{r})UV. For each
undirected edge e = (u,w) € E in G, our network
contains exactly two outgoing arcs (e, u), (e,w) €
L. Furthermore, L contains all arcs of A,.. For all
nodes e € E in N we define a supply s(e) := Z; for
the root 7 we set s(r) := 1. For all nodes v € V in
N we define a demand d(v) := @,

Finding a feasible flow for this network can be
viewed as a capacitated transportation problem on
a complete bipartite network with capacities either
zero (if the corresponding edge does not exist in L)
or infinity. Note that in our network the sum of all
supplies is equal to the sum of all demands, due to
(3.10) and (3.11). Hence, each feasible flow in such
a network will lead to a feasible & € X. Such a
flow exists if and only if for every set M C N with

5(+N (M) = () the condition
(3.13) s(M) < d(M)

is satisfied, whereby s(M) and d(M) are the total
supply and the total demand in M, respectively,
cf. [16, 20]. In order to show that this condition
holds for (N, L), we distinguish between two cases;
let U :=ENM:

r € M: Since r has an outgoing arc for every v €
V and 6(NL)( ) = 0, we have V. C M.
Condition (3.13) is satisfied, since s(r) = 1
and therefore:

s(M)=s(r)+z(U) <

s(r) + 2(E)

_HE) +1 (3.10),(3.11) G(V) = d(M).

r ¢ M: Let S :=V NM. We then have U C E(S).
If |S| <1 we have U = () and therefore (3.13)
is automatically satisfied. For |S| > 2, the
condition is also satisfied, since for every t € S
we have:

(39
Z(E(S)) < 9(S) — 4
(8) = d(M). O

s(M) =z

n S
<A
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3.1 Other approaches.

3.1.1 Multi-Commodity Flow. One can formulate
a multi-commodity-flow based ILP for KCA (McF)
as it was done for the prize-collecting Steiner tree
problem (PCST) [22], and augment it with cardinality
inequalities. Analogously to the proof in [22], which
shows the equivalence of DCuUT and McF for PCST, we
can obtain:

LEMMA 3.1. The LP-relaxzation of McF for KCA is
equivalent to GSEC and DCUT.

Nonetheless, we know from similar problems [12, 23]
that directed-cut based approaches are usually more
efficient than multi-commodity flows in practice.

3.1.2 Undirected Cuts for Approximation Al-
gorithms. In [17], Garg presents an approximation al-
gorithm for KCT, using an ILP for lower bounds (GU-
Curt). It is based on undirected cuts and has to be
solved |V| times, once for all possible choices of a root
node r.

LEMMA 3.2. DCuT is stronger than GUCUT.

Proof. Clearly, each feasible point in Pp is feasible
in the LP-relaxation of GUCUT using the projection
proj,. On the other hand, using a traditional argument,
assume a complete graph on 3 nodes is given, where each
vertex variable is set to 1, and each edge variable is set
to 0.5. This solution is feasible for the LP-relaxation of
GUCuUT, but infeasible for DCuT. O

4 Branch-and-Cut Algorithm

Based on our DCuT formulation, we developed and im-
plemented a Branch-and-Cut algorithm. For a general
description of the Branch-and-Cut scheme see, e.g., [27]:
Such algorithms start with solving an LP relazation,
i.e., the ILP without the integrality properties, only
considering a certain subset of all constraints. Given
the fractional solution of this partial LP, we perform a
separation routine, i.e., identify constraints of the full
constraint set which the current solution violates. We
then add these constraints to our current LP and reit-
erate these steps. If at some point we cannot find any
violated constraints, we have to resort to branching, i.e.,
we generate two disjoint subproblems, e.g., by fixing a
variable to 0 or 1. By using the LP relaxation as a lower
bound, and some heuristic solution as an upper bound,
we can prune irrelevant subproblems.

In [13], a Branch-and-Cut algorithm based on the
GSEC formulation has been developed. Note that the
dcut-constraints are sparser than the gsec-constraints,
which in general often leads to a faster optimization
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in practice. This conjecture was experimentally con-
firmed, e.g., for the similar prize-collecting Steiner tree
problem [23], where a directed-cut based formulation
was compared to a GSEC formulation. The former was
both faster in overall running time and required less
iterations, by an order of 1-2 magnitudes. Hence we
can expect our DCUT approach to have advantages over
GSEC in practice. In Section 4.2 we will discuss the for-
mal differences in the performances between the DCUT
and the GSEC separation algorithms.

4.1 Initialization. Our algorithm starts with the
constraints (2.3), (2.4), and (2.5). We prefer the in-
degree constrains (2.3) over the node-cardinality con-
straint (2.7), as they strengthen the initial LP and we
do not require to separate dcut-constraints with |S| =1
later.

For the same reason, we add the orientation-
constraints

(4.14) Tij + 25 < Y; Vi € ‘/,V{’L,j} S

to our initial ILP. Intuitively, these constraints ensure a
unique orientation for each edge, and require for each se-
lected arc that both incident nodes are selected as well.
These constraints do not actually strengthen the DCUT
formulation as they represent the gsec-constraints for
all two-element sets S = {i,j} C V. From the proof
of Theorem 3.1, we know that these inequalities can be
generated with the help of (2.3) and (2.2). Nonethe-
less, as experimentally shown in [22] for PCST and is
also confirmed by our own experiments, the addition of
(4.14) speeds up the algorithm tremendously, as they
do not have to be separated explicitly by the Branch-
and-Cut algorithm.

We also tried asymmetry constraints [22] to reduce

the search space by excluding symmetric solutions:
(4.15) Ty <1—y; Vi,jeV,i<j.
They assure that for each KCA solution, the vertex
adjacent to the root is the one with the smallest possible
index. Anyhow, we will see in our experiments that
the quadratic number of these constraints becomes a
hindrance for large graphs and/or small k in practice.

4.2 Separation. The dcut-constraints (2.2) can be
separated in polynomial time via the traditional
maximum-flow separation scheme: we compute the
maximum-flow from r to each v € V using the edge
values of the current solution as capacities. If the flow
is less than y,, we extract one or more of the induced
minimum (r,v)-cuts and add the corresponding con-
straints to our model. In order to obtain more cuts
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with a single separation step we also use nested- and
back-cuts [21, 23]. Indeed, using these additional cuts
significantly speeds up the computation.

Recall that in a general separation procedure we
search for the most violated inequality of the current
LP-relaxation. In order to find the most violated in-
equality of the DCuT formulation, or to show that no
such exists, we construct the flow network only once and
perform at most |V| maximum-flow calculations on it.
This is a main reason why the DCuUT formulation per-
forms better than GSEC in practice: a single separation
step for GSEC requires 2|V| — 2 maximum-flow calcu-
lations, as already shown by Fischetti et al. [15]. Fur-
thermore, the corresponding flow network is not static
over all those calculations, but has to be adapted prior
to each call of the maximum-flow algorithm.

Our test sets, as described in Section 5, also contain
grid graphs. In such graphs, it is easy to detect and
enumerate all 4-cycles by embedding the grids into the
plane and traversing all faces except for the single large
one. Note that due to our transformation, all 4-cycles
are bidirected. Let C4 be the set of all bidirected 4-
cycles; a cycle C' € Cy then consists of 8 arcs and V[C]
gives the vertices on C. We use a separation routine for
gsec-constraints on these cycles:

S Y

acC ieVI[C\{v}

(4.16) y; VC € Cq,Vv € V[C].

4.3 Upper Bounds and Proving Optimality. In
the last decade, several heuristics and metaheuristics
have been developed for KCT. See, e.g., [4, 5, 8, 11]
for an extensive comparison. Traditional Branch-and-
Cut algorithms allow to use such algorithms as primal
heuristics, giving upper bounds which the Branch-and-
Cut algorithm can use for bounding purposes when
branching. The use of such heuristics is two-fold: (a)
they can be used as start-heuristics, giving a good initial
upper bound before starting the actual Branch-and-
Cut algorithm, and (b) they can be run multiple times
during the exact algorithm, using the current fractional
solutions as an additional input, or hint, in order to
generate new and tighter upper bounds on the fly.

Let h be a primal bound obtained by such a
heuristic. Mathematically, we can add this bound to
our LP as

Zc(a)-xa < h-A.

acA
Thereby, A := min{c(a) — ¢(b) | c(a) > ¢(b), a,b € A}
denotes the minimal difference between any two cost
values. If the resulting ILP is found to be infeasible,
we have a proof that h was optimal, i.e., the heuristic
solution was optimal.
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As our experiments reveal, our algorithm is already
very successful without the use of any such heuristic.
Hence we compared our heuristic-less Branch-and-Cut
algorithm (DC™) with one using a perfect heuristic: a
(hypothetical) algorithm that requires no running time
and gives the optimal solution. We can simulate such a
perfect heuristic by using the optimal solution obtained
by a prior run of DC™. We can then measure how
long the algorithm takes to discover the infeasibility of
the ILP. We call this algorithm variant DC*. If the
runtime performance of DC~ and DC™ are similar, we
can conclude that using any heuristic for bounding is
not necessary.

5 Experimental results

We implemented our algorithm in C++ using CPLEX
9.0 and LEDA 5.0.1. The experiments were performed
on 2.4 GHz AMD Opteron with 2GB RAM per pro-
cess. We tested our algorithm on all instances of the
KCTLIB [6] which consists of the following benchmark
sets:

(BX) The set by Blesa and Xhafa [2] contains 35 4-
regular graphs with 25-1000 nodes. The value of k
is fixed to 20. The results of [8] have already shown
that these instances are easy, which was confirmed
by our experiments: our algorithm needed on
average 1.47 seconds per instance to solve them to
optimality, the median was 0.09 seconds.

(BB) The set by Blesa and Blum [8] is divided into four
subsets of dense, sparse, grid and 4-regular graphs,
respectively, with different sizes of up to 2500
nodes. Each instance has to be solved for different
values of k, specified in the benchmark set: these
are kye) of n = |V, for kpe = {10%, ...,90%}!, and
additionally k£ = 2 and K = n — 2. Note that the
latter two settings are rather insignificant for our
analysis, as they can be solved optimally via trivial
algorithms in quadratic time.

The most successful known metaheuristics for
(BB) are the hybrid evolutionary algorithm
(HyEA) [4] and the ant colony optimization algo-
rithm (ACO) [11].

(UBM) The set by Urosevi¢ et al. [25] consists of large
20-regular graphs with 500-5000 nodes which were
originally generated randomly. The values for k are
defined as for (BB) by using ke = {10%, ...,50%}.
In [25] a variable neighborhood decomposition
search (VNDS) was presented, which is still the
best known metaheuristic for this benchmark set.

TFor the grid instances, the values ke differ slightly.
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| # of nodes

| 500 | 1000 | 1500 [ 2000 | 3000 | 4000 [ 5000 |

avg. time in sec. 7.5 48.3

107.4

310.7 | 1972 | 5549 | 15372.2

1.5% | 0.1%

avg. gap of BKS

0.1%

0.2% | 0.2% | 0.3% 0.3%

Table 1: Average running times and average gap to the BKS provided in [5, 7, 25] for (UBM).

100
--dense e
10 - regular
o = sparse
=]
= 14
5]
2
0,1
0,01 ‘ —— —

2 10% 20% 30% 40% 50% 60% 70% 80% 90% n-2
k, k

rel

Figure 1: Speed-up factors for dense, regular and sparse
graphs with |V] < 2000 obtained when asymmetry
constraints (4.15) are included in the initial LP

Our computational experiments on (UBM) show
that all instances with up to 3000 nodes can be solved
to optimality within two hours. We are also able to
solve the graphs with 4000 and 5000 nodes to optimal-
ity, although only about 50% of them in less than two
hours. Note that for these large instances the VNDS
metaheuristic of [25] is faster than our algorithm, how-
ever they thereby could not reach optimal solutions. Ta-
ble 1 gives the average running times and the differences
between the optimal solutions and the previously best
known solutions (BKS).

In the following we will concentrate on the more
common and diversified benchmark set (BB), and com-
pare our results to those of HyEA and ACO. Unless
specified otherwise, we always report on the DC™ algo-
rithm, i.e., the Branch-and-Cut algorithm without using
any heuristic for upper bounds.

Algorithmic Behaviour. Figure 1 illustrates the
effectiveness of the asymmetry constraints (4.15) de-
pending on increasing relative cardinality k,e;. There-
fore we measured the speed-up by the quotient ti—‘”y
whereby t.sy and tp denote the running time with and
without using (4.15), resprectively. The constraints al-
low a speed-up by more than an order of magnitude for
sparse, dense and regular graphs, but only for large car-
dinality k > 5. Our experiments show that for smaller
k, a variable x,;, for some i € V, is quickly set to 1
and stays at this value until the final result. In these
cases the constraints cannot help and only slow down

)
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0% 10% 20% 30% 40% 50%

rel

60% 0% 80% 90% 100%

Figure 2: Speed-up factors for the grid instances of
(BB) when gsec-constraints (4.16) are separated. For
each instance and ke value there is a diamond-shaped
datapoint; the short horizontal bars denote the average
speed-up per kye].

the algorithm. Interestingly, the constraints were never
profitable for the grid instances. For graphs with more
than 2000 nodes using (4.15) is not possible due to mem-
ory restrictions, as the O(|V|?) many asymmetry con-
straints are too much to handle. Hence, we ommitted
these graphs in our figure.

We also report on the experiments with the special
gsec-constraints (4.16) within the separation routine
for the grid graphs. The clear advantage of these
constraints is shown in Figure 2, which shows the
obtained speed-up factor f;ﬁ by the use of these
constraints.

Based on these results we choose to include the
assymmetry constraints for all non-grid instances with
less then 2000 nodes and k£ > %, in all the remaining
experiments. For the grid instances we always separate
the gsec-constraints (4.16).

In Table 2, we show that the computation time is
not only dependent on the graph size, but also on the
density of the graph. Generally, we leave table cells
empty if there is no problem instance with according
properties.

As described in Section 4.3, we also investigate the
influence of primal heuristics on our Branch-and-Cut
algorithm. For the tested instances with 1000 nodes
the comparison of the running times of DC* and DC™
is shown in Figure 3. In general, our experiments show
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Figure 3: Relative speed-up w (in percent)

of DC* compared to DC™ for the instances with 1000
nodes.

| avg. deg [ set [ 500 nodes [ 1000 nodes ‘
2.5 (BB) 1 8.1
4 (BB) 0.9 15.7
10 (BB) 2.6 25
20 (UBM) 7.5 48.4
36.3 (BB) 10.7 —

Table 2: Average CPU time (in seconds) over k. values
of 10%, 20%, ..., 50%, sorted by the average degree of
the graphs.

that DCT is only 10-30% percent faster than DC™
on average, even for the large graphs. Hence, we can
conclude that a bounding heuristic is not crucial for the
success of our algorithm.

Runtime Comparison. Table 3 summarizes the
average and median computation times of our algo-
rithm, sorted by size and categorized according to the
special properties of the underlying graphs. We can ob-
serve that performance does not differ significantly be-
tween the sparse, regular and dense graphs, but that the
grid instances are more difficult and require more com-
putational power. This was also noticed in [9, 10, 14].

The behaviour of DC™ also has a clear dependency
on k, see Figures 5(a), 5(c) and 5(d): for the sparse,
dense and regular instances the running time increases
with increasing k. In contrast to this, solving the grid
instances (cf. Figure 5(b)) is more difficult for the
relatively small k-values.

The original experiments for HyEA and ACO were
performed on an Intel Pentium IV, 3.06 GHz with 1GB
RAM and a Pentium IV 2.4 GHz with 512MB RAM,
respectively. Using the well-known SPEC performance
evaluation [26], we computed scaling factors of both ma-
chines to our computer: for the running time compar-
ison we divided the times given in [4] and [11] by 1.5
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Figure 4: Dependancy of the BKS quality on ki,
for selected instances. The vertical axis gives the
percentage of the tested instances for which the BKS
provided in [6] are optimal.

and 2, respectively. Anyhow, note that these factors
are elaborate guesses and are only meant to help the
reader to better evaluate the relative performance.

Table 3 additionally gives the average factor of
ttHDy%, i.e., the running time of our algorithm compared
to (scaled) running time of HyEA. Analogously, Figure 5
shows the CPU time in (scaled) seconds of HyEA, ACO
and our algorithm.

We observe that our DC™ algorithm performs bet-
ter than the best metaheuristics in particular for the
medium values of &, i.e., 40—70% of |V, on all instances
with up to 1089 nodes, except for the very dense graph
le450_15a.g with 450 nodes and 8168 edges, where
HyEA was slightly faster. Interestingly, the gap be-
tween the heuristic and the optimal solution tended to
be larger especially for medium values of k (cf. next
paragraph and Figure 4 for details).

Solution Quality. For each instance of the sets
(BX) and (BB) we compared the previously best known
solutions, see [6], with the optimal solution obtained by
our algorithm, in order to assess their quality. Most of
the BKS were found by HyEA, followed by ACO. Note
that these solutions where obtained by taking the best
solutions over 20 independent runs per instance. In Ta-
ble 4 we show the number of instances for which we
proved that BKS was in fact not optimal, and give the
corresponding average gap gappys : BK(%*% (in per-
cent), where OPT denotes the optimal objective value
obtained by DC™ and BKS denotes the best known so-
lution obtained by either ACO or HyEA. Analogously,
we give the average gaps gap,,, := % (in per-
cent), AVG denotes the average solution obtained by
a metaheuristic. We observe that—concerning the so-
lution quality—metaheuristics work quite well on in-
stances with up to 1000 nodes and relatively small k.
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| # nodes | 500 |  1000-1089 | 2500

group avg/med | 2EA [ ayg/med | ZLEA avg/med THyRA
tha- tha— tha-
sparse 1.7/2.0 2.2 15.2/20.2 2.6 923.2/391.5 0.1
regular 1.7/1.5 3.1 22.2/21.4 5.7 — —
dense 7.5/7.9 2.2 25.5/27.9 2.7 — —
grid 11.7/1.2 0.1 124.8/98.7 1.1 3704.1/2800.1 0.1

Table 3: Average/median CPU time (in seconds) and the average speed-up factor of DC~ to HyEA for the
instance set (BB). Cells are left empty if there exists no instance matching the given criteria.

1000 1000
100 - — 100 4
10 A 10 A
8
@ 8 =
! + HyEA 2 17
0,1 *ACO 0,1
’ ? = DC- ’
ool ol
T8 2 58 8 8 8 B B B¢ g s s s R s R R RN gs s ER R R R RO
S 8 2 2 & 8 B £ g S % e S L M ¥ o A& S % ® > VO W\ ¥ o N &
— & 0 < v O~ o O — & n < v O~ o O
kkul k’krel

(a) sparse (1000 nodes, 1250 edges)

1000 —e | 1000

100 A : 100 |

10 10 1
//// -~ HyEA \ g

sec.
—

% 2 1
/// -+ ACO N
0,1 ¢ = DC- 0,1
0,01 e S R 0,01
k, krcl
(c) dense (1000 nodes, 1250 edges) (d) 4-regular (1000 nodes, 2000 edges)

Figure 5: Running times of DC~, HyEA, and ACO (in seconds) for instances of (BB) with ~1000 nodes, depending
on k. The figures for the grid and regular instances show the times for two different instances of the same type,
respectively.
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instance [ (IvV1],12]) l €q.

| gapiis | gapavg ACO [ gapavg HyEA

regular g400-4-1.g (400,800) 10/11 0.09 0.07 0.04
regular g400-4-5.g (400,800) 8/11 0.19 0.31 0.35
regular g1000-4-1.g | (1000,2000) | 7/11 | 0.07 0.65 0.12
regular g1000-4-5.g | (1000,2000) | 3/11 0.08 0.45 0.35
sparse steinc5.g (500,625) 11/11 - 0.97 0.06
sparse steind5.g (1000,1250) | 11/11 - 0.48 0.11
sparse steine5.g (2500,3125) | 3/11 0.13 n/a 0.23
dense le450a.g (450,8168) | 11/11 - n/a 0.04
dense steincl5.g (500,2500) | 11/11 - 0.36 0.02
dense steind15.g (1000,5000) | 10/11 0.22 0.38 0.04
grid 15x15-1 (225,400) 13/13 - 1.27 0.18
grid 15x15-2 (225,400) 13/13 - 2.04 0.12
grid 45x5-1 (225,400) | 4/13 | 054 n/a 1.22
grid 45x5-2 (225,400) | 10/13 | 0.08 n/a 0.13
grid 33x33-1 (1089,2112) | 3/12 0.31 1.70 0.57
grid 33x33-2 (1089,2112) | 3/12 0.39 2.48 0.49
grid 50x50-1 (2500,4900) | 2/11 | 0.95 n/a 1.27
grid 50x50-2 (2500,4900) | 2/11 | 0.55 n/a 0.82

Table 4: Quality of previously best known solutions (BKS) provided in [6] for selected instances. “eq.” denotes
the number of instances for which the BKS was optimal. For the other instances where BKS was not optimal, we
give the average relative gap (gappks) between OPT and BKS. For all instances we also give the average relative
gap (gapavg) between the average solution of the metaheuristic and OPT. All gaps are given in percent. Cells

marked as “

In particular, for kK = 2 and £k = n — 2 they always
found an optimal solution.
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