
Noname manuscript No.
(will be inserted by the editor)

On Integer and Bilevel Formulations
for the k-Vertex Cut Problem

Fabio Furini · Ivana Ljubić ·
Enrico Malaguti · Paolo Paronuzzi

Received: date / Accepted: date

Abstract The family of Critical Node Detection Problems asks for finding
a subset of vertices, deletion of which minimizes or maximizes a predefined
connectivity measure on the remaining network. We study a problem of this
family called the k-vertex cut problem. The problems asks for determining the
minimum weight subset of nodes whose removal disconnects a graph into at
least k components. We provide two new integer linear programming formu-
lations, along with families of strengthening valid inequalities. Both models
involve an exponential number of constraints for which we provide poly-time
separation procedures and design the respective branch-and-cut algorithms.
In the first formulation one representative vertex is chosen for each of the k
mutually disconnected vertex subsets of the remaining graph. In the second
formulation, the model is derived from the perspective of a two-phase Stackel-
berg game in which a leader deletes the vertices in the first phase, and in the
second phase a follower builds connected components in the remaining graph.
Our computational study demonstrates that a hybrid model in which valid
inequalities of both formulations are combined significantly outperforms the
state-of-the-art exact methods from the literature.

Keywords Vertex Cut · Mixed-Integer Linear Programming · Bilevel
Programming · Branch-and-Cut algorithm.

Fabio Furini
LAMSADE, Université Paris-Dauphine,
E-mail: fabio.furini@dauphine.fr

Ivana Ljubić
ESSEC Business School of Paris,
E-mail: ivana.ljubic@essec.edu

Enrico Malaguti
DEI, University of Bologna,
E-mail: enrico.malaguti@unibo.it

Paolo Paronuzzi
DEI, University of Bologna,
E-mail: paolo.paronuzzi@unibo.it

2 Furini, Ljubić, Malaguti, Paronuzzi

1. Introduction

In the analysis of networks, their correct functioning frequently depends on a
small number of important vertices whose malfunctioning can significantly de-
grade the performance of the whole network. Depending on the crucial proper-
ties that need to be maintained (or achieved) in the network, different vertices
may be considered as important. So, for example, if the major concern of a
decision maker is the way how information is diffused in the network, we might
be interested in finding the key-player vertices or the most influential vertices
in the network (see [25]). Similarly, if the decision maker wants to protect
the network against malicious attacks that may affect or destroy connectivity,
we are talking about the detection of critical vertices of a network. Although
there may be some vertices that remain critical no matter which connectivity
measure is considered, very often the importance of a vertex changes with the
definition of the connectivity measure (see, e.g. [19,26]).

The family of Critical Node Detection Problems asks for finding a subset of
vertices, deletion of which minimizes or maximizes a predefined connectivity
measure on the remaining network (see, e.g., [26] for a recent survey). Related
to CNDPs is the family of problems in which we are searching for a subset of
vertices of minimum weight, deletion of which changes the predefined connec-
tivity measure of the remaining network by a certain value, specified by the
decision maker in advance. In this article we study the k-Vertex Cut Problem,
which belongs to the latter family of problems, and which is defined as follows.

Definition 1 (k-Vertex-Cut) A vertex cut is a set of vertices whose removal
disconnects the graph into several connected components. If the number of
connected components is at least k, this set is called a k-vertex cut. Given a
graph G = (V,E), a positive weight wu for each vertex u ∈ V , and an integer
k ≥ 2, the k-vertex cut problem is to find a k-vertex cut of minimum weight.

Besides applications in the analysis of networks, the k-vertex cut problem
also models relevant applications in matrix decomposition for solving systems
of equations by parallel computing [30]. Given a system of equations with the
coefficient matrix A, the intersection graph associated to A has one vertex for
each column and an edge between a pair of vertices if and only if there exists a
row in A where both variables have a nonzero coefficient. When the system is
solved by decomposition, it is divided into smaller subsystems that are solved
separately. The solutions of the subsystems have to be merged in a consistent
way to obtain a solution of the whole system (i.e., if the same variable appears
in multiple subsystems, it must take the same value in all of them). The effort
for performing this task increases with the number of variables that appear
in more than one subsystem. If one wants to partition the equations into k
subsystems, the problem of minimizing the number of common variables can
be formulated as a vertex k-cut problem.

Figure 1 illustrates an example of a graph with 10 vertices, all with the
same weight, along with an optimal solution for the 3-vertex-cut problem: a

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 3

vertex-cut is of size 3 (given in black), and removal of these vertices results in
3 connected components in the remaining graph.

v8

v3

v7

v2

v6

v1

v9

v4

v10

v5

Fig. 1 A graph with 10 vertices of equal weight and an optimal 3-vertex cuts (on the right)
represented by the black vertices {v1, v2, v5}.

By the equivalence with the vertex k-multiclique problem on the comple-
ment graph, it has been shown that for any fixed k ≥ 3, even with unitary
weights, the problem is NP-hard [13]. On the other hand, for k = 2, the prob-
lem can be solved in polynomial time: For uniform vertex weights, the problem
is equivalent to calculating the vertex-connectivity of the graph; For the more
general case of non-uniform weights, the problem boils down to calculating
O(n2) maximum flows, see [6].

Our Contribution. In this article, we study exact solution approaches to the
k-Vertex-Cut problem. We first provide two new Integer Linear Programming
(ILP) formulations, along with some families of strengthening valid inequali-
ties. Both models involve an exponential number of constraints for which we
provide separation procedures and implement branch-and-cut algorithms. The
first formulation, to which we refer to as Representative Formulation, asks to
choose one representative for each of the k mutually disconnected subsets of
the remaining graph. In the second, so-called Natural Formulation, we derive
the model from the perspective of a two-stage Stackelberg game in which a
leader deletes the vertices in the first stage, and in the second stage a follower
builds connected components in the remaining graph. In our computational
study, we implement these models, compare them with the state-of-the-art
approach from [13] and report results of a Hybrid approach in which the Rep-
resentative and Natural formulations are combined, to provide the new best
performing method for the k-vertex cut problem.

4 Furini, Ljubić, Malaguti, Paronuzzi

The paper is organized as follows: in the remainder of this section, we in-
troduce the notation, we provide a detailed literature overview, and we recall a
compact formulation for the problem that was introduced in [9,13]. In Section
2, we derive theoretical properties that allow us to fix some vertices in the op-
timal solution. The Representative Formulation, along with valid inequalities
is given in Section 3, and the bilevel modeling approach is shown in Section
4. Separation procedures for both models are provided in Section 5. Finally,
a detailed computational study is provided in Section 6 and conclusions are
drawn in Section 7.

Notation. Let K denote the set of integers {1, ..., k}. Given a simple undirected
graph G = (V,E) with |V | = n and |E| = m, for an edge uv ∈ E, we say
that u and v are neighbours. The complement of graph G = (V,E) is a graph
G = (V,E), where E = {uv : uv /∈ E}. Let N(u) = {v ∈ V |uv ∈ E} denote the
neighborhood of u and N(u) = V \ (N(u)∪ {u}) denote the anti-neighborhood
of u. A subset of vertices W ⊂ V is a clique of G, if any two vertices of W are
neighbours. A subset of vertices W ⊂ V is a stable set if it is a clique in G;
the cardinality of the largest stable set of G, called the stability number of G,
is denoted as α(G). We indicate by degG(v) the number of edges incident on v
in graph G. Given a subset of edges E′ ⊆ E of G, we say that E′ is spanning
if for every vertex v of G there is at least an edge in E′ incident with v.

We denote by component of a graph G a connected subgraph, while a
generic subset of vertices of G can induce several components. This distinction
is relevant because the removal of a k-vertex cut from a graph G can disconnect
G in more than k components, and we may need to refer instead to exactly k
subgraphs, induced by k subsets of vertices.

We will use the observation that a k-vertex cut V0 is a set of vertices such
that V \ V0 can be partitioned into k non-empty subsets V1, ..., Vk that are
pairwise disconnected, i.e., there is no edge between two subsets Vi and Vj for
all i 6= j ∈ {1, . . . , k}. A necessary and sufficient condition for G to have a
k-vertex cut is given in the following

Observation 1 A graph G = (V,E) admits a k-vertex cut if and only if
α(G) ≥ k.

Without loss of generality we will assume the condition of Proposition 1 to be
satisfied (otherwise, the input instance can be discarded as infeasible). If q is
the number of (connected) components of G, we will also assume that q < k,
otherwise the problem can be trivially solved (empty vertex cut).

1.1 Literature Review

The k-vertex cut problem is polynomially solvable for k = 2 [6], and it is NP-
hard for k ≥ 3, when k is part of the input [8]. Only very recently, in [13] the
authors show that even for a fixed value of k, the problem remains NP-hard
for k ≥ 3. In addition, the first study on exact methods for the vertex k-cut

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 5

problem is given in [13]. The authors provide a compact integer programming
formulation and a formulation with an exponential number of variables, for
which a branch-and-price algorithm is implemented and tested on benchmark
instances with up to 200 vertices.

A well studied problem in combinatorial optimization is a closely related
problem of finding the minimum-weight edge k-cut. The problem consists of
finding a subset of edges (instead of vertices) of minimum weight, whose re-
moval separates the graph in at least k connected components. Mainly com-
plexity results are known about this problem: in [4], the author exploits sub-
modularity property to obtain a poly-time lower bound for the problem. For
a fixed value of k, the problem reduces to O(nk

2

) minimum cut problems [22].
Better running times for a fixed value of k are given in [24]. Very recently in
[23] an FPT algorithm is given in which the value of k is used as a parameter
and which improves the 2-approximation results from e.g., [29].

Another well-studied problem variant is the multiway cut problem (some-
times also called the multiterminal cut problem), in which a set of terminal
vertices T is given and one has to find a minimum-weight subset of edges that
separates each terminal from all others. For this problem, complexity is stud-
ied in [15] where the authors show that for |T | ≥ 3 the problem is already
NP-hard, and that for a fixed size of T , the problem is solvable in polynomial
time on planar graphs. A polyhedral study is given in [12].

There also exists the vertex-counterpart of the multiway cut problem,
called the multi-terminal vertex k-cut problem, in which one searches for the
minimum-weight subset of vertices to remove from a graph, so that every pair
of terminals is disconnected (here k = |T |). Clearly, a vertex multiway cut ex-
ists only if the terminals form an independent set. For this problem, the authors
of [20,21] give an approximation preserving reduction from the vertex cover
problem, and provide a 2-approximation algorithm. In [28] the W[1]-hardness
of this problem is shown. A path-based integer programming formulation along
with some valid inequalities is given in [14]. In addition, a polyhedral analysis
is also performed and an efficient branch-and-cut algorithm is developed.

Finally, there also exist problem variants in which cardinality bounds on
each component/vertex set are imposed. In the k-separator problem the goal is
to find a vertex cut whose removal results in a disconnected graph such that the
maximum size of each connected component is bounded by k. A bound on the
number of components may also be imposed. This problem is introduced in [9]
and motivated by matrix decomposition. The authors propose a model (with
binary variables indicating the assignment of vertices to the partitions), which
is solved by a tailored branch-and-cut algorithm. The complexity of this prob-
lem is studied in [7], where also an approximation algorithm is given, along
with a integer programming formulations and a polyhedral study. Recently,
the authors of [5] present an exponential size integer programming formula-
tion which they solve by branch-and-price, and perform an extensive computa-
tional study, in particular on graphs coming from matrix decomposition. The
proposed approach consistently solves instances with a large bound on the
number of components, and thus complements previous exact approaches that

6 Furini, Ljubić, Malaguti, Paronuzzi

work better/only for smaller number of components. A closely related prob-
lem is the one where the cardinality constraints are imposed not on the size
of the connected components but on vertex sets. More precisely, the problem
consists in finding a subset of vertices to remove from G so that the remain-
ing graph can be partitioned into two sets of cardinality at most k with no
edge being incident to both sets. Observe that each set may contain several
connected components. This problem is NP-hard even for planar graphs [18]
or maximum degree 3 graphs [11]. A first polyhedral study on this problem is
done in [3] from which a branch-and-cut algorithm is derived [30].

1.2 Compact Formulation

In this section, we recall the compact formulation, which has been introduced
in [13] (for the case where wu = 1 for all v ∈ V). The formulation exploits
the fact that a k-vertex cut V0 is a set of vertices such that V \ V0 can be
partitioned into k non-empty subsets V1, ..., Vk that are pairwise disconnected.
This formulation is similar to the one introduced in [9] for the the k-separator
problem, in particular, it uses the same variables: for each vertex v ∈ V and
each integer i ∈ K, a binary variable yiv is defined, such that

yiv =

{
1 if vertex v belongs to subset i

0 otherwise
i ∈ K, v ∈ V.

The vertices that remain unassigned to any of the subsets Vk (i.e., for which
yiv = 0, for all i ∈ K), are the ones defining the k-vertex cut. This is why
instead of minimizing the weight of the k-vertex cut, one can equivalently
maximize the sum of the weights of vertices out of the vertex cut (i.e., the
weight of vertices in the union ∪i∈KVi).
This compact ILP formulation (denoted as COMP) reads as follows:

(COMP) min
∑
v∈V

wv −
∑
i∈K

∑
v∈V

wvy
i
v (1)∑

i∈K
yiv ≤ 1 v ∈ V (2)

yiu +
∑

j∈K\{i}

yjv ≤ 1 i 6= j ∈ K,uv ∈ E (3)

∑
v∈V

yiv ≥ 1 i ∈ K (4)

yiv ∈ {0, 1} i ∈ K, v ∈ V. (5)

Constraints (2) impose that each vertex belongs to at most one of the subsets
Vi, i ∈ K. Constraints (3) ensure that the subsets are pairwise disconnected,
i.e., whenever there is an edge between a pair of vertices u and v, these two
vertices are not permitted to belong to two different subsets Vi and Vj , i, j ∈

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 7

K, i 6= j. Finally, constraints (4) avoid having empty subsets in a feasible
solution.

The model COMP has some serious drawbacks. First the number of vari-
ables increases linearly with the value of k, and the LP relaxation bound of
this model is always equal to zero (we can obtain an optimal LP-solution by
setting yiv = 1/k, for all v ∈ V , i ∈ K, see [13]). Second, the model suffers
from symmetries, as the variables can be permuted by obtaining an equivalent
solution. This is why an alternative modeling approach has been considered
in [13]. A model with an exponential number of variables has been proposed,
in which each column represents one of the subsets Vi, i ∈ K, and the corre-
sponding branch-and-price algorithm has been implemented. In what follows,
we derive two alternative ways to model the problem after having presented
some preprocessing techniques.

2. Preprocessing

In this section we discuss necessary conditions under which a vertex must
belong to any optimal k-vertex cut and, de facto, the size of the input graph
can be reduced.

Assume that a vertex u ∈ V is not in a k-vertex cut, so that all the vertices
in its neighbourhood N(u) either belong to the same subset as u, or are in
the k-vertex cut. Therefore, the size of the anti-neighbourhood of u gives an
upper bound on the number of disconnected non-empty components that can
be obtained.

Proposition 1 In any feasible solution to the k-vertex cut problem, if for a
vertex u ∈ G we have k ≥ |N(u)|+2, then vertex u must belong to any optimal
k-vertex cut.

Proof Observe that |N(u)| is a straight-forward upper bound on the num-
ber of components in the anti-neighborhood of u, assuming that the anti-
neighborhood defines a stable set, i.e., α(N(u)) = |N(u)|. Vertex u, if not in
the k-vertex cut, makes at most a single component along with the vertices in
its neighborhood, which leads to at most k − 1 components, and hence, such
a solution would be infeasible. �

We can strengthen this upper bound by analyzing the connected compo-
nents in the graph induced by the anti-neighborhood of u ∈ V . Let nC be
the number of connected components (C1, . . . , CnC

) in the subgraph G[N(u)]
induced by N(u). Let

m(Ci) = max
S⊂V (Ci)

{ number of connected components of G[V (Ci) \ S]}

(where V (Ci) is the vertex set of the component Ci). Therefore we have:

8 Furini, Ljubić, Malaguti, Paronuzzi

Proposition 2 Consider u ∈ V and let (C1, . . . , CnC
) be connected compo-

nents in G[N(u)]. If we have

k ≥
nC∑
i=1

m(Ci) + 2,

then vertex u must belong to the k-vertex cut.

Proof Same reasoning as for Proposition 1. �

The following proposition allows us to compute the exact values of m(C)
for each of the nC components:

Proposition 3 The maximum number of components that can be obtained
by deleting some vertices from a connected component C of G is equal to the
stability number of C, that is, m(C) = α(C).

Proof If C contains a stable set of cardinality α(C), we have α(C) non-empty
components composed by the vertices of the stable set, so m(C) ≥ α(C).
Viceversa, if C can be decomposed in m(C) non-empty components, each of
these components contains vertices that are not adjacent to any vertex of the
other components. By picking a vertex per component, we define a stable set
of cardinality m(C), so m(C) ≤ α(C), i.e., m(C) = α(C). �

See the computational Section 6, for further implementation details con-
cerning the preprocessing and its effectiveness in reducing the size of input
graphs.

3. Representative Formulation

We now propose a novel, alternative formulation for the k-Vertex Cut Problem
which is based on the idea of identifying a vertex that is the representative
of each subset Vi, i ∈ K. This way, it is enough to impose non-connectivity
among the representatives to obtain pairwise disconnected subsets. Connected
components that are disconnected from any representative can be feasibly
assigned to any subset.

The non-connectivity of the representatives can be obtained via an expo-
nential number of path inequalities, similarly to what was done by [14,27] for
the multi-terminal vertex k-cut problem, where each representative is denoted
as terminal and it is fixed as an input. We consider two sets of binary variables
associated with the vertices, denoting whether a vertex is a representative, and
whether a vertex is in the k-vertex cut, respectively. We have

zv =

{
1 if vertex v is the representative of a subset

0 otherwise
v ∈ V,

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 9

xv =

{
1 if vertex v is in the k-vertex cut

0 otherwise
v ∈ V,

and the corresponding Representative Formulation reads as follows:

(REP) min
∑
v∈V

wvxv (6)∑
v∈V

zv = k v ∈ V (7)

zu + zv ≤ 1 uv ∈ E (8)∑
t∈V (P)\{u,v}

xt ≥ zu + zv − 1 u, v ∈ V, P ∈ Πuv, uv 6∈ E (9)

xv, zv ∈ {0, 1} v ∈ V. (10)

In this model, P denotes a simple path in G, V (P) are the vertices con-
nected by P , and Πuv is the set of all simple paths between vertices u and v.
The objective function (6) minimizes the weight of the vertices in the k-vertex
cut. Constraint (7) ensures that exactly k representative vertices are selected,
and constraints (8) impose the set of representative vertices to be a stable set.
Path constraints (9), in exponential number, impose that at least one vertex
of each path P ∈ Πuv between a pair of representative u and v is in the vertex
cut (thus disconnecting the two representatives). Note that condition uv 6∈ E
in (9) serves to remove redundant inequalities for which the right-hand-side is
equal to zero due to (8).

Proposition 4 For k ≤ n/2, the LP relaxation bound of the formulation (6)-
(10) is equal to zero.

Proof It can be checked that for k ≤ n/2, setting zv = k/n results in a feasible
solution in which xv = 0, for all v ∈ V . �

Strengthening Inequalities. Constraints (9) can be lifted by observing that,
each time a path in Πuv includes a representative vertex, an additional vertex
of the path must be in the vertex-cut:∑

t∈V (P)\{u,v}

xt ≥ zu + zv +
∑

t∈V (P)\{u,v}

zt − 1,

u, v ∈ V, P ∈ Πuv, uv 6∈ E. (11)

Other families of constraints in polynomial number can be considered in order
to strengthen the linear relaxation of the representative model.

Given a vertex u and its neighbourhood N(u), if u is not in a k-vertex cut,
then together with (some of) its neighbors it belongs to the same connected

10 Furini, Ljubić, Malaguti, Paronuzzi

component, and hence, at most one of the vertices from N(u) ∪ {u} can be
chosen as representative. Alternatively, if u is in the k-vertex cut, at most
degG(u) = |N(u)| vertices can be representatives, which can be expressed by
the following neighborhood constraints:

zu +
∑

v∈N(u)

zv ≤ 1 + (degG(u)− 1)xu u ∈ V, (12)

paired with the additional condition that a vertex u cannot be a represen-
tative and be in the vertex cut at the same time:

xu + zu ≤ 1 u ∈ V. (13)

Note that an integer solution violating (13) cannot be optimal, so these
constraints are not necessary for the correctness of formulation REP . Indeed,
consider a solution where for a vertex u we have xu = zu = 1: by (9) any path
from u to another representative vertex w must be disconnected, so u cannot
be the (only) vertex disconnecting a path from w to a third representative
vertex v. As a consequence, we can set xu = 0 and reduce the cost of the
solution while keeping feasibility.

4. Bilevel Approach

We now provide a bilevel point-of-view to the problem, which will allow us to
derive a valid ILP formulation in the natural space of the xv, v ∈ V , variables
only.

We can see the k-vertex cut problem as a sequential two-player Stackelberg
game in which there are two players: a leader and a follower. In the first step,
the leader “interdicts” the follower by deleting some vertices from the graph,
and in the following step, the follower looks for the largest cycle-free subgraph
problem in the remaining graph. The solution of the leader is feasible, if and
only if the number of connected components in the subgraph corresponding
to the the follower’s optimal response is at least k. The leader wants to find
a feasible solution where the set of deleted vertices (i.e., the k-vertex cut) has
minimum weight.

In the following, we first provide a bilevel integer programming formulation
(BILP), which follows the description of the two sequential steps described
above. We start by describing a graph property that allows us to model the
follower’s subproblem as an ILP. It is well known that a graph G is connected if
and only if it contains a spanning tree, i.e., the number of edges in its spanning
cycle-free subgraph is |V | − 1. If G contains multiple connected components,
this property can be generalized as follows:

Observation 2 A graph G has at least k connected components if and only
if any cycle-free subgraph of G contains at most |V | − k edges.

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 11

Clearly, a graph G contains at least k connected components if and only
if any maximum cycle-free subgraph (with respect to the number of edges)
contains at most |V | − k edges. By exploiting this property, the k-vertex cut
problem can be seen as a Stackelberg game in which the leader searches the
smallest subset of vertices V0 to delete from G, and the follower maximizes
the size of the cycle-free subgraph on the remaining graph.

Observation 3 The solution V0 ⊂ V of the leader is feasible if and only if the
value of the optimal follower’s response (i.e., the maximum number of edges
of a cycle-free subgraph in the remaining graph) is at most |V | − |V0| − k.

4.1 A Bilevel Integer Programming Formulation

The leader decisions are encoded by the same x variables used for the Repre-
sentative Formulation, where xv is one if vertex v is “interdicted” (e.g., vertex
v is in the k-vertex cut), and zero otherwise. To model the decisions of the
follower, we use additional binary variables associated with the edges of G:

euv =

{
1 if edge uv is selected to be in the cycle-free subgraph

0 otherwise
uv ∈ E,

The BILP formulation of the k-vertex cut problem reads as follows:

(BILP) min
∑
v∈V

wvxv (14)

Φ(x) ≤ n− k −
∑
v∈V

xv (15)

xv ∈ {0, 1} v ∈ V. (16)

Constraint (15) ensures Observation 3, i.e., it guarantees the feasibility
of the solution x of the leader. Thereby, Φ(x) is the solution value of the
follower subproblem, in which the follower searches for cycle-free subgraph on
the remaining graph having the largest number of edges. For a solution x∗

of the leader, which represents an incidence vector of a set V0 of interdicted
vertices, the follower’s subproblem is:

Φ(x∗) = max
∑
uv∈E

euv (17)

e(S) ≤ |S| − 1 S ⊆ V, |S| ≥ 3 (18)

euv ≤

{
1− x∗v
1− x∗u

uv ∈ E (19)

euv ∈ {0, 1} uv ∈ E, (20)

12 Furini, Ljubić, Malaguti, Paronuzzi

where e(S) =
∑
uv∈E;u,v∈S euv. In this model, the subtour elimination con-

straints (18) ensure that solution of the follower contains no cycles, where
constraints (19) guarantee that the follower cannot use the edges that are
adjacent to interdicted (deleted) vertices.

It is straightforward to see that any optimal solution of the follower spans
the subgraph G∗ = G[V \ V0] (except for the vertices with a completely in-
terdicted neighborhood). Indeed, assume that there is a vertex which is not
isolated in G∗ but has a degree of zero in an optimal follower solution; then
adding a random edge adjacent to this vertex improves the value of the follower
solution without creating any cycle, fact that leads to a contraction. Hence,
the only vertices not spanned by an optimal follower solution are the isolated
vertices in the interdicted graph G∗.

The BILP formulation (14)-(16) is non-continuous and non-linear, hence
it cannot be plugged into a general purpose solver. Instead, we propose a
linearization of the BILP model that results in a new formulation to which we
refer as Natural Formulation, since it lays in the space of the natural xv, v ∈ V ,
variables.

4.2 Single-Level Reformulation

In the following, we propose a linearization of the BILP model (14)-(16), by
reformulating the follower’s subproblem in such a way that the set of its fea-
sible solutions does not depend on the leader. We then derive a single-level
reformulation with an exponential number of constraints, associated to ex-
treme points of the follower’s polytope. This idea, which resembles the Benders
decomposition approach for mixed ILPs, is often applied to (network) inter-
diction problems [10,17]. The major challenge of this approach is in finding
the tightest possible way to reformulate the follower’s subproblem, since this
reformulation directly affects the quality of the LP relaxation bounds of the
associated single-level model. It is known that a tight reformulation is possible
in some special cases. For example, if the leader interdicts vertices (edges), and
the follower’s subproblem admits a hereditary property1 for its vertex (resp.,
edge) induced subgraphs, a tight single-level reformulation is possible (see [17,
19]). However, there is no clear rule on how to derive a tight reformulation in
general.

In our setting, the leader interdicts vertices, but the follower’s subproblem
is hereditary with respect to edge-induced subgraphs, so that the results from
[17] cannot be directly applied. Instead, we have the following result:

Proposition 5 The follower subproblem can be equivalently restated as

1 A hereditary property is a property of a graph which also holds for its induced subgraphs.

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 13

Φ(x∗) = max
∑
uv∈E

euv ·
(
1− x∗u − x∗v

)
(21)

e(S) ≤ |S| − 1 S ⊆ V, |S| ≥ 3 (22)

euv ∈ {0, 1} uv ∈ E. (23)

Proof Any optimal solution e∗ of (17) -(20) corresponds to a maximum cycle-
free subgraph in the interdicted graph G∗. Instead, notice that in (21) -(23)
the follower solves the maximum weighted cycle free subgraph problem on the
original graph G, with edge weights wuv := 1−x∗u−x∗v. However, the weights
of an edge uv in E are positive if and only if this edge is not adjacent to any
interdicted vertex in V ∗. Otherwise, the weight of an edge is zero or -1 (if
both its end points are interdicted). Hence, any optimal solution in G∗ can be
mapped to an optimal solution on G (with the same weight). On the contrary,
there always exists an optimal solution on G of the problem (21)-(23) with
positive edge weights only, which corresponds to an optimal solution on G∗.�

Observe that the space of feasible solutions of the redefined follower sub-
problem does not depend on the leader anymore; the only dependence to the
solution of the leader is through the objective function. Hence, we can enu-
merate all feasible solutions of the follower and restate the whole problem
as a single-level formulation. This formulation has an exponential number of
constraints, one for each extreme point of the follower polytope.

Let T denote the set of all cycle-free subgraphs of G corresponding to ex-
treme points of the polytope defined as the convex hull of all points satisfying
constraints (22) and (23). The non-linear constraint (15) from the BILP formu-
lation can now be replaced by the following exponential family of inequalities:

∑
uv∈E(T)

(
1− xu − xv

)
≤ n−

∑
v∈V

xv − k T ∈ T . (24)

Since every vertex v is counted degT (v) many times in the above constraints
(24), they can also be restated as:

∑
v∈V

(
degT (v)− 1

)
xv ≥ k − n+ |E(T)| T ∈ T . (25)

The following result shows that constraints (25) do not have to be imposed
for any extreme point from T , it is namely sufficient to concentrate on spanning
subgraphs from T only. Let TG denote the subset of extreme points from T
being spanning subgraphs in G. The following result holds:

14 Furini, Ljubić, Malaguti, Paronuzzi

Proposition 6 The following single-level formulation, denoted as Natural
Formulation, is a valid model for the k-vertex cut problem:

(NAT) min
∑
v∈V

wvxv (26)∑
v∈V

(
degT (v)− 1

)
xv ≥ k − n+ |E(T)| T ∈ TG (27)

xv ∈ {0, 1} v ∈ V. (28)

Proof It is sufficient to show that any inequality associated to a subgraph
T ∈ T \ TG can be replaced by an inequality associated to some T ′ ∈ TG.
Let us assume for a moment that |T | = n − 2 and let v 6∈ V (T). To create
T ′, given an integer solution x∗ that violates the constraint (25), we choose to
connect v with some u ∈ V (T) such that x∗v + x∗u ≤ 1 (this is always possible,
unless v and all its neighbours are interdicted). By setting T ′ = T ∪ {uv} we
obtain a spanning subgraph inequality of type (27) with the same violation as
for the inequality (25). For |T | < n− 2, this ”growing” of the subgraph T can
be subsequently repeated until all vertices of G are spanned by T ′, without
changing the violation of the inequality. Finally, in case an interdicted vertex v
has an interdicted neighbourhood (however, this cannot happen in an optimal
solution, because removing the interdicted vertex from the vertex-cut would
improve the leader solution) we need to add the extra constraints:

xu +
∑

v∈N(u)

xv ≤ degG(u) u ∈ V. (29)

�

Coefficient lifting. For any T ∈ TG, the coefficients next to xv variables are
all non-negative, and hence inequalities (27) can be lifted to:

∑
v∈V

(
min

{
γ,degT (v)− 1

})
xv ≥ γ T ∈ TG, (30)

where γ = k − n+ |E(T)|.

Figures 2-3 illustrate a cycle-free subgraph T ∈ T \ TG and a spanning
cycle-free subgraph T ′ ∈ TG, along with the associated inequalities. Both in-
equalities are able to cut off the infeasible solution of Figure 2.

Finally, given the fact that imposing the inequalities (25) associated to
spanning subgraphs from TG guarantees a valid formulation, a natural question
arises: would it be sufficient to impose these inequalities only for spanning trees
of G? The following result provides a negative answer to this question:

Proposition 7 Inequalities (25) derived from spanning trees only are not suf-
ficient to ensure a valid formulation for the k-vertex cut problem.

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 15

v8

v3

v7

v2

v6

v1

v9

v4

v10

v5

Fig. 2 Infeasible solution for k = 3, with the black vertices {v1, v2} in the vertex cut (the
remaining vertices form one connected component).

Fig. 3 A cycle-free subgraph T ∈ T \ TG and the associated inequality (25): −x1 − x2 +
2x3 + x4 + 3x5 ≥ 0 (left part). A spanning cycle-free subgraph T ∈ TG and the associated
inequality (27): 3x3 + 2x4 + 3x5 ≥ 2; downlifted according to (30) to x3 +x4 +x5 ≥ 1 (right
part).

Proof To prove this result, we provide an instance in which an infeasible solu-
tion x∗ is not cut off by spanning tree inequalities. Consider a graph composed
by a path of 5 vertices, k = 3, and the solution x∗ depicted in the figure below,
where the black vertices represent interdicted ones (x∗3 = x∗4 = 1, the remain-
ing values are zero). The solution x∗ separates G into only 2 components,
hence it is infeasible.

x∗
1 = 0 x∗

2 = 0 x∗
3 = 1 x∗

4 = 1 x∗
5 = 0

16 Furini, Ljubić, Malaguti, Paronuzzi

There is a single spanning tree in G, and the associated cut, which is
x2 + x3 + x4 ≥ 2, does not cut off the infeasible point x∗. �

The following propositions characterize the strength of the LP relaxation
of the Representative and Natural formulations.

Proposition 8 If k ≤ n/2, the bound for the k-vertex cut problem provided by
the optimal solution value of the LP relaxation of formulation (26)-(28) strictly
dominates the corresponding bound provided by the formulation (6)-(10).

Proof We first show that any feasible solution x∗ of the LP relaxation of
(26) -(28) can be mapped into a feasible solution of the LP relaxation of (6)-
(10) with the same objective function value. The two objective functions are
the same, thus we only have to determine z∗ satisfying all the constraints of
formulation (6)-(10). By exploiting Proposition 4, z∗u can be fixed to n/k, for
each u ∈ V . It is straightforward to check that all the constraints of formulation
(6)-(10) are satisfied by (x∗, z∗).

To prove the strictness of the relation, we show that the value of the optimal
solution of the LP relaxation of (26) -(28) is strictly larger then 0 for any graph
G which is not yet disconnected in at least k components, while by Proposition
4 those of (6)-(10) is always 0. Indeed, any solution of value 0 for (26)-(28)
must have xu = 0 ∀u ∈ V . Consider a graph G with q connected components.
Any acyclic subgraph of G has at most n− q edges, let t be a subgraph with
exactly n − q edges (so it is spanning). By plugging xu = 0 ∀u ∈ V in (24)
(which are equivalent to (27)) for t, we get n− q ≤ n− k which is violated if
k > q, so the solution of cost 0 is infeasible. �

5. Separation Algorithms

In this section, we address separation procedures for the valid inequalities
introduced in Sections 3 and 4.2.

Separation of constraints (9). Given a (fractional) solution x∗, z∗ ∈ [0, 1]V to
the LP relaxation of model REP , separation of constraints (9) asks for finding
a pair of vertices u, v such that there is a path P ∗ ∈ Πuv with

z∗u + z∗v >
∑

t∈V (P∗)\{u,v}

x∗t+1. (31)

For each pair of vertices, we can search for such a path in polynomial time by
solving a shortest path problem from u to v on G(V,E), where we define the
length of each edge (i, j) ∈ E as

lij =
x∗i + x∗j

2
(32)

(note that the constant term
x∗
u+x∗

v

2 has to be removed from the length of each
path).

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 17

Concerning the computation of shortest paths, for fractional solutions, one
can solve the All Pairs Shortest Path problem through the Floyd Warshall
algorithm. In the case of integer solutions, finding a shortest path between a
vertex u and all other vertices can be done by performing a simple breath-first
search (BFS) procedure in the support graph G∗ in which vertices v such that
x∗v = 1 are removed. The BFS tree guarantees that each vertex v at layer `
in that tree has the shortest distance ` from the source u. If the vertices are
not connected, the distance is ∞. Hence, separation of integer solutions can
be done in O(|V ||E|) time.

Observation 4 Separation of constraints (9) can be performed in polynomial
time.

Separation of constraints (11). Constraints (11), that are the lifted version of
(9), can be still carried on by solving a shortest path problem from u to v on
G(V,E), where we define the length of each edge (i, j) ∈ E as

lij =
x∗i + x∗j

2
−
z∗i + z∗j

2
, (33)

(still the constant term
x∗
u+x∗

v

2 has to be removed from the length of each path).
Since edges can have negative weight, we solve heuristically this problem in
two steps (where the first step can be skipped):

– first we heuristically solve a longest path problem with lengths as defined in
(33) with opposite sign. We implemented a greedy procedure that obtains
such long path starting from the edge with the largest weight and then it
builds a path by adding the edge with the largest and positive weight that
is adjacent to the current path, without closing a cycle;

– second, if in the previous step no violated cut is found, we compute the
shortest paths P ∗ with the nonnegative lengths as defined in (32), and then
check the value of the z∗w variables for w ∈ V (P ∗) \ {u, v}. This way, we
have a separation procedure that is exact for (9) and heuristic for (11).

Separation of constraints (27). Let x∗ be the current solution to the LP re-
laxation of model NAT . We define edge-weights as

w∗uv = 1− x∗u − x∗v, uv ∈ E

and search for the maximum-weighted cycle-free subgraph inG. LetW ∗ denote
the weight of the obtained subgraph; if W ∗ > n − k −

∑
v∈V x

∗
v, we have

detected a violated inequality.
For fractional points x∗ the maximum-weighted cycle-free subgraph can be

detected in O(|E| log |V |) by running an adaptation of Kruskal’s algorithm for
minimum-spanning trees. Edges are sorted in a non-increasing order according
to their weight, and then Kruskal’s algorithm is applied, i.e., each edge in this
ordering is selected to be included in the subgraph being constructed, provided

18 Furini, Ljubić, Malaguti, Paronuzzi

it does not close a cycle. The algorithm stops as soon as an edge with negative
weight is encountered in the ordering.

Separation of integer points x∗ can be performed in O(|E|) time. In this
case, all edge weights are equal to 1, 0 or -1. Following the result of Proposition
5, it is sufficient to consider the graph defined by edges with weight equal to
one, which corresponds to G∗ = G[V \ V0] where V0 are interdicted vertices
encoded by x∗. Hence, it is sufficient to run any graph traversal algorithm on
G∗ (like, e.g., BFS) to find connected components in G∗.

Observation 5 Separation of constraints (27) can be performed in polynomial
time.

Since there are several alternative subgraphs describing connected compo-
nents, to avoid shallow cuts, when separating integer points we shuffle the set
of edges of G∗ before each separation call. This procedure guarantees to find a
cut of type (25), where the associated subgraph T is not necessarily spanning
all vertices from V .

However, it is (always) possible to construct a Spanning Subgraph cut
starting from an infeasible integer solution x∗ and a cut associated with a
(nonspanning) acyclic subgraph T ∈ T violated by this solution. To do so,
we scan first isolated vertices in the interdicted graph G∗ and we assign them
an interdicted neighbor, then for all still non-spanned interdicted vertices we
assign them to one of their neighbors in V \V0. In this way we do not change the
weight of the obtained T ∈ T since these edges have 0 weight. This repairing
step requires O(|E|) steps, so that the total separation time remains O(|E|).

6. Computational results

The goal of our computational experiments is to test the performance of the
proposed formulations, i.e., the Representative Formulation REP (Section 3)
and the Natural Formulation NAT (Section 4.2). Both formulations, hav-
ing an exponential number of constraints, are solved within a branch-and-cut
framework. We have proposed several variants and valid inequalities for each
formulation, and thus a second goal of this section is to identify their best con-
figuration. In addition, we propose and test a Hybrid Formulation obtained
by combining elements of the two formulations.

Finally, we assess the computational performance of our best branch-and-
cut algorithm by comparison with the Compact Formulation COMP (Section
1.2), and with a state-of-the-art branch-and-price algorithm proposed in [13],
and based on a formulation with exponentially many variables.

6.1 Experimental Setting

Benchmark instances. In our experiments we have two sets of instances, which
are the ones considered in the computational experiments of [13]. All instances

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 19

have weights wv = 1 for all v ∈ V . The first set includes all the classical Vertex
Coloring instances [1] having up to 200 vertices, and all the 10th DIMACS in-
stances [2] having up to 300 vertices (instances with α(G) ≥ 5). The features
of the 59 selected instances are reported in the first part of Table 1 where,
after the instance name, we show the number of vertices (n) and edges (m),
the stability number (α(G)), and the optimal solution value of the k-vertex
cut problem (size of the optimal vertex cut) for values of k ∈ {5, 10, 15, 20},
when it can be found by one of the methods discussed in this section or in
[13]. Missing entries correspond to infeasible problems (α(G) < k), while un-
known optimal values are indicated by a “-” (these are the instances which are
not solved within timelimit). Trivially solved instances are indicated by a “·”
(these are the instances which, before or after preprocessing, have q connected
components, with q ≥ k). The second set of 59 instances, whose features are
given in Table 2, were proposed in [30]. This set is a collection of intersection
graphs of the coefficient matrices of linear equations systems, arising from var-
ious applications. When solving the k-vertex cut problem for a given value of
k, we remove from our analysis all infeasible and trivial instances.

All the instances are preprocessed off-line by checking the condition of
Proposition 3. In particular, for each vertex the stability number of its anti-
neighborhood is computed and, when the condition of the proposition is met,
the vertex is removed. Although this asks for solving an NP-hard Maximum
Stable Set problem, the associated computing time in negligible for the size of
graphs we consider. As long as at least a vertex is removed from the graph, the
procedure is iteratively repeated. In our testbed, graph reductions are achieved
only for a limited subset of instances, namely, 20, 11, 17 and 16 instances for
k = 5, 10, 15 and 20, respectively. While for many instances only one or two
vertices are removed, in some cases many vertices are removed, with up to
113 vertices out of 125. In 6 cases the resulting instance is solved (i.e., it is
disconnected in q components, with q ≥ k). These instances are marked as
trivial in Tables 1 and 2. Preprocessing is applied before instances are tackled
by any of the solution algorithms here described, in other words, all methods
receive the same input (preprocessed) graph.

Detailed results for the preprocessing are reported in the Appendix.

Computational environment. All the experiments, including the runs of the
branch-and-price algorithm from [13], are performed on a computer with an
i7-6900K processor clocked at 3.20 GHz and 64 GB RAM under GNU/Linux
Ubuntu 16.04. We use CPLEX 12.7.1 and the Concert Technology framework
to implement our branch-and-cut algorithms. The Compact Formulation is
solved with the CPLEX MIP solver. CPLEX is run in single-threaded mode and
all CPLEX parameters are set to their default values. A time limit of one hour
is set for each tested instance.

20 Furini, Ljubić, Malaguti, Paronuzzi

O
p
tim

a
l

V
a
lu

e
s

O
p
tim

a
l

V
a
lu

e
s

n
m

α
(G

)
k

=
5

k
=

1
0

k
=

1
5

k
=

2
0

n
m

α
(G

)
k

=
5

k
=

1
0

k
=

1
5

k
=

2
0

1
-F

u
llIn

s
3

3
0

1
0
0

1
4

7
1
1

m
ile

s7
5
0

1
2
8

2
1
1
3

1
2

2
0

7
5

1
-F

u
llIn

s
4

9
3

5
9
3

4
5

9
1
3

1
8

2
2

m
u
g
1
0
0

1
1
0
0

1
6
6

3
3

5
1
0

1
5

2
0

1
-In

se
rtio

n
s

4
6
7

2
3
2

3
2

7
1
2

1
6

2
2

m
u
g
1
0
0

2
5

1
0
0

1
6
6

3
3

5
1
0

1
5

2
0

2
-F

u
llIn

s
3

5
2

2
0
1

2
5

8
1
3

1
7

2
3

m
u
g
8
8

1
8
8

1
4
6

2
9

4
9

1
5

2
0

2
-In

se
rtio

n
s

3
3
7

7
2

1
8

6
1
0

1
6

m
u
g
8
8

2
5

8
8

1
4
6

2
9

4
9

1
4

1
9

2
-In

se
rtio

n
s

4
1
4
9

5
4
1

7
4

7
1
1

1
7

2
2

m
u
lso

l.i.2
1
8
8

3
8
8
5

9
0

·
·

·
1
8

3
-F

u
llIn

s
3

8
0

3
4
6

3
7

9
1
4

1
7

2
5

m
u
lso

l.i.3
1
8
4

3
9
1
6

8
6

·
·

1
8

1
9

3
-In

se
rtio

n
s

3
5
6

1
1
0

2
7

6
1
1

1
6

2
1

m
u
lso

l.i.4
1
8
5

3
9
4
6

8
6

·
·

1
8

1
9

4
-F

u
llIn

s
3

1
1
4

5
4
1

5
5

9
1
5

1
8

2
3

m
u
lso

l.i.5
1
8
6

3
9
7
3

8
8

·
·

1
8

1
9

4
-In

se
rtio

n
s

3
7
9

1
5
6

3
9

6
1
1

1
6

2
1

m
y
c
ie

l3
1
1

2
0

5
·

5
-F

u
llIn

s
3

1
5
4

7
9
2

7
2

9
1
5

1
9

2
2

m
y
c
ie

l4
2
3

7
1

1
1

7
1
2

a
d
jn

o
u
n

1
1
2

4
2
5

5
3

2
6

1
1

1
6

m
y
c
ie

l5
4
7

2
3
6

2
3

8
1
3

1
8

2
3

a
n
n
a

1
3
8

4
9
3

8
0

1
1

2
2

m
y
c
ie

l6
9
5

7
5
5

4
7

9
1
4

1
9

2
4

c
e
le

g
a
n
sn

e
u
ra

l
2
9
7

2
1
4
8

1
1
0

1
1

2
6

m
y
c
ie

l7
1
9
1

2
3
6
0

9
5

1
0

1
5

2
0

2
5

ch
e
sa

p
e
a
k
e

3
9

1
7
0

1
7

7
1
2

1
7

p
o
lb

o
o
k
s

1
0
5

4
4
1

4
3

8
1
5

1
9

2
5

d
a
v
id

8
7

4
0
6

3
6

·
·

4
9

q
u
e
e
n
1
0

1
0

1
0
0

1
4
7
0

1
0

-
9
0

d
o
lp

h
in

s
6
2

1
5
9

2
8

2
7

1
3

1
9

q
u
e
e
n
1
1

1
1

1
2
1

1
9
8
0

1
1

-
-

D
S
J
C

1
2
5
.1

1
2
5

7
3
6

3
4

-
-

-
-

q
u
e
e
n
1
2

1
2

1
4
4

2
5
9
6

1
2

-
-

D
S
J
C

1
2
5
.5

1
2
5

3
8
9
1

1
0

-
1
1
5

q
u
e
e
n
1
3

1
3

1
6
9

3
3
2
8

1
3

-
-

fo
o
tb

a
ll

1
1
5

6
1
3

2
1

-
-

-
7
1

q
u
e
e
n
1
4

1
4

1
9
6

4
1
8
6

1
4

-
-

g
a
m

e
s1

2
0

1
2
0

6
3
8

2
2

-
-

-
6
7

q
u
e
e
n
5

5
2
5

1
6
0

5
2
0

h
u
ck

7
4

3
0
1

2
7

1
3

6
9

q
u
e
e
n
6

6
3
6

2
9
0

6
2
8

ja
z
z

1
9
8

2
7
4
2

4
0

4
1
2

2
5

-
q
u
e
e
n
7

7
4
9

4
7
6

7
3
8

je
a
n

8
0

2
5
4

3
8

1
1

2
4

q
u
e
e
n
8

1
2

9
6

1
3
6
8

8
-

k
a
ra

te
3
4

7
8

2
0

2
4

6
1
1

q
u
e
e
n
8

8
6
4

7
2
8

8
4
8

le
sm

is
7
7

2
5
4

3
5

1
2

3
5

q
u
e
e
n
9

9
8
1

1
0
5
6

9
5
9

m
ile

s1
0
0
0

1
2
8

3
2
1
6

8
5
3

r1
2
5
.1

1
2
5

2
0
9

4
9

·
·

1
5

m
ile

s1
5
0
0

1
2
8

5
1
9
8

5
1
1
5

r1
2
5
.1

c
1
2
5

7
5
0
1

7
1
1
6

m
ile

s2
5
0

1
2
8

3
8
7

4
4

·
·

4
1
1

r1
2
5
.5

1
2
5

3
8
3
8

5
9
1

m
ile

s5
0
0

1
2
8

1
1
7
0

1
8

7
-

-

T
a
b
le

1
In

sta
n

ce
fea

tu
res

(C
o
lo

rin
g

a
n

d
D

IM
A

C
S

)

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 21

O
p
ti

m
a
l

V
a
lu

e
s

O
p
ti

m
a
l

V
a
lu

e
s

n
m

α
(G

)
k

=
5

k
=

1
0

k
=

1
5

k
=

2
0

n
m

α
(G

)
k

=
5

k
=

1
0

k
=

1
5

k
=

2
0

a
rc

1
3
0

1
3
0

7
7
6
3

6
8
3

L
1
2
0
.fi

d
a
p
0
2
2

1
2
0

4
3
0
7

5
8
7

a
sh

2
1
9

8
5

2
1
9

2
9

7
1
6

2
6

3
4

L
1
2
0
.fi

d
a
p
0
2
5

1
2
0

2
7
8
7

5
·

a
sh

3
3
1

1
0
4

3
3
1

3
0

8
2
1

-
-

L
1
2
0
.fi

d
a
p
m

0
2

1
2
0

4
6
2
6

5
9
1

a
sh

8
5

8
5

6
1
6

1
4

2
2

-
L

1
2
0
.r

b
s4

8
0
a

1
2
0

3
2
7
3

6
7
6

b
c
sp

w
r0

1
3
9

1
1
8

1
3

7
1
6

L
1
2
0
.w

m
2

1
2
0

3
3
8
7

2
3

3
8

1
3

4
1

b
c
sp

w
r0

2
4
9

1
7
7

1
6

7
1
6

2
4

L
1
2
5
.a

sh
6
0
8

1
2
5

3
9
0

3
7

8
-

-
-

b
c
sp

w
r0

3
1
1
8

5
7
6

3
2

1
0

2
3

3
5

4
6

L
1
2
5
.b

c
ss

tk
0
5

1
2
5

2
7
0
1

9
4
1

b
fw

6
2
a

6
2

6
3
9

8
2
2

L
1
2
5
.c

a
n

1
6
1

1
2
5

1
2
5
7

1
5

-
-

-

c
a
n

1
4
4

1
4
4

1
6
5
6

1
2

-
-

L
1
2
5
.c

a
n

1
8
7

1
2
5

1
0
2
2

2
0

-
-

-
1
0
2

c
a
n
6
1

6
1

8
6
6

6
3
9

L
1
2
5
.d

w
t

1
6
2

1
2
5

9
4
3

1
6

-
-

-

c
a
n
6
2

6
2

2
1
0

1
8

7
1
7

2
7

L
1
2
5
.d

w
t

1
9
3

1
2
5

2
9
8
2

8
5
6

c
a
n
7
3

7
3

6
5
2

1
3

2
8

-
L

1
2
5
.f

s
1
8
3

1
1
2
5

3
3
9
2

9
1
6

c
a
n
9
6

9
6

9
1
2

1
0

-
-

L
1
2
5
.g

re
1
8
5

1
2
5

1
1
7
7

1
9

2
7

-
-

c
u
rt

is
5
4

5
4

3
3
7

9
1
6

L
1
2
5
.l
o
p
1
6
3

1
2
5

1
2
1
8

1
7

-
-

-

d
w

t
5
9

5
9

2
5
6

1
5

1
0

2
5

4
1

L
1
2
5
.w

e
st

0
1
6
7

1
2
5

4
4
4

3
9

5
1
1

1
7

2
4

d
w

t6
6

6
6

2
5
5

1
3

1
5

-
L

1
2
5
.w

il
l1

9
9

1
2
5

3
8
6

4
5

5
1
3

2
0

2
7

d
w

t7
2

7
2

1
7
0

2
4

7
1
6

2
6

3
6

L
8
0
.c

a
v
it

y
0
1

8
0

1
2
0
1

3
1

1
0

1
0

2
0

3
1

d
w

t8
7

8
7

7
2
6

1
6

1
1

2
9

5
4

L
8
0
.fi

d
a
p
0
2
5

8
0

1
2
0
1

5
·

g
re

1
1
5

1
1
5

5
7
6

3
3

1
2

2
4

-
-

L
8
0
.s

te
a
m

2
8
0

1
2
7
2

6
4
8

ib
m

3
2

3
2

1
7
9

8
1
6

L
8
0
.w

m
1

8
0

1
7
8
6

1
5

1
5

3
6

4
9

im
p

c
o
l

b
5
9

3
2
9

2
0

5
1
3

2
3

3
8

L
8
0
.w

m
2

8
0

1
8
4
8

1
1

4
4
8

L
1
0
0
.c

a
v
it

y
0
1

1
0
0

1
8
4
4

3
6

1
0

1
9

2
1

3
2

L
8
0
.w

m
3

8
0

1
7
3
9

1
3

4
1
2

L
1
0
0
.fi

d
a
p
0
2
5

1
0
0

2
0
3
1

5
·

lu
n
d

a
1
4
7

2
8
3
7

1
0

-
-

L
1
0
0
.fi

d
a
p
m

0
2

1
0
0

3
0
9
0

5
8
0

p
o
re

s
1

3
0

1
7
9

6
2
0

L
1
0
0
.r

b
s4

8
0
a

1
0
0

2
5
5
0

5
6
6

rw
1
3
6

1
3
6

6
4
1

3
9

7
-

-
-

L
1
0
0
.s

te
a
m

2
1
0
0

1
7
6
6

6
5
6

st
e
a
m

3
8
0

7
1
2

7
3
2

L
1
0
0
.w

m
1

1
0
0

2
9
5
6

1
7

1
5

2
8

4
8

w
e
st

0
0
6
7

6
7

4
1
1

1
2

2
0

-

L
1
0
0
.w

m
2

1
0
0

3
0
3
9

1
2

4
4
1

w
e
st

0
1
3
2

1
3
2

5
6
0

3
9

5
1
2

2
1

2
9

L
1
0
0
.w

m
3

1
0
0

2
9
3
4

1
5

4
1
2

5
3

w
il
l5

7
5
7

3
0
4

1
0

7
2
2

L
1
2
0
.c

a
v
it

y
0
1

1
2
0

2
9
7
2

3
6

1
0

2
1

2
3

3
2

T
a
b
le

2
In

st
a
n

ce
fe

a
tu

re
s

(I
n
te

rs
ec

ti
o
n

g
ra

p
h

s)

22 Furini, Ljubić, Malaguti, Paronuzzi

6.2 Results for Representative, Natural and Hybrid Formulations

We tested several different configurations of the Representative Formulation
(e.g., changing the separation strategy, removing strengthening constraints,
etc.), and we report detailed computational results for the following two con-
figurations:

– we denote by REP the formulation (6) - (8), (10) - (13). Constraints (11)
are separated by only applying the second step of the procedure described
in Section 5, that is, by computing shortest paths on a graph with positive
edge weights;

– we denote by REPlp the same formulation, where (11) are separated by
applying both steps of the procedure described in Section 5, that is, by
heuristically computing a long path in a graph with positive and negative
edge weights.

Different frequencies and tolerances for the separation procedure were tested
for all configurations. According to our extensive preliminary computational
experiments, the best choice is to stop the cut separation when the absolute
violation is smaller than 0.5 (violation tolerance). We call the separation pro-
cedure for all integer points and for fractional points every 100 nodes of the
branching tree.

Inequalities (8), that are expressed for each edge in E(G), can be strength-
ened to clique inequalities. However (as confirmed by our preliminary compu-
tational experiments) modern MIP solvers are very effective in the automatic
separation of clique inequalities, and hence we keep edge constraints in our
formulation.

Similarly, we tested several different configurations of the Natural Formu-
lation, and we report detailed computational results for the following two:

– we denote by NAT the formulation (25), (26) and (28), where (25) are
lifted to (30) when spanning;

– we denote by NATs the previous formulation where the family of con-
straints (25) are made spanning for all integer solutions, and then lifted to
(30).

We tested different frequencies and tolerances of the separation procedure
and the best choice for the violation tolerance is also in this case 0.5. We call
the separation procedure for all integer points and for fractional points at all
the nodes of the branching tree.

The Representative and the Natural Formulations use the same natu-
ral variables xv, v ∈ V , to describe which vertices are in the k-vertex cut,
and implement alternative sets of contraints to impose the required number
of nonempty disconnected components. Although the Natural Formulation
showed more effective than the Representative Formulation (see results in the
following), there are some instances on which the latter has a better perfor-
mance. In addition, in our preliminary computational experiments we observed

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 23

that, thanks to the presence of a stable set constraints (8), the Representative
Formulation is much faster in detecting infeasible instances (i.e., those with
α(G) < k). Infeasible instances were removed from our testbed, however, we
expect the Representative Formulation to be fast in detecting infeasibilities
also at the nodes on the branch-and-cut tree. Therefore, it makes sense trying
to obtain a more effective formulation by integrating the two into a Hybrid
model.

In order to explore the direction of embedding into the Natural Formulation
the advantages of the Representative one (i.e., solving some specific instance
and fast detection of infeasibilities after branching), we designed the following
Hybrid configuration:

– we denote by HY B Formulation NATs with additional constraints (7),
(8), (10), (12) and (13).

Aggregated results for the first set of instances (Vertex Coloring and DI-
MACS) are reported in Table 3, where the first column gives the considered
value of k. Then the table reports, for each configuration of the Representative,
Natural and Hybrid Formulations described above, the number of instances
solved to optimality; the average computing time in seconds (for the subset
of instances solved to optimality by all configurations), the average number
of explored nodes in the branching tree (for the subset of instances solved to
optimality by all configurations); the average percentage gap of the LP relax-
ation computed as 100 · ((UB − LP)/UB), where UB is the optimal or best
known solution value and LP is the optimal value of the LP relaxation; the
average time to solve the LP relaxation. Violation tolerance is set to 0.1 when
solving LPs. The last three rows of the table report the averages over all values
of k.

The configurations reported in Table 3 have improving performance. When
moving from REP to REPlp, the number of instances solved to optimality is
increased for all value of k, except k = 5. The improved results are explained
by comparing the values of the LP gap of REP and REPlp: the table clearly
shows that separating inequalities (11) by applying both steps of the proce-
dure described in Section 5 allows to close much more LP gap. Using Natural
Formulations (NAT and NATs) for all values of k the number of instances
solved to optimality is increased, and the number of nodes explored by the
branch-and-cut algorithm is reduced by 3 orders of magnitude. This can be
attributed to the significantly smaller LP relaxation gaps of Natural Formu-
lations, when compared to those obtained using Representative Formulations.
Comparing formulations NAT and NATs, the latter has a slightly better per-
formance, and can solve 2 more instances on the whole set. Finally, the table
shows that the best computational performances is provided by HY B which is
able to solve 132 instances (out of 169). The number of explored nodes by the
branch-and-cut algorithm is one third of that of NATs. As anticipated, this
is as a result of the introduction of the constraints from the Representative
Formulation, which allow to fast detect infeasible nodes in the branching tree.
Summarizing from Table 3 we can conclude that HY B is the best formulation

24 Furini, Ljubić, Malaguti, Paronuzzi

Table 3 Performance comparison for different configurations of the Representative, Natural
and Hybrid Formulations on the first set of instances (Vertex Coloring and DIMACS).

k REP REPlp NAT NATs HYB

Opt. (out of 51) 29 27 33 34 35

Avg Time 148.70 105.57 7.40 3.79 1.07

5 Avg Nodes 61524 24174 70 73 29

LP Avg Gap 89.55 67.15 22.96 22.76 22.85

LP Avg Time 0.01 0.17 0.24 0.21 0.32

Opt. (out of 41) 20 23 29 30 32

Avg Time 201.66 319.21 2.11 1.52 2.43

10 Avg Nodes 41683 32568 6 7 5

LP Avg Gap 72.27 46.34 13.88 13.94 14.00

LP Avg Time 0.05 1.32 0.37 0.33 0.54

Opt. (out of 38) 22 24 33 32 33

Avg Time 96.75 52.17 316.91 226.47 3.57

15 Avg Nodes 48078 10923 39 35 12

LP Avg Gap 65.99 48.75 16.91 16.96 16.94

LP Avg Time 0.06 138.57 0.18 0.17 0.33

Opt. (out of 36) 18 22 31 32 32

Avg Time 141.32 351.13 190.94 41.70 3.66

20 Avg Nodes 47735 25595 58 48 11

LP Avg Gap 58.65 38.37 17.12 17.11 17.12

LP Avg Time 0.07 1.93 0.24 0.24 0.49

Total Opt. (out of 166) 89 96 126 128 132

Total Avg Time 146.75 194.04 121.10 66.20 2.55

Total Avg Nodes 50656 23169 45 43 15

Total Avg LP Gap 73.19 51.69 18.11 18.07 18.11

Total Avg LP Time 0.04 34.98 0.25 0.24 0.41

proposed in this paper. We now compare its performances with the state-of-
the-art algorithm present in the literature for the k-vertex cut problem.

6.3 Comparison with state-of-the-art solution methods

In this section we compare the results of our best formulation (HY B) with the
solution of the Compact Formulation (denoted as COMP) solved by means
of the general purpose CPLEX MIP solver, and with a state-of-the-art branch-
and-price algorithm proposed in [13] (denoted as BP).

When solving the Compact Formulation, as suggested in [13], the formu-
lation is enhanced by a preprocessing phase in which a subset of variables is
removed so as to reduce the symmetry of the formulation and to improve the
quality of the associated LP relaxation. In this preprocessing, we search for
k − 1 vertex-disjoint cliques C1, . . . , Ci, . . . , Ck−1 of the graph G, and remove

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 25

the following variables

yhv , i = 1, . . . , k − 1, v ∈ Ci, h = i+ 1, . . . , k. (34)

Indeed, two vertices u, v of a clique cannot be in two different subsets Vi and
Vj . Then for all solutions we can reorder the sets V1, ..., Vk to ensure that each
vertex of a clique Ci must be in one set Vj j ≤ i or in the vertex cut. Thus we
can remove the variables (34) to reduce the symmetry.

The comparison, whose results are reported in Table 4, is performed on the
whole set of instances including Vertex Coloring, DIMACS and Intersection
graphs described in Section 6.1. The table has the same structure of the previ-
ous one, and reports the number of instances solved to optimality, the average
computing time in seconds and the average number of explored nodes (for
solved instances). The table clearly shows that HY B is the best performing
method on average, being able to solve 202 out of the 304 tested instances.
COMP and BP can both solve 168 instances. On the subset of instances
that are solved by all the three methods, the computing time of BP is ap-
proximately 2/3 the computing time of COMP , while the computing time of
HY B is approximately halved with respect to the computing time of COMP .
An important information is given by the average number of nodes explored in
the branch-and-cut tree, in particular COMP explores ≈33,000, BP ≈22 and
HY B ≈64 nodes, respectively. By analyzing these figures, it clearly emerges
that COMP explores many more nodes than the other two methods. This fact
is due to the poor quality of the LP relaxation bound provided by the Com-
pact Formulation. BP and HY B explore fewer nodes, and the reason is the
quality of the LP bounds provided by these formulations. BP is the algorithm
which explores the smallest number of nodes on average. By analyzing the
results for each value of k separately, the table shows that COMP provides
the best computational performances for k = 5 but then, as far as k ≥ 10,
HY B always guarantees the best computational performances on this set of
instances, being able to solve 49 out of 80 instances, 46 out of 65 and 38 out of
52, for k = 10, k = 15 and k = 20, respectively. Also the BP algorithm shows
a better performance than COMP as soon as k ≥ 10.

A graphical representation of the relative performance of the three com-
pared approaches is given by the performance profiles of Figures 4 and 5, for
unweighed and weighted (see Section 6.3.1) instances respectively. Following
the guidelines suggested by [16], the performance profiles are defined as fol-
lows. Let m be any solution method and i denote an instance of the problem.
In addition let ti,m be the time required by method m to solve instance i. We
define the performance ratio for pair (i,m) as

ri,m =
ti,m

minm∈M{ti,m}
where M is the set of the considered methods. Then, for each method m ∈M ,
we define:

ρm(τ) =
|{i ∈ I : ri,m ≤ τ}|

|I|

26 Furini, Ljubić, Malaguti, Paronuzzi

Table 4 Performance comparison between the Hybrid Formulation and the state-of-the-art
methods on the complete instance set (Vertex Coloring, DIMACS and Intersection graphs).

k COMP BP HYB

Opt. (out of 107) 92 60 71

5 Avg Time 31.84 59.93 84.78

Avg Nodes 10768 30 106

Opt. (out of 80) 37 43 51

10 Avg Time 105.64 52.19 1.39

Avg Nodes 67123 7 26

Opt. (out of 65) 29 36 46

15 Avg Time 219.33 23.38 2.81

Avg Nodes 41750 19 25

Opt. (out of 52) 19 29 38

20 Avg Time 196.06 169.52 0.39

Avg Nodes 58673 16 6

Total Opt. (out of 304) 177 168 206

Total Avg Time 98.66 61.78 43.66

Total Avg Nodes 33040 22 64

Table 5 Performance comparison between the Hybrid Formulation and the state-of-the-
art methods on the complete instance set with weights (Vertex Coloring, DIMACS and
Intersection graphs).

k COMP BP HYB

Opt. (out of 107) 92 60 71

5 Avg Time 35.99 67.55 210.67

Avg Nodes 11350 77 217

Opt. (out of 80) 37 43 51

10 Avg Time 69.61 174.96 2.30

Avg Nodes 22872 21 26

Opt. (out of 65) 29 37 47

15 Avg Time 343.26 36.61 21.76

Avg Nodes 109726 180 86

Opt. (out of 52) 19 30 39

20 Avg Time 559.17 300.40 1.15

Avg Nodes 180529 31 15

Total Opt. (out of 304) 177 170 208

Total Avg Time 151.21 112.23 106.13

Total Avg Nodes 48594 77 127

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 27

where I is the set of the instances. Intuitively, ri,m denotes the worsening (with
respect to computing time) incurred when solving instance i using method
m instead of the best possible one, whereas ρm(τ) gives the percentage of
instances for which the computing time of method m was not larger than τ
times the time of the best performing method. For each value of τ in the
horizontal axis, the vertical axis reports the percentage of the instances for
which the corresponding algorithm spends no more than τ times the computing
time of the fastest algorithm. The curves originates from a point denoting the
percentage of instances for which the corresponding algorithm is the fastest,
and at the right end of the chart, they show the percentage of instances solved
within time limit. The best performance algorithm is graphically represented
by the curve in the upper part of the Figures. The horizontal axis is represented
in logarithmic scale. The figures clearly show that the relative performance of
the 3 algorithms depends on the value k considered.

For k = 5, Figure 4 shows that HY B and COMP are the fastest method in
≈40% of the instances. HY B can solve ≈65% of the instances, while COMP
can solve ≈85%, and the corresponding curve dominates those of HY B in
most of the chart. BP is the fastest method in ≈5% and can solve ≈55% of
the instances. For k = 5, the best option appears to solve the problem by
means of the COMP formulation. As soon as the value of k increases, the
performance of the three solution methods changes. For k = 10, the figure
shows that HY B is the fastest method in ≈50% and it can solve ≈60% of
the instances. It dominates the other two methods on the whole chart; BP
is the fastest method in ≈20% and can solve ≈50% of the instances, while
COMP is the fastest method in ≈10% and can solve ≈40% of the instances.
The primacy of HY B increases with increasing k: for k = 15, the figure shows
that HY B is the fastest method in ≈60% and it is able to solve ≈70% of the
instances. It dominates the other two methods on the whole chart; BP is the
fastest method in ≈15% and can solve ≈60% of the instances, while COMP is
the fastest method in ≈5% and can solve ≈40% of the instances. For k = 20,
the figure shows that shows that HY B is the fastest method in ≈70% and it
is able to solve ≈75% of the instances. It dominates the other two methods
on the whole chart; BP is the fastest method in ≈15% and can solve ≈55%
of the instances, while COMP is the fastest method in less than 5% and can
solve ≈30% of the instances.

Summarizing for k = 5 the best method on average is COMP which is
able to solve the largest percentage of the instances, even if HY B remains
the fastest in almost half of them. For all the other values of k, i.e., k ∈
{10, 15, 20}, the best computational performance is provided by HY B which
is always able to solve the largest percentage of the instances and it is always
the fastest methods in more that 50% of them. As far as the comparison
between COMP and BP is concerned, the results we obtain are in line with
the results presented in [13], i.e., BP is dominated by COMP when k = 5,
while an opposite behavior is experienced for larger values of k.

28 Furini, Ljubić, Malaguti, Paronuzzi

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=5)

COMP
BP

HYB

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=10)

COMP
BP

HYB

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=15)

COMP
BP

HYB

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=20)

COMP
BP

HYB

Fig. 4 Performance profile of exact methods for the k-vertex cut problem.

6.3.1 Weighted case

In the previous sections we focused the computational analysis on the case
where vertices have the same weight (without loss of generality, equal to 1),
but all the described formulations, as well as the BP algorithm can also tackle
the weighted case, that is, the case in which each vertex v ∈ V has an integer
weight wv. According to our computational experiments the best among the
formulations proposed in this paper for the weighted case is still HY B. Hence,
in this section we report on the performance of HY B, COMP and BP on the
complete set of instances including Vertex Coloring, DIMACS and Intersection
graphs, where a random integer weight with uniform distribution in {1, . . . , 10}
is generated for each vertex v ∈ V . As reported in Table 5, the results in
terms of number of solved instances are very similar to those obtained in the
unweighted case, confirming the superior performance of HY B, with 208 out of
304 instances solved to optimality, followed by COMP and BP with 177 and
170 solved instances, respectively. The distribution of optimal solution among
the separate values of k shows that COMP provides the best computational
performances for k = 5 but then, as far as k ≥ 10, HY B is always the best
method, and BP always performs better than COMP . Despite the (almost
identical) number of solved instances by each algorithm, the weighted instances
appear more challenging for what concerns computing times and number of
Branch-and-Bound nodes: COMP requires approximately 50% more nodes
and seconds while both BP and HY B approximately double the number of
Branch-and-Bound nodes and the computing time.

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 29

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=5)

COMP
BP

HYB

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=10)

COMP
BP

HYB

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=15)

COMP
BP

HYB

 0

 20

 40

 60

 80

 100

1 10 102 103 104

�(�)

� (k=20)

COMP
BP

HYB

Fig. 5 Performance profile of exact methods for the k-vertex cut problem with weights.

Performance profiles for the weighted case are reported in Figure 5, and
are very close to the profiles obtained in the unweighted case. For k = 5,
the curve corresponding to COMP dominates that of HY B, and the best
option appears to solve the problem by means of the COMP formulation.
The performance of BP is the worst. As soon as k = 10, the performance
of HY B becomes the best. The primacy of HY B increases with increasing k
and it largely dominates the other solution methods. Further details on the
experiments for the weighted case are reported in the Appendix.

7. Conclusions

We have considered a prototype problem in the family of Critical Node De-
tection Problems, that is, the problem of removing a (minimum weight) set of
vertices from a graph so as to disconnect the resulting graph in several compo-
nents. The so-called k-vertex cut problem has relevant applications not only
in network analysis, but also in matrix decomposition for solving systems of
equations by parallel computing.

We have described two new integer linear programming formulations, both
involving an exponential number of constraints for which we provided separa-
tion procedures and implemented branch-and-cut algorithms.

Both formulations use a natural set of variables to identify the removed
vertices (the k-vertex cut). The first considers additional variables to denote
which vertex is representative of each component of the disconnected graph,

30 Furini, Ljubić, Malaguti, Paronuzzi

while in the second formulation, the model is derived from the perspective of
a two-phase Stackelberg game in which a leader deletes the vertices in the first
phase, and in the second phase a follower builds connected components in the
remaining graph.

Extensive computational experiments on a set of benchmark instances al-
lowed us to identify the strengths and weaknesses of the two formulations, that
in the end we combined in a hybrid one. The experiments also showed that
the hybrid formulation significantly outperforms a state-of-the-art branch-and-
price method recently proposed for the problem.

The presented idea of looking into the k-vertex cut problem from the per-
spective of a two-players Stackelberg game can be used in a more general
setting for solving Critical Node/Edge Detection Problems. Derivation of new
formulations in the natural space of decision variables for this large family of
problems will be subject of future research.

Acknowledgements The authors are indebted to two anonymous referees and one techni-
cal editor for their constructive and useful comments. Enrico Malaguti is supported by the
Air Force Office of Scientific Research under award number FA9550-17-1-0025.

References

1. Color02/03/04: Graph coloring and its generalizations. http://mat.gsia.cmu.edu/

COLOR03/. Accessed: 2018-07-20
2. Dimacs implementation challenges. http://dimacs.rutgers.edu/archive/

Challenges/. Accessed: 2018-07-20
3. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation.

Mathematical Programming 103(3), 583–608 (2005)
4. Barahona, F.: On the k-cut problem. Operations Research Letters 26(3), 99 – 105

(2000)
5. Bastubbe, M., Lübbecke, M.: A branch-and-price algorithm for capacitated hypergraph

vertex separation. Technical Report, Optimization Online (2017)
6. Ben-Ameur, W., Biha, M.D.: On the minimum cut separator problem. Networks 59(1),

30–36 (2012)
7. Ben-Ameur, W., Mohamed-Sidi, M.A., Neto, J.: The k-separator problem. In Comput-

ing and Combinatorics pp. 337–348 (2013)
8. Berger, A., Grigoriev, A., v. d. Zwaan, R.: Complexity and approximability of the k-way

vertex cut. Networks 63(2), 170–178 (2014)
9. Borndörfer, R., Ferreira, C., Martin, A.: Decomposing matrices into blocks. SIAM

Journal on Optimization 9(1), 236–269 (1998)
10. Brown, G., Carlyle, M., Salmerón, J., Wood, K.: Defending critical infrastructure. IN-

FORMS Journal on Applied Analytics 36(6), 530–544 (2006)
11. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard.

Information Processing Letters 42(3), 153 – 159 (1992)
12. Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21(1), 51–89 (1991)
13. Cornaz, D., Furini, F., Lacroix, M., Malaguti, E., Mahjoub, A.R., Martin, S.: The vertex

k-cut problem. Discrete Optimization 31, 8–28 (2019)
14. Cornaz, D., Magnouche, Y., Mahjoub, A.R., Martin, S.: The multi-terminal vertex sep-

arator problem: Polyhedral analysis and branch-and-cut. Conference on Computers &
Industrial Engineering (CIE45) pp. 857–864 (2015)

15. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakiss, M.:
The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894
(1994)

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 31

16. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical Programming 91(2), 201–213 (2002)

17. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Interdiction games under monotonicity.
INFORMS Journal on Computing 31(2), 390–410 (2019)

18. Fukuyama, J.: NP-completeness of the planar separator problems. Journal of Graph
Algorithms and Applications 10(2), 317–328 (2006)

19. Furini, F., Ljubić, I., San Segundo, P., Martin, S.: The maximum clique interdiction
problem. European Journal of Operational Research 277(1), 112–127 (2019)

20. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted
graphs. In Automata, Languages and Programming pp. 487–498 (1994)

21. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs.
Journal of Algorithms 50(1), 49–61 (2004)

22. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem for
fixed k. Mathematics of Operations Research 19(1), 24–37 (1994)

23. Gupta, A., Lee, E., Li, J.: An FPT algorithm beating 2-approximation for k-cut. In:
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’18, pp. 2821–2837. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2018)

24. Karger, D.R., Motwani, R.: An nc algorithm for minimum cuts. SIAM Journal on
Computing 26(1), 255–272 (1997)

25. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social
networks. In: L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung (eds.)
Automata, Languages and Programming, pp. 1127–1138. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

26. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in net-
works: A survey. Computer Science Review 28, 92 – 117 (2018)

27. Magnouche, J.: The multi-terminal vertex separator problem : Complexity, polyhedra
and algorithms (2017)

28. Marx, D.: Parameterized graph separation problems. Theoretical Computer Science
351(3), 394–406 (2006)

29. Saran, H., Vazirani, V.: Finding k cuts within twice the optimal. SIAM Journal on
Computing 24(1), 101–108 (1995)

30. de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations.
Mathematical Programming 103(3), 609–631 (2005)

32 Furini, Ljubić, Malaguti, Paronuzzi

Table 6 Number of vertices removed by preprocessing

n m k = 5 k = 10 k = 15 k = 20

2-FullIns 3 52 201 6

2-Insertions 3 37 72 1

chesapeake 39 170 1 2 5

david 87 406 1 1 1 1

DSJC125.5 125 3891 113

football 115 613 3

huck 74 301 1 1

karate 34 78 1 2 7

miles1500 128 5198 108

mulsol.i.2 188 3885 3

mulsol.i.3 184 3916 3 3

mulsol.i.4 185 3946 3 3

mulsol.i.5 186 3973 3 3

myciel3 11 20 6

myciel4 23 71 7

myciel5 47 236 3 8

r125.1c 125 7501 97

r125.5 125 3838 8

bcspwr02 49 177 11

can61 61 866 11

dwt 59 59 256 31

dwt87 87 726 13

impcol b 59 329 34

L100.cavity01 100 1844 2

L100.fidap025 100 2031 66

L100.fidapm02 100 3090 57

L100.rbs480a 100 2550 64

L100.wm1 100 2956 10 37

L100.wm3 100 2934 50

L120.cavity01 120 2972 2

L120.fidap022 120 4307 80

L120.fidap025 120 2787 80

L120.fidapm02 120 4626 50

L120.rbs480a 120 3273 34

L120.wm2 120 3387 23

L125.can 161 125 1257 32

L125.can 187 125 1022 73

L125.dwt 162 125 943 5

L125.dwt 193 125 2982 4

L125.fs 183 1 125 3392 1

L80.cavity01 80 1201 8

L80.fidap025 80 1201 52

L80.steam2 80 1272 4

L80.wm1 80 1786 2 15 47

L80.wm2 80 1848 29

lund a 147 2837 21

pores 1 30 179 4

west0067 67 411 3

will57 57 304 16

8. Appendix

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 33

C
O

M
P

B
P

H
Y

B

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

1
-F

u
ll
In

s
3

0
.3

8
2
.1

0
0
.6

6
2
.2

5
0
.1

5
0
.1

4

1
-F

u
ll
In

s
4

4
8
.5

3
t
l

t
l

t
l

t
l

t
l

t
l

t
l

1
3
.5

1
1
6
.4

0
2
1
.4

2
5
.7

8

1
-I
n
s
e
r
t
io

n
s

4
1
6
.7

4
t
l

2
7
1
7
.2

0
t
l

1
7
4
.8

9
4
8
.5

4
5
6
.1

8
5
5
.0

1
2
.9

6
2
.8

0
2
.4

6
4
.9

9

2
-F

u
ll
In

s
3

5
.7

0
1
3
2
9
.0

2
2
1
7
.6

1
5
6
0
.9

5
5
1
.7

9
3
4
.2

5
2
3
.2

0
2
0
.3

8
8
.9

5
1
.3

4
0
.7

4
0
.4

7

2
-I
n
s
e
r
t
io

n
s

3
0
.9

3
5
1
.1

4
3
3
4
.4

7
1
.9

0
2
1
.9

7
2
0
.1

1
0
.4

5
0
.2

5
0
.2

4

2
-I
n
s
e
r
t
io

n
s

4
2
4
7
.0

2
t
l

t
l

t
l

t
l

t
l

t
l

t
l

1
9
8
.2

6
1
6
3
.6

7
6
7
4
.5

4
1
1
5
9
.7

7

3
-F

u
ll
In

s
3

2
5
.3

2
t
l

t
l

t
l

t
l

t
l

7
0
.3

8
5
7
9
.2

0
4
3
.7

8
3
9
.6

4
2
.8

9
2
3
.0

0

3
-I
n
s
e
r
t
io

n
s

3
8
.9

1
t
l

t
l

t
l

1
3
.3

5
2
4
.8

8
2
4
.6

4
2
4
.3

5
0
.8

3
1
.7

3
2
.5

9
2
.7

6

4
-F

u
ll
In

s
3

6
0
.0

7
t
l

t
l

t
l

t
l

t
l

t
l

t
l

2
5
2
0
.5

0
8
2
9
.7

7
1
5
9
.9

6
1
1
3
.3

6

4
-I
n
s
e
r
t
io

n
s

3
3
6
.6

1
t
l

t
l

t
l

2
9
.0

7
3
4
.2

3
3
4
.5

0
3
4
.3

3
2
.2

0
1
3
.7

2
1
9
.1

3
1
5
.8

3

5
-F

u
ll
In

s
3

3
1
1
.2

6
t
l

t
l

t
l

t
l

t
l

t
l

t
l

2
9
6
8
.0

0
2
1
6
1
.9

1
2
4
7
.2

8
7
2
.3

2

a
d
jn

o
u
n

1
.3

5
8
2
.8

5
8
5
4
.4

9
t
l

2
2
0
0
.5

8
8
6
6
.1

4
t
l

1
7
7
7
.1

7
0
.0

1
2
.9

8
1
0
.7

1
1
8
.3

2

a
n
n
a

0
.3

1
0
.2

6
0
.7

3
1
.5

5
4
2
.6

0
5
7
.3

2
2
3
.5

1
6
0
.0

9
0
.0

0
0
.0

0
0
.0

1
0
.0

1

c
e
le

g
a
n
s
n
e
u
r
a
l

3
.9

6
1
6
.0

8
8
8
.0

6
t
l

t
l

t
l

t
l

t
l

0
.0

2
0
.0

2
0
.0

5
1
1
.1

7

c
h
e
s
a
p
e
a
k
e

0
.3

9
6
.7

4
6
.5

9
0
.6

2
5
.7

0
1
1
.5

3
0
.1

7
0
.5

4
0
.1

0

d
a
v
id

·
·

1
2
.2

8
7
5
3
.1

5
·

·
7
8
.2

2
2
7
.5

6
·

·
0
.8

9
1
.1

6

d
o
lp

h
in

s
0
.1

5
8
.2

2
1
6
5
.3

9
t
l

5
.0

3
1
5
.5

7
2
6
.8

1
2
6
.4

4
0
.0

0
0
.5

2
0
.7

9
2
.5

6

D
S
J
C
1
2
5
.1

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

D
S
J
C
1
2
5
.5

t
l

0
.2

7
t
l

0
.0

1
t
l

0
.0

0

fo
o
t
b
a
ll

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

g
a
m

e
s
1
2
0

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

h
u
c
k

0
.0

6
5
.9

6
7
.6

0
5
.3

1
3
.8

9
9
.9

5
5
3
.8

6
1
0
.6

4
0
.0

0
0
.0

1
0
.0

3
0
.0

8

ja
z
z

3
2
.7

9
1
8
1
7
.5

1
t
l

t
l

6
6
.4

6
t
l

8
2
.9

0
t
l

0
.6

6
2
6
9
.7

3
t
l

t
l

je
a
n

0
.0

6
0
.2

0
0
.3

6
4
.5

6
2
.6

4
2
.8

9
3
.6

2
7
.1

5
0
.0

0
0
.0

0
0
.0

0
0
.0

1

k
a
r
a
t
e

0
.0

3
0
.0

8
0
.0

6
0
.0

3
0
.0

9
0
.1

8
0
.1

1
0
.0

8
0
.0

0
0
.0

0
0
.0

0
0
.0

1

le
s
m

is
0
.1

4
0
.5

7
0
.4

5
6
.4

7
2
.4

1
3
.7

2
2
.1

4
8
.5

3
0
.0

0
0
.0

0
0
.0

0
0
.0

2

m
il
e
s
1
0
0
0

1
3
0
7
.7

1
t
l

t
l

m
il
e
s
1
5
0
0

0
.1

2
0
.0

6
0
.0

1

m
il
e
s
2
5
0

·
·

t
l

t
l

·
·

3
5
.0

9
3
6
.0

8
·

·
1
.6

9
9
.6

5

m
il
e
s
5
0
0

1
1
6
.0

0
t
l

t
l

3
1
.1

4
t
l

t
l

1
1
.8

8
t
l

t
l

m
il
e
s
7
5
0

3
5
9
.6

2
t
l

t
l

t
l

t
l

t
l

m
u
g
1
0
0

1
2
6
9
.5

6
t
l

t
l

t
l

2
2
.8

9
2
7
.8

9
2
8
.3

0
2
9
.2

9
1
.2

2
8
.3

4
1
7
.5

8
2
3
.9

1

m
u
g
1
0
0

2
5

3
9
7
.2

8
t
l

t
l

t
l

2
2
.5

6
2
3
.9

0
2
9
.6

4
3
5
.8

1
1
.1

7
8
.6

5
5
.7

1
1
7
.7

7

m
u
g
8
8

1
6
2
.2

0
t
l

t
l

t
l

2
2
.2

3
2
7
.6

1
3
3
.5

5
3
6
.3

5
0
.8

7
2
.3

7
5
.8

3
1
1
.4

5

m
u
g
8
8

2
5

1
6
.3

6
t
l

t
l

t
l

1
8
.8

3
2
7
.2

9
2
8
.6

7
3
0
.6

6
0
.1

4
2
.1

5
5
.2

8
0
.9

6

m
u
ls
o
l.
i.
2

·
·

·
3
8
2
.6

3
·

·
·

t
l

·
·

·
0
.1

4

m
u
ls
o
l.
i.
3

·
·

2
3
0
.5

4
5
9
4
.8

9
·

·
t
l

t
l

·
·

0
.1

3
0
.3

3

m
u
ls
o
l.
i.
4

·
·

1
9
7
.8

6
1
8
6
.8

3
·

·
t
l

t
l

·
·

3
7
.0

5
0
.3

4

m
u
ls
o
l.
i.
5

·
·

1
7
6
.4

9
5
5
9
.7

6
·

·
t
l

t
l

·
·

0
.1

6
0
.4

4

m
y
c
ie

l4
0
.2

9
0
.2

1
1
.5

8
0
.0

5
0
.1

0
0
.0

1

m
y
c
ie

l5
3
.8

0
7
3
2
.3

1
2
2
2
.5

3
6
2
5
.6

9
1
8
.7

1
2
6
.6

3
9
0
.8

3
2
2
.2

4
0
.6

0
0
.8

6
0
.4

1
0
.2

4

m
y
c
ie

l6
4
3
.8

7
t
l

t
l

t
l

t
l

t
l

t
l

t
l

6
.2

6
1
8
.6

3
1
6
.3

4
1
9
.9

9

m
y
c
ie

l7
9
4
0
.6

3
t
l

t
l

t
l

t
l

t
l

t
l

t
l

5
8
0
.8

6
1
7
3
3
.4

1
1
4
1
6
.0

7
8
6
5
.1

5

p
o
lb

o
o
k
s

7
8
.2

1
t
l

t
l

t
l

6
7
.0

8
3
8
8
.2

6
5
0
.7

1
3
8
.0

9
4
1
1
.2

1
3
9
4
.9

0
2
3
7
.7

0
2
2
5
9
.5

5

q
u
e
e
n
1
0

1
0

t
l

1
.0

6
t
l

5
.7

6
t
l

0
.1

6

q
u
e
e
n
1
1

1
1

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
1
2

1
2

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
1
3

1
3

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
1
4

1
4

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
5

5
0
.0

1
0
.0

9
0
.0

2

q
u
e
e
n
6

6
1
.3

8
4
.4

0
2
.2

9

q
u
e
e
n
7

7
2
5
.6

3
1
3
3
8
.2

7
t
l

q
u
e
e
n
8

1
2

t
l

t
l

t
l

q
u
e
e
n
8

8
4
1
1
.5

9
t
l

t
l

q
u
e
e
n
9

9
3
0
7
8
.7

0
t
l

t
l

r
1
2
5
.1

·
·

2
0
3
.7

6
t
l

·
·

3
0
.7

0
3
5
.5

3
·

·
0
.0

0
0
.1

7

r
1
2
5
.1

c
0
.3

4
0
.7

9
0
.1

3

r
1
2
5
.5

3
6
4
.1

8
t
l

t
l

T
a
b
le

7
C

o
m

p
u

ta
ti

o
n

a
l

ti
m

es
(C

o
lo

ri
n

g
a
n

d
D

IM
A

C
S

)

34 Furini, Ljubić, Malaguti, Paronuzzi

C
O

M
P

B
P

H
Y

B

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

a
r
c
1
3
0

0
.1

0
t
l

4
0
.8

9

a
s
h
2
1
9

5
7
.1

9
t
l

t
l

t
l

2
6
.0

1
4
3
.3

6
4
3
5
.9

4
2
6
3
.8

5
1
3
2
.7

1
t
l

t
l

t
l

a
s
h
3
3
1

1
9
0
.0

1
t
l

t
l

t
l

2
4
.6

7
5
3
4
.4

1
t
l

t
l

1
9
2
3
.0

6
t
l

t
l

t
l

a
s
h
8
5

2
1
9
.8

7
t
l

t
l

t
l

t
l

t
l

b
c
s
p
w
r
0
1

1
.0

4
9
.5

0
1
.8

9
1
1
.6

2
0
.3

7
3
.5

7

b
c
s
p
w
r
0
2

4
.5

5
8
8
.1

2
0
.5

8
9
.3

9
2
5
.1

3
2
.7

7
1
.5

4
1
3
.4

2
0
.1

1

b
c
s
p
w
r
0
3

1
7
5
.0

2
t
l

t
l

t
l

2
3
0
.0

1
4
4
.9

6
4
7
4
.0

5
2
3
0
.4

6
t
l

t
l

t
l

t
l

b
fw

6
2
a

2
.3

3
1
8
0
.8

4
t
l

c
a
n

1
4
4

t
l

t
l

t
l

t
l

t
l

t
l

c
a
n
6
1

0
.9

7
4
.6

8
2
.1

1

c
a
n
6
2

1
1
.6

1
t
l

t
l

1
7
.8

7
2
5
.2

5
2
4
.8

9
1
3
.4

9
2
0
9
9
.1

1
2
1
7
9
.2

0

c
a
n
7
3

1
6
0
.0

8
t
l

t
l

t
l

t
l

t
l

c
a
n
9
6

t
l

t
l

t
l

t
l

t
l

t
l

c
u
r
t
is
5
4

9
.6

7
3
9
.6

2
1
8
1
2
.3

0

d
w
t

5
9

1
7
.0

2
9
6
6
.1

4
0
.5

4
2
0
.1

1
2
3
.8

8
0
.6

7
2
0
.8

8
t
l

0
.0

2

d
w
t
6
6

5
6
6
.2

9
t
l

t
l

t
l

t
l

t
l

d
w
t
7
2

5
9
.4

0
t
l

t
l

t
l

2
3
.8

5
2
8
.1

5
1
6
3
.4

0
4
3
6
.9

4
6
.4

1
t
l

t
l

t
l

d
w
t
8
7

4
4
.3

1
t
l

4
8
5
.6

5
3
2
.9

0
1
9
9
4
.1

6
2
8
.3

3
2
0
.3

4
t
l

1
6
.6

6

g
r
e

1
1
5

9
9
8
.3

1
t
l

t
l

t
l

2
1
5
8
.2

7
3
1
3
9
.1

0
t
l

t
l

t
l

t
l

t
l

t
l

ib
m

3
2

0
.6

7
1
.8

5
8
.0

7

im
p
c
o
l
b

0
.3

5
4
.1

7
9
.6

0
0
.0

8
0
.9

1
5
.1

7
1
3
.9

1
0
.0

7
0
.1

7
2
.0

7
2
9
.6

0
0
.0

1

L
1
0
0
.c

a
v
it
y
0
1

0
.8

6
5
.2

2
5
.4

8
5
.7

8
t
l

t
l

t
l

t
l

0
.4

0
1
7
0
.8

5
3
.4

9
7
.7

7

L
1
0
0
.fid

a
p
m

0
2

0
.6

0
1
5
.6

2
0
.2

3

L
1
0
0
.r
b
s
4
8
0
a

0
.0

3
2
2
.1

4
0
.1

4

L
1
0
0
.s
t
e
a
m

2
2
9
0
.4

8
t
l

t
l

L
1
0
0
.w

m
1

3
.7

4
6
.8

0
0
.5

1
t
l

t
l

0
.5

8
2
1
.0

4
3
.7

1
0
.9

9

L
1
0
0
.w

m
2

0
.1

0
7
.4

9
0
.4

1
t
l

0
.1

4
2
2
5
.3

2

L
1
0
0
.w

m
3

0
.1

1
2
.8

8
0
.4

4
0
.3

9
t
l

0
.3

5
0
.1

4
1
1
.0

9
3
.1

7

L
1
2
0
.c

a
v
it
y
0
1

1
.0

3
9
.8

9
6
.5

6
7
.4

3
t
l

t
l

t
l

t
l

0
.6

8
5
0
1
.2

4
1
0
.2

4
7
.1

8

L
1
2
0
.fid

a
p
0
2
2

0
.0

5
0
.1

9
7
.8

0

L
1
2
0
.fid

a
p
m

0
2

0
.3

1
t
l

6
4
.3

8

L
1
2
0
.r
b
s
4
8
0
a

1
9
.9

9
3
3
5
.7

4
t
l

L
1
2
0
.w

m
2

0
.1

6
0
.5

0
0
.6

9
1
2
.0

4
1
.0

7
1
.8

8
t
l

t
l

0
.0

6
0
.9

5
3
.1

6
4
.7

1

L
1
2
5
.a

s
h
6
0
8

8
4
3
.1

7
t
l

t
l

t
l

2
6
.4

6
t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.b

c
s
s
t
k
0
5

1
5
9
.3

5
t
l

t
l

L
1
2
5
.c

a
n

1
6
1

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.c

a
n

1
8
7

t
l

t
l

t
l

t
l

t
l

t
l

t
l

3
8
.7

2
t
l

t
l

t
l

3
4
.6

1

L
1
2
5
.d

w
t

1
6
2

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.d

w
t

1
9
3

1
2
7
1
.6

8
t
l

t
l

L
1
2
5
.fs

1
8
3

1
2
.2

3
t
l

2
1
9
5
.2

1

L
1
2
5
.g

r
e

1
8
5

3
2
4
4
.8

7
t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.lo

p
1
6
3

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.w

e
s
t
0
1
6
7

3
8
.9

7
t
l

t
l

t
l

2
3
.8

0
3
0
.3

7
3
4
.3

3
3
9
.0

1
2
.7

4
1
5
7
.3

5
4
3
1
.5

9
t
l

L
1
2
5
.w

ill1
9
9

1
6
.8

2
t
l

t
l

t
l

2
1
.2

5
3
5
.2

6
4
7
.0

0
4
1
.1

2
4
.6

0
t
l

t
l

t
l

L
8
0
.c

a
v
it
y
0
1

0
.5

3
0
.2

2
4
.8

1
2
.7

5
t
l

t
l

t
l

1
5
3
8
.5

1
0
.3

9
0
.0

9
1
.5

0
1
.9

4

L
8
0
.s
t
e
a
m

2
2
9
.7

3
t
l

t
l

L
8
0
.w

m
1

0
.8

2
3
.2

7
0
.2

6
t
l

t
l

0
.1

5
5
.7

1
6
.3

8
0
.0

1

L
8
0
.w

m
2

0
.0

5
0
.6

6
0
.2

7
1
4
.1

9
0
.0

6
2
.8

6

L
8
0
.w

m
3

0
.0

4
0
.1

6
0
.2

3
3
7
.5

3
0
.0

8
0
.7

5

lu
n
d

a
t
l

t
l

t
l

t
l

t
l

t
l

p
o
r
e
s

1
0
.2

4
0
.6

5
0
.1

8

r
w
1
3
6

1
5
7
.5

7
t
l

t
l

t
l

3
7
.2

1
t
l

t
l

t
l

7
5
.8

3
t
l

t
l

t
l

s
t
e
a
m

3
1
8
6
.2

9
t
l

t
l

w
e
s
t
0
0
6
7

1
4
4
.6

0
t
l

t
l

6
8
8
.5

5
t
l

t
l

w
e
s
t
0
1
3
2

2
4
.7

8
t
l

t
l

t
l

4
0
.0

0
3
4
.7

1
3
9
.5

8
1
6
9
.3

5
1
2
.8

3
3
8
5
.9

5
t
l

t
l

w
ill5

7
1
.1

2
0
.0

5
2
.7

8
0
.1

7
0
.8

2
0
.1

1

T
a
b
le

8
C

o
m

p
u

ta
tio

n
a
l

tim
es

(In
tersectio

n
g
ra

p
h

s)

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 35

C
O

M
P

B
P

H
Y

B

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

1
-F

u
ll
In

s
3

0
.4

1
1
.2

8
1
.3

3
2
.9

5
0
.1

8
0
.1

6

1
-F

u
ll
In

s
4

1
1
.2

1
4
3
8
.5

9
t
l

t
l

t
l

t
l

t
l

t
l

5
.6

2
1
5
.4

4
1
0
.8

1
8
.5

8

1
-I
n
s
e
r
t
io

n
s

4
4
.4

1
1
9
0
.6

3
t
l

t
l

t
l

9
1
3
.6

2
2
2
8
3
.6

3
7
9
6
.2

3
2
3
.5

8
1
0
.7

9
1
2
.9

9
7
.3

1

2
-F

u
ll
In

s
3

1
.6

4
1
4
7
.1

5
5
2
.5

2
7
2
.9

1
3
4
3
.8

5
7
2
.0

1
2
6
.3

7
2
1
.1

6
1
.5

0
1
.2

9
1
.3

2
0
.5

8

2
-I
n
s
e
r
t
io

n
s

3
0
.4

1
2
2
.0

0
1
6
.8

4
5
.2

4
2
4
.2

1
2
0
.2

1
0
.0

6
0
.1

7
0
.1

1

2
-I
n
s
e
r
t
io

n
s

4
3
3
1
.6

4
t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

2
6
7
9
.2

0
2
0
9
0
.2

6
5
6
6
.8

7

3
-F

u
ll
In

s
3

1
9
.1

0
2
6
3
.1

2
4
3
2
.3

0
2
5
6
4
.0

3
t
l

1
0
5
.8

4
t
l

2
8
1
.4

1
3
1
.6

4
7
.5

3
2
.7

0
5
.6

7

3
-I
n
s
e
r
t
io

n
s

3
1
.8

6
2
4
1
.0

5
t
l

t
l

1
6
.1

8
3
3
.7

7
3
1
.8

2
2
3
.5

0
0
.3

2
0
.4

5
0
.4

4
0
.3

4

4
-F

u
ll
In

s
3

6
9
.4

5
t
l

t
l

t
l

t
l

t
l

t
l

t
l

5
0
.7

4
1
0
6
4
.5

6
4
1
.7

8
9
9
.4

7

4
-I
n
s
e
r
t
io

n
s

3
4
.2

0
8
4
2
.1

0
t
l

t
l

2
4
.8

9
7
0
.3

5
6
7
.7

4
3
0
.8

9
0
.2

6
0
.9

2
2
.1

6
2
.0

5

5
-F

u
ll
In

s
3

2
9
.4

4
t
l

t
l

t
l

t
l

t
l

t
l

t
l

1
0
8
.0

7
4
2
0
.7

7
1
6
6
.0

3
1
2
6
.8

3

a
d
jn

o
u
n

5
.2

2
7
7
.6

0
3
4
0
.1

8
t
l

t
l

5
7
0
.4

9
1
4
5
.3

9
3
8
9
.7

5
0
.0

5
0
.7

4
1
.7

9
1
5
.5

6

a
n
n
a

0
.4

3
0
.7

7
4
.8

4
1
4
.5

0
8
8
.3

9
8
9
.7

8
6
7
.7

4
7
0
.5

9
0
.0

1
0
.0

1
0
.0

1
0
.0

1

c
e
le

g
a
n
s
n
e
u
r
a
l

9
.8

7
2
2
.5

0
1
5
5
9
.0

4
t
l

t
l

t
l

t
l

t
l

0
.0

5
0
.0

2
0
.4

0
5
9
9
.7

6

c
h
e
s
a
p
e
a
k
e

0
.3

1
2
.8

8
3
.5

2
0
.4

2
2
.7

7
8
.2

4
0
.0

5
0
.3

1
0
.2

4

d
a
v
id

·
·

5
.4

6
2
9
3
1
.7

6
·

·
2
5
.6

5
2
6
.8

4
·

·
0
.0

4
2
.5

3

d
o
lp

h
in

s
0
.3

1
6
.1

8
2
4
7
.2

6
1
0
4
2
.7

9
5
.2

8
3
6
.7

7
4
8
.7

2
2
6
.8

0
0
.0

1
0
.3

0
1
.8

7
1
.9

1

D
S
J
C
1
2
5
.1

2
4
7
7
.1

7
t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

D
S
J
C
1
2
5
.5

t
l

0
.2

5
t
l

0
.0

2
t
l

0
.0

0

fo
o
t
b
a
ll

1
0
6
2
.0

1
t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

g
a
m

e
s
1
2
0

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

h
u
c
k

0
.4

1
7
.1

7
6
.3

4
2
5
.5

6
9
.1

7
1
9
.0

9
2
3
.1

1
1
4
.6

1
0
.0

1
0
.0

2
0
.0

3
0
.1

1

ja
z
z

6
7
.5

1
2
9
8
0
.9

8
t
l

t
l

3
2
.0

0
t
l

7
3
.3

8
t
l

3
0
.3

3
3
3
4
.2

9
t
l

t
l

je
a
n

0
.1

1
0
.1

8
1
4
.8

5
5
.5

0
7
.9

6
7
.1

1
1
2
.2

9
5
.8

8
0
.0

1
0
.0

0
0
.0

1
0
.0

1

k
a
r
a
t
e

0
.1

2
0
.1

7
0
.0

8
0
.0

5
0
.1

6
0
.2

6
0
.1

8
0
.0

9
0
.0

1
0
.0

1
0
.0

1
0
.0

1

le
s
m

is
0
.1

5
0
.4

0
3
.7

5
3
.9

3
1
.5

5
6
.9

0
1
0
.4

6
5
.7

8
0
.0

0
0
.0

1
0
.0

1
0
.0

2

m
il
e
s
1
0
0
0

1
1
9
7
.9

6
t
l

t
l

m
il
e
s
1
5
0
0

0
.1

4
0
.0

5
0
.0

1

m
il
e
s
2
5
0

·
·

t
l

t
l

·
·

2
2
7
.7

9
2
4
0
.5

3
·

·
0
.0

5
1
.5

5

m
il
e
s
5
0
0

2
0
4
.8

4
t
l

t
l

2
8
.1

5
t
l

t
l

3
1
3
.1

9
t
l

t
l

m
il
e
s
7
5
0

4
5
8
.7

8
t
l

t
l

t
l

t
l

t
l

m
u
g
1
0
0

1
1
5
.4

2
t
l

t
l

t
l

1
0
.8

4
1
0
9
.0

5
3
0
.3

2
2
9
.6

5
0
.0

6
0
.1

8
0
.1

3
0
.3

8

m
u
g
1
0
0

2
5

1
8
.2

6
t
l

t
l

t
l

2
4
.7

1
3
1
.9

3
5
1
.7

4
3
4
.3

0
0
.0

7
0
.1

8
0
.2

0
0
.7

5

m
u
g
8
8

1
9
4
.8

7
t
l

t
l

t
l

2
4
.2

1
5
5
.0

1
7
2
.2

0
3
4
.9

2
0
.4

4
0
.8

1
0
.9

6
6
1
.9

2

m
u
g
8
8

2
5

1
7
.7

3
t
l

t
l

t
l

2
3
.9

5
4
3
.4

2
6
9
.6

6
3
1
.2

2
0
.1

8
0
.3

6
0
.8

1
7
.5

0

m
u
ls
o
l.
i.
2

·
·

·
3
9
3
.1

4
·

·
·

t
l

·
·

·
0
.2

0

m
u
ls
o
l.
i.
3

·
·

3
0
5
.8

7
7
5
8
.7

2
·

·
t
l

t
l

·
·

0
.1

7
0
.6

6

m
u
ls
o
l.
i.
4

·
·

1
5
3
.2

0
3
2
5
.3

1
·

·
t
l

t
l

·
·

0
.1

1
0
.6

5

m
u
ls
o
l.
i.
5

·
·

2
9
9
.1

7
3
3
8
.8

9
·

·
t
l

t
l

·
·

0
.2

8
0
.5

9

m
y
c
ie

l4
0
.2

7
0
.1

3
6
.7

9
0
.1

2
0
.1

4
0
.0

0

m
y
c
ie

l5
1
.7

6
4
0
.9

1
6
6
.0

9
4
5
.4

7
1
5
3
.1

9
6
6
.4

2
5
3
.7

3
2
3
.6

4
1
.8

0
2
.1

8
0
.8

3
0
.2

1

m
y
c
ie

l6
4
9
.4

4
t
l

t
l

t
l

t
l

t
l

t
l

t
l

3
1
.8

9
6
3
.0

6
4
7
.4

8
5
1
.6

0

m
y
c
ie

l7
4
7
7
.8

0
t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

1
5
5
6
.5

7

p
o
lb

o
o
k
s

2
3
.3

6
t
l

t
l

t
l

3
5
.8

1
4
4
5
.8

8
1
3
0
.2

7
4
0
.3

7
2
0
.1

9
2
5
6
.0

3
8
0
.5

2
1
0
3
.3

0

q
u
e
e
n
1
0

1
0

t
l

0
.8

9
t
l

8
4
.8

3
t
l

0
.4

9

q
u
e
e
n
1
1

1
1

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
1
2

1
2

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
1
3

1
3

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
1
4

1
4

t
l

t
l

t
l

t
l

t
l

t
l

q
u
e
e
n
5

5
0
.0

9
0
.0

9
0
.0

1

q
u
e
e
n
6

6
1
.6

9
6
.5

1
1
.8

7

q
u
e
e
n
7

7
3
0
.2

7
7
6
1
.8

9
t
l

q
u
e
e
n
8

1
2

t
l

t
l

t
l

q
u
e
e
n
8

8
1
8
1
.7

6
t
l

t
l

q
u
e
e
n
9

9
1
0
5
1
.7

1
t
l

t
l

r
1
2
5
.1

·
·

t
l

t
l

·
·

3
7
.1

1
5
5
.2

1
·

·
0
.0

1
0
.0

1

r
1
2
5
.1

c
0
.4

6
0
.9

5
0
.1

2

r
1
2
5
.5

5
7
4
.9

1
t
l

t
l

T
a
b
le

9
C

o
m

p
u

ta
ti

o
n

a
l

ti
m

es
fo

r
in

st
a
n

ce
s

w
it

h
w

ei
g
h
ts

(C
o
lo

ri
n

g
a
n

d
D

IM
A

C
S

)

36 Furini, Ljubić, Malaguti, Paronuzzi

C
O

M
P

B
P

H
Y

B

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

k
=

5
k

=
1
0

k
=

1
5

k
=

2
0

a
r
c
1
3
0

0
.1

3
t
l

6
5
.3

4

a
s
h
2
1
9

1
1
2
.4

4
t
l

t
l

t
l

1
8
5
.4

8
1
8
5
.6

3
6
0
4
.0

8
1
2
0
5
.0

6
2
5
1
.0

6
2
6
7
3
.9

4
t
l

t
l

a
s
h
3
3
1

3
2
0
.5

4
t
l

t
l

t
l

2
5
.3

1
t
l

t
l

t
l

6
6
4
.8

9
t
l

t
l

t
l

a
s
h
8
5

7
6
2
.3

8
t
l

t
l

t
l

t
l

t
l

b
c
s
p
w
r
0
1

0
.6

8
5
.9

8
7
.3

6
1
6
.4

3
0
.3

3
1
.6

8

b
c
s
p
w
r
0
2

2
.0

7
8
7
.1

3
2
.4

7
3
3
.6

8
3
6
.4

1
3
.9

6
1
.4

2
2
0
.7

8
0
.0

7

b
c
s
p
w
r
0
3

4
0
7
.3

8
t
l

t
l

t
l

8
5
.7

1
6
6
6
.7

3
6
7
1
.3

0
1
7
9
6
.1

2
t
l

t
l

t
l

t
l

b
fw

6
2
a

2
.2

0
4
3
7
.5

6
3
2
9
3
.2

2

c
a
n

1
4
4

t
l

t
l

t
l

t
l

t
l

t
l

c
a
n
6
1

0
.9

8
7
.8

6
8
.5

4

c
a
n
6
2

9
.8

3
t
l

3
2
7
9
.7

7
7
0
.5

5
5
6
.0

8
5
1
.9

4
2
.1

4
1
5
6
.5

7
2
7
2
.1

3

c
a
n
7
3

2
1
6
.4

1
t
l

t
l

t
l

t
l

t
l

c
a
n
9
6

t
l

t
l

t
l

t
l

t
l

t
l

c
u
r
t
is
5
4

7
.6

9
1
8
.5

2
1
2
8
.4

6

d
w
t

5
9

1
8
.5

2
2
9
0
4
.3

3
0
.8

0
6
7
.3

6
5
8
.7

5
2
.3

2
1
9
5
.9

3
t
l

0
.0

3

d
w
t
6
6

3
0
.4

7
t
l

1
5
9
.2

2
t
l

1
0
3
2
.6

1
t
l

d
w
t
7
2

4
0
.6

9
t
l

t
l

t
l

6
2
.2

0
3
9
.5

4
4
0
.0

8
7
9
.6

9
1
.3

2
7
7
.4

4
1
9
8
2
.9

2
t
l

d
w
t
8
7

4
9
.2

2
t
l

2
7
7
8
.2

6
1
1
6
5
.6

4
t
l

2
2
3
.6

6
2
1
9
3
.5

5
t
l

1
4
7
.7

3

g
r
e

1
1
5

1
1
5
.5

3
t
l

t
l

t
l

2
3
.5

7
2
1
5
.7

8
t
l

t
l

2
4
0
.0

0
t
l

t
l

t
l

ib
m

3
2

0
.6

8
1
.8

1
3
.4

6

im
p
c
o
l
b

0
.2

5
3
.0

8
4
0
.1

5
0
.0

7
3
.4

5
4
.8

2
7
.2

2
0
.0

8
0
.1

1
1
.1

8
7
.4

7
0
.0

1

L
1
0
0
.c

a
v
it
y
0
1

0
.9

5
6
.5

6
2
.0

5
5
.7

0
t
l

t
l

t
l

t
l

0
.5

5
5
1
.3

8
1
.7

1
5
.6

1

L
1
0
0
.fid

a
p
m

0
2

0
.0

4
1
5
.5

6
0
.1

3

L
1
0
0
.r
b
s
4
8
0
a

0
.0

3
8
.1

5
0
.5

3

L
1
0
0
.s
t
e
a
m

2
9
3
9
.0

5
t
l

t
l

L
1
0
0
.w

m
1

3
.7

6
7
.9

5
1
.1

0
t
l

t
l

0
.6

0
2
3
.7

6
6
.8

7
1
.3

2

L
1
0
0
.w

m
2

0
.1

3
8
.9

8
0
.5

1
t
l

0
.2

1
3
5
3
.9

2

L
1
0
0
.w

m
3

0
.1

3
4
.9

7
0
.4

2
0
.4

1
2
7
1
0
.8

9
0
.3

5
0
.2

3
9
.8

1
0
.0

9

L
1
2
0
.c

a
v
it
y
0
1

0
.6

5
8
.1

6
6
.6

6
6
.0

2
t
l

t
l

t
l

t
l

0
.4

1
1
9
1
.1

0
9
.7

2
1
0
.0

2

L
1
2
0
.fid

a
p
0
2
2

0
.0

5
0
.2

8
8
.2

7

L
1
2
0
.fid

a
p
m

0
2

0
.3

6
t
l

1
0
.4

7

L
1
2
0
.r
b
s
4
8
0
a

3
2
.8

4
8
1
1
.2

2
t
l

L
1
2
0
.w

m
2

0
.1

3
0
.5

7
1
.3

1
5
8
0
.7

5
0
.8

9
1
.9

7
t
l

t
l

0
.0

4
0
.3

0
7
.5

1
4
.9

2

L
1
2
5
.a

s
h
6
0
8

5
7
7
.3

2
t
l

t
l

t
l

1
0
2
.7

0
t
l

t
l

t
l

6
0
9
.6

8
t
l

t
l

t
l

L
1
2
5
.b

c
s
s
t
k
0
5

3
9
2
.6

1
t
l

t
l

L
1
2
5
.c

a
n

1
6
1

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.c

a
n

1
8
7

t
l

t
l

t
l

t
l

t
l

t
l

t
l

2
3
.1

0
t
l

t
l

t
l

0
.1

3

L
1
2
5
.d

w
t

1
6
2

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.d

w
t

1
9
3

5
1
6
.2

2
t
l

t
l

L
1
2
5
.fs

1
8
3

1
2
.4

0
1
3
9
.1

2
3
1
2
.0

8

L
1
2
5
.g

r
e

1
8
5

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.lo

p
1
6
3

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

t
l

L
1
2
5
.w

e
s
t
0
1
6
7

2
1
.7

0
t
l

t
l

t
l

2
3
.8

2
4
2
.8

6
4
5
.7

1
3
9
.7

5
3
.8

9
1
0
.3

2
1
5
.2

1
2
4
4
.7

2

L
1
2
5
.w

ill1
9
9

6
.4

6
t
l

t
l

t
l

1
5
.3

6
7
6
.2

9
8
6
.9

3
3
8
.8

7
9
.3

4
2
2
4
.0

0
2
2
1
4
.5

0
t
l

L
8
0
.c

a
v
it
y
0
1

0
.4

0
0
.3

3
2
.7

5
3
.5

0
t
l

7
.4

3
t
l

3
1
2
7
.8

9
0
.3

6
0
.2

2
1
.7

3
2
.7

7

L
8
0
.s
t
e
a
m

2
3
2
.7

8
t
l

t
l

L
8
0
.w

m
1

2
.0

7
3
.6

4
0
.4

8
t
l

t
l

0
.1

4
9
.7

9
2
1
.6

4
0
.0

2

L
8
0
.w

m
2

0
.0

6
1
.5

6
0
.2

8
7
.6

0
0
.2

5
3
.7

5

L
8
0
.w

m
3

0
.0

6
0
.5

5
0
.2

5
5
.7

4
0
.2

2
0
.9

5

lu
n
d

a
t
l

t
l

t
l

t
l

t
l

t
l

p
o
r
e
s

1
0
.3

0
0
.5

5
0
.2

4

r
w
1
3
6

2
3
0
.1

3
t
l

t
l

t
l

3
2
4
.9

2
t
l

t
l

t
l

2
4
5
9
.8

5
t
l

t
l

t
l

s
t
e
a
m

3
7
8
.0

3
2
4
9
.5

5
t
l

w
e
s
t
0
0
6
7

1
0
7
.0

0
t
l

t
l

4
9
.3

9
t
l

t
l

w
e
s
t
0
1
3
2

7
.2

9
t
l

t
l

t
l

1
8
.6

6
6
2
.7

3
5
6
.1

8
3
9
.4

4
3
.1

9
4
4
.3

6
t
l

t
l

w
ill5

7
0
.7

9
0
.0

2
1
0
.0

9
0
.1

7
1
.2

3
0
.2

4

T
a
b
le

1
0

C
o
m

p
u

ta
tio

n
a
l

tim
es

fo
r

in
sta

n
ces

w
ith

w
eig

h
ts

(In
tersectio

n
g
ra

p
h
s)

On Integer and Bilevel Formulations for the k-Vertex Cut Problem 37

Optimal Values Optimal Values

k = 5 k = 10 k = 15 k = 20 k = 5 k = 10 k = 15 k = 20

1-FullIns 3 35 53 miles500 42 - -

1-FullIns 4 35 66 90 122 miles750 120 -

1-Insertions 4 40 68 100 125 mug100 1 10 27 46 69

2-FullIns 3 42 71 92 125 mug100 25 11 30 52 77

2-Insertions 3 18 50 73 mug88 1 20 43 68 99

2-Insertions 4 42 69 99 124 mug88 25 14 38 63 93

3-FullIns 3 33 53 76 106 mulsol.i.2 · · · 96

3-Insertions 3 22 47 72 95 mulsol.i.3 · · 96 98

4-FullIns 3 40 81 98 127 mulsol.i.4 · · 96 98

4-Insertions 3 17 43 68 94 mulsol.i.5 · · 96 98

5-FullIns 3 35 72 95 113 myciel4 38 68

adjnoun 11 29 51 81 myciel5 47 77 105 129

anna 7 7 9 15 myciel6 57 87 115 138

celegansneural 5 5 15 37 myciel7 67 - - 148

chesapeake 28 60 92 polbooks 34 79 103 136

david · · 17 50 queen10 10 - 486

dolphins 10 30 66 89 queen11 11 - -

DSJC125.1 106 - - - queen12 12 - -

DSJC125.5 - 645 queen13 13 - -

football 101 - - - queen14 14 - -

games120 - - - - queen5 5 103

huck 7 17 33 54 queen6 6 149

jazz 23 70 133 - queen7 7 199

jean 2 4 14 19 queen8 12 339

karate 11 23 34 61 queen8 8 239

lesmis 4 6 13 21 queen9 9 296

miles1000 297 r125.1 · · 2 9

miles1500 626 r125.1c 648

miles250 · · 7 30 r125.5 505

Table 11 Optimal values of the instances with weights, instances that are infeasible and/or
trivial for all values of k are not reported (Coloring and DIMACS).

38 Furini, Ljubić, Malaguti, Paronuzzi

Optimal Values Optimal Values

k = 5 k = 10 k = 15 k = 20 k = 5 k = 10 k = 15 k = 20

arc130 442 L120.cavity01 49 100 115 168

ash219 36 78 120 164 L120.fidap022 486

ash331 39 - - - L120.fidapm02 509

ash85 117 - L120.rbs480a 433

bcspwr01 28 70 L120.wm2 7 28 67 239

bcspwr02 38 87 133 L125.ash608 37 - - -

bcspwr03 53 113 168 235 L125.bcsstk05 218

bfw62a 114 L125.can 161 - - -

can 144 - - L125.can 187 - - - 541

can61 207 L125.dwt 162 - - -

can62 31 78 130 L125.dwt 193 291

can73 144 - L125.fs 183 1 71

can96 - - L125.gre 185 - - -

curtis54 74 L125.lop163 - - -

dwt 59 59 141 226 L125.west0167 19 46 73 109

dwt66 54 - L125.will199 21 60 92 127

dwt72 26 64 105 169 L80.cavity01 43 49 92 154

dwt87 66 - 313 L80.steam2 257

gre 115 44 108 - - L80.wm1 88 218 281

ibm32 80 L80.wm2 24 264

impcol b 22 58 109 202 L80.wm3 23 74

L100.cavity01 49 91 100 162 lund a - -

L100.fidapm02 443 pores 1 99

L100.rbs480a 370 rw136 40 - - -

L100.steam2 303 steam3 145

L100.wm1 78 169 274 west0067 97 188

L100.wm2 20 237 west0132 21 57 97 132

L100.wm3 20 76 303 will57 33 113

Table 12 Optimal values of the instances with weights, instances that are infeasible and/or
trivial for all values of k are not reported (Intersection graphs).

