
Obtaining Optimal k-Cardinality Trees Fast

MARKUS CHIMANI

Dortmund University of Technology

MARIA KANDYBA

Dortmund University of Technology

IVANA LJUBIĆ

University of Vienna

and

PETRA MUTZEL

Dortmund University of Technology

Given an undirected graph G = (V,E) with edge weights and a positive integer number k, the
k-Cardinality Tree problem consists of finding a subtree T of G with exactly k edges and the

minimum possible weight. Many algorithms have been proposed to solve this NP-hard problem,

resulting in mainly heuristic and metaheuristic approaches.
In this paper we present an exact ILP-based algorithm using directed cuts. We mathemati-

cally compare the strength of our formulation to the previously known ILP formulations of this

problem, and show the advantages of our approach. Afterwards we give an extensive study on the
algorithm’s practical performance compared to the state-of-the-art metaheuristics.

In contrast to the widespread assumption that such a problem cannot be efficiently tackled by

exact algorithms for medium and large graphs (between 200 and 5000 nodes), our results show
that our algorithm not only has the advantage of proving the optimality of the computed solution,

but also often outperforms the metaheuristic approaches in terms of running time.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computations on discrete structures; Routing and
layout; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms; Network problems;

G.4 [Mathematical Software]: Efficiency

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Exact algorithm, k-Cardinality tree, comparison with meta-

heuristics, Branch & Cut, (prize collecting) Steiner tree

A preliminary version of this paper appeared in the Proceedings of the SIAM Workshop on Algo-

rithm Engineering & Experiments 2008 (ALENEX08).
Authors’ addresses: M. Chimani, M. Kandyba, P. Mutzel, Chair XI Algorithm Engineering, Dort-
mund University of Technology, Otto-Hahn-Str. 14, 44227 Dortmund, Germany. I. Ljubić, Dep. of
Statistics and Decision Support Systems, University of Vienna, Brünnerstr. 72, 1210 Vienna, Aus-
tria. {markus.chimani,maria.kandyba,petra.mutzel}@tu-dortmund.de, ivana.ljubic@univie.ac.at

Maria Kandyba was supported by the German Research Foundation (DFG) through the Collab-
orative Research Center “Computational Intelligence” (SFB 531).

Ivana Ljubić was supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation
(FWF).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, September 2008, Pages 1–23.

2 · Markus Chimani et al.

1. INTRODUCTION

We consider the k-Cardinality Tree problem (KCT). Given an undirected graph
G = (V,E), an edge weight function w : E → R, and a positive integer number
k, find a subgraph T of G that is a minimum weight tree with exactly k edges.
The problem is also known as the k-Minimum Spanning Tree problem (k-MST),
whereby the parameter k usually specifies the number of selected nodes, which in
a tree is exactly one more than the number of edges. In most of the literature, the
edge weights are restricted to be non-negative; in our paper we do not require this
assumption. Even for the restricted case with edge weights w(e) ∈ {1, 2, 3} for all
edges e, the problem has been shown to be NP-hard [Ravi et al. 1996].

The KCT has been extensively studied in literature as it has various applica-
tions, e.g., in oil-field leasing, facility layout, open pit mining, matrix decompo-
sition, quorum-cast routing, telecommunications, etc. [Blum and Ehrgott 2003].
The considered approaches range from heuristics, to metaheuristics, approximation
algorithms and exact formulations.

The first exact approach was presented by Fischetti et al. [1994], by formulat-
ing an integer linear program (ILP) based on generalized subtour elimination con-
straints (Gsec). This formulation was implemented by Ehrgott and Freitag [1996]
using a Branch-and-Cut approach. The resulting algorithm was only able to solve
graphs with up to 30 nodes, which may be mainly due to the comparably weak
computers in 1996. The ideas of such formulations have been picked up by the ap-
proximation algorithm community [Arora and Karakostas 2000; Blum et al. 1996;
Garg 1996; 2005]. The central idea thereby is the ILP-based primal-dual scheme,
which was proposed by Goemans and Williamson [1995] for the prize-collecting
Steiner tree problem.

A large amount of research was devoted to the development of heuristic [Ehrgott
et al. 1997; Blum 2007] and, in particular, metaheuristic methods [Joernsten and
Lokketangen 1997; Blum and Ehrgott 2003; Urošević et al. 2004; Bui and Sun-
darraj 2004; Blum and Blesa 2005a; 2005b; Blum 2006]. See, e.g., [Blum 2006]
for an extensive comparison of the latter approaches. An often used argument for
metaheuristic approaches is based on the performance of the first exact approach
reported above. The key argument is that exact methods for this NP-hard problem
would require too much computation time and could only be applied to very small
graphs [Blum and Ehrgott 2003; Brimberg et al. 2006].

In this paper we show that the traditional argument for metaheuristics over exact
algorithms is deceptive on this and related problems. We propose a novel exact ILP-
based algorithm which can indeed be used to solve all known benchmark instances
of KCTLIB [Blum and Blesa 2003]—containing graphs of up to 5000 nodes—to
provable optimality. Furthermore, our algorithm often, in particular on mostly
all graphs with up to 1000 nodes, is faster than the state-of-the-art metaheuristic
approaches that can neither guarantee nor assess the quality of their solution.

To achieve these results, we present an exact Branch-and-Cut algorithm for the
KCT. Therefore we transform the problem into a similar directed and rooted prob-
lem called k-Cardinality Arborescence problem (KCA), and formulate an ILP for
the latter, see Section 2. In the section thereafter, we provide polyhedral compar-
isons to other formulations existing for the KCT problem; most importantly this
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 3

Fig. 1. An undirected KCT instance (left),
and its directed KCA counterpart (right). A

possible solution for k = 3 is denoted by bold
edges/arcs.

is the Gsec formulation mentioned above, as well as formulations based on undi-
rected cuts and multi-commodity flow, respectively. In Section 4, we summarize
other problems similar to the KCT—in particular the NKCT problem, the node
weighted variant of KCT—and show how they can also be transformed into a KCA
problem and therefore modeled using our ILP formulation.

In Section 5, we describe the resulting Branch-and-Cut algorithm in order to
deal with the exponential ILP size. A large part of the paper is then devoted to
an extensive experimental study in Section 6, where we analyze the performance of
our algorithm and compare it with the state-of-the-art metaheuristics for the KCT.
We conclude with remarks regarding the practical applicability of our approach to
other problem instances or variants.

2. DIRECTED CUT APPROACH

2.1 Transformation into the k-Cardinality Arborescence Problem

Let D = (VD, AD) be a directed graph with a distinguished root vertex r ∈ VD and
arc costs ca for all arcs a ∈ AD. The k-Cardinality Arborescence problem (KCA)
consists of finding a weight minimum rooted tree TD with k arcs which is directed
from the root outwards. More formally, TD has to satisfy the following properties:

(P1) TD contains exactly k arcs,

(P2) TD contains exactly k + 1 nodes, and

(P3) for all v ∈ V (TD) \ {r}, there exists a directed path r → v in TD.

We transform any given KCT instance (G = (V,E), w, k) into a corresponding
KCA instance (Gr, r, c, k + 1) as follows, cf. Figure 1: We replace each edge {i, j}
of G by two arcs (i, j) and (j, i), introduce an artificial root vertex r and connect
r to every node in V . Hence we obtain a digraph Gr = (V ∪ {r}, A ∪ Ar) with
A = {(i, j), (j, i) | {i, j} ∈ E} and Ar = {(r, j) | j ∈ V }. For each arc a = (i, j) we
define the cost function c(a) := 0 if i = r, and c(a) := w({i, j}) otherwise.

To be able to interpret each feasible solution TGr
of this resulting KCA instance

as a solution of the original KCT instance, we impose an additional constraint

(P4) TGr
contains only a single arc of Ar.

If this property is satisfied, it is easy to see that a feasible KCT solution with the
same objective value can be obtained by removing r from TGr

and interpreting the
directed arcs as undirected edges.

ACM Journal Name, Vol. V, No. N, September 2008.

4 · Markus Chimani et al.

2.2 ILP for the KCA

To model the KCA as an ILP, we introduce two sets of binary variables:

xa, yv ∈ {0, 1} ∀a ∈ A ∪Ar,∀v ∈ V.

The variables are 1, if the corresponding arc or vertex is in the solution and 0
otherwise.

Let S ⊆ V . The sets E(S) and A(S) are the edges and arcs of the subgraphs of G
and Gr, respectively, induced by S. Furthermore, we denote by δ−(S) = {(i, j) ∈
A ∪ Ar | i ∈ V \ S, j ∈ S} the ingoing arcs of a set S. We define the shorthands
x(B) :=

∑
b∈B xb with B ⊆ A ∪ Ar, and y(W) :=

∑
w∈W yw with W ⊆ V ∪ {r}.

This allows us to give the following ILP formulation:

DCut: min
∑

a∈A c(a) · xa (1)
s.t. x(A) = k (2)

y(V) = k + 1 (3)
x(Ar) = 1 (4)

x(δ−(S)) ≥ yv ∀S ⊆ V,∀v ∈ S (5)
xa, yv ∈ {0, 1} ∀a ∈ A ∪Ar,∀v ∈ V. (6)

The k-cardinality requirements (P1) and (P2) are modeled by (2) and (3), re-
spectively. The root-out-degree constraint (4) ensures property (P4). The dcut-
constraints (5) guarantee property (P3) via directed cuts.

Although this formulation is sound and practically applicable, we will reformulate
the ILP based on the following observation.

Observation 2.1. Any subgraph TD satisfying (P1)–(P3) also satisfies: For all
v ∈ V (TD) \ {r}, v has in-degree 1 in TD.

Hence, considering the feasible integer solutions, we can replace the node cardinality
constraint (3) by in-degree constraints

x(δ−(v)) = yv ∀v ∈ V (7)

and obtain the ILP

min

{∑
a∈A

c(a) · xa subject to (2), (4)–(7)

}
. (8)

While the original formulation is more compact, we will see in Section 5 that the
in-degree constraints have certain advantages in practice. The most important
property of this reformulation is that it retains the strength of the original for-
mulation. From the polyhedral point of view, we can measure this strength by
considering the LP-relaxation of the ILP, i.e., we replace the integer constraints (6)
by

0 ≤ xa, yv ≤ 1 ∀a ∈ A ∪Ar,∀v ∈ V, (9)

and thereby allow fractional solutions. We can show that in this context it is
irrelevant whether we model (P2) directly via a cardinality constraint or indirectly
with multiple in-degree constraints.
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 5

Lemma 2.2. By replacing the node cardinality constraint (3) by the in-degree
constraints (7) we obtain an equivalent ILP and an equivalent LP-relaxation.

Proof. We show this equivalence by generating the constraints from each other.
We have (7)⇒(3) as:

y(V) =
∑
v∈V

yv
(7)
=

∑
v∈V

x(δ−(v)) = x(A) + x(Ar)
(2),(4)

= k + 1.

And show (3)⇒(7) by:

k + 1
(3)
= y(V) =

∑
v∈V yv

(5)

≤
∑

v∈V x(δ−(v)) = x(A) + x(Ar)
(2),(4)

= k + 1
=⇒ yv = x(δ−(v)) ∀v ∈ V.

3. POLYHEDRAL COMPARISONS

We investigate the polyhedral properties of our new formulation by comparing
it to the other three available ILP formulations for the KCT problem. In the
following, let PD be the polyhedron corresponding to the DCut LP-relaxation,
i.e., PD contains all points feasible for DCut disregarding the integer properties of
the variables:

PD := { (x, y) ∈ R|A∪Ar|+|V | | 0 ≤ xe, yv ≤ 1
and (x, y) satisfies (2)–(5) }.

Hence, the objective value of the optimal fractional solution within PD is a lower
bound for the optimal integer solution. We can consider a formulation stronger
than another, if its LP-solution gives a tighter lower bound than the other. This
measure is particularly useful in the context of Branch-and-Cut algorithms, see
Section 5: The final solution at the root node of the Branch-and-Bound tree, i.e.,
before we have to resort to branching, is exactly an optimal fractional solution of
the LP-relaxation. In particular, in our application we can obtain this optimal
fractional solution in polynomial time using cutting plane methods, cf. Section 5.

3.1 Generalized Subtour Elimination (Gsec)

The only reported ILP implementation regarding the KCT problem is due to
Ehrgott and Freitag [1996], which uses the formulation by Fischetti et al. [1994].
This formulation is defined on the original, undirected graph and based on gener-
alized subtour elimination constraints. We rephrase this approach to match our
notation and show that both Gsec and DCut are equivalent from the polyhedral
point of view.

In order to distinguish between undirected edges and directed arcs we introduce
the binary variables ze ∈ {0, 1} for every edge e ∈ E, which are 1 if e is contained
in the solution tree and 0 otherwise. For representing the selection of the nodes we
use the y-variables as in the previous section. The constraints (13) are called the

ACM Journal Name, Vol. V, No. N, September 2008.

6 · Markus Chimani et al.

gsec-constraints.

Gsec: min
∑

e∈E c(e) · ze (10)
s.t. z(E) = k (11)

y(V) = k + 1 (12)
z(E(S)) ≤ y(S \ {t}) ∀S ⊆ V, |S| ≥ 2,∀t ∈ S (13)
ze, yv ∈ {0, 1} ∀e ∈ E,∀v ∈ V. (14)

Let PG be the polyhedron corresponding to the Gsec LP-relaxation, i.e.,

PG := { (z, y) ∈ R|E|+|V | | 0 ≤ ze, yv ≤ 1
and (z, y) satisfies (11)–(13) }.

Theorem 3.1. The Gsec and the DCut formulations have equally strong LP-
relaxations, i.e.,

PG = projz(PD),

where projz(PD) is the projection of PD onto the (z, y) variable space with z{i,j} =
x(i,j) + x(j,i) for all {i, j} ∈ E. The y variables are thereby projected using the
identity function, i.e., their values remain identical.

Proof. We prove equality by showing mutual inclusion:

projz(PD) ⊆ PG: Any (z̄, ȳ) ∈ projz(PD) satisfies (11) by definition, and (12) by
(7) and Lemma 2.2. Let x̄ be the vector from which we projected the vector z̄,
and consider some S ⊆ V with |S| ≥ 2 and some vertex t ∈ S. We show that
(z̄, ȳ) also satisfies the corresponding gsec-constraint (13):

z̄(E(S)) = x̄(A(S)) =
∑

v∈S x̄(δ−(v))− x̄(δ−(S))

(7)
= ȳ(S)− x̄(δ−(S))

(5)

≤ ȳ(S)− ȳt.

PG ⊆ projz(PD): Consider any (z̄, ȳ) ∈ PG and a set

X := { x ∈ R|A∪Ar|
≥0 | x satisfies (4)

and xij + xji = z̄{ij} ∀(i, j) ∈ A }.

Every such projective vector x̄ ∈ X clearly satisfies (2). In order to generate the
dcut-inequalities (5) for the corresponding (x̄, ȳ), it is sufficient to show that we
can always find an x̂ ∈ X, which together with ȳ satisfies the indegree-constraints
(7). Since then, for any S ⊆ V and t ∈ S:

x̂(δ−(S)) =
∑

v∈S x̂(δ−(v))− x̂(A(S))

(7)
= ȳ(S)− z̄(E(S))

(13)

≥ ȳt.

We show the existence of such an x̂ using a proof technique related to Goemans
and Myung [1993, proof of Claim 2], where it was used for the Steiner tree
problem.
An x̂ ∈ X satisfying (7) can be interpreted as the set of feasible flows in a
bipartite transportation network (N,L), with N := (E ∪ {r}) ∪ V . For each

ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 7

undirected edge e = (u,w) ∈ E in G, our network contains exactly two outgoing
arcs (e, u), (e, w) ∈ L. Furthermore, L contains all arcs of Ar. For all nodes
e ∈ E in N we define a supply s(e) := z̄e; for the root r we set s(r) := 1. For all
nodes v ∈ V in N we define a demand d(v) := ȳv.
Finding a feasible flow for this network can be viewed as a capacitated trans-
portation problem on a complete bipartite network with capacities either zero (if
the corresponding edge does not exist in L) or infinity. Note that in our network
the sum of all supplies is equal to the sum of all demands, due to (11) and (12).
Hence, each feasible flow in such a network will lead to a feasible x̂ ∈ X. Such
a flow exists if and only if for every set M ⊆ N without arcs leaving M (i.e.,
δ+(N,L)(M) = ∅) the condition

s(M) ≤ d(M) (15)

is satisfied, where s(M) and d(M) are the total supply and the total demand in
M , respectively, cf. [Gale 1957; Goemans and Myung 1993]. In order to show that
this condition holds for (N,L), we distinguish between two cases; let U := E∩M :
r ∈M : Since r has an outgoing arc for every v ∈ V and δ+(N,L)(M) = ∅, we have
V ⊂M . Condition (15) is satisfied, since s(r) = 1 and therefore:

s(M) = s(r) + z̄(U) ≤ s(r) + z̄(E)

= z̄(E) + 1
(11),(12)

= ȳ(V) = d(M).

r /∈M : Let S := V ∩M . We then have U ⊆ E(S). If |S| ≤ 1 we have U = ∅
and therefore (15) is automatically satisfied. For |S| ≥ 2, the condition is also
satisfied, since for every t ∈ S we have:

s(M) = z̄(U) ≤ z̄(E(S))
(13)

≤ ȳ(S)− ȳt

≤ ȳ(S) = d(M).

Even though both DCut and Gsec are polytope-wise equivalent, DCut offers
advantages in practice, as we will discuss in Section 5.

3.2 Undirected Cuts (UCut)

Garg [1996] considers approximation algorithms for the KCT. To this ends, he
presents an ILP based on undirected cuts, whose LP-relaxation he subsequently
uses for lower bounds. We will call this formulation UCut in the following. The
formulation also uses a root node r′, but instead of an artifical root as we use for
DCut, it selects the node among the original nodes. Since it cannot be guaranteed
that r′ is contained in the optimal solution, he considers |V | ILPs, one for each
possible choice of the root node r′. We rephrase the original formulation, adapted
to our notation. The z variables are used analogously as for the Gsec formulation.

UCut: min
∑

e∈E c(e) · ze (16)
s.t. y(V) = k + 1 (17)

z(δ(S)) ≥ yv ∀S ⊆ V \ {r′},∀v ∈ S (18)
ze, yv ∈ {0, 1} ∀e ∈ E,∀v ∈ V. (19)

ACM Journal Name, Vol. V, No. N, September 2008.

8 · Markus Chimani et al.

Fig. 2. Proof of Theorem 3.2. The shown solution is feasible for UCut∗

and UCut, with and without the artificial root r, respectively. There is

no fractional orientation which would be feasible for DCut.

Here, δ(S) denotes the set of all edges for which exactly one of the incident nodes
is in S. Garg assumes non-negativity for the edge weights which is why he does not
have to restrict the number of selected edges.

In contrast to the formulation by Garg, we can augment G with an artificial root
node which is connected to all other nodes, instead of selecting any original node as
the root node. By ensuring that only one of these new edges is selected analogously
to (4), we obtain a formulation which directly solves the KCT problem via undi-
rected cuts, instead of requiring linearly many ILPs. We denote this formulation
as UCut∗.

Let P∗U be the polyhedron of the LP-relaxation of UCut∗, and let PU be the
union of all LP-relaxation polyhedra considered by UCut for any choice of the
root r′. Using the projection defined in Theorem 3.1 we can show the following
theorem.

Theorem 3.2. DCut is strictly stronger than UCut and UCut∗, i.e.,

projz(PD) ⊂ PU , and projz(PD) ⊂ P∗U .

Proof. Clearly, each feasible point in PD is feasible in PU and P∗U using the
projection projz. On the other hand, we use a traditional argument to identify frac-
tional solutions feasible for the undirected formulations, but infeasible for DCut,
cf. Figure 2. Assume a complete graph on 3 nodes, where each vertex variable
is set to 1, and each edge variable is set to 0.5. For the formulation requiring an
artificial node, connect such an additional root vertex to this triangle via a single
edge whose variable is set to 1.

This structure forms a feasible solution for UCut∗. In case of UCut, choose any
node on the triangle as r′ and we have a feasible solution (ignoring the artificial
root). However, for DCut there is no possible x-variable setting inducing the
described z-variable values such that the in-degree constraints are satisfied for both
two nodes which are not adjacent to the artificial root.

Overall, we can deduce that DCut is a better choice for an exact approach than
UCut, since its improved strength will in general lead to tighter bounds and fewer
branches in Branch-and-Cut algorithms.

3.3 Multi-Commodity Flow (Mcf)

Another traditional approach for similar network design problems are multi-com-
modity flow formulations. We can straight-forwardly formulate an ILP (Mcf) based
on this concept for the KCA, as it was done by Ljubić [2004] for the prize-collecting
Steiner tree problem (PCST), and augment it with cardinality inequalities. In such
a formulation, we have one commodity tv for each node in v ∈ V , and we send yv

units of tv from the artificial root r to v.
Analogously to the proof in [Ljubić 2004], which shows the equivalence of DCut

and Mcf for the PCST, we obtain the following theorem.
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 9

Theorem 3.3. The LP-relaxation of Mcf for the KCA is equivalent to Gsec
and DCut.

The Mcf formulation requires only a polynomial number of variables and con-
straints. However, the sheer number of variables becomes a practical drawback of
this approach. In addition to the x and y variables, we require |V | · |A| variables
to model the flow. As we know from similar problems [Ljubić et al. 2006; Chimani
et al. 2007; ?], this leads to poor performance of multi-commodity flows in practice,
compared to directed-cut based approaches which allow efficient separation of their
exponentially many constraints, cf. Section 5.2.

4. APPLICABILITY TO RELATED PROBLEMS

The main focus of this paper is on the above KCT problem. However, the KCT
is only the most prominent within a class of similar or related NP-hard problems
that can be found in the literature. Interestingly, we can formulate most of them
as a KCA problem or slight variations thereof, which allows us to use our DCut
approach for these problems as well.

4.1 Node-weighted/All-weighted k-Cardinality Tree problem

The Node-weighted k-Cardinality Tree problem (NKCT) is defined analogously to
the KCT but its weight function w′ : V → R uses the nodes as its basic set, instead
of the edges (see, e.g., [Brimberg et al. 2006] for the list of references). We can
also consider the general All-weighted k-Cardinality Tree problem (AKCT), where
a weight-function w for the edges, and a weight-function w′ for the nodes are given.

As Segev [1987] did for Steiner trees, we can use Observation 2.1 to eliminate the
node variables in the objective function. Recall that any KCA solution is a tree
directed from the root outwards. Each vertex in the solution (except for the root)
has in-degree 1. Disregarding the root node, this allows us to establish a one-to-one
correspondence between each selected arc and its target node. Whenever we select
an arc, we know that we have to pay the cost of its target node v, and we will never
pay the node weight multiple times since we will only select a single arc having v
as its target node. This observation allows us to precompute the node weights of
the NKCT and AKCT problems into the arc weights of the KCA.

By generalizing the transformation for the KCT problem we can therefore trans-
form any given NKCT instance (G = (V,E), w′, k) or AKCT instance (G = (V,E),
w, w′, k) into a corresponding KCA instance (Gr, r, c, k + 1) as follows. As before
let Gr = (V ∪ {r}, A∪Ar). For all (i, j) ∈ A∪Ar we have c((i, j)) := w′(j) for the
NKCT, and c((i, j)) := w({i, j})+w′(j) or c((i, j)) := w′(j) if i = r, for the AKCT.
By this transformation we implicitly choose w′(r) = 0 which is correct since the
root node is artificial and should not be part of the objective function.

4.2 k-STP and k-PCSTP

The traditional Steiner tree problem (STP) consists of finding a weight-minimum
tree in an edge weighted (non-negative weights) graph that spans a set of terminal
nodes, i.e., a certain subset of the graph’s nodes. Chudak et al. [2001] considered
the k-Cardinality Steiner Tree Problem (k-STP) as a hybrid of the STP and the
KCT, i.e., we ask for the weight-minimum tree spanning k terminal nodes. In

ACM Journal Name, Vol. V, No. N, September 2008.

10 · Markus Chimani et al.

the paper, the authors present an ILP based on undirected graphs and use it for
deriving an approximation algorithm. However, the k-STP is only considered from
this theoretical point of view. To our knowledge, there are no widely available
benchmark instances nor any experimentally comparable algorithmic approaches
for this problem class.

Analogously to the k-STP, we can consider the k-Cardinality Prize-Collecting
Steiner Tree Problem (k-PCSTP). The traditional prize-collecting Steiner tree prob-
lem differs from the STP in that not all terminal nodes have to be contained in the
solution tree, but each terminal node has a prize (or profit) which is subtracted
from the tree’s cost if the node is selected. The k-PCSTP is then the problem of
finding a prize-collecting Steiner tree with the side-condition that k terminal nodes
have to be selected. The k-STP problem is then the special case of the k-PCSTP
where all prizes of the terminal nodes are 0. Note that the general k-PCSTP does
not require the edge weights nor the node prizes to be non-negative.

The ideas for the KCA can be directly used to give a directed-cut formulation
for the k-PCSTP and its subtypes. We can integrate the node prizes into the arc
costs as discussed for the NKCT above, drop the cardinality requirement on the
edges, apply a node cardinality requirement analogous to (3) only to the terminal
nodes and add all in-degree constraints (7), in order to guarantee that the solution
forms a tree.

5. BRANCH-AND-CUT ALGORITHM

Based on our DCut formulation, we developed and implemented a Branch-and-
Cut algorithm. For a general description of the Branch-and-Cut scheme see, e.g.,
[Wolsey 1998]. In such an algorithm, we start with an initial partial LP, i.e., the
ILP without the integrality properties and only considering a certain subset of all
constraints. We solve the partial LP in order to obtain a current fractional solution.
A separation routine then tries to identify constraints of the full constraint set of the
ILP which the current fractional solution violates. We then add these constraints
to our partial LP and reiterate these steps. If at some point we cannot find any
violated constraints, we have to resort to branching, i.e., we generate two disjoint
subproblems, e.g., by fixing a variable to 0 or 1. By using the fractional solutions
as lower bounds, and some heuristic solution as an upper bound, we can prune
irrelevant subproblems. In every node of the resulting Branch-and-Bound tree, we
apply the separation strategy again.

A particularly interesting theorem central to LP theory by Grötschel, Lovász,
and Schrijver (cf., e.g, [Wolsey 1998]) shows the equivalence of optimization and
separation, i.e., if we can solve the separation problem in polynomial time, we can
also solve the underlying LP-problem in polynomial time. We will see that this is
indeed the case for the exponentially many dcut-constraints. Hence we can obtain
the optimal fractional solution of the LP-relaxation in polynomial time at the root
node of the Branch-and-Bound tree.

Ehrgott and Freitag [1996] developed a Branch-and-Cut algorithm based on
the Gsec formulation. Note that the dcut-constraints are sparser than the gsec-
constraints, which usually leads to a faster optimization in practice. This con-
jecture was experimentally confirmed, e.g., by Ljubić et al. [2006] for the related
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 11

prize-collecting Steiner tree problem, where a directed-cut based formulation was
compared to a Gsec formulation. The former was both faster in overall running
time and required 1–2 orders of magnitude fewer iterations. Hence we can expect
our DCut approach to have advantages over Gsec in practice. In Section 5.2 we
will discuss the formal differences in the performances between the DCut and the
Gsec separation algorithms.

5.1 Initialization

Our algorithm starts with the root-out-degree constraint (4), the edge cardinality
constraint (2), and all in-degree constraints (7). We prefer the in-degree constraints
over the node cardinality constraint (3), as they strengthen the initial partial LP.
As the proof of Lemma 2.2 shows, all in-degree constraints, together with the root-
out-degree and the edge cardinality constraint already induce the node cardinality
constraint, and hence it is not necessary to consider the latter. On the other
hand, in order to generate the in-degree constraints, we would require multiple
dcut-constraints, which are not available in the initial partial LP.

For the same reason, we add the orientation-constraints

xij + xji ≤ yi ∀i ∈ V,∀{i, j} ∈ E (20)

to our initial ILP. Intuitively, these constraints ensure a unique orientation for
each edge, and require for each selected arc that both incident nodes are selected
as well. These constraints do not actually strengthen the DCut formulation as
they represent the gsec-constraints for all two-element sets S = {i, j} ⊂ V : from
the proof of Theorem 3.1, we know that these inequalities can be generated with
the help of (7) and (5). Nonetheless the addition of the constraints (20) to the
initial partial LP speeds up the algorithm significantly, as they do not have to be
separated explicitly by the Branch-and-Cut algorithm. This was first observed by
Ljubić [2004] for the PCST and also confirmed by our own experiments.

We also tried asymmetry constraints [Ljubić 2004] to reduce the search space by
excluding symmetric solutions:

xrj ≤ 1− yi ∀i, j ∈ V, i < j. (21)

They assure that for each KCA solution, the vertex adjacent to the root is the one
with the smallest possible index. Anyhow, we will see in our experiments that the
quadratic number of these constraints becomes a hindrance for large graphs and/or
small k in practice.

5.2 Separation

The dcut-constraints (5) can be separated in polynomial time via the traditional
maximum-flow separation scheme: We consider Gr as a network and interpret the
x-values of the current fractional LP solution as arc capacities. We compute the
maximum-flow in Gr from r to each v ∈ V using the implementation of [?]. If the
flow is less than yv, we extract one or more of the induced minimum (r, v)-cuts and
add the corresponding constraints to our model. In order to obtain multiple cuts
with a single separation step we also use nested- and back-cuts [Koch and Martin
1998; Ljubić et al. 2006]. Indeed, using these additional cuts significantly speeds
up the computation.

ACM Journal Name, Vol. V, No. N, September 2008.

12 · Markus Chimani et al.

Recall that in a general separation procedure we search for the most violated
inequality of the current LP-relaxation. In order to find the most violated inequality
of the DCut formulation, or to show that no such inequality exists, we construct
the flow network only once and perform at most |V | maximum-flow calculations
on it. This is a main reason why the DCut formulation performs better than
Gsec in practice: a single separation step for Gsec requires 2|V | − 2 maximum-
flow calculations, as already shown by Fischetti et al. [1994]. Furthermore, the
corresponding flow network is not static over all those calculations, but has to be
adapted prior to each call of the maximum-flow algorithm.

Our test sets, as described in Section 6, also contain grid graphs. In such graphs,
it is easy to detect and enumerate all 4-cycles by embedding the grids into the plane
and traversing all faces except for the single large one. In any planar graph there is
only a linear number of faces. For grids with n nodes we even know that there are
at most (

√
n− 1)2 = (n+ 1− 2

√
n) 4-cycles. Note that due to our transformation,

all 4-cycles are bidirected. Let C4 be the set of all bidirected 4-cycles. A cycle
C ∈ C4 then consists of 8 arcs and V [C] gives the vertices on C. By enumerating
these cycles, we obtain a separation routine for gsec-constraints on them:∑

a∈C

xa ≤
∑

i∈V [C]\{v}

yi ∀C ∈ C4,∀v ∈ V [C]. (22)

5.3 Upper Bounds and Proving Optimality

In the last decade, several heuristics and metaheuristics have been developed for the
KCT problem. Traditional Branch-and-Cut algorithms allow to use such algorithms
as primal heuristics, giving upper bounds that the Branch-and-Cut algorithm can
use for bounding purposes when branching. The use of such heuristics is two-
fold: (a) They can be used as start-heuristics, giving a good initial upper bound
before starting the actual Branch-and-Cut algorithm, and (b) they can be run
multiple times during the exact algorithm, using the current fractional solutions as
an additional input, or hint, in order to generate new and tighter upper bounds on
the fly.

Let h be a primal bound obtained by such a heuristic. We can add this bound
to our LP as ∑

a∈A

c(a) · xa ≤ h−∆.

Here, ∆ := min{c(a)− c(b) | c(a) > c(b), a, b ∈ A} denotes the minimal difference
between any two cost values. If the resulting ILP is found to be infeasible, we have
a proof that h was optimal, i.e., the heuristic solution was optimal.

As our experiments reveal, our algorithm is already very successful without the
use of any primal heuristic. Hence we compared our heuristic-less Branch-and-Cut
algorithm (DC−) with one using a perfect heuristic: a (hypothetical) algorithm that
requires no running time and gives the optimal solution. We can simulate such a
perfect heuristic by using the optimal solution obtained by a prior run of DC−.
We can then measure how long the algorithm takes to discover the infeasibility of
the ILP. We call this algorithm variant DC+. If the runtime performance of DC−

and DC+ are similar, we can conclude that using any heuristic for bounding is not
necessary.
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 13

6. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ using CPLEX 9.0 and LEDA 5.0.1. The
experiments were performed on 2.33 GHz Intel Xeon. Although the machine offers
two processing units, each process was restricted to 1 CPU and 2 GB RAM. We
tested our algorithm on all instances of the KCTLIB [Blum and Blesa 2003] which
consists of the following benchmark sets:

(BX) The set by Blesa and Xhafa [2000] contains 35 4-regular graphs with 25–
1000 nodes. The value of k is fixed to 20. The results of Blum and Blesa [2005b]
have already shown that these instances are easy, which was confirmed by our
experiments. Our algorithm needed on average 0.85 seconds per instance to solve
them to optimality, the median was 0.08 seconds.

(BB) The set by Blum and Blesa [2005b] is divided into four subsets of dense,
sparse, grid and 4-regular graphs, respectively, with different sizes of up to 2500
nodes. We use the notation krel = X% to denote that k is chosen to be X%
of n = |V |. E.g., for a graph with 2500 nodes, krel = 10% means that we
choose k = 250. Each instance of the benchmark set has to be solved for
krel = {10%, . . . , 90%}1, and additionally for k = 2 and k = n − 2. The most
successful known metaheuristics for (BB) are the hybrid evolutionary algorithm
(HyEA) [Blum 2006] and the ant colony optimization algorithm (ACO) [Bui and
Sundarraj 2004].

(UBM) The set by Urošević et al. [2004] consists of large 20-regular graphs with
500–5000 nodes which were generated randomly. The values for k are defined
as for (BB) by using krel = {10%, . . . , 50%}. Urošević et al. [2004] presented
a variable neighborhood decomposition search (VNDS), which is still the best
known metaheuristic for this benchmark set. However, there are no published
results on the behaviour of VNDS on any other test instances.

Remark 6.1. The choices k = 2 and k = n − 2 for (BB) are rather insignificant
for the analysis of general KCT algorithms. We can solve the former case optimally
in O(|V ||E|) by building BFS trees of depth 2 for all vertices, thereby enumerating
all connected edge pairs. The latter can be solved to optimality by considering the
graph Gv—the graph G without the node v—for all v ∈ V . For each such graph we
compute a minimum spanning tree and choose the minimum among them as the
solution. Hence we require O(|E||V | log |V |) time.

Our computational experiments on (UBM) show that all instances can be solved to
provable optimality. Except for 20 out of the 350 instances, all of them can even be
solved in under two hours. The longer running instances are some large ones with
4000–5000 nodes which require 40–50% of edges to be in the solution.

Table I gives the average running times of our algorithm, as well as the the
running times of the VNDS metaheuristic by Urošević et al. [2004]. Please note
that even though the latter times are larger, we can expect them to be substantially
smaller on recent machines, as they where achieved on a Pentium II with 450 MHz.
Unfortunately, this machine was too old to be considered in the current SPEC
performance evaluation tests [Spec 2008], so we cannot fairly compare these running

1For the grid instances, the values krel differ slightly.

ACM Journal Name, Vol. V, No. N, September 2008.

14 · Markus Chimani et al.

Table I. Average running times of DC− for (UBM) in seconds. The line with * considers krel =

50% for |V | ≤ 2000 and is achieved by using the asymmetry constraints (21). The times in small
font after the slashes are the times of VNDS reported in [Urošević et al. 2004]. We also give the

average gap between the optimum and the best solutions obtained by VNDS. Note that the times

for VNDS were achieved on a much slower machine (cf. text).

nds 500 1000 1500 2000 3000 4000 5000
krel

10% 2.8/15.3 13.0/52.9 44.4/123 52.2/152 148/225 279/534 506/719

20% 2.6/46.9 14.4 /95.9 52.3/153 120/211 255/627 781/955 1296/1089

30% 4.8/37.4 27.5/157 98.0/221 256/242 584/1135 1631/1083 4126/1381

40% 4.8/48.2 41.4/174 184.3/219 400/323 1205/915 3803/1481 7770/1693

50% 8.0/47.25 65.1/34.7 372/123 652/352 2212/785 8812/1468 14853/1892

—* 5.6/47.25 30.7/34.7 79.6/123 180/352 — — —

avg.
time 4.1/39.0 25.4/103 91.7/168 202/256 881/737 2853/1104 5919/1270

gap 1.5% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3%

Fig. 3. Speed-up factors for dense, regu-
lar and sparse graphs with |V | ≤ 2000 ob-

tained when asymmetry constraints (21)

are included in the initial LP

0,01

0,1

1

10

100

2 10% 20% 30% 40% 50% 60% 70% 80% 90% n-2

k, krel

dense

regular

sparse

sp
ee

d
-u

p

times. Rough estimates suggest a performance difference of about 150×. Overall,
the VNDS metaheuristic by Urošević et al. [2004] is clearly faster than our exact
approach, but on the other hand, it does not give optimal solutions. Table I also
shows the average differences between the optimal solutions and the previously best
known solutions (BKS), obtained by VNDS. We can observe that the running times
of the VNDS approach do not increase as strongly as our approach with increasing
k. We also report that the gaps of VNDS usually decrease with higher k.

In the following we will concentrate on the more common and diverse benchmark
set (BB), and compare our results to those of HyEA and ACO. An additional
advantage of this benchmark set is that the available data of the metaheuristics
are much more detailed. Unless specified otherwise, we always report on the DC−

algorithm, i.e., the Branch-and-Cut algorithm without using any heuristic for upper
bounds.

Algorithmic Behaviour. Figure 3 illustrates the effectiveness of the asymmetry
constraints (21) depending on increasing relative cardinality krel. We measured
the speed-up by the quotient t∅

tasy
, where tasy and t∅ denote the running time with

and without using (21), resprectively. The constraints allow a speed-up by more
than an order of magnitude for sparse, dense and regular graphs, but only for large
cardinality k ≥ n

2 . Our experiments show that for smaller k, a variable xri, for some
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 15

0,01

0,1

1

10

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

krel

sp
ee

d
-u

p

Fig. 4. Speed-up factors for the grid in-

stances of (BB) when gsec-constraints (22)

are separated. We have a diamond-shaped
datapoint for each instance and krel value.

This datapoint gives the corresponding

speed-up factor achieved by the use of
gsec-constraints. The short horizontal

bars denote the average speed-up over all

instances per krel.

i ∈ V , is quickly set to 1 and stays at this value until the final result. In these cases
the constraints cannot help and only slow down the algorithm. Interestingly, the
constraints are never profitable for the grid instances. For graphs with more than
2000 nodes using (21) is not possible due to memory restrictions, as the O(|V |2)
many asymmetry constraints are too much to handle. Hence, we ommitted these
graphs in Figure 3.

We can validate these observations by reconsidering (UBM). In Table I we see the
improvement achieved by introducing the asymmetry constraints for krel = 50%.

We also report on the experiments with the special gsec-constraints (22) within
the separation routine for the grid graphs. The clear advantage of these constraints
is shown in Figure 4, which shows the speed-up factor t∅

tgsec
obtained by the use of

these constraints.
Based on these results we apply a simple rule for all the remaining experiments:

We include the assymmetry constraints for all non-grid instances with less than
2500 nodes and k ≥ n

2 . For the grid instances we always separate the gsec-
constraints (22).

In Table II, we show that the computation time is not only dependent on the
graph size, but also on the density of the graph. Generally, we leave table cells
empty if there is no problem instance with the according properties.

As described in Section 5.3, we also investigate the influence of primal heuristics
in our Branch-and-Cut algorithm. For the tested instances with 1000 nodes the
comparison of the running times of DC+ and DC− is shown in Figure 5. In general,
our experiments show that DC+ is only 10–30% percent faster than DC− on average,
even for the large graphs. Hence, we conclude that a bounding heuristic is not
crucial for the success of our algorithm.

Runtime Comparison. Table III summarizes the average and median computa-
tion times of our algorithm, sorted by size and categorized according to the special
properties of the underlying graphs. We can observe that performance does not
differ significantly between the sparse, regular and dense graphs, but that the grid
instances are more difficult and require more computational power. This was also
noticed in [Ehrgott et al. 1997; Blum and Ehrgott 2003; Brimberg et al. 2006].

The behaviour of DC− also has a dependency on k, see Figures 6(a), 6(c) and 6(d):
for the sparse, dense, and regular instances the running time increases with increas-
ing k for up to 50%. For larger k it remains relatively stable. In contrast to this,

ACM Journal Name, Vol. V, No. N, September 2008.

16 · Markus Chimani et al.

Fig. 5. Relative speed-up
(tDC−−tDC+)

tDC−

(in percent) of DC+ compared to DC− for
the instances with 1000 nodes.

-20%

0%

20%

40%

60%

80%

10% 20% 30% 40% 50% 60% 70% 80% 90%

k, krel

dense

regular

sparse

re
l.

 s
p
ee

d
-u

p

Table II. Average CPU time (in seconds) over krel values of 10%, 20%, . . . , 50%, sorted by the

average degree of the graphs.

avg. deg set ≤500 nodes 1000 nodes

2.5 (BB) 1.0 8.1
4 (BB) 0.9 11.6
10 (BB) 2.2 18.8
20 (UBM) 4.6 32.3

36.3 (BB) 6.3 —

Table III. Average/median CPU time (in seconds) and the average speed-up factor of DC− to

HyEA for the instance set (BB). Cells are left empty if there exists no instance matching the given

criteria.

nodes 500 1000–1089 2500

group avg/med
tHyEA
tDC−

avg/med
tHyEA
tDC−

avg/med
tHyEA
tDC−

sparse 1.3/1.3 2.7 12.6/15.9 2.9 640.9/245.5 0.4
regular 1.0/1.0 3.9 15.3/16.9 7.5 — —

dense 5.0/5.1 4.9 19.2/21.4 2.9 — —
grid 7.0/1.0 0.6 82.4/74.9 1.7 3101.2/1973.7 0.2

solving the grid instances (cf. Figure 6(b)) is more difficult for the relatively small
k-values.

The original experiments for HyEA and ACO were performed on an Intel Pentium
IV, 3.06 GHz with 1GB RAM and a Pentium IV 2.4 GHz with 512MB RAM,
respectively. Using the well-known SPEC performance evaluation [Spec 2008], we
computed scaling factors of both machines to our computer: For the running time
comparison we divided the times given in [Blum 2006] and [Bui and Sundarraj
2004] by 1.75 and 2.33, respectively. Anyhow, note that these factors are elaborate
guesses at best and are only meant to help the reader to better evaluate the relative
performance.

Table III additionally gives the average factor of tHyEA
tDC−

, i.e., the running time of
our algorithm compared to (scaled) running time of HyEA. Analogously, Figure 6
shows the CPU time in (scaled) seconds of HyEA, ACO and our algorithm.

We observe that our DC− algorithm performs better than the best metaheuristics
in particular for the medium values of k, i.e., 40− 70% of |V |, on all instances with
up to 1089 nodes, except for the very dense graph le450 15a.g with 450 nodes
and 8168 edges, where HyEA was slightly faster. Interestingly, the gap between the
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 17

0,01

0,1

1

10

100

1000

2

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

n
-2

k, krel

se
c.

HyEA

ACO

DC-

(a) sparse steind5.g (1000 nodes, 1250

edges)

0,01

0,1

1

10

100

1000

2

9
%

1
8

%

2
8

%

3
7

%

4
6

%

5
5

%

6
4

%

7
3

%

8
3

%

9
2

%

n
-2 2

9
%

1
8

%

2
8

%

3
7

%

4
6

%

5
5

%

6
4

%

7
3

%

8
3

%

9
2

%

n
-2

k, krel

HyEA

ACO

DC-

se
c.

(b) grid 33x33-1 and 33x33-2 (1089 nodes,

2112 edges)

0,01

0,1

1

10

100

1000

2

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

n
-2

k, krel

HyEA

ACO

DC-

se
c.

(c) dense steind15.g (1000 nodes,

1250 edges)

0,01

0,1

1

10

100

1000
2

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

n
-2 2

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

n
-2

k, krel

HyEA
ACO
DC-

se
c.

(d) 4-regular g1000-4-1 and g1000-4-5.g (1000

nodes, 2000 edges)

Fig. 6. Running times of DC−, HyEA, and ACO (in seconds) for instances of (BB)
with ∼1000 nodes, depending on k. The figures for the grid and regular instances
show the times for two different instances of the same type, respectively.

0%

25%

50%

75%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
krel

grid (225)

regular (all)

sparse (2500)

eq
.

Fig. 7. Dependency of the BKS quality

on krel, for selected instances. The verti-

cal axis gives the percentage of the tested
instances for which the BKS provided in

[Blum and Blesa 2003] are optimal.

ACM Journal Name, Vol. V, No. N, September 2008.

18 · Markus Chimani et al.

Table IV. Quality of previously best known solutions (BKS) provided in [Blum and Blesa 2003]

for selected instances. “eq.” denotes the number of instances for which the BKS was optimal.
For the other instances where BKS was not optimal, we give the average relative gap (gapbks)

between OPT and BKS. For all instances we also give the average relative gap (gapavg) between

the average solution of the metaheuristic and OPT—including the 0-gaps for optimally solved
instances. All gaps are given in percent. Cells marked as “n/a” cannot be computed as the

necessary data for ACO is not available.

instance (|V |,|E|) eq. gapbks gapavg gapavg

ACO HyEA

regular g400-4-1.g (400,800) 10/11 0.09 0.07 0.04
regular g400-4-5.g (400,800) 8/11 0.19 0.31 0.35
regular g1000-4-1.g (1000,2000) 7/11 0.07 0.65 0.12
regular g1000-4-5.g (1000,2000) 3/11 0.08 0.45 0.35

sparse steinc5.g (500,625) 11/11 — 0.97 0.06
sparse steind5.g (1000,1250) 11/11 — 0.48 0.11
sparse steine5.g (2500,3125) 3/11 0.13 n/a 0.23

dense le450a.g (450,8168) 11/11 — n/a 0.04
dense steinc15.g (500,2500) 11/11 — 0.36 0.02
dense steind15.g (1000,5000) 10/11 0.22 0.38 0.04

grid 15x15-1 (225,400) 13/13 — 1.27 0.18
grid 15x15-2 (225,400) 13/13 — 2.04 0.12
grid 45x5-1 (225,400) 4/13 0.54 n/a 1.22
grid 45x5-2 (225,400) 10/13 0.08 n/a 0.13
grid 33x33-1 (1089,2112) 3/12 0.31 1.70 0.57
grid 33x33-2 (1089,2112) 3/12 0.39 2.48 0.49
grid 50x50-1 (2500,4900) 2/11 0.95 n/a 1.27
grid 50x50-2 (2500,4900) 2/11 0.55 n/a 0.82

heuristic and the optimal solution tends to be larger especially for medium values
of k (cf. next paragraph and Figure 7 for details).

Solution Quality. For each instance of (BB) we compared the previously best
known solutions, see [Blum and Blesa 2003], with the optimal solution obtained by
our algorithm, in order to assess their quality. Most of the best known solutions
(BKS) were found by HyEA, followed by ACO. Note that these solutions where
obtained by taking the best solutions over 20 independent runs per instance. In
Table IV we show the number of instances for which we proved that BKS was in fact
not optimal, and give the corresponding gap gapbks := BKS−OPT

OPT (in percent) per
graph, averaged over the settings for k. Here OPT denotes the optimal objective
value obtained by DC− and BKS denotes the best known solution obtained by either
ACO or HyEA. Analogously, we give the gaps gapavg := AVG−OPT

OPT (in percent),
where AVG denotes the average solution, over 20 runs, obtained by a metaheuristic.
We observe that—concerning the solution quality—metaheuristics work quite well
on instances with up to 1000 nodes and relatively small k. In particular, for k = 2
and k = n− 2 they always found an optimal solution.

Branch-and-Cut Specific Statistics. We conclude this part of the experimental
study by analyzing certain propertes of DC− to better understand why it performs
that well. Table V shows that the gaps between the LP-relaxation obtained at the
root node of the Branch-and-Bound tree and the integer optimal solution are very
ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 19

Table V. Behaviour of DC−, depending on graph type, size (|V |), krel (in %), and additional con-

straints (∅ denotes no additional constraints, asym and gsec denote the constraints (21) and (22),

respectively). We give the number of generated dcut-constraints (cuts), the number of additional
Branch-and-Bound nodes apart from the root (B&B), the gap between the LP-relaxation at the

root and the optimal integer solution (gap), the overall computation time (time) and the percent-

age of that time spent at the root problem (%rt). The table ignores the irrelevant settings k = 2
and k = |V | − 2.

sp
a
rs

e
,
d
e
n
se

,
re

g
u
la

r
g
ri

d
|V
|

5
0
0

1
0
0
0

2
5
0
0

2
2
5

1
0
8
9

2
5
0
0

k
re

l
∅

a
sy

m
∅

a
sy

m
∅

∅
g
se

c
∅

g
se

c
∅

g
se

c

cuts

≤
3
3

1
5
.3

6
.3

3
9
.7

1
1
.2

6
4
.0

6
2
2
.3

6
7
4
.2

9
6
1
.7

7
1
0
.0

2
9
7
8
.3

2
9
2
4
.0

3
4
–
6
6

3
8
.1

5
.3

1
1
5
.7

1
4
.5

2
0
9
.3

2
4
1
.4

1
7
8
.5

7
5
2
.7

4
9
9
.0

1
7
7
0
.0

1
3
5
8
.0

≥
6
6

1
1
5
.5

6
.3

2
5
0
.7

2
2
.2

4
6
0
.0

1
0
7
.8

6
9
.9

4
1
0
.3

2
4
2
.0

1
1
7
3
.7

7
1
3
0
.0

B&B

≤
3
3

7
.0

2
.9

8
.1

3
.8

5
.3

8
4
.7

1
0
8
.8

7
.3

7
.7

9
.5

1
6
.3

3
4
–
6
6

2
.0

1
.1

5
.8

1
.0

5
.0

5
.8

9
.1

3
.3

4
.8

2
8
.5

2
.8

≥
6
6

0
.7

0
.3

0
.8

0
.5

7
.7

0
.3

0
.4

1
.7

1
.8

0
.8

0
.5

gap

≤
3
3

0
.1

3
9
%

0
.0

3
2
%

0
.0

0
8
%

2
.6

4
5
%

0
.0

5
3
%

0
.0

4
6
%

3
4
–
6
6

0
.0

0
6
%

0
.0

0
3
%

0
.0

0
1
%

0
.1

4
8
%

0
.0

0
2
%

0
.0

0
1
%

≥
6
6

0
.0

0
1
%

0
.0

0
1
%

0
.0

0
0
%

0
.0

0
6
%

0
.0

0
1
%

0
.0

0
0
%

time

≤
3
3

1
.9

7
.2

1
6
.9

5
9
.6

4
5
.3

1
4
.5

2
4
.7

1
5
2
.5

1
0
2
.5

6
8
2
7
.1

6
9
0
1
.9

3
4
–
6
6

4
.6

3
.8

2
6
.3

2
6
.6

3
0
1
.8

3
.5

3
.1

1
6
6
.8

9
7
.4

3
2
0
1
.4

2
2
2
6
.8

≥
6
6

2
4
.1

3
.2

7
1
.2

2
1
.9

1
2
6
0
.9

1
.2

0
.8

1
1
7
.8

7
2
.6

2
7
9
0
.6

1
6
7
2
.6

%rt

≤
3
3

6
7
.1

%
8
0
.3

%
6
8
.8

%
7
6
.1

%
7
5
.9

%
1
8
.6

%
2
6
.4

%
8
5
.1

6
%

8
3
.3

%
8
2
.5

%
6
9
.1

%
3
4
–
6
6

9
3
.3

%
8
8
.9

%
9
0
.9

%
9
3
.3

%
8
8
.6

%
8
0
.4

%
8
2
.6

%
9
5
.9

%
9
4
.1

%
9
7
.2

%
9
8
.8

%
≥

6
6

9
6
.3

%
9
6
.7

%
9
6
.5

%
9
7
.1

%
9
2
.8

%
9
8
.9

%
9
7
.8

%
9
5
.9

%
9
8
.0

%
9
9
.0

%
9
9
.5

%

ACM Journal Name, Vol. V, No. N, September 2008.

20 · Markus Chimani et al.

Fig. 8. Dependency of the number of

generated dcut-constraints on krel, for in-

stances with 1000–1089 nodes. The solid
lines denote the parameter choices used in

the comparative study. When using the

asymmetry constraints (asym), the lines
for sparse, regular, and dense graphs be-

come visually indistinguishable; hence we

show their average.
0

200

400

600

800

1000

1200

10% 20% 30% 40% 50% 60% 70% 80% 90%

grid
grid gsec
dense
regular
sparse
asym

krel

#dc

Table VI. Average running times (in seconds) of DC− using asymmetry constraints (21), for

(UBM) instances with higher krel.

|V | 500 1000 1500 2000
krel

60% 6.3 33.0 68.0 177.9
70% 5.0 27.8 59.8 165.6
80% 5.0 30.7 63.2 156.5
90% 4.4 32.4 53.8 151.1

tight and in fact often optimal. Furthermore, we observe that we need only very
few cuts and branches to solve the whole ILPs.

The most interesting fact—in accordance with the runtime dependency on k—is
visualized in Figure 8, selecting the graphs with 1000 nodes as a representative
example. We see that for the sparse, regular, and dense graphs, the number of
separated dcut-constraints grows with increasing k. Also observe that when using
the asymmetry constraints (21), the number of necessary dcut-constraints drops
further. In contrast to these observation, we see that for the grid graphs the number
of required cuts is actually decreasing with growing k.

Further Instances. We investigated our algorithm’s behaviour on two additional
sets of graphs, not considered in other practical papers for the KCT problem.

(UBM) with larger cardinality: In contrast to the originally suggested cardi-
nalities for (UBM), we also performed tests for krel = {60%, . . . , 90%}. This
allows us to investigate our algorithm’s behaviour for large cardinalities and the
influence of the asymmetry constraints (21). Table VI summarizes the average
running times of our algorithm. We are able to solve all instances to provable
optimality. The running times are even slightly decreasing for the larger k values,
due to the help of (21). Overall, these results, as well as the speedup observed in
Table I, confirms our finding that these constraints are beneficial for krel ≥ 50%.

Hypercubes: This benchmark set was introduced by Rossetti et al. [2001] and
is also part of SteinLib [Koch et al. 2003]. It contains 6 hypercube graphs of
dimension 6–12 with edge weights uniformly distributed in the interval [100,110].
A hypercube of dimension d has 2d nodes interconnected to form the edges of a
hypercube. We chose this benchmark set, as these graphs turned out to be highly
challenging for the Steiner tree problem, as, e.g., the structure and the similar
edge weights do not allow strong preprocessing strategies. In constrast to these

ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 21

Table VII. Average running times for the hypercube instances.

dimension 6 7 8 9 10 11 12
of nodes 64 128 256 512 1024 2048 4096
avg. time in sec. 0.03 0.15 1.02 8.73 44.63 289.77 2732.34

observation, our experiments show that in the context of the KCT and for the
tested values of krel = {10%, . . . , 90%}, these instances can be efficiently solved
using DCut, cf. Table VII.

7. CONCLUSION

With the presented algorithm, we are able to optimally solve real-world sized in-
stances of the k-Cardinality tree problem. In particular, we can solve all widely used
benchmark instances to provable optimality. The running times are comparable,
and for up to 1000 nodes even better, than the state-of-the-art metaheuristics.

Our paper shows that recent advances in computational power and ILP-solvers, if
used in conjunction with strong ILP-formulations, allow exact algorithms to become
feasible or even preferable alternatives to other, e.g., metaheuristic, approaches.
Our results can therefore be seen as an example that we should not easily give up
on exact algorithms only because the problem is NP-hard or because old approaches
did not show their practical applicablility.

Although not the focus of this paper, we also applied our algorithm to known
NKCT instances, cf. [Brimberg et al. 2006], using the transformation described in
Section 4.1. Note that the transformation introduces unfortunate symmetries in the
resulting KCA instance, as all arcs leading into the same node have identical costs.
It would be worthwhile to investigate whether such a structure can be exploited via
additional constraints, strengthening the DCUT formulation. For our experiments
we use a permutation strategy on the arc weights to break the symmetry and
thereby improve the practical behaviour of DC−. Preliminary experiments show
that we can solve all grid instances considered by Brimberg et al. [2006] (containing
graphs with up to 2500 nodes) to provable optimality in under two hours. For
graphs with up to 1600 nodes we require under half an hour. The special purpose
metaheuristic for the NKCT is faster than our exact approach, though not optimal
in most cases.

Finally, we want to conclude that even though there are (often LP-based) approx-
imation algorithms for the KCT problem, we are unable to evaluate their practical
performance and applicability. Unfortunately, they are only considered in a the-
oretical setting and there are no published implementations or studies. We hope
that at some point the research in this interesting field will be taken into practice
to experimentally evaluate its advantages and drawbacks.

ACKNOWLEDGMENT

We would like to thank Christian Blum and Dragan Urošević for kindly providing
us with test instances and sharing their experience on this topic.

REFERENCES

Arora, S. and Karakostas, G. 2000. A (2+ε)-approximation algorithm for the k-MST problem.

In Proc. ACM-SIAM Symposium on discrete algorithms (SODA’00). ACM Press, 754–759.

ACM Journal Name, Vol. V, No. N, September 2008.

22 · Markus Chimani et al.

Blesa, M. J. and Xhafa, F. 2000. A C++ implementation of tabu search for k-cardinality tree

problem based on generic programming and component reuse. In Proc. Net.ObjectDays 2000.
tranSIT GmbH, 648–652.

Blum, A., Ravi, R., and Vempala, S. 1996. A constant-factor approximation algorithm for the

k-MST problem. In Proc. ACM Symposium on Theory of Computing (STOC’96). ACM Press,
442–448.

Blum, C. 2006. A new hybrid evolutionary algorithm for the huge k-cardinality tree problem. In

Proc. Genetic and Evolutionary Computation Conference (GECCO’06). ACM Press, 515–522.

Blum, C. 2007. Revisiting dynamic programming for finding optimal subtrees in trees. European

Journal of Operational Research 177, 1, 102–115.

Blum, C. and Blesa, M. 2003. KCTLIB – a library for the edge-weighted k-cardinality tree
problem. http://iridia.ulb.ac.be/ cblum/kctlib/.

Blum, C. and Blesa, M. 2005a. Combining ant colony optimization with dynamic programming

for solving the k-cardinality tree problem. In Proc. International Work-Conference on Artificial
Neural Networks (IWANN’05). LNCS, vol. 3512. Springer, 25–33.

Blum, C. and Blesa, M. J. 2005b. New metaheuristic approaches for the edge-weighted k-

cardinality tree problem. Computers & OR 32, 1355–1377.

Blum, C. and Ehrgott, M. 2003. Local search algorithms for the k-cardinality tree problem.

Discrete Applied Mathematics 128, 2–3, 511–540.

Brimberg, J., Urošević, D., and Mladenović, N. 2006. Variable neighborhood search for the
vertex weighted k-cardinality tree problem. European Journal of Operational Research 171, 1,

74–84.

Bui, T. N. and Sundarraj, G. 2004. Ant system for the k-cardinality tree problem. In Proc.
Genetic and Evolutionary Computation Conference (GECCO’04). LNCS, vol. 3102. Springer,

36–47.

Chimani, M., Kandyba, M., and Mutzel, P. 2007. A new ILP formulation for 2-root-connected
prize-collecting Steiner networks. In Proc. European Symposium on Algorithms (ESA’07).

LNCS, vol. 4698. Springer, 681–692.

Chudak, F. A., Roughgarden, T., and Williamson, D. P. 2001. Approximate k-MSTs and
k-Steiner trees via the primal-dual method and Lagrangean relaxation. In Proc. Integer Pro-

gramming and Combinatorial Optimization (IPCO ’01). LNCS, vol. 2081. Springer, 60–70.

Ehrgott, M. and Freitag, J. 1996. K TREE/K SUBGRAPH: a program package for minimal
weighted k-cardinality tree subgraph problem. European Journal of Operational Research 1, 93,

214–225.

Ehrgott, M., Freitag, J., Hamacher, H., and Maffioli, F. 1997. Heuristics for the k-
cardinality tree and subgraph problem. Asia Pacific Journal of Operational Research 14, 1,
87–114.

Fischetti, M., Hamacher, W., Jornsten, K., and Maffioli, F. 1994. Weighted k-cardinality
trees: complexity and polyhedral structure. Networks 24, 11–21.

Gale, D. 1957. A theorem on flows in networks. Pacific Journal of Mathematics 7, 1073–1082.

Garg, N. 1996. A 3-approximation for the minimum tree spanning k vertices. In Proc. Symposium
on Foundations of Computer Science (FOCS’96). IEEE Computer Society, 302–309.

Garg, N. 2005. Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In Proc.
ACM Symposium on Theory of Computing (STOC’05). ACM Press, 396–402.

Goemans, M. X. and Myung, Y. 1993. A catalog of Steiner tree formulations. Networks 23,
19–28.

Goemans, M. X. and Williamson, D. P. 1995. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24, 2, 296–317.

Joernsten, K. and Lokketangen, A. 1997. Tabu search for weighted k-cardinality trees. Asia

Pacific Journal of Operational Research 14, 9–26.

Koch, T. and Martin, A. 1998. Solving Steiner tree problems in graphs to optimality. Net-

works 32, 207–232.

ACM Journal Name, Vol. V, No. N, September 2008.

Obtaining Optimal k-Cardinality Trees Fast · 23

Koch, T., Martin, A., and Voß, S. 2003. SteinLib – an updated library on Steiner tree problems

in graphs. http://elib.zib.de/steinlib.

Ljubić, I. 2004. Exact and memetic algorithms for two network design problems. Ph.D. thesis,
Technische Universität Wien.

Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., and Fischetti, M. 2006.

An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem.
Mathematical Programming, Series B 105, 2–3, 427–449.

Ravi, R., Sundaram, R., Marathe, M. V., Rosenkrantz, D. J., and Ravi, S. S. 1996. Spanning

trees – short or small. SIAM Journal of Discrete Mathematics 9, 128–200.

Rossetti, I., de Aragão, M. P., Ribeiro, C., Uchoa, E., and Werneck, R. F. 2001. New
benchmark instances for the Steiner problem in graphs. In Proc. Metaheuristics International

Conference (MIC’01). 557–561.

Segev, A. 1987. The node-weighted Steiner tree problem. Networks 17, 1, 1–17.

Spec. 2008. Standard performance evaluation corporation. http://www.spec.org/.

Urošević, D., Brimberg, J., and Mladenović, N. 2004. Variable neighborhood decomposition

search for the edge weighted k-cardinality tree problem. Computers & OR 31, 8, 1205–1213.

Wolsey, L. A. 1998. Integer programming. Wiley-Interscience.

Received April 2008; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, September 2008.

