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Abstract

Two-person interdiction games represent an important modeling concept for applications in market-
ing, defending critical infrastructure, stopping nuclear weapons projects or preventing drug smuggling.
In these problems, two non-cooperative players (the leader and the follower) share a set of items, that
may be used by at most one of the two players, and the leader may select some items and interdict their
usage by the follower. The two players optimize over the same objective function, but in the opposite
direction.

We present an exact branch-and-cut algorithm for interdiction games, under the assumption that
feasible solutions of the follower problem satisfy a certain monotonicity property. Prominent examples
that fall into this category are knapsack interdiction, matching interdiction, and packing interdiction
problems. Our branch-and-cut algorithm uses a solution scheme akin to Benders decomposition, based
on a family of so-called interdiction cuts. We present modified and lifted versions of these cuts along
with exact and heuristic procedures for the separation of interdiction cuts, and heuristic separation
procedures for the other versions. In addition, we derive further valid inequalities and present a new
heuristic procedure.

We computationally evaluate the proposed algorithm on a benchmark of 360 knapsack interdiction
instances from literature, including 27 instances for which the optimal solution was not known. Our
approach is able to solve each of them to optimality within about one minute of computing time on
a standard PC (in most cases, within just seconds), and is up to 4 orders of magnitude faster than
any previous approach from the literature. To further assess the effectiveness of our branch-and-cut
algorithm, an additional computational study is performed on 144 randomly generated instances based
on 0/1 multidimensional knapsack problems.

1 Introduction and Problem Definition

In many real-world optimization scenarios, a decision maker is not deciding alone, but has to make her
decisions taking decisions of other parties into account. In its simplest form, such a decision process can
be modeled as a two-player Stackelberg game (Von Stackelberg 1952). In such a game, there are two non-
cooperating players, denoted as leader and follower, taking their decisions in a sequential way, i.e., in the first
round the leader takes an action, and in the second round the follower reacts to it. Thereby, follower decisions
are influenced by the leader who possesses a complete knowledge of the follower optimization setting.

Problems of this nature can be tackled via bilevel optimization, a problem class that received an increased
attention in recent years, and was used to model important problems such as design of pricing mechanisms
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in various areas (Labbé et al. 1998, Brotcorne et al. 2008, Gilbert et al. 2015, Zugno et al. 2013), capacity
planning in a competitive environment (Garcia-Herreros et al. 2016), computational biology (Saharidis and
Ierapetritou 2009), ballistic missile defense (Brown et al. 2005a), and machine learning (Kunisch and Pock
2013) among others. Due to their relevance, increasingly effective general-purpose solvers have been designed
very recently; see, e.g., the work of Moore and Bard (1990), DeNegre (2011), Xu (2012), Xu and Wang (2014),
Kleniati and Adjiman (2015), Fischetti et al. (2016a,b) for mixed-integer linear bilevel problems.

In this article we consider a family of mixed-integer linear bilevel problems known as interdiction games.
This family of problems covers important and diverse applications, such as critical infrastructure defense
(Brown et al. 2005b, 2006), stopping nuclear weapons projects (Brown et al. 2009, Morton et al. 2007) or
drug smuggling (Washburn and Wood 1995), and marketing (DeNegre 2011). These problems can be seen
as two-player zero-sum Stackelberg games where the leader and follower typically share a set of items, and
the leader can select some items and interdict their usage by the follower. The adversarial nature of the
game is expressed through the common objective function that is optimized in the opposite direction by the
two players. Typically, connection between the leader and the follower optimization problems is established
through binary decision variables (“interdiction variables”) that are controlled by the leader. The only
constraints in the follower subproblem involving leader decision variables impose that, if an interdiction
variable is selected by the leader, then certain actions of the follower are inhibited. Very often these actions
correspond to setting values of certain follower variables to zero, in which case a 1-1 correspondence between
an interdiction leader variable and an interdicted follower variable exists.

More precisely, we focus on Interdiction Games (IGs) stated in the following form:

min
x∈X

max
y∈Rn2

dT y (1)

Qy ≤ Q0 (2)

0 ≤ yj ≤ uj(1− xj), ∀j ∈ N (3)

yj integer, ∀j ∈ Jy (4)

where
X = {x ∈ Rn1 : Ax ≤ b, xj integer ∀j ∈ Jx, xj binary ∀j ∈ N}

denotes the set of feasible leader solutions, and n1 and n2 are the number of leader variables x and follower
variables y, respectively. We assume that d, Q, Q0, u, A, b are given rational matrices/vectors of appropriate
size. In particular, vector u provides finite upper bounds on the follower variables yj involved in constraints
(3).

The set N appearing in (3) will be called the item set, and corresponds the n = |N | items subject
to possible interdiction. Therefore, the interpretation of constraints (3) is that the leader can completely
“forbid” an item j ∈ N by setting xj = 1, but if she does not do so, then an arbitrary number of these
items (up to uj) can be taken by the follower. Set Jx identifies instead the non-empty subset of indices
of the integer-constrained variables in x, among which those in N ⊆ Jx identify the indices of interdiction
variables, that are assumed to be binary.

As to the follower, her variable set {1, . . . , n2} is partitioned into (N,R), where R denotes the indices
of the y variables that are not directly linked to x variables via constraints (3). Observe that the inner
maximization problem over y (namely, the follower problem for a fixed x) can be either a Linear Program
(LP) or a Mixed Integer Linear Program (MILP), depending on whether the set Jy of follower integer-
constrained variables is empty or not. Also note that we do not require N ⊆ Jy, i.e., interdicted follower
variables yj ’s with j ∈ N are not necessarily required to be integer, while the corresponding xj ’s must be
binary.

Our model generalizes previous proposals from the literature, in that it allows for an “extended formula-
tion” of the follower subproblem that makes use of the “additional variables” yj with j 6∈ N . In the following,
we will denote by yN = (yj)j∈N the vector containing only the variables that can be interdicted, and by
yR = (yj)j∈R the vector of remaining decision variables at the follower level. When useful, we will also use
notation Q = (QN , QR) and dT = (dTN , d

T
R).
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Whenever x ∈ X, we will say that x is a feasible interdiction policy. Given a feasible interdiction policy
x̂, we will say that y ∈ Rn2 is a feasible follower solution for x if y satisfies (2), (3), and (4). In addition,
we will denote by y∗(x̂) an optimal follower solution obtained by solving (1)-(4) for x = x̂. We assume that
variable bounds on x and y other than those in (3), if any, are explicitly included in constraints Ax ≤ b and
Qy ≤ Q0, respectively. Notation Aj or Qj will be used for the j-th column of matrix A or Q, respectively.

As customary, in what follow we will assume that the follower problem is feasible and bounded for any
feasible interdiction policy x.

As observed above, IGs are a special case of more general bilevel optimization problems in which the
leader and the follower take their decisions in a hierarchical fashion, but their own objective functions and
the interplay between their decisions can be of a more general form. In interdiction games (as opposed to
the more general bilevel optimization) there is no need to distinguish between the optimistic and pessimistic
setting, since both players optimize the same objective function—but in the opposite direction.

The following (downward) monotonicity is an important assumption made throughout this article, that
will be exploited for deriving a valid branch-and-cut solver based on interdiction constraints.

Assumption 1 (Downward Monotonicity). We assume QN ≥ 0, hence the feasible follower solutions satisfy
the following property

“if ŷ = (ŷN , ŷR) is a feasible follower solution for a given x and y′ = (y′N , ŷR)
satisfies constraints (4) and 0 ≤ y′N ≤ ŷN , then y′ is also a feasible follower solution for x”.

In particular, if all follower variables are binary and R = ∅, this assumption implies that the family of sets
S := {S ⊆ N : QχS ≤ Q0} ⊆ 2N defines an independent system, where χS denotes the 0/1 incidence vector
of S. In general, it is not necessary to assume integrality on y variables for the validity of our approach.

Even though Assumption 1 may appear quite restrictive, it is satisfied by the knapsack interdiction
problem, which has been shown to be Σ2-hard by Caprara et al. (2013). Moreover, it has been shown by
Dinitz and Gupta (2013) and Zenklusen (2010) that monotone IGs remain NP-hard, even when |N | = n1 = n2

and the follower problem is a pure LP, i.e., Jy = ∅.
Due to monotonicity, we will also assume without loss of generality that dN > 0. Otherwise, all variables

yj with j ∈ N and dj ≤ 0 could be fixed to zero and removed from the model.

Applications A prominent example of an interdiction game that satisfies monotonicity property is the
Knapsack Interdiction Problem (KIP) studied by Caprara et al. (2016), DeNegre (2011) and Tang et al.
(2015). The problem models a Stackelberg game in which both leader and follower own their private knap-
sacks and fill them by choosing items from a common item set N . In the first step, the leader chooses some
of the items while respecting her own knapsack capacity (called interdiction budget). In the second step, the
follower solves a 0/1 knapsack problem and selects some of the items that are not taken by the leader to
maximize the profit while respecting her capacity constraint. The goal of the leader is to obtain the worst
possible outcome for the follower. As mentioned in DeNegre (2011), a typical application of this problem
arises in marketing, when a company A dominates the market, and company B wishes to design a marketing
campaign, while choosing the specific geographic regions to target, subject to the available budget. When-
ever companies A and B target the same region, the marketing campaign of company B fails. Consequently,
the goal of the hostile company A is to minimize the established benefit of company B. In DeNegre (2011),
the author solves KIP through a cutting plane procedure in which the problem is reformulated as a single
level problem with an exponential number of constraints, to be separated on-the-fly by using disjunctive
cut-generating LPs. In Caprara et al. (2016), a problem-tailored approach is introduced; in this iterative
MILP-based procedure, the lower and upper bounds are sequentially improved, until an optimal solution
(or a given timelimit) is reached. Finally, due to the simplicity of its definition, the knapsack interdiction
problem is a commonly used benchmark for testing solvers for bilevel optimization as well. In Tang et al.
(2015), the authors propose three ideas for deriving a generic solver for interdiction games. A new generic
solver for bilevel mixed-integer programs has been recently proposed in Fischetti et al. (2016a). In both
papers, KIP instances constitute an important part of the considered benchmark set.
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Other examples of problems that can be tackled by the solver proposed in this article are interdiction
games in which the follower solves a 0/1 multidimensional knapsack problem (see, e.g., Kellerer et al. 2004)
or a 0/1 multiple-knapsack problem (see, e.g., Martello and Toth 1990). Similarly, monotone interdiction
games in which the follower solves a packing LP problem are studied in Dinitz and Gupta (2013), where
approximation algorithms are proposed.

Interdiction games, in general, are very important in the applications arising in the so-called attacker-
defender games. In particular, interdiction games on networks have received a considerable amount of
attention in the recent literature; see, for example, the shortest-path interdiction problem given in Israeli
and Wood (2002), or a more recent survey on network interdiction given in Wood (2010), but also in
Tang et al. (2015). Most of these problems, however, do not satisfy the monotonicity property. Notable
exceptions are the network interdiction games in which the leader chooses a subset of edges (or nodes) to
interdict (subject to a given interdiction budget), whereas the follower solves a maximum-weight matching
or a maximum independent set problem. In has been shown in Zenklusen (2010) that matching interdiction
remains NP-complete even when restricted to bipartite graphs with unit edge weights and unit interdiction
costs. Complexity results for some special cases of interdiction games over independent sets are given in
Bazgan et al. (2011).

Our Contribution For the special family of interdiction games with the monotonicity property, we propose
a Benders-like branch-and-cut algorithm in which the problem is reformulated as a single-level problem (with
an exponential number of constraints called interdiction cuts) and all follower variables are projected out.

We introduce a new family of interdiction cuts that generalize those given by Caprara et al. (2016) and
Ralphs (2015) for the special case R = ∅, giving a formal proof of their validity for general monotone IGs
and showing that they are instead not valid for the non-monotone case. We then propose a procedure for
lifting these cuts, along with a family of related cuts whose validity is based on certain integer disjunc-
tions. We also introduce a family of new cuts exploiting dominances among items. For interdiction cuts,
exact and heuristic separation procedures are designed, while for the other families of cuts we propose fast
heuristic separation algorithms. Moreover, we present a fast primal heuristic procedure for quite general
(not necessarily monotone) interdiction games. This heuristic turns out to be extremely effective on some
classes of instances, as its execution within a pre-processing procedure dramatically reduces the computing
time needed to prove optimality. In our computational study, we consider benchmark sets for the knapsack
interdiction problem proposed by Caprara et al. (2016), DeNegre (2011) and Tang et al. (2015), and show
that our new branch-and-cut algorithm significantly outperforms the specialized codes proposed in Caprara
et al. (2016) and DeNegre (2011), as well as the state-of-the art approaches for interdiction games (Tang
et al. 2015) and for general bilevel mixed integer programming (Fischetti et al. 2016a). We test 360 knapsack
interdiction instances from the literature, and prove the optimality for all of them—including the 27 problems
that were previously unsolved. Our algorithm needs at most 84 seconds for solving any of these instances
on a standard PC (for only 4 of these 360 instances, it requires more than 10 seconds), thus outperforming
previous approaches from literature by orders of magnitudes. In addition to the above knapsack interdiction
instances from literature, we also generated 144 random instances based on 0/1 multidimensional knapsack
problems, with the aim of analyzing the dependency of our approach on the number of leader and follower
constraints. To the best of our knowledge, this is by far the largest computational study on interdiction
games reported in the literature.

Outline The basic idea of a branch-and-cut framework using interdiction cuts is provided in Section 2,
where we also provide theoretical foundations for deriving modified/lifted interdiction cuts, as well as valid
inequalities based on dominance criteria. In Section 3 we provide implementation details of our framework,
including separation algorithms and a primal heuristic procedure. Finally, Section 4 reports our computa-
tional study, while Section 5 gives a short conclusion.
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2 Interdiction Cuts

In this section we first recall the idea of reformulating interdiction games as single-level problems with
an exponential number of constraints, called interdiction cuts. This idea has been frequently used in the
interdiction literature; see, e.g., the seminal paper by Israeli and Wood (2002) or the survey by Wood (2010).
However, in most of the cases, the quality of derived cuts is not satisfactory, since large big-M coefficients
(or indicator constraints) must be used. In the remainder of this section we demonstrate that big-M values
can be avoided (resulting in much tighter interdiction cuts), under the assumption that the follower satisfies
the monotonicity property. We then provide a counter-example that shows that these specific interdiction
cuts are not valid if the monotonicity property is violated. We finally conclude this section by providing
additional theoretical results for strengthening and lifting the basic form of interdiction cuts.

2.1 Single-Level Reformulation

For a given x ∈ X we define the value function as follows:

Φ(x) = max
y∈Rn2

dT y (5)

Qy ≤ Q0 (6)

0 ≤ yj ≤ uj(1− xj), ∀j ∈ N (7)

yj integer, ∀j ∈ Jy (8)

so that problem (1)-(4) can be restated in the Rn1+1 space as

min
x∈Rn1 ,w∈R

w (9)

w ≥ Φ(x) (10)

Ax ≤ b (11)

xj integer, ∀j ∈ Jx (12)

xj ∈ {0, 1}, ∀j ∈ N. (13)

Constraint (10) can be rewritten in the following different form, see, e.g., (Wood 2010). We consider an
alternative formulation of the follower subproblem (5)–(8) in which interdiction constraints (7) are removed
and a penalization term −

∑
j∈N Mjxjyj is added to the objective function. For sufficiently large values of

multipliers Mj , this penalty term guarantees that any optimal solution of the follower has xjyj = 0 ∀j ∈ N ,
no matter the choice of x. For a given x, the follower subproblem can then be rewritten as

Φ(x) = max{dT y −
∑
j∈N

Mjxjyj : y ∈ Y }, (14)

where

Y = {y ∈ Rn2 : Qy ≤ Q0, 0 ≤ yj ≤ uj ∀j ∈ N, yj integer ∀j ∈ Jy}.

Note that, using the reformulation above, the feasible space Y of the follower does not depend on the
interdiction policy x anymore. Furthermore, for a given x, the objective function is linear, which means
that its optimal solution corresponds to a vertex of conv(Y ). Consequently, the follower subproblem can be
restated as

Φ(x) = max{dT y −
∑
j∈N

Mjxjyj : y ∈ Ŷ }, (15)

where Ŷ contains all extreme points of conv(Y ).
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One can therefore derive a reformulation of the interdiction game as a single-level MILP akin to Benders
decomposition (with the follower variables y being projected out of the model), namely:

min
x∈Rn1 ,w∈R

w (16)

w ≥ dT ŷ −
∑
j∈N

Mjxj ŷj ∀ŷ ∈ Ŷ (17)

Ax ≤ b (18)

xj integer, ∀j ∈ Jx (19)

xj binary, ∀j ∈ N. (20)

In the following, we refer to (17) as interdiction cuts.
The above reformulation projects y variables out from the model and allows for the application of a

Branch-and-Cut (B&C) procedure in which interdiction cuts are initially removed from the model, and
then dynamically added through the following separation procedure: Given an optimal (possibly, fractional)
solution (w∗, x∗) at the current B&C node, the follower subproblem is solved for x = x∗ to obtain an optimal
point y∗ ∈ Ŷ . If the current solution violates the interdiction cut (17) associated with ŷ = y∗, then this
globally-valid cut is added to the current formulation; otherwise no interdiction cut needs to be generated
for (w∗, x∗).

The single-level reformulation above has already been used in the literature within an iterative cutting
plane procedure; see, e.g. the procedure called CP in (Caprara et al. 2016) or Israeli and Wood (2002) and
Wood (2010). In all these approaches, however, every time a single interdiction cut is added, the current
model is solved as a MILP, before the new cut is separated in a cutting-plane fashion.

2.2 Interdiction Cuts for Followers with the Property of Monotonicity

A crucial point for the effectiveness of the proposed reformulation is how to determine appropriate values
for Mj ’s so as to guarantee tight lower bounds—the smaller these coefficients the better the formulation.
The choice of Mj ’s is problem-dependent; see, e.g., (Wood 2010). For the KIP, it has been observed by
Caprara et al. (2016) and Ralphs (2015) that the values can be set as Mj = dj for all j ∈ N , though no
formal proof for this result has been stated explicitly. In the following, we prove validity of these tightened
constraints, not only for the KIP, but for the broader family of interdiction games satisfying the property of
monotonicity—allowing, in particular, for R 6= ∅.

Theorem 1. The following interdiction cuts are valid for (9)-(13):

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj), ∀ŷ ∈ Ŷ . (21)

Proof. Proof. Let ŷ ∈ Ŷ and take any feasible solution (w, x) to (9)-(13). Define a follower solution
y′ = (y′N , ŷR) where y′j = ŷj(1 − xj) for all j ∈ N . By construction, we have y′j = 0 if xj = 1 and y′j = ŷj
otherwise. Thus, y′ satisfies (6) (as y′R = ŷR, y′N ≤ ŷN , and QN ≥ 0) along with constraints (7) (as y′j = 0
whenever xj = 1) and the integrality requirements (8), i.e., y′ is a feasible follower solution for the given x.
It then follows that

w ≥ Φ(x) ≥ dT y′ = dTRy
′
R + dTNy

′
N =

∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj),

as claimed.

Note that the point ŷ ∈ Ŷ in the theorem above does not depend on x, i.e., it does not have to satisfy
any complementarity condition of the form (7). Furthermore, we observe that interdiction cuts (21) are valid
not only for extreme points ŷ ∈ Ŷ , but also for any arbitrary point in Y .
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Figure 1: (a) Example of the assignment interdiction problem. Weight of the horizontal edges is equal to
10, weight of the remaining edges is one. (b) and (c) show two possible solutions y∗(x) ∈ Ŷ for two feasible
interdiction policies x ∈ X: gray edges are interdicted by the leader, and red edges are chosen by the follower.
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It is worth observing that, in case R 6= ∅, the above proof remains valid even if Assumption 1 is relaxed
as follows: “if ŷ = (ŷN , ŷR) is a feasible follower solution for a given x and y′N satisfies constraints (4) and
0 ≤ y′N ≤ ŷN , then there exists y′R with dT y′R ≥ dT ŷR such that y′ = (y′N , y

′
R) is a feasible follower solution

for x”.

Theorem 2. Interdiction game (9)-(13) can be reformulated by replacing constraint (10) with the family of
(linear) interdiction cuts (21).

Proof. Proof. Observe that there are exponentially many interdiction cuts (21). We have to show that, for
any feasible interdiction policy x, these inequalities imply w ≥ Φ(x). Indeed, the interdiction inequality for
ŷ = y∗(x) reads

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

djy
∗
j (x)(1− xj) =

∑
j∈R

dj ŷj +
∑
j∈N

djy
∗
j (x) = Φ(x)

where the first equality follows from the fact that, for all j ∈ N , y∗j (x) · xj = 0 due to (7).

Definition 1. A follower solution ŷ = (ŷN , ŷR) ∈ Ŷ is maximal if there is no (y′N , ŷR) ∈ Ŷ \ {ŷ} such that
y′N ≥ ŷN .

The following result shows that, among all extreme points ŷ ∈ Ŷ , it is in fact sufficient to consider only
maximal solutions. This fact can be computationally exploited to avoid the generation of useless interdiction
cuts; see Section 3 for further details.

Theorem 3. Let ŷ = (ŷN , ŷR) ∈ Ŷ be nonmaximal and let y′ = (y′N , ŷR) ∈ Ŷ \ {ŷ} be such that y′N ≥ ŷN .
Then, the interdiction inequality (21) for ŷ is dominated by that for y′.

Proof. Proof. Obvious as, for all j ∈ N , xj ∈ [0, 1] implies y′j(1− xj) ≥ ŷj(1− xj).

Examples

Example 1. In the following example we show that by dropping our assumption that the follower solutions
satisfy the monotonicity property, the resulting interdiction cuts (21) are not valid. To this end, consider
a problem instance in which the follower solves the maximum-weight assignment problem (i.e., a perfect
matching on a bipartite graph), and the leader tries to minimize its outcome by interdicting some of the
edges of the input bipartite graph.

Consider the graph depicted in Figure 1, and assume that the interdiction budget allows the leader to
interdict at most one edge. If the leader interdicts edge 3a, we have Φ(x) = 30 and y∗(x) = χ{1a,2b,3c}.
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The resulting interdiction cut for ŷ = y∗(x) would be w ≥ 30 − 10x1a − 10x2b − 10x3c, which is however
violated by the feasible leader policy x′ in which the leader interdicts edge 1a for which y∗(x′) = χ{1b,2c,3a}
and w′ = Φ(x′) = 3. Note that the above cut would instead be valid for a non-perfect variant of the problem
allowing for isolated nodes—that would in fact satisfy the monotonicity property.

Example 2. Many (monotone) interdiction games considered in the previous literature assume that every
variable at the follower level can be interdicted by the leader, i.e., that R = ∅ or, at least, that dR = 0. In the
following, we illustrate an important application from marketing/facility location which requires existence
of additional decision variables at the follower level that cannot be explicitly interdicted by the leader, but
anyway contribute to the follower objective function. Assume there are two companies, say A (the leader)
and B (the follower) that compete for the same set of customers. Let I be the set of available facilities and
J the set of customers served by them. Assume that company A dominates the market (i.e., it has already
established service facilities and all customers are currently served by A), and that company B wants to
enter the market. For B, facility opening costs fi ≥ 0 need to be paid for each i ∈ I, and profit pij ≥ 0 can
be collected if customer j ∈ J is served by the open facility i ∈ I. The leader can provide an incentive aj ≥ 0
to a customer j ∈ J , so as to convince her not to switch the service, but there is a limited (interdiction)
budget b > 0 to do so. The follower aims to maximize its revenue, assuming that all customers that are
not “interdicted” by the leader will switch to the follower (if it is able to provide the service). The revenue
for company B is defined as the sum of collected profits minus the costs for opening the facilities. We use
binary decision variables (v, x, y, z) such that vj = 1 if customer j ∈ J receives an incentive from the leader,
yij models the fact that j ∈ J is served by facility i ∈ I (by company B), while zi is set to one if company
B decides to open facility i ∈ I, and auxiliary variables xij are set to one (for all i ∈ I) whenever customer
j receives an incentive from A. We obtain the following IG formulation:

min
(x,v)

max
(y,z)

∑
i∈I

∑
j∈J

pijyij −
∑
i∈I

fizi (22)

yij − zi ≤ 0, ∀i ∈ I, j ∈ J (23)∑
i∈I

yij ≤ 1, ∀j ∈ J (24)

yij ≤ 1− xij , ∀i ∈ I, j ∈ J (25)

xij − vj = 0, ∀i ∈ I, j ∈ J (26)∑
j∈J

ajvj ≤ b (27)

vj , xij , yij , zi binary, ∀i ∈ I, j ∈ J. (28)

Thus, in this example, allocation variables yij (that are the only ones that can be interdicted by the leader) do
satisfy the monotonicity property, whereas the remaining variables at the follower level (zi) contribute to the
objective function, but are not subject to interdiction, and as such, do not need to satisfy the monotonicity
property.

2.3 New Classes of Cuts

In this subsection we address the questions of how to modify the basic form of interdiction cuts (21) to
derive further valid inequalities, and how to lift them (in a computationally inexpensive way, if possible), in
order to improve the performance of the resulting B&C algorithm. We first propose a new class of modified
interdiction cuts, then we introduce a lifting procedure for interdiction cuts, and finally we present a new
family of cuts based on dominance relationships among items. For the validity of the new cuts, we impose
an additional assumption:

Assumption 2. All follower variables yN are binary, i.e., N ⊆ Jy and u = 1.
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Theorem 4. For any ŷ ∈ Ŷ , let Sa = {a1, . . . , aK} ⊂ N and Sb = {b1, . . . , bK} ⊂ N be two distinct
collections of items such ŷak

= 1, ŷbk = 0, and Qak
≥ Qbk for k = 1, . . . ,K. Then the following modified

interdiction cut is valid for (9)-(13):

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) +

K∑
k=1

dbk(xak
− xbk). (29)

Proof. Proof. By induction on K. Case K = 0 is obvious and follows directly from Theorem 1. So assume
the claim holds for K = K ≥ 0, and consider case K = K + 1. We have to show that any given inequality
(29) is satisfied by any given feasible interdiction policy x. In case xaK

−xbK ≤ 0 this is obvious and follows
from the induction hypothesis (recall that dbK > 0). Therefore assume xaK

− xbK ≥ 1, i.e., xaK
= 1 and

xbK = 0, and consider the alternative follower solution y′ obtained from ŷ by flipping both entries indexed by
aK and bK , i.e., with y′aK

= 0 and y′bK = 1, and leaving the other entries unchanged. Under the assumption

QaK
≥ QbK , one has Qy′ ≤ Q0, i.e., y′ ∈ Ŷ . It then follows that, because of the induction hypothesis, x

satisfies the following modified interdiction inequality:

w ≥ [
∑
j∈R

dj y′j︸︷︷︸
=ŷj

+
∑
j∈N

djy
′
j(1− xj)] +

K−1∑
k=1

dbk(xak
− xbk)

= [
∑
j∈R

dj ŷj +
∑

j∈N\{aK ,bK}

dj y′j︸︷︷︸
=ŷj

(1− xj) + daK
y′aK︸︷︷︸
=0

(1− xaK
) + dbK y

′
bK (1− xbK )︸ ︷︷ ︸

=1

] +

K−1∑
k=1

dbk(xak
− xbk)

= [
∑
j∈R

dj ŷj +
∑

j∈N\{aK ,bK}

dj ŷj(1− xj) + dbK ] +

K−1∑
k=1

dbk(xak
− xbk)

= [
∑
j∈R

dj ŷj +
∑

j∈N\{aK ,bK}

dj ŷj(1− xj) + daK
ŷaK

(1− xaK
)︸ ︷︷ ︸

=0

+dbK ŷbk︸︷︷︸
=0

(1− xbK ) + dbK ] +

K−1∑
k=1

dbk(xak
− xbk)

= [
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) + dbK (xaK
− xbK )︸ ︷︷ ︸
=1

] +

K−1∑
k=1

dbk(xak
− xbk)

hence x satisfies (29), as claimed.

As the above proof shows, the modified interdiction cuts (29) can be seen as disjunctive cuts based on
the disjunctions xak

− xbk ≤ 0 or ≥ 1, whose validity exploits the integrality of x. Note that, even if dbk > 0
by assumption, the additional terms dbk(xak

− xbk) in the right-hand side can be negative for some feasible
x’s, meaning that these cuts do not dominate (nor are dominated by) interdiction cuts.

Interdiction cuts can also be lifted by exploiting some further properties of Q, thus producing a new
family of cuts that are strictly better (i.e., that dominate) the standard ones.

Theorem 5. For a given ŷ ∈ Ŷ , let Sa = {a1, . . . , aK} ⊂ N and Sb = {b1, . . . , bK} ⊂ N be two distinct
collections of items such that ŷak

= 1, ŷbk = 0, dak
< dbk , and Qak

≥ Qbk for each k ∈ {1, . . . ,K}. Then
the following lifted interdiction cut is valid for (9)-(13):

w ≥
∑
j∈R

dj ŷj +
∑
j∈N

dj ŷj(1− xj) +

K∑
k=1

(dbk − dak
)(1− xbk). (30)

Proof. Proof. We have to show that (30) is satisfied by any given feasible interdiction policy x. In case
xbk = 1 for each k = 1, . . . ,K, this is obvious as x satisfies the interdiction inequality (21). Otherwise denote

9



by K̄ = {k ∈ {1, . . . ,K} : xbk = 0} the subset of indices associated with items in Sb that are not selected in
policy x.

Consider the alternative follower solution y′ obtained from ŷ by flipping, for each k ∈ K̄, ŷak
and ŷbk ,

i.e., by setting y′ak
= 0 and y′bk = 1, and leaving the remaining entries unchanged. Under the assumption

Qak
≥ Qbk , one has Qy′ ≤ Q0, i.e., y′ ∈ Ŷ hence x satisfies the interdiction inequality associated with y′,

namely:

w ≥
∑
j∈R

djy
′
j +

∑
j∈N

djy
′
j(1− xj) =

=
∑
j∈R

dj y′j︸︷︷︸
=ŷj

+
∑

j∈N\{ak,bk:k∈K̄}

dj y′j︸︷︷︸
=ŷj

(1− xj) +
∑
k∈K̄

(
dak

y′ak︸︷︷︸
=0

(1− xak
) + dbk y′bk︸︷︷︸

=1

(1− xbk)
)

(31)

Rewrite also (30) in a similar way to obtain

w ≥
∑
j∈R

dj ŷj +
∑

j∈N\{ak,bk:k∈K̄}

dj ŷj(1− xj)+

∑
k∈K̄

(
dak

ŷak︸︷︷︸
=1

(1− xak
) + dbk ŷbk︸︷︷︸

=0

(1− xbk) + (dbk − dak
)(1− xbk)

)
+

∑
k∈K\K̄

(dbk − dak
) (1− xbk)︸ ︷︷ ︸

=0

. (32)

As (31) is a valid inequality and the left-hand side of both (31) and (32) are the same, it remains to be shown
that the right-hand side of (32) is smaller or equal to the right-hand side of (31). To this end, subtract the
right-hand side of (32) from the right-hand side of (31) to obtain∑

k∈K̄

(
dbk(1− xbk︸︷︷︸

=0

)− dak
(1− xak

)− (dbk − dak
)(1− xbk︸︷︷︸

=0

)
)
. (33)

For each k ∈ K̄, the corresponding term in (33) is zero if xak
= 0, while it is equal to dak

≥ 0 if xak
= 1.

Thus, the sum is nonnegative, which concludes the proof.

Notice that items in Sa and Sb may often be paired in different ways, still satisfying the requirements of
the theorem above, thus producing different lifted inequalities; our specific recipe for their separation will
be provided in the next section.

Finally, the following theorem introduces a new family of valid inequalities that exploits dominance
relationships between pairs of items.

Theorem 6. Let i, s ∈ N be two distinct items such that Ai ≤ As, Qi ≤ Qs, and di ≥ ds. Then the
following dominance inequality

xs ≤ xi (34)

is satisfied by at least one optimal solution to problem (9)-(13).

Proof. Proof. We provide a constructive proof of the existence of an optimal solution of (9)-(13) that is
not cut off by (34). Let x∗ be an optimal solution that violates (34) (if any), i.e., such that x∗s = 1 while
x∗i = 0. Define an alternative leader solution x′ obtained from x∗ by flipping its components indexed by
{s, i}, namely

x′j =


x∗j , j 6∈ {s, i}
0, j = s

1, j = i

j ∈ {1, . . . , n1}.
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Solution x′ clearly satisfies (34) and is feasible because of assumption Ai ≤ As. It remains to be shown
that x′ is also optimal for (9)-(13), i.e., that Φ(x′) ≤ Φ(x∗). To this end, let y′ = y∗(x′) denote an optimal
follower solution for x′ (where y′i = 0 as x′i = 1) and define an alternative follower solution ŷ obtained from
y′ by flipping its entries indexed by {s, i} in case y′s = 1, while ŷ = y′ otherwise. By definition, one has
ŷs = 0 in both cases. In addition, because of assumption Qi ≤ Qs, ŷ is a feasible follower solution for x∗,
hence

Φ(x′) = dT y′ ≤ dT ŷ ≤ Φ(x∗)

where the first inequality follows from assumption ds ≤ di.

It is worth noting that there are only O(|N |2) dominance inequalities, so they can be statically added
to the original model formulation without the need to design a run-time separation procedure. To avoid
dominance loops, in case items i and s are identical (i.e., Ai = As, Qi = Qs and di = ds), we skip one of
two inequalities—namely, that for i < s.

3 A Branch-and-Cut Approach for Monotone Interdiction Games

We have designed a B&C approach that works in the (w, x) space and dynamically adds the cuts described
in the previous section. We next give implementation details about our approach.

3.1 Separation of Interdiction Cuts

Let (w∗, x∗) be the solution of the LP relaxation at a B&C node. The separation problem for (21) consists
of solving the following problem:

max{
∑
j∈R

djyj +
∑
j∈N

d∗jyj : y ∈ Y }, (35)

where d∗j := dj(1 − x∗j ) for all j ∈ N . Let z∗ be the optimal solution value of such a problem and let y∗

be the solution found. If w∗ < z∗, then y∗ gives a maximally-violated interdiction cut (21), otherwise no
violated cut exists.

Note that entries x∗j = 1 produce zero-coefficients d∗j in the objective function of the separation problem
(35), possibly yielding an optimal solution y∗ that is nonmaximal. In this case, there could be some other
y′N 6= y∗N with y′N ≥ y∗N and y′R = y∗R which is an alternative optimal solution of the separation problem.
According to Theorem 3, the interdiction cut associated with y′ dominates the one associated with y∗.
Thus, to favor maximal solutions, in our implementation we actually solve separation problem (35) with a
perturbed objective function

∑
j∈N d∗jyj where each d∗j = 0 with j ∈ N is replaced by ε dj for a very small

ε > 0 (ε = 0.001 was used).
In case the follower is a single (integer) knapsack problem, the separation problem can be solved using

the well-known dynamic programming algorithm for knapsack problems (see, e.g., Martello and Toth 1990),
running in pseudo-polynomial time. Otherwise, the separation problem is solved using a general purpose
MILP solver. In both cases, separation is an NP-hard problem, which can make exact separation time
consuming. However, the correctness of our branch-and-cut approach requires to apply exact separation
of interdiction cuts (21) only in case x∗ is integer. For fractional x∗’s, in order to speed-up execution we
heuristically solve the separation problem as follows. If the follower subproblem is a single knapsack problem,
a simple greedy heuristic is applied (Martello and Toth 1990): items are ordered according to non-increasing
values of d∗i /qi0, and a solution is constructed by collecting items until no more fit into the knapsack. In
case the follower subproblem involves multiple constraints, instead, a general-purpose MILP solver is used
and the run is interrupted after the root node is finished (if no feasible solution is found, no cut is added).
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3.2 Separation of Modified Interdiction Cuts

We have implemented a heuristic to separate modified interdiction cuts (29). The heuristic takes on input
the (possibly non-violated) interdiction cut produced by the separation routine described in Section 3.1, and
tries to modify it to obtain a violated cut (29) in a greedy way. At each iteration, the next item that is
candidate to enter set Sa is the item a ∈ N with ŷa = 1 and maximum da. Given a, its “twin” item b is
selected among those with ŷb = 0 and Qa ≥ Qb as the one with largest value db(x

∗
a−x∗b): if db(x

∗
a−x∗b) > 0,

items a and b are inserted into sets Sa and Sb, respectively, and then removed from any further consideration.

3.3 Separation of Lifted Interdiction Cuts

In our algorithm, lifted interdiction cuts are separated in a heuristic way as well. The separation procedure
is very similar to the one described in the previous subsection to obtain a modified interdiction cut. Given
an interdiction cut (21), we heuristically try to lift it to an inequality (30) in a greedy way. We scan the
items a ∈ N such that ŷa = 1 (that are the only candidate to be included in Sa), according to non-increasing
da values. For each such item a, every item b with ŷb = 0 is checked for creating a possible lifting pair (a, b).
More precisely, we scan all such items b with ŷb = 0, db > da and Qa ≥ Qb (if any) and pick the one with
minimum d∗j = dj(1− x∗j ) value. If such an item pair (a, b) is found, items a and b are inserted into sets Sa

and Sb, respectively, and then removed from any further consideration. In preliminary computational tests,
we experimented with alternative procedures for selecting the item pairs to lift, but the simple heuristic
above turned out to be the most effective.

3.4 A Heuristic for General Interdiction Games

We next introduce a quite general heuristic for (possibly non-monotone) interdiction games, which is based
on the idea of adding invalid leader constraints on the x variables that allow the optimal follower solution
be expressed analytically as an a-priori linear function of x.

To be more specific, let N+ = {j ∈ N : dj > 0} (recall that dj can be nonpositive in the non-monotone
case), and assume R = ∅, i.e., all follower variables yj appear in a constraint (3). We introduce the invalid
leader constraints ∑

j∈N+

Qjuj(1− xj) ≤ Q0 (36)

stipulating that all the non-interdicted items (those with xj = 0) with positive profit dj can be selected by
the follower (at their highest-possible level) in a feasible solution. As a consequence, an optimal follower
solution y∗(x) always exists with

y∗j (x) =

{
uj(1− xj), if j ∈ N+,

0, otherwise.

The restricted interdiction game (i.e., problem (9)-(13) with the addition of constraints (36)) can therefore
be reformulated exactly as the following (compact) single-level MILP

(HEU REF ) min
∑

j∈N+

djuj(1− xj) (37)

Ax ≤ b (38)∑
j∈N+

Qjuj(1− xj) ≤ Q0 (39)

xj integer, ∀j ∈ Jx (40)

xj ∈ {0, 1}, ∀j ∈ N (41)
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where the y variables have been projected out as their optimal value is known. The above MILP can of
course be infeasible. If this is not the case, its optimal solution provides a valid upper bound UB (say) for
the original interdiction game, due to the obvious fact that the feasible solution set of (37)-(41) is a subset
of that of the original problem (9)-(13) due to the addition of constraints (36).

If a finite UB is obtained, one can modify the original model (9)-(13) by adding the objective cutoff
constraint

w ≤ UB − ε (42)

for a sufficiently small ε > 0 (ε = 1 in case of integer d). In addition, one can impose a disjunction stating
that at least one of the constraints in (36) must be violated. In our implementation, this is done through
the following (possibly weak) single linear constraint∑

j∈N+

max
i
{qij}uj(1− xj) ≥ min

i
{qi0 + ε} (43)

where, in case Q0 > 0, the single inequalities have been normalized to get qi0 = 1 for all i.
According to our computational experience, the addition of constraints (42) and (43) to the original

model (9)-(13) often reduces solution time in a very significant way. This is true, in particular, when the
resulting problem turns out to be infeasible, meaning that one is able to quickly prove that UB gives an
optimal solution of the original interdiction game as well.

4 Computational Results

To assess the efficiency of our approach, we implemented it in Python, using the commercial solver IBM
ILOG CPLEX 12.6 as underlying branch-and-cut framework. All CPLEX parameters were left at their
default values in our runs, and a timelimit of 3600 seconds for each run was set. The runs were made in
sequential (single thread) mode on an Intel Xeon E3-1220V2 @3.1 GHz computer with 3GB of RAM.

4.1 Benchmark

We tested our approach on instances from the literature for the Knapsack Interdiction Problem (KIP
instances) as well as on new instances with multiple leader and/or follower constraints based on multi-
dimensional knapsack instances (MKIP instances).

KIP instances from the literature Our first dataset includes the following 360 KIP instances from
literature.

• Instance set CCLW has been introduced in Caprara et al. (2016). The follower data has been created using
the knapsack-instance generator of Martello et al. (1999); profits di and weights qi are uncorrelated
integers in range [0, 100], and the follower budget is set to q0 = d INS

10

∑
i∈N wie, where INS is the

number of the instance, with 1 ≤ INS ≤ 10. The leader coefficients ai are integers chosen uniformly
random in [0, 100], while the leader budget a0 is taken from [q0−10, q0 +10]. Ten instances are created
for |N | ∈ {35, 40, 45, 50, 55}, for a total of 50 instances.

• Instance set TRS has been proposed by Tang et al. (2015). The interdiction budget is a cardinality
constraint allowing at most k items to be interdicted. Item weights and profits are random integers
from [1, 100]. Ten instances for pairs (|N |, k) with |N | ∈ {20, 22, 25, 28, 30} and three different values
of k have been constructed, for a total of 150 instances.

• Instance set D has been introduced in DeNegre (2011). This class is based on bicriteria knapsack
instances from the multiple criteria decision making library : the first objective of the bicriteria problem
is used to define the follower objective function, while the second objective defines the interdiction
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budget constraint of the leader. The interdiction budget of an instance is d
∑n1

i=1 ai/2e, where ai is the
cost of interdicting item i. The instances have |N | ∈ {10, 20, . . . 50}, with two additional sets with 11
and 12 items. For every number of items there are 20 instances, except for the 10-item case for which
there are 40 instances. Thus, there are 160 instances in this class.

MKIP instances from SAC-94 library (Khuri et al. 1994) The SAC-94 library (Khuri et al. 1994) is
a benchmark library containing 0/1 Multidimensional Knapsack Instances from Freville and Plateau (1990)
(instances hp* and pb*), Petersen (1967) (instances pet*), Senju and Toyoda (1968) (instances sento*),
Shih (1979) (instances weish*), and Weingartner and Ness (1967) (instances weing*). Starting with these 54
instances, we generated 144 new instances of the Multidimensional Knapsack Interdiction Problem (MKIP)
as follows.

The instances have 2 to 30 constraints and 10 to 90 items. For each instance of this dataset, we constructed
three different interdiction instances by considering

• the first constraint as leader constraint and the remaining constraints as follower constraints (these
instances are denoted by -0 in the name);

• the first 50% of constraints (rounded up) as leader constraints, and the remaining ones as follower
constraints (denoted by -50);

• all but the last constraint as leader constraints (denoted by -100).

Thus, in the -0 and -50 instances, the follower problem is a multidimensional knapsack problem, while
instances of type -100 have a single knapsack as follower problem. Moreover, in instances of type -50 and
-100, there are multiple leader constraints. Of course, when the underlying multidimensional knapsack
instances have just two constraints, all three transformations give the same instance with one leader and
one follower constraint, i.e., a single knapsack as follower problem. These instances are weing* and instance
pb4. Thus, we obtained 54 instances of type -100 and 45 instances of type -0 and -50 for a total of 144
instances. Details on the number of variables and of leader/follower constraints and on the obtained optimal
solution are presented in Tables 4-6. All instances are available online at http://homepage.univie.ac.at/
markus.sinnl/program-codes/bilevel/.

4.2 Analyzing the Influence of the Individual Ingredients

In order to asses the influence of the various ingredients proposed in our framework, we tested six different
settings of our B&C code:

- : this is our basic setting in which only basic interdiction cuts (21) are separated using the exact algo-
rithm;

M : as before, with the addition of the heuristic separation for Modified interdiction cuts described in
Subsection 3.2;

MH : as before, but using the Heuristic separation procedure for interdiction cuts (21) described in Subsection
3.1 (instead of the exact separation algorithm);

MHD : as before, but all Dominance inequalities (34) are statically added to the initial model;

MHDL : as before, but instead of adding the basic interdiction cut associated with a heuristic follower solution
ŷ, we perform the Lifting procedure described in Subsection 3.3 to ŷ, and only generate the associated
lifted interdiction cut;

MHDLP : as before, but a Preprocessing step is applied that invokes the heuristic of Subsection 3.4 and possibly
adds the associated invalid cuts (42) and (43) to the model formulation.

14

http://homepage.univie.ac.at/markus.sinnl/program-codes/bilevel/
http://homepage.univie.ac.at/markus.sinnl/program-codes/bilevel/


In all settings, only maximal follower solutions are considered for separation. Furthermore, both fractional
and integer solutions are separated. Observe that, by construction, each execution of the separation algorithm
returns (at most) a single violated (lifted) interdiction cut (possibly plus a modified interdiction cut), hence
we did not impose any limit on the number of generated cuts at each separation call.

Figure 2 plots the root node gap and the runtime to optimality for the KIP instances from literature, while
Figure 3 gives the same information for MKIP instances. The root gap is calculated as 100 · (BestObj −
RootBound)/(10−10 + |BestObj|), where BestObj is the best objective value found by all settings, and
RootBound is the root-node lower bound produced by the setting. Observe that setting MHDLP may prove
optimality of the heuristic solution UB by proving infeasibility of the problem after preprocessing; in case
such infeasibility is already proven at the root node, we report a gap of zero.

Figure 2: Root gap and runtime to optimality for the KIP instances from literature and for different settings.
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Figure 3: Root gap and runtime to optimality for the MKIP instances and for different settings.
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Both Figures 3a and 4a show that using the modified interdiction cuts slightly improves the root gap,
while heuristic separation provides a root gap that is similar to that obtained using an exact procedure for
separation. (Actually, for some MKIP instances, the gap with heuristic separation is even slightly better—
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this can be explained by the fact the CPLEX additionally generates internal MILP cuts that may affect the
final bound in an unpredictable way.)

For the KIP instances from literature, a clear effect on the bounds can be observed when using the
dominance inequalities (34) (setting MHD), resulting in about 170 instances solved to optimality at the root
node, to be compared with about 100 for settings - and H. Additionally using lifting (setting MHDL) and the
preprocessing heuristic (setting MHDLP) improves the gap even further so that about 220 instances can be
solved to optimality at the root node. A similar trend, however less pronounced, can be observed for the
MKIP instances. For both classes of instances, the gap at the root node for more than 2/3 of the instances
is below 10% when using settings MHDL*.

Turning our attention to the runtime to optimality, i.e., to Figures 3b and 4b, we see that the noticeable
difference in root gap between the settings does not directly translate into a similar difference in runtime for
the KIP instances. In particular, while setting M slightly improves the root gap, the runtime to optimality
is nearly identical to the basic setting -. On the other hand, additionally using the heuristic separation (H)
gives a big improvement in runtime. The explanation of this behavior is that a much high node-throughput
can be achieved in branch-and-bound when using heuristic separation, while slightly improved bounds (M)
may not be crucial to quickly solve an instance to optimality. For MKIP, this effect is less pronounced,
which is due to the fact that the greedy heuristic used in the KIP case is more efficient than the MILP-based
heuristic for the MKIP-case.

Dominance inequalities and lifted interdiction cuts are both very important ingredients for harder in-
stances. E.g., for KIP instances, when using MH the most difficult instance takes about 1000 seconds, while
setting MHD drastically reduces runtime to about 160 seconds, and MHDL* to about 80 seconds. Finally, using
the primal heuristic in a preprocessing step as described in Section 3.4, further improves performance, espe-
cially for easy instances. This improvement may be crucial, if such problems have to be solved in a real-time
setting.

We conclude by observing that the setting where all ingredients of our framework are used, namely MHDLP,
gives the best overall performance. In particular, it solves all KIP instances from literature in at most 84
seconds (the most challenging problem being instance 55-3 of set CCLW, see next section), and only 4 out of
the 360 instances take more than 10 seconds.

In view of the above, MHDLP is chosen as our default setting, and will be simply denoted by B&C in what
follows.

4.3 Results for Instance Set CCLW

Table 1 gives a comparison of the results achieved by B&C (i.e., by our branch-and-cut approach using its
most-advanced setting MHDLP) against the integer cutting plane approach using interdiction cuts (column
CP) and the specialized CCLW algorithm, both presented in Caprara et al. (2016). The results for CP and
CCLW in Caprara et al. (2016) have been obtained on a four-core Intel Xeon @2.6 GHz. Column z∗ gives the
optimal solution value, while the remaining columns provide the runtime to optimality (in seconds) for the
respective approaches. Entries TL in this column indicate runs for which the timelimit of 3600 seconds has
been reached. It may be observed that many instances of this dataset are very easy for both CCLW and B&C

and are solved in around one second of computing time, while they are much harder for CP.
Recalling that the instances of set CCLW are constructed in such a way that a larger instance number

means larger budget (for leader and follower, since the two budgets are set in a correlated way), one can
observe that there is a peak of difficulty for CCLW for instances numbered three and four for all sizes. For
B&C, this can only be observed for the largest set with 55 items.

Turning our attention to the hardest instances of the set, we see that B&C outperforms CCLW by up to 3
orders of magnitudes. Notably, B&C finds the optimal solution for the two unsolved instances 55-3 and 55-4
in just 84 and 16 seconds, respectively. Moreover, B&C solves instance 50-2 in just 2 seconds, while CCLW

takes as long as 1, 520 seconds.
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Table 1: Runtime to optimality, in seconds, for our approach (B&C) vs. the cutting plane (CP) and CCLW

approaches from Caprara et al. (2016)

size instance z∗ CP CCLW B&C

35 1 279 0.34 0.79 0.12
2 469 1.59 2.57 0.21
3 448 55.61 40.39 0.66
4 370 495.50 1.48 0.87
5 467 TL 0.72 0.93
6 268 71.43 0.06 0.11
7 207 144.46 0.06 0.07
8 41 0.50 0.04 0.07
9 80 0.97 0.03 0.07
10 31 0.12 0.03 0.08

40 1 314 0.66 1.06 0.16
2 472 6.67 7.50 0.36
3 637 324.61 162.80 1.02
4 388 1900.03 0.34 0.82
5 461 TL 0.22 0.58
6 399 2111.85 0.09 0.13
7 150 83.59 0.05 0.08
8 71 1.73 0.04 0.09
9 179 137.16 0.08 0.09
10 0 0.03 0.03 0.04

size instance z∗ CP CCLW B&C

45 1 427 1.81 2.37 0.23
2 633 13.03 11.64 0.37
3 548 TL 344.01 1.81
4 611 TL 38.90 3.30
5 629 TL 3.42 2.78
6 398 3300.76 0.07 0.17
7 225 60.43 0.04 0.09
8 157 60.88 0.05 0.10
9 53 0.83 0.05 0.10
10 110 0.40 0.05 0.11

50 1 502 2.86 4.55 0.21
2 788 1529.16 1520.56 2.38
3 631 TL 105.59 2.40
4 612 TL 3.64 1.27
5 764 TL 0.60 4.82
6 303 1046.85 0.05 0.14
7 310 2037.01 0.09 0.11
8 63 2.79 0.05 0.12
9 234 564.97 0.10 0.12
10 15 0.09 0.04 0.13

size instance z∗ CP CCLW B&C

55 1 480 TL 18.57 0.46
2 702 TL 443.53 1.50
3 778 TL TL 84.83
4 889 TL TL 16.75
5 726 TL 0.24 1.36
6 462 TL 0.09 0.16
7 370 TL 0.08 0.12
8 387 TL 0.10 0.13
9 104 TL 0.06 0.13
10 178 TL 0.06 0.14
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4.4 Results for Instance Set TRS

Table 2 gives the results for instance set TRS. We compare the results of our B&C with the results obtained
by the best-performing approach presented in Tang et al. (2015) (columns TRS), where this dataset has been
proposed. We also benchmark our results against the best-performing setting of a state-of-the-art general
purpose bilevel mixed-integer programming solver, namely the exact approach presented in (Fischetti et al.
2016a); see column MIX++. The results of Tang et al. (2015) have been obtained on “a PC with 3.30 GHz
using CPLEX 12.5”, while the results of Fischetti et al. (2016a) have been obtained with four-thread runs
on the same machine we used for the runs in this paper. Results are given as averages over the ten instances
per each (|N |, k) pair. Column OPT gives the optimal solution value while, for each approach, column
t[s] reports runtime (in seconds). For TRS, we also provide the value of the best solution found (column
“BestSol”), the obtained lower bound (column “LB”) and the number of instances that were not solved to
optimality within the timelimit of one hour (column “N∗”).

We observe that, for all (|N |, k) pairs, our approach needs an average runtime of at most 0.3 seconds
for computing a provably optimal solution. These computing times are smaller than those for MIX++ by
up to 3 orders of magnitude. Furthermore, most of the instances with 22 or more items were unsolved by
the approach of Tang et al. (2015) within one hour of computing time, while all of them are just trivial for
our algorithm. Finally, note that all approaches except B&C are very sensitive to the value of k (i.e., to the
number of items that can be interdicted): the most challenging instances for MIX++ are those with small k
values, whereas medium values of k produce the hardest instances for the approach by Tang et al. (2015).
No dependency with respect to k can instead be observed in B&C.

Table 2: Results for instance set TRS compared to results obtained by the best algorithm presented in Tang
et al. (2015) (TRS) and by the state-of-the-art general purpose bilevel solver presented in (Fischetti et al.
2016a) (MIX++). Every row reports average results over ten instances. N∗ gives the number of instances not
solved to proven optimality by TRS.

TRS MIX++ B&C

|N | k t[s] N∗ t[s] t[s]

20 5 721.4 0 5.4 0.1
20 10 2992.6 3 1.7 0.1
20 15 129.5 0 0.2 0.1
22 6 1281.2 6 10.3 0.1
22 11 3601.8 10 2.3 0.1
22 17 248.2 0 0.2 0.1
25 7 3601.4 10 33.6 0.2
25 13 3602.3 10 8.0 0.2
25 19 1174.6 0 0.4 0.1
28 7 3601.0 10 97.9 0.3
28 14 3602.5 10 22.6 0.3
28 21 3496.9 8 0.5 0.1
30 8 3601.0 10 303.0 0.3
30 15 3602.3 10 31.8 0.3
30 23 3604.5 10 0.6 0.1

4.5 Results for Instance Set D

Table 3 gives results for instance set D. These instances have been introduced in (DeNegre 2011), where
computational results have been only presented for the smallest problems with at most 30 items. As a much
better general-purpose bilevel solver has been recently proposed by Fischetti et al. (2016a), in Table 3 we
compare only the best setting of Fischetti et al. (2016a) (namely, MIX++) with our own B&C solver. Table 3
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reports the value of the best solution found (column “BestSol”) and, for each approach, the best lower bound
(LB), the associated optimality gap (%gap) and the runtime in seconds (t[s]). For B&C, in case the heuristic
solution obtained during preprocessing is optimal, we report CUTOFF in column LB. We report only the
results for the larger instances with 30 to 50 items, as the smaller instances with up to 20 items were solved
to optimality by both approaches in less than 10 seconds (in most cases, in less than one second).

The table shows that our B&C gives a speedup of 2-3 orders of magnitudes compared to MIX++ for most
of the instances (note however that the latter solver, though better than any previous method on these
instances, is not specialized for interdiction). The speedup becomes more pronounced as the number of
items grows. Furthermore, none of the instances with 50 items could be solved by MIX++ within one hour,
whereas B&C solves all instances except K5040W08 and K5050W08 within 4 seconds, while for K5040W08,
resp., K5050W08 it takes 14, resp., 29 seconds. Interestingly, all but four instances are solved right after
preprocessing, by proving infeasibility after the addition of the cutoff constraint.

4.6 Results for the MKIP instances based on the SAC-94 Library

Tables 4 to 6 compare the results obtained by B&C to the results obtained by the best setting of the general
purpose bilevel solver presented in (Fischetti et al. 2016a) (MIX++). Both solvers have been run on the same
machine with a timelimit of one hour, though MIX++ used four (instead of one) threads. As in Table 3,
the tables report the value of the best solution found (BestSol), the lower bound (LB), the optimality gap
(%gap), and the runtime in seconds (t[s]). Additionally, the number of items (|N |), leader constraints (#LC)
and follower constraints (#FC) is given.

Table 4 reports results for instances of type -100, i.e., with single-knapsack follower. We see that
depending on the underlying instance from which they have been created, they pose different difficulties
to MIX++. For example, instances weing* are solved in less than three seconds (except weing8). Instances
weish* are particularly hard for MIX++, more than half remaining unsolved within the timelimit. Looking
at hp* and pb* also reveals that the performance of MIX++ is highly influenced by the number of variables
and constraints. On the other hand, our B&C approach manages to solve all instances to optimality in at
most four seconds, thus greatly outperforming MIX++ for every instance. For about half of the instances, the
heuristic solution obtained during preprocessing is the optimal one.

Table 5 addresses instances of type -50. For MIX++, they do not seem much more difficult than instances
of type -100: half of the instances based on weish* cannot be solved within the timelimit and, for the
remaining ones, runtimes are similar to those of the associated instances of type -100. Thus, for MIX++ the
underlying instance seems to have a bigger impact on runtime than the number of follower constraints. For
our B&C approach, instead, these instances are more difficult than the ones of type -100. This is not too
surprising, as these instances have a multidimensional knapsack as follower problem, thus the preprocessing
procedure is less effective. Moreover, the solution of the follower problem now consists of heuristically solving
a MILP instead of a single knapsack problem. In any case, our approach manages to solve all but three of
the instances to optimality—in more than 50% of the cases within four seconds. Again, for about half of the
instances, the solution found in the first phase of the heuristic is the optimal one.

The three unsolved instances (within the timelimit of 3600 seconds) are weish22, weish27 and weish29.
For these three instances the gap is at most 1.15%, compared to a gap of up to 73% for MIX++. We reran these
three instance with a larger timelimit, and all of them could be solved to optimality within 3900 seconds.

There seems to be no clear influence of the number of items and constraints on the performance of our
approach, e.g., pb5 with 20 items and 5 leader and follower constraints takes 12 times as long as pb6 that
has 40 items and 15 leader and follower constraints. Solver MIX++ turns out to be faster than B&C only for
instance pb5-50 (49 vs 301 seconds).

Finally, Table 6 reports results for type -0. For MIX++, the results are very similar to the previous ones,
and 16 out of the 30 instances weish* can be solved within the timelimit of 3600 seconds. Our approach
B&C manages to outperform MIX++ for every instance, though it is not able to solve to optimality seven
instances. However, for these unsolved instances (weish22, weish23, weish25, weish26, weish27, weish28,
and weish29) the gap is at most 9.12%, compared with gaps of 25% to 75% for MIX++. In general, instances of
class -0 seem more difficult than instances of class -50 (and of course, also class -100), thus the number/ratio
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of leader/follower constraints seems to influence the difficulty of the problem, and this effect seems not just
to be restricted to the case, when the follower has just a single-knapsack constraint.

Moreover, the number of follower constraints also seem to influence the effectiveness of the heuristic, as
for type -0, only for 15 out of 45 instances, the solution of the heuristic was the optimal one. Again, we
reran the unsolved -0 instances with a larger timelimit, and all of them could be solved to proven optimality
within 19000 seconds, except weish27-0 that required about 30000 seconds.

5 Conclusions

In this article we have considered interdiction games in which the follower subproblem satisfies a certain
monotonicity property. For this special family of problems, whose most prominent examples include the
knapsack interdiction problems (KIP) and its variant with multiple or multi-dimensional knapsacks (MKIP),
we have proposed a new class of interdiction cuts that generalize those previously used in the literature.
Building on these cuts, we have developed a Benders-like branch-and-cut framework with some important
enhancing ingredients. We have discussed additional families of modified/lifted interdiction cuts, as well as
new dominance-based valid inequalities. For all classes of cuts, we have proposed exact and/or heuristic
separation procedures, and we have used them to develop an effective branch-and-cut solver. Finally, we
have introduced a preprocessing procedure based on a new heuristic single-level compact MILP formulation.

We have computationally demonstrated that our new solver significantly outperforms very recent methods
from the literature. In particular, we have tested our approach on 360 knapsack interdiction instances from
the recent literature, and have proved the optimality for all of them—including for the 27 previously unsolved
ones. Our algorithm needs at most 84 seconds for solving any of these instances (for only four of these 360
instances, it takes more than 10 seconds), outperforming previous approaches from literature by up to 4
orders of magnitude. Computational tests on new random instances based on 0/1 multidimensional knapsack
problems have also been performed in order to assess the dependency of our approach on the number of leader
and follower constraints. Also for this kind of instances, our approach outperforms by orders of magnitude
the state-of-the art general bilevel solver recently proposed in Fischetti et al. (2016a).

Future work should address the extension of our approach to the non-monotone case, as well as the
customization of our solution method to special classes of monotone IGs, including the facility location
application outlined in Subsection 2.2 (Example 2).
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Table 3: Results for instance set D compared to results obtained by the state-of-the-art general purpose
bilevel solver presented in (Fischetti et al. 2016a).

MIX++ from Fischetti et al. (2016a) B&C
instance BestSol LB %gap t[s] BestSol LB %gap t[s]

K5030W01 2956 2956.0000 0.00 39.88 2956 CUTOFF 0.00 0.72
K5030W02 3529 3529.0000 0.00 86.77 3529 CUTOFF 0.00 0.59
K5030W03 2706 2706.0000 0.00 43.01 2706 CUTOFF 0.00 0.61
K5030W04 3201 3201.0000 0.00 73.32 3201 CUTOFF 0.00 0.65
K5030W05 4861 4861.0000 0.00 569.09 4861 CUTOFF 0.00 2.37
K5030W06 1997 1997.0000 0.00 12.12 1997 CUTOFF 0.00 0.47
K5030W07 2270 2270.0000 0.00 18.99 2270 CUTOFF 0.00 0.45
K5030W08 4902 4902.0000 0.00 1077.40 4902 4902.0000 0.00 3.58
K5030W09 2201 2201.0000 0.00 14.06 2201 CUTOFF 0.00 0.50
K5030W10 2668 2668.0000 0.00 19.00 2668 CUTOFF 0.00 0.75
K5030W11 2013 2013.0000 0.00 28.67 2013 CUTOFF 0.00 0.50
K5030W12 2534 2534.0000 0.00 11.42 2534 CUTOFF 0.00 0.33
K5030W13 3152 3152.0000 0.00 21.57 3152 CUTOFF 0.00 0.53
K5030W14 2184 2184.0000 0.00 23.05 2184 CUTOFF 0.00 0.43
K5030W15 2841 2841.0000 0.00 53.60 2841 CUTOFF 0.00 0.58
K5030W16 2102 2102.0000 0.00 12.57 2102 CUTOFF 0.00 0.47
K5030W17 3553 3553.0000 0.00 98.74 3553 CUTOFF 0.00 0.50
K5030W18 2602 2602.0000 0.00 19.66 2602 CUTOFF 0.00 0.50
K5030W19 5015 5015.0000 0.00 710.57 5015 CUTOFF 0.00 2.44
K5030W20 2496 2496.0000 0.00 11.95 2496 2496.0000 0.00 0.79
K5040W01 4254 3204.0000 24.68 TL 4254 CUTOFF 0.00 2.00
K5040W02 4423 4423.0000 0.00 2533.36 4423 CUTOFF 0.00 1.02
K5040W03 3440 3440.0000 0.00 1578.91 3440 CUTOFF 0.00 0.68
K5040W04 3574 3574.0000 0.00 1158.20 3574 CUTOFF 0.00 1.04
K5040W05 4646 3363.6302 27.60 TL 4529 CUTOFF 0.00 1.32
K5040W06 2606 2606.0000 0.00 233.58 2606 CUTOFF 0.00 0.99
K5040W07 3244 3244.0000 0.00 600.63 3244 CUTOFF 0.00 1.11
K5040W08 6345 2870.0000 54.77 TL 6174 6173.5586 0.00 14.44
K5040W09 3154 3154.0000 0.00 410.00 3154 CUTOFF 0.00 0.57
K5040W10 4382 4382.0000 0.00 3099.20 4382 CUTOFF 0.00 1.41
K5040W11 3389 3389.0000 0.00 1120.76 3389 CUTOFF 0.00 0.81
K5040W12 3817 3817.0000 0.00 593.61 3817 CUTOFF 0.00 0.56
K5040W13 4174 4174.0000 0.00 1126.49 4174 CUTOFF 0.00 0.85
K5040W14 3374 3374.0000 0.00 1090.91 3374 CUTOFF 0.00 0.75
K5040W15 3925 3164.8373 19.37 TL 3925 CUTOFF 0.00 0.56
K5040W16 2605 2605.0000 0.00 194.39 2605 CUTOFF 0.00 1.20
K5040W17 3996 3996.0000 0.00 2645.77 3996 CUTOFF 0.00 1.05
K5040W18 3342 3342.0000 0.00 918.78 3342 CUTOFF 0.00 0.52
K5040W19 5299 3167.0000 40.23 TL 5233 CUTOFF 0.00 1.68
K5040W20 2875 2875.0000 0.00 267.87 2875 CUTOFF 0.00 0.89
K5050W01 4244 2610.2294 38.50 TL 4189 CUTOFF 0.00 1.20
K5050W02 5280 2559.0000 51.53 TL 5106 CUTOFF 0.00 1.20
K5050W03 5483 2530.0283 53.86 TL 4769 CUTOFF 0.00 1.39
K5050W04 3999 2401.0000 39.96 TL 3723 CUTOFF 0.00 1.20
K5050W05 5109 2408.0000 52.87 TL 4998 CUTOFF 0.00 4.31
K5050W06 3558 2691.9300 24.34 TL 3558 CUTOFF 0.00 1.55
K5050W07 4521 2355.0000 47.91 TL 4390 CUTOFF 0.00 2.34
K5050W08 8215 2706.5175 67.05 TL 7862 7862.0000 0.00 29.65
K5050W09 4775 2521.0000 47.20 TL 4620 CUTOFF 0.00 1.21
K5050W10 5575 2682.1036 51.89 TL 5047 CUTOFF 0.00 2.13
K5050W11 3855 2287.0000 40.67 TL 3778 CUTOFF 0.00 1.63
K5050W12 4885 2738.0731 43.95 TL 4562 CUTOFF 0.00 1.61
K5050W13 4926 2816.0000 42.83 TL 4778 CUTOFF 0.00 1.27
K5050W14 5055 2249.0000 55.51 TL 4544 CUTOFF 0.00 1.19
K5050W15 4757 2240.7014 52.90 TL 4610 CUTOFF 0.00 1.17
K5050W16 4039 2222.0000 44.99 TL 3979 CUTOFF 0.00 1.52
K5050W17 5666 2672.0930 52.84 TL 5218 CUTOFF 0.00 1.24
K5050W18 4591 2858.0000 37.75 TL 4591 CUTOFF 0.00 1.13
K5050W19 6022 2717.5260 54.87 TL 5858 CUTOFF 0.00 2.06
K5050W20 4303 2247.0000 47.78 TL 4303 CUTOFF 0.00 2.57
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Table 4: Results for instance set SAC compared to results obtained by the state-of-the-art general purpose
bilevel solver presented in (Fischetti et al. 2016a).

MIX++ Fischetti et al. (2016a) B&C
instance |N | #LC #FC BestSol LB %gap t[s] BestSol LB %gap t[s]

hp1-100 28 3 1 1536 1536.0000 0.00 13.06 1536 CUTOFF 0.00 0.05
hp2-100 35 3 1 3015 3015.0000 0.00 304.14 3015 3015.0000 0.00 2.55
pb1-100 27 3 1 1536 1536.0000 0.00 11.08 1536 CUTOFF 0.00 0.04
pb2-100 34 3 1 1902 1902.0000 0.00 251.04 1902 CUTOFF 0.00 0.10
pb4-100 29 1 1 52329 52329.0000 0.00 5.42 52329 CUTOFF 0.00 0.04
pb5-100 20 9 1 1799 1799.0000 0.00 37.29 1799 1799.0000 0.00 1.66
pb6-100 40 29 1 1389 1389.0000 0.00 250.25 1389 1389.0000 0.00 0.85
pb7-100 37 29 1 670 565.0000 15.67 TL 656 656.0000 0.00 0.59
pet2-100 10 9 1 38833 38833.0000 0.00 0.97 38833 CUTOFF 0.00 0.03
pet3-100 15 9 1 1080 1080.0000 0.00 1.90 1080 CUTOFF 0.00 0.04
pet4-100 20 9 1 2505 2505.0000 0.00 4.07 2505 CUTOFF 0.00 0.09
pet5-100 28 9 1 3025 3025.0000 0.00 18.06 3025 CUTOFF 0.00 0.06
pet6-100 39 4 1 3936 3936.0000 0.00 419.09 3936 CUTOFF 0.00 0.07
pet7-100 50 4 1 5935 5166.0000 12.96 TL 5723 CUTOFF 0.00 0.11
sento1-100 60 29 1 1686 1225.0000 27.34 TL 1610 1610.0000 0.00 3.84
sento2-100 60 29 1 752 457.0000 39.23 TL 738 CUTOFF 0.00 0.46
weing1-100 28 1 1 6205 6205.0000 0.00 0.70 6205 CUTOFF 0.00 0.05
weing2-100 28 1 1 16705 16705.0000 0.00 0.89 16705 CUTOFF 0.00 0.05
weing3-100 28 1 1 37936 37936.0000 0.00 1.28 37936 37936.0000 0.00 0.13
weing4-100 28 1 1 42958 42958.0000 0.00 0.65 42958 CUTOFF 0.00 0.06
weing5-100 28 1 1 6205 6205.0000 0.00 0.52 6205 CUTOFF 0.00 0.05
weing6-100 28 1 1 8103 8103.0000 0.00 0.60 8103 CUTOFF 0.00 0.05
weing7-100 105 1 1 15646 15646.0000 0.00 2.70 15646 CUTOFF 0.00 0.34
weing8-100 105 1 1 212854 212854.0000 0.00 151.36 212854 212854.0000 0.00 1.31
weish01-100 30 4 1 1121 1121.0000 0.00 14.61 1121 1121.0000 0.00 0.19
weish02-100 30 4 1 1293 1293.0000 0.00 16.76 1293 CUTOFF 0.00 0.08
weish03-100 30 4 1 1601 1601.0000 0.00 10.12 1601 1601.0000 0.00 0.20
weish04-100 30 4 1 1268 1268.0000 0.00 5.18 1268 CUTOFF 0.00 0.13
weish05-100 30 4 1 1315 1315.0000 0.00 5.08 1315 CUTOFF 0.00 0.11
weish06-100 40 4 1 1369 1369.0000 0.00 335.60 1369 CUTOFF 0.00 0.22
weish07-100 40 4 1 1407 1407.0000 0.00 574.35 1407 CUTOFF 0.00 0.12
weish08-100 40 4 1 1369 1369.0000 0.00 210.40 1369 CUTOFF 0.00 0.12
weish09-100 40 4 1 1645 1645.0000 0.00 88.94 1645 1645.0000 0.00 0.51
weish10-100 50 4 1 2146 2146.0000 0.00 809.66 2146 2146.0000 0.00 0.43
weish11-100 50 4 1 2827 2827.0000 0.00 331.23 2827 2827.0000 0.00 0.88
weish12-100 50 4 1 2146 2146.0000 0.00 621.03 2146 2146.0000 0.00 0.38
weish13-100 50 4 1 2369 2369.0000 0.00 628.74 2369 2369.0000 0.00 0.63
weish14-100 60 4 1 2648 1825.1101 31.08 TL 2625 2625.0000 0.00 1.67
weish15-100 60 4 1 2138 1759.0000 17.73 TL 2138 CUTOFF 0.00 0.20
weish16-100 60 4 1 2336 1435.1534 38.56 TL 2285 2285.0000 0.00 1.21
weish17-100 60 4 1 1010 808.5564 19.94 TL 991 CUTOFF 0.00 0.15
weish18-100 70 4 1 1986 1348.8854 32.08 TL 1945 CUTOFF 0.00 0.19
weish19-100 70 4 1 3874 1779.0000 54.08 TL 3741 3740.8875 0.00 1.80
weish20-100 70 4 1 2142 1310.0881 38.84 TL 2075 CUTOFF 0.00 0.24
weish21-100 70 4 1 2535 1453.7849 42.65 TL 2451 CUTOFF 0.00 0.24
weish22-100 80 4 1 3719 1524.1072 59.02 TL 3325 CUTOFF 0.00 0.78
weish23-100 80 4 1 4177 1602.8044 61.63 TL 3906 3906.0000 0.00 1.15
weish24-100 80 4 1 2190 1277.6197 41.66 TL 2111 CUTOFF 0.00 0.23
weish25-100 80 4 1 2445 1155.6013 52.74 TL 2392 CUTOFF 0.00 0.31
weish26-100 90 4 1 4266 1627.1253 61.86 TL 3799 CUTOFF 0.00 1.25
weish27-100 90 4 1 4077 1545.9016 62.08 TL 3565 CUTOFF 0.00 0.99
weish28-100 90 4 1 4441 1635.0000 63.18 TL 3896 CUTOFF 0.00 0.84
weish29-100 90 4 1 4514 1690.2451 62.56 TL 3997 3997.0000 0.00 1.55
weish30-100 90 4 1 2267 1504.7394 33.62 TL 2226 CUTOFF 0.00 0.30
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Table 5: Results for instance set SAC compared to results obtained by the state-of-the-art general purpose
bilevel solver presented in (Fischetti et al. 2016a). The optimal solution value (obtained with a larger
timelimit) for weish22-50 is 1372, for weish27-50 is 1290, and for weish29-50 is 1205.

MIX++ from Fischetti et al. (2016a) B&C
instance |N | #LC #FC BestSol LB %gap t[s] BestSol LB %gap t[s]

hp1-50 28 2 2 1536 1536.0000 0.00 21.21 1536 CUTOFF 0.00 0.08
hp2-50 35 2 2 2912 2912.0000 0.00 263.13 2912 CUTOFF 0.00 20.95
pb1-50 27 2 2 1536 1536.0000 0.00 12.90 1536 CUTOFF 0.00 0.86
pb2-50 34 2 2 1787 1787.0000 0.00 181.58 1787 CUTOFF 0.00 1.72
pb5-50 20 5 5 1625 1625.0000 0.00 48.58 1625 1624.9853 0.00 301.03
pb6-50 40 15 15 634 634.0000 0.00 119.05 634 634.0000 0.00 26.02
pb7-50 37 15 15 423 423.0000 0.00 1073.40 423 423.0000 0.00 106.16
pet2-50 10 5 5 38833 38833.0000 0.00 1.38 38833 CUTOFF 0.00 0.07
pet3-50 15 5 5 905 905.0000 0.00 1.23 905 CUTOFF 0.00 0.07
pet4-50 20 5 5 2445 2445.0000 0.00 3.67 2445 2445.0000 0.00 0.92
pet5-50 28 5 5 3025 3025.0000 0.00 45.83 3025 CUTOFF 0.00 0.38
pet6-50 39 3 2 3936 3936.0000 0.00 474.10 3936 CUTOFF 0.00 0.98
pet7-50 50 3 2 5873 5031.3240 14.33 TL 5723 CUTOFF 0.00 14.05
sento1-50 60 15 15 1102 1102.0000 0.00 2235.55 1102 1102.0000 0.00 76.06
sento2-50 60 15 15 522 338.0000 35.25 TL 503 503.0000 0.00 10.32
weish01-50 30 3 2 1097 1097.0000 0.00 23.81 1097 1097.0000 0.00 1.22
weish02-50 30 3 2 1293 1293.0000 0.00 28.99 1293 CUTOFF 0.00 0.20
weish03-50 30 3 2 619 619.0000 0.00 9.78 619 619.0000 0.00 0.30
weish04-50 30 3 2 1027 1027.0000 0.00 5.57 1027 1027.0000 0.00 0.21
weish05-50 30 3 2 1215 1215.0000 0.00 8.22 1215 1215.0000 0.00 0.20
weish06-50 40 3 2 1369 1369.0000 0.00 373.87 1369 CUTOFF 0.00 1.55
weish07-50 40 3 2 1407 1407.0000 0.00 804.42 1407 CUTOFF 0.00 0.52
weish08-50 40 3 2 1369 1369.0000 0.00 372.00 1369 CUTOFF 0.00 0.32
weish09-50 40 3 2 1568 1568.0000 0.00 108.72 1568 1568.0000 0.00 0.54
weish10-50 50 3 2 785 785.0000 0.00 232.30 785 785.0000 0.00 2.20
weish11-50 50 3 2 584 584.0000 0.00 58.67 584 584.0000 0.00 2.16
weish12-50 50 3 2 778 778.0000 0.00 242.39 778 778.0000 0.00 2.64
weish13-50 50 3 2 742 742.0000 0.00 140.11 742 742.0000 0.00 2.25
weish14-50 60 3 2 1041 811.1739 22.08 TL 1020 1020.0000 0.00 40.00
weish15-50 60 3 2 1931 1931.0000 0.00 3110.28 1931 1931.0000 0.00 4.99
weish16-50 60 3 2 2198 1474.0000 32.94 TL 2172 2172.0000 0.00 7.45
weish17-50 60 3 2 991 819.0525 17.35 TL 991 CUTOFF 0.00 0.06
weish18-50 70 3 2 2113 948.0000 55.13 TL 1945 CUTOFF 0.00 0.15
weish19-50 70 3 2 1194 599.8071 49.76 TL 1095 1095.0000 0.00 202.63
weish20-50 70 3 2 2274 1021.0000 55.10 TL 2075 CUTOFF 0.00 0.42
weish21-50 70 3 2 2601 1263.0000 51.44 TL 2451 CUTOFF 0.00 0.80
weish22-50 80 3 2 1522 504.0716 66.88 TL 1372 1358.8669 0.96 TL
weish23-50 80 3 2 1309 522.0000 60.12 TL 1236 1236.0000 0.00 1026.43
weish24-50 80 3 2 2360 889.4432 62.31 TL 2111 CUTOFF 0.00 0.23
weish25-50 80 3 2 2576 920.3113 64.27 TL 2392 CUTOFF 0.00 0.42
weish26-50 90 3 2 1384 402.0000 70.95 TL 1243 1242.8969 0.00 2913.69
weish27-50 90 3 2 1470 391.0000 73.40 TL 1290 1275.2127 1.15 TL
weish28-50 90 3 2 1513 444.5101 70.62 TL 1358 1357.9082 0.00 2079.98
weish29-50 90 3 2 1401 405.0000 71.09 TL 1205 1196.8229 0.68 TL
weish30-50 90 3 2 2356 1221.8923 48.14 TL 2226 CUTOFF 0.00 0.09
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Table 6: Results for instance set SAC compared to results obtained by the state-of-the-art general purpose
bilevel solver presented in (Fischetti et al. 2016a). The optimal solution value (obtained with a larger
timelimit) for weish22-0 is 1372, for weish23-0 is 1236, for weish25-0 is 1079, for weish26-0 is 1243, for
weish27-0 is 1290, for weish28-0 is 1358, and for weish29-0 is 1205.

MIX++ from Fischetti et al. (2016a) B&C
instance |N | #LC #FC BestSol LB %gap t[s] BestSol LB %gap t[s]

hp1-0 28 1 3 1467 1467.0000 0.00 12.86 1467 CUTOFF 0.00 0.66
hp2-0 35 1 3 2278 2278.0000 0.00 377.55 2278 2278.0000 0.00 4.47
pb1-0 27 1 3 1467 1467.0000 0.00 11.39 1467 CUTOFF 0.00 0.70
pb2-0 34 1 3 1784 1784.0000 0.00 145.71 1784 CUTOFF 0.00 4.14
pb5-0 20 1 9 1417 1417.0000 0.00 26.44 1417 CUTOFF 0.00 16.63
pb6-0 40 1 29 292 292.0000 0.00 19.42 292 292.0000 0.00 14.37
pb7-0 37 1 29 185 185.0000 0.00 31.28 185 CUTOFF 0.00 2.35
pet2-0 10 1 9 25295 25295.0000 0.00 0.39 25295 CUTOFF 0.00 0.06
pet3-0 15 1 9 905 905.0000 0.00 0.66 905 CUTOFF 0.00 0.22
pet4-0 20 1 9 1935 1935.0000 0.00 2.71 1935 1935.0000 0.00 1.04
pet5-0 28 1 9 2195 2195.0000 0.00 9.17 2195 CUTOFF 0.00 0.13
pet6-0 39 1 4 3683 3683.0000 0.00 330.08 3683 CUTOFF 0.00 1.43
pet7-0 50 1 4 5636 4986.0000 11.53 TL 5459 CUTOFF 0.00 9.51
sento1-0 60 1 29 552 552.0000 0.00 856.95 552 552.0000 0.00 78.60
sento2-0 60 1 29 226 226.0000 0.00 226.93 226 CUTOFF 0.00 1.07
weish01-0 30 1 4 923 923.0000 0.00 13.91 923 923.0000 0.00 0.84
weish02-0 30 1 4 1108 1108.0000 0.00 18.34 1108 1108.0000 0.00 0.56
weish03-0 30 1 4 619 619.0000 0.00 4.90 619 619.0000 0.00 0.26
weish04-0 30 1 4 465 465.0000 0.00 5.49 465 465.0000 0.00 1.80
weish05-0 30 1 4 443 443.0000 0.00 4.71 443 443.0000 0.00 1.82
weish06-0 40 1 4 1283 1283.0000 0.00 340.99 1283 1283.0000 0.00 7.69
weish07-0 40 1 4 1185 1185.0000 0.00 184.75 1185 1185.0000 0.00 4.63
weish08-0 40 1 4 1283 1283.0000 0.00 387.82 1283 1283.0000 0.00 5.55
weish09-0 40 1 4 532 532.0000 0.00 83.48 532 532.0000 0.00 6.63
weish10-0 50 1 4 785 785.0000 0.00 280.40 785 785.0000 0.00 10.96
weish11-0 50 1 4 584 584.0000 0.00 92.28 584 584.0000 0.00 2.15
weish12-0 50 1 4 778 778.0000 0.00 314.01 778 778.0000 0.00 3.36
weish13-0 50 1 4 742 742.0000 0.00 218.14 742 742.0000 0.00 3.62
weish14-0 60 1 4 1046 786.0000 24.86 TL 1020 1020.0000 0.00 85.27
weish15-0 60 1 4 759 759.0000 0.00 2484.18 759 759.0000 0.00 57.82
weish16-0 60 1 4 876 644.0000 26.48 TL 828 828.0000 0.00 278.70
weish17-0 60 1 4 36 36.0000 0.00 0.76 36 CUTOFF 0.00 0.08
weish18-0 70 1 4 2139 749.0000 64.98 TL 1927 CUTOFF 0.00 22.28
weish19-0 70 1 4 1170 600.3016 48.69 TL 1095 1095.0000 0.00 1283.08
weish20-0 70 1 4 1086 526.0000 51.57 TL 964 964.0000 0.00 773.93
weish21-0 70 1 4 988 569.0000 42.41 TL 904 903.9480 0.00 1770.06
weish22-0 80 1 4 1465 485.9626 66.83 TL 1374 1292.7368 5.91 TL
weish23-0 80 1 4 1361 485.0000 64.36 TL 1248 1161.4429 6.94 TL
weish24-0 80 1 4 2401 571.7136 76.19 TL 2094 CUTOFF 0.00 27.41
weish25-0 80 1 4 1181 406.0000 65.62 TL 1090 1001.5398 8.12 TL
weish26-0 90 1 4 1484 365.2379 75.39 TL 1243 1145.6534 7.83 TL
weish27-0 90 1 4 1431 412.0000 71.21 TL 1296 1177.8500 9.12 TL
weish28-0 90 1 4 1482 434.0000 70.72 TL 1358 1280.7280 5.69 TL
weish29-0 90 1 4 1368 385.0000 71.86 TL 1206 1110.1846 7.94 TL
weish30-0 90 1 4 829 314.2100 62.10 TL 724 CUTOFF 0.00 91.42
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