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Abstract

The design of nature reserves is becoming, more and more, a crucial task for ensuring the conservation
of endangered wildlife. In order to guarantee the preservation of species and a general ecological func-
tioning, the designed reserves must typically verify a series of spatial requirements. Among the required
characteristics, practitioners and researchers have pointed out two crucial aspects: (i) connectivity, so as
to avoid spatial fragmentation, and (ii) the design of buffer zones surrounding (or protecting) so-called
core areas.

In this paper, we introduce the Generalized Reserve Set Covering Problem with Connectivity and
Buffer Requirements. This problem extends the classical Reserve Set Covering Problem and allows to
address these two requirements simultaneously. A solution framework based on Integer Linear Program-
ming and branch-and-cut is developed. The framework is enhanced by valid inequalities, a construction
and a primal heuristic and local branching.

An extensive computational study on grid-graph instances and real-life instances based on data from
three states of the U.S. and one region of Australia is carried out to assess the suitability of the proposed
model to deal with the challenges faced by decision-makers in natural reserve design. The results show,
on the one hand, the flexibility of the proposed models to provide solutions according to the decision-
makers’ requirements, and on the other hand, the effectiveness of the devised algorithm for providing
good solutions in reasonable computing times.

1 Introduction and Motivation

Demographic expansion, natural resource exploitation, and the consequences of climate change, are among
the processes that had resulted in a dramatic loss of biodiversity in the last decades. In July 2012, at
the Rio+20 Earth Summit, the International Union for Conservation of Nature revealed that about 20,000
species are threatened with extinction. Among them, 4,000 are described as critically endangered and 6,000
as endangered, while more than 10,000 species are listed as vulnerable (IUCN 2016).

The maintenance of biodiversity is crucial for the humankind, so its preservation is decisive for future
generations (Cardinale et al. 2012). As a matter of fact, immense efforts have been devoted in the last
decades by international organizations, governments, and foundations, for the establishment of protected
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areas aiming at ensuring a sustainable landscape for wildlife. The reader is referred to the books (Gergel
and Turner 2002, Lindenmayer and Franklin 2002, Millspaugh and Thompson 2008) for in-depth analyses
and discussion of motivations, models, cases, and challenges in the field of wildlife conservation and nature
reserve planning.

The design of such nature reserves has lead to the development of a plethora of mathematical models.
The purpose of such models is in providing optimally designed reserves that respect ecological, economical
and eventually other requirements (see Billionnet (2013) for a recent comprehensive review on optimization
models for biodiversity conservation). In its most fundamental form, a nature reserve design problem can be
stated as follows: one is given a set V of land sites (also known as land units or parcels) eligible for selection,
a set of species or features S, and, for each species s ∈ S, a set of suitable land sites Vs ⊆ V . The goal is
to find the minimum number of reserve sites such that each species is present in the selected set of sites at
least once. This problem is known as the Reserve Set Covering Problem (RSC) (Church et al. 1996, Pressey
et al. 1997).

The RSC can be formulated as an Integer Linear Programming (ILP) problem; let x ∈ {0, 1}|V | be a
vector of binary variables such that xi = 1 if site i ∈ V is selected, and xi = 0 otherwise. Using this notation,
the model

(RSC) minπ(x) =
∑
i∈V

xi (CARD)

s.t.
∑
i∈Vs

xi ≥ 1, ∀s ∈ S (COV)

x ∈ {0, 1}|V |, (BIN-x)

allows to find the optimal (minimum size) reserve given by V ∗ = {i ∈ V | x∗i = 1}. Observe that in the RSC,
we are only given a set of land sites V . To work with spatial requirements, such as connectivity and buffer
zones, one is also given a graph G = (V,E), in which the set of edges E encodes the spatial relationship of
the land sites (e.g., {i, j} ∈ E, if and only if i and j from V share a common border). In the remainder of
the paper, the terms land site and node will be used interchangeably.

The use of mathematical optimization models, such as (CARD)-(BIN-x), for the optimal design of nature
reserves is a widely explored research area; some references covering two decades of work are found in (Beyer
et al. 2016, Cayton et al. 2017b, Clemens et al. 1999, Öhman and Läm̊as 2005, Önal and Briers 2003, Williams
2008, Williams and ReVelle 1996, 1998, Williams et al. 2004). A natural alternative to this problem, is to
find a set of exactly p parcels that maximize the number of protected species; this problem is known as the
Maximal Covering Species Problem (Church et al. 1996).

Although the RSC enables decision makers to gain important insights about the suitable sites that need
to be preserved, the obtained solutions typically fail in satisfying relevant spatial attributes. According
to the reviews presented in (Billionnet 2013) and (Williams et al. 2005), the spatial requirements that are
typically imposed when designing reserves can be classified as follows: (i) reserve size or compactness, (ii)
number of reserves, (iii) reserves proximity, (iv) reserve connectivity, (v) reserve shape, and (iv) presence of
core and buffer areas. As pointed out in the above mentioned reviews (and the references therein), these
requirements correspond to different ecological needs which depend on the considered landscape, the species
to be protected, and the human activities surrounding the potential reserve. Fundamental works on the
design of reserves respecting spatial requirements can be found, for example, in (Önal and Briers 2002,
Schwartz 1999).

Among relevant spacial requirements, connectivity is one of the most prevalent ones; it avoids habitat
fragmentation improving the conditions for sustainable ecosystems (Beier and Noss 1998, Debinski and Holt
2000, Gergel and Turner 2002, Millspaugh and Thompson 2008). Various modeling approaches have been
proposed for incorporating connectivity into the design of nature reserves (see, e.g., (Beyer et al. 2016,
Billionnet 2012, Dilkina and Gomes 2010, Jafari and Hearne 2013, Jafari et al. 2017, Öhman and Läm̊as
2005, Önal et al. 2016, St. John et al. 2018, Wang and Önal 2011)). Note that ensuring connectivity does
not necessarily mean that only a single reserve has to be designed. Instead, multiple connected components
may be allowed too.
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The second important criterion is the presence of core areas and buffer zones that allows the development
of so-called Biosphere reserves (Batisse 1982, 1990). The purpose of the buffer zone is to surround the core
area and protect it from negative external impacts, therefore promoting the long-term viability of critical
species (see, e.g., Chapters 1 and 5 of Lindenmayer and Franklin (2002) and Chapters 19 and 20 of Millspaugh
and Thompson (2008)).

Finally, another important issue in reserve design is to ensure minimum quotas of ecological suitability for
some species, especially critically endangered ones (see, e.g., Chapters 9 and 14 of Millspaugh and Thompson
(2008)).

Contribution and Outline of the Paper Although the design of nature reserves considering buffer
zone requirements has been addressed before (see, e.g., Clemens et al. (1999), Williams and ReVelle (1996,
1998)), the question on how to impose connectivity requirements to the buffer zones remained unanswered
in the existing literature. In particular, in (Billionnet 2013), the authors point out that known models fail
in providing suitable conditions for particular endangered species precisely due to the lack of connectivity
of the resulting reserves. The main contribution of our work consists thus of providing, for the first time, a
modeling and algorithmic framework for the optimal design of wildlife reserves by simultaneously integrating
three criteria: connectivity requirements, construction of buffer zones and minimum quotas of ecological
suitability. This is done by introducing the Generalized Reserve Set Covering Problem with Connectivity
and Buffer Requirements (GRSC-CB). The GRSC-CB allows to design a reserve comprised by one or more
connected components; each of them consisting of a core surrounded by a buffer zone. In our extensive
numerical study on grid-graph and real-life instances, we demonstrate that the GRSC-CB, and its variants,
deliver solutions that properly embody different spatial and ecological features and significantly improve
upon the spacial structure of reserves created by the simpler RSC models from the literature.

The article is organized as follows. In Section 2 we incrementally develop an ILP-formulation for the
GRSC-CB by first giving a generalization of the RSC without considering connectivity and buffer require-
ments, and then introducing constraints to model these two requirements. In Section 3, we describe a
branch-and-cut framework to solve the proposed formulation. Computational results on synthetic instances,
as well as case studies on real-life instances based on data of the U.S. National Gap Analysis Program and of
the Northern Australia Water Futures Assessment Program are presented in Section 4. Section 5 concludes
the paper.

2 The Generalized Reserve Set Covering Problem with Connec-
tivity and Buffer Requirements

In this section, we first give a generalization of the RSC, which takes into account that in real-life situations,
different types of species need different levels of protection. The resulting problem is denoted as Generalized
Reserve Set Covering Problem (GRSC). We then introduce constraints for modeling buffer and connectivity
requirements, and finally obtain the GRSC-CB. These constraints can also be added individually to obtain
problems that we denote as GRSC with buffer requirements (GRSC-B) and GRSC with connectivity require-
ments (GRSC-C). In Figure 1 optimal solutions for these four problems on the same underlying instance are
shown. The influence of the spatial constraints imposed in the different problem variants can be easily seen.
The GRSC solution is very fragmented. The GRSC-B solution has a more compact shape, but consists of
two components, and one of these components is very small. The GRSC-C solution is connected, but its
spatial distribution lacks compactness. Finally, the GRSC-CB solution has a similar compact shape as the
GRSC-B solution, but consists of a single component only.

To account for the difference concerning the need of protection among species, we consider a partition
of the set of species S into two subsets, namely S1 and S2, S = S1 ∪ S2, S1 ∩ S2 = ∅. Species in S1 are the
ones needing stronger protection (e.g., the land sites selected for hosting them need to be in the core of the
designed reserve, if a model with core and buffer zones is considered).

Additionally, ecologists usually do not only know in which land sites a species lives, but they are able
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(a) GRSC Solution
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(b) GRSC-B Solution
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(c) GRSC-C Solution
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(d) GRSC-CB Solution

Figure 1: Optimal solutions on the same instance for the different problem variants introduced in the paper.
For problems with buffer, i.e., GRSC-B and GRSC-CB, denotes core land sites, and denotes buffer land
sites; for the problem without buffer, i.e., GRSC and GRSC-C, denotes selected land sites.

to assess the habitat features of the different land sites. We model this by using a habitat suitability score
function w : V × S → R≥0, such that wsi measures how advisable, with respect to species s ∈ S, it is to
select the land site i ∈ V as part of the reserve (see, e.g., Chapters 9 and 10 of Millspaugh and Thompson
(2008)). A species s ∈ S is considered to be protected by the designed reserve, if the wsi values of the land
parcels contained in the reserve sum up to at least λs ≥ 0, which represents a minimum quota of ecological
suitability for species s. If a model with buffer requirements is used, for species s ∈ S1, the wsi values of
land parcels selected for the core of the designed reserve must sum up to at least λs (as only core area is
suitable to protect the species in S1). We denote with Vs the set of land parcels with wsi > 0. We observe
that a simpler version of this suitability approach has already been used previously, e.g., in Polasky et al.
(2001) the constraint (COV) is replaced by

∑
i∈Vs

xi ≥ hs, ∀s ∈ S, where hs ∈ Z≥1 is the number of sites
required by species s ∈ S. Finally, there is a cost function c : V → R>0, such that ci corresponds to the
cost of selecting the land site i ∈ V as part of the reserve (see, e.g., Chapter 5 of Millspaugh and Thompson
(2008) for further details regarding economic considerations for planning wildlife conservation).

In the typical reserve design setting considered in the literature, all species under consideration must be
hosted within the reserve. However, if the area under consideration hosts many different species, the obtained
reserves might be impractical due to size considerations or undesirable shapes. To allow for more flexibility
in the design, we introduce two parameters, 0 ≤ P1 ≤ |S1| and 0 ≤ P2 ≤ |S2|, allowing the decision maker
to specify for how many of the species in S1 and S2 the obtained reserve must fulfill the minimum quota of
ecological suitability. We observe that the classical RSC described in the introduction can be obtained by
setting S2 = S, w = 1 and λs = 1 for every species s, and P2 = |S2|.

Definition 1 Given the input data described above, the GRSC-CB is the problem of finding a minimum cost
natural reserve that fulfills the following criteria:

(i) at least P1 species from S1 are hosted in the core area,

(ii) at least P2 species from S2 are hosted in the reserve,

(iii) the minimum ecological suitability quotas for each of the hosted species are satisfied,

(iv) the solution is comprised by at most k connected areas, and

(v) each connected area consists of a core surrounded by a buffer of width d.

In this article we also address three relaxations of this problem, namely: GRSC, in which the conditions
(iv) and (v) are relaxed; GRSC-B, in which condition (iv) is relaxed, and GRSC-C, in which condition (v)
is relaxed (i.e., d = 0).

In the following, we introduce the ILP models for all four variants in a modular fashion.
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2.1 Modeling the GRSC Problem

In our formulation, vector x ∈ {0, 1}|V | is associated with the decision of selecting sites as part of the reserve
(either as part of the core or part of the buffer zone). In addition, let vector z ∈ {0, 1}|V | be associated
with the decision of selecting sites as part of the core area. Let u ∈ {0, 1}|S| be a vector of variables so that
us = 1 if species s ∈ S is hosted by the reserve, and us = 0, otherwise. A triplet (u,x, z) is associated with
an appropriate territorial coverage of the species if the following inequalities hold:∑

i∈Vs

wsi zi ≥ λsus, ∀s ∈ S1 (S1-SQ)

∑
i∈Vs

wsi xi ≥ λsus, ∀s ∈ S2 (S2-SQ)

∑
s∈S1

us ≥ P1 (S1-PROTECT)

∑
s∈S2

us ≥ P2. (S2-PROTECT)

Constraints (S1-SQ) ensure that if a species s ∈ S1 is hosted by the reserve (us = 1), then the ecological
suitability of the core of the reserve with respect to s must be at least λs. Likewise, constraints (S2-SQ)
ensure that if a species s ∈ S2 is protected (us = 1), then the ecological suitability of the reserve must be
at least λs. These two set of constraints will be referred to as suitability quota constraints. Note that if a
planner wants to ensure that a given species s must be part of the reserve, then she/he can achieve this
by simply adding the constraint us = 1. Constraints (S1-PROTECT) and (S2-PROTECT) imposes that at
least P1 core species and P2 buffer species must be protected. These two constraints will be referred to as
species protection constraints.

The cost of the reserve is calculated as the sum of the cost of all of the selected sites. To model this, we
need the following set of linking constraints

zi ≤ xi, ∀i ∈ V, (LINK)

i.e., if a site is considered to be in the core, the site must be in the designed reserve. The cost of a reserve
encoded by (u,x, z) is then given by

γ(u,x, z) =
∑
i∈V

cixi. (COST)

The inequalities presented so far allow to formulate a first generalization of the RSC, denoted as Gener-
alized Reserve Set Covering Problem (GRSC), given by

(GRSC) min

{
γ(u,x, z)

∣∣∣∣(S1-SQ), (S2-SQ), (S1-PROTECT), (S2-PROTECT), (LINK), (u,x, z) ∈ {0, 1}|S|+2|V |
}
.

The GRSC takes into account the minimum suitability quotas, but it ensures neither the connectivity of
the reserve, nor the existence of a buffer around the core. This means that in particular situations, like the
one depicted in Figure 1a, very fragmented reserves could be obtained.

In the following, these two missing properties are characterized and, thereafter, the complete ILP formu-
lation for GRSC-CB is presented. (We observe that the GRSC could be modeled only using (x,u); z will be
used in the following for modeling the core/buffer interplay.)

2.2 Modeling the Buffer Zone

To model the buffer surrounding the selected core areas, the following definition of d-neighborhood set of a
node i is needed.
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Definition 2 (d-neighborhood) For a given integer d ≥ 0 and a given land site i ∈ V , the d-neighborhood of
i, δd(i), is defined as

δd(i) = {j ∈ Vi 6=j | the minimum number of hops between i and j is at most d} .

We also define the set δ+
d (i) = δd(i) ∪ {i}.

Set δd(i) corresponds to the set of all nodes j ∈ V that are separated by at most d edges from i, e.g., all
adjacent nodes of i are given by δ1(i) (for sake of readability, we will write δ1(i) = δ(i) in the following).
As the graph in our setting is undirected, for two nodes i, j, we have i ∈ δd(j) if and only if j ∈ δd(i). The
definition allows to model the buffer zones with the following set of constraints

zi ≤ xj , ∀j ∈ δd(i), ∀i ∈ V (d-BUFF.1)

i.e., if i is taken as part of the core (zi = 1), then all of the land sites j ∈ δd(i) must verify xj = 1 (i.e., they
must at least be part of the buffer zone). Hence, it ensures that the each core land site is surrounded by at
least d other sites within the reserve. However, using only constraints (d-BUFF.1), it is possible, that some
land parcel i is selected (i.e., xi = 1 and zi = 0) without any parcel j forcing it to be in the solution as a
buffer side for j. This can happen in presence of constraints (S2-SQ) and (S2-PROTECT) (without these
constraints, the objective function together with ci > 0, i ∈ V takes care of the issue). This situation is
not desired, as it can lead to a fragmented reserve. To deal with this issue, we propose the following set of
inequalities;

xi ≤
∑

j∈δd(i)

zj , ∀i ∈ V. (d-BUFF.2)

Inequalities (d-BUFF.2) ensure that whenever some xi = 1, at least one core node zj is selected in the
d-neighborhood. Therefore, combining (d-BUFF.1) and (d-BUFF.2) leads to cores that are nested within
buffer zones of width d. Adding constraints (d-BUFF.1) and (d-BUFF.2) to GRSC leads to the GRSC with
Buffer Requirements (GRSC-B).

2.3 Modeling Connectivity of the Reserve

Connectivity is modeled using a variant of a concept called node-separators (see, e.g., Álvarez-Miranda et al.
(2013a,b), Carvajal et al. (2013), Fischetti et al. (2017)). For modeling purposes, let Gr = (Vr, Er) with
Vr = V ∪{r} and Er = E∪{(r, i) | i ∈ V }, i.e., Gr corresponds to the original graph extended by an artificial
root r and |V | additional directed arcs connecting r with every node in V (denoted r-arcs, Ar). For a given
site ` from V , a tuple W = (WV ,WA), WV ⊆ V and WA ⊆ Ar, is called an r-arc-node-separator if and only
if after removing W from Gr, site ` cannot be reached from r. For a given node ` from V , let W` be the set
of all r-arc-node-separators with respect to `.

Let y ∈ {0, 1}|V | be a vector of auxiliary variables, such that yi = 1 if i ∈ V is connected with r through
arc (r, i), and yi = 0 otherwise. Using these variables, we model connectivity (of both the core area and
the buffer area) by ensuring that in the obtained solution, there is a path from r to all core nodes and
all buffer nodes selected in the solution (i.e., nodes with zi = 1, resp., xi = 1). This means, the obtained
feasible solutions are comprised of connected components rooted at nodes with yi = 1. Thus, the number of
connected components within the reserve can be controlled with the constraint∑

j∈V
yj ≤ k. (NCOMP)

Constraint (NCOMP) can also be written in equality form, if desired by a decision maker. Moreover, if a
land parcel is connected to the root (i.e., yi = 1) the land parcel must be taken in the core; this ensures that
every connected component in the solution has at least one core land parcel. This linking is done with the
following set of constraints:

yi ≤ zi, ∀i ∈ V. (YZ)
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The connectivity inequalities follow easily from the definition of the r-arc-node-separators: If a node ` is
in the solution, then for each separator in W = (WV ,WA) ∈ W`, at least one element (i.e., node from WV or
arc from WA) must be taken. We obtain the following family of inequalities for connectivity of the selected
core sites ∑

i∈WV

zi +
∑
j∈WA

yj ≥ z`, ∀W ∈ W`, ∀` ∈ V ; (CORECON)

inequalities (CORECON) are denoted as connectivity cuts. They are exponential in number, and the resulting
ILP is tackled by means of branch-and-cut (see Section 3 for a separation procedure for these inequalities).
We observe that these cuts can be down-lifted by not considering all j ∈ WA, but only j ≤ `, i.e., if node `
is in the solution, the component containing ` must be rooted either at `, or a node with index smaller than
`. By using this down-lifted variant, all k components of a feasible solution must be rooted at the node with
minimal index within each component, e.g., symmetric solutions giving the same components, but rooted at
other nodes, are not allowed.

When using inequalities (d-BUFF.1) and (d-BUFF.2) together with the inequalities proposed in this
section, connectivity of the land parcels selected by xi = 1 is automatically ensured, since all parcels with
xi = 1 and zi = 0 form a buffer of thickness d around all i with zi = 1. The reserve induced by zi = 1 form
(at most) k connected components and the buffer around them is connected by construction (as argued in
the previous section).

If a decision maker does not want a buffer-zone, but only a reserve comprised of (at most) k connected
components, connectivity cuts must be written in x instead of z, i.e.,∑

i∈WV

xi +
∑
j∈WA

yj ≥ x`, ∀W ∈ W`, ∀` ∈ V ; (ALLCON)

and also the linking-constraints (LINK) should be replaced by

yi ≤ xi, ∀i ∈ V. (YX)

We define the GRSC with Connectivity Requirements (GRSC-C) as the problem obtained by adding (ALLCON),
(YX) and (NCOMP) to GRSC.

2.4 The Complete Model

We are now ready to give the ILP model for the Generalized Reserve Set Covering Problem with Connectivity
and Buffer Requirements (GRSC-CB):

(GRSC-CB) min

{
γ(u,x, z)

∣∣∣∣(S1-SQ),(S2-SQ), (S1-PROTECT),(S2-PROTECT), (LINK),

(d-BUFF.1),(d-BUFF.2),(CORECON),(YZ),(NCOMP), (u,x, z,y) ∈ {0, 1}|S|+3|V |
}
.

In order to solve (GRSC-CB), we propose in the following an algorithmic framework based on branch-and-
cut. Besides dealing with the separation of inequalities which are exponential in size, this framework also
integrates multiple heuristics that allow to find high-quality solutions for large-scale instances, for which the
optimal solution cannot be obtained.

3 A Branch-and-Cut Framework for the GRSC-CB

The core of our branch-and-cut framework is based on the separation of the connectivity cuts (CORECON).
In addition, to improve the quality of lower bounds, we propose additional valid inequalities for the model
(GRSC-CB), denoted as species cuts, cover inequalities, and species-cover cuts. These inequalities (which
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are described in Section 3.1) are dynamically separated, together with (CORECON), and the underlying
separation routines are given in Section 3.2. In order to find feasible solutions within the framework, we also
designed heuristics that are detailed in Section 3.3.

3.1 Valid Inequalities

Species Cuts If a species s ∈ S1 is in the solution, i.e., us = 1, then there must be a path from the root node
to at least one land parcel in Vs (which are the nodes with wsi > 0). To enforce this, we again use connectivity
cuts based on r-arc-node separators. The cuts are defined using a graph Gsr, which is an extension of Gr
with an additional node s. Let Gsr = (V sr , E

s
r) with V sr = Vr ∪ {s} and Esr = Es ∪ {(i, s) | i ∈ Vs}, i.e., Gsr

corresponds to Gr plus an artificial sink node s and |Vs| additional directed arcs connecting every node in
Vs with s (denoted as As). For a given species s ∈ S1, let Ws be the set of all r-arc-node-separator with
respect to s. The species cuts for a given species s read as follows∑

i∈WV

zi +
∑
j∈WA

yj ≥ us, ∀W ∈ Ws, s ∈ S1. (SC)

Cover Inequalities and Species-cover Cuts Let Ws =
∑
i∈V w

s
i . For a given species s ∈ S, a set

Cs ⊂ Vs is called a cover if
∑
i∈Cs

wsi ≥ Ws − λs, i.e., the set of land parcels in Vs \ Cs is not sufficient for
satisfying the suitability quota. Thus, if species s is to be hosted by the reserve, it must hold that∑

i∈Cs

zi ≥ us, if s ∈ S1, or
∑
i∈Cs

xi ≥ us, if s ∈ S2, (COVER)

i.e., at least one land parcel in Cs must be taken. We note that these inequalities are variants of the
well-known cover -inequalities for knapsack constraints (see, e.g., (Kaparis and Letchford 2010)).

The covers Cs can be used to define a stronger version of inequalities (SC) by replacing Vs with Cs
(obtaining graphs GCs

r with arcs As replaced by {(i, s) | i ∈ Cs}). The resulting cuts are denoted as
species-cover cuts (SCC).

3.2 Constraint-Separation

Separation of Connectivity Cuts and Species(-cover) Cuts Let ρ = (ũ, x̃, z̃, ỹ) be the solution of the
LP relaxation at the current node of the branch-and-bound tree. Connectivity cuts (CORECON), (ALLCON)
(if a model using them is desired), species cuts (SC) and species-cover cuts (SCC) can be separated using
maximum-flow computations on a bi-directed graph Dr based on Gr (resp., Gsr, G

Cs
r ), where capacities

are defined based on ρ (see also Álvarez-Miranda et al. (2013a,b), Carvajal et al. (2013), Fischetti et al.
(2017)). While our description applies to (CORECON), the other cuts can be separated in a similar way
by a straightforward adaption of the graph used for separation. The idea behind the separation is to de-
fine a directed graph by splitting the nodes i ∈ V to directed arcs (i1, i2) with associated capacities z̄i.
For ` ∈ V , a minimum r − ` cut with capacity smaller than z̄` can then be used to construct a violated
inequality (CORECON).

To be more precise, starting from Gr = (V ∪{r}, E∪Ar), the digraph Dr = (N,A) used in the separation
of (CORECON) is defined as follows: For i ∈ V , define nodes i1 and i2, i.e., N = {r} ∪ {i1, i2 | i ∈ V }
and set Az = {(i1, i2) | i ∈ V } and A′r = {(r, i1) | (r, i) ∈ Ar}. Bi-direct the edges {i, j} in E to arcs
(i, j), (j, i). After bi-directing, all ingoing arcs into i are connected to i1, and all outgoing arcs from node
i are connected to i2. The set A is defined as the set of arcs obtained this way, plus Az and A′r, i.e.,
A = {(i2, j1), (i1, j2) | {i, j} ∈ E} ∪ {(i1, i2) | i ∈ V } ∪ {(r, i1) | i ∈ V }. We then define arc-capacities cap as
follows based on ρ:

captv =


z̃i, if t = i1, v = i2, i ∈ V,
ỹi, if t = r, v = i1, i ∈ V,
∞, otherwise.
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Thus, arcs (i1, i2) obtained by splitting nodes i ∈ V are assigned the value of the corresponding node variable
zi, root-arcs (r, i1) are assigned the value of the associated root-variable yi, and all other arcs (i.e., the ones
obtained by bi-directing E) are assigned infinite capacity. It is easy to see that with these capacities, any
minimum r − ` cut (for ` ∈ V ) will not involve arcs (i2, j1) for i, j ∈ V , as such a cut has infinite capacity.
Thus the arcs Āz ∪ Ār induced by any minimal r− ` cut are subsets of Az ∪A′r. Any Āz ∪ Ā′r can be mapped
to a set (W̄V , W̄A) by defining W̄V = {i | (i1, i2) ∈ Az} and W̄A = {(r, i)|(r, i1) ∈ A′r}. Now, if∑

i∈W̄V

z̄i +
∑
j∈W̄A

ȳj < z̄`,

then (W̄V , W̄A) defines a violated connectivity cut (CORECON). Thus, the separation problem for (CORECON)
and a given ` ∈ V can be solved in polynomial time by using a maximum-flow/minimum-cut algorithm.

In case ρ is integer, the separation procedure can be much simplified: We construct all connected com-
ponents H induced by z̄i = 1 (by using, e.g., breadth-first search). If for such an H, ȳi = 0 holds all i ∈ H,
the component is not connected to the root node. A connectivity cut (CORECON) can be constructed by
defining WA = H and WV = {j|{i, j} ∈ E : i ∈ H, j 6∈ H} (i.e., either a node in H must be directly
connected to the root node, or one of the nodes neighboring to H must be in the solution) and taking any
` ∈ H for the right-hand-side of the cut (we take the node one with smallest index in H).

In both cases (fractional and integer separation), we use the down-lifting by only allowing j ≤ ` for z`
on the left hand-side. For separation of (SCC), we consider the set C̄ obtained in the separation routine of
the cover inequalities as detailed below.

Separating Cover Inequalities For a given species s ∈ S1, a cover Cs can be found by solving the
following separation problem

min

∑
j∈Vs

z̃jqj

∣∣∣∣ ∑
j∈Vs

wsjqj ≥Ws − λs and q ∈ {0, 1}|Vs|

 . (COVER-Sep)

Clearly, the feasible solutions of (COVER-Sep) are the covers Cs, and the objective function minimizes
the sum of the z̃i for the nodes i in the obtained Cs. Thus, if the solution of (COVER-Sep) is smaller than
ũs, a violated inequality (COVER) is obtained (for s ∈ S2, the z need to be replaced by x). The separation
problem (COVER-Sep) is a knapsack-problem in minimization form. We do not solve the problem exactly,
but use the following heuristic: First, we sort the nodes in a non-decreasing way by z̃j/w

s
j ; then, construct

we a cover Cs by iteratively picking the nodes sorted in this way, starting with the smallest ratio, until∑
j∈Cs

wsj ≥Ws − λs.

Implementation of the Cut-Loop At any branch-and-bound node, we do not aim to separate all violated
inequalities, but follow the outline described in the following list, and only move from one separation routine
to the next, if no violated inequalities have been found:

1. Separate (COVER) and (SCC) or separate (SC) (depending on the chosen separation strategy, note
that (SCC) dominate (SC)).

2. Separate (CORECON)

This scheme is followed in order to avoid excessive calls of the (time consuming) separation routines and
also to avoid overloading the LP with too many inequalities. To further achieve this goal, the separation
of (CORECON) is not done for all nodes ` ∈ V with z̃` > 0, but only for nodes with z̃` ≥ τ , where τ is a
given separation threshold parameter (we tried values of 0.5 and 0.1 in our computational experiments, see
Section 4). Moreover, once a violated inequality (CORECON) is found for some `, we do not consider the
nodes {i|(r, i) ∈WA} for separation.

For integer solutions of the LP relaxation, only connectivity cuts (CORECON) are separated (observe
that for correctness of our approach, only this separation is necessary). In our computational experiments,
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we also tried other separation strategies, such as separating fractional points only at the root node, or
separating integer points ρ only. Details are given in Section 4.

3.3 Construction Heuristic and Primal Heuristic

We have designed a construction heuristic, to generate a starting solution for initializing the branch-and-cut,
and a primal heuristic, which is incorporated inside of the branch-and-cut framework. Moreover, to improve
the solution found by the construction heuristic, we also implemented a local-branching ILP-heuristic Fis-
chetti and Lodi (2003).

The use of such heuristics was crucial, since initial computational experiments showed that the internal
heuristics of CPLEX, the general purpose ILP-solver we used, did only find feasible solutions of very poor
quality (if any solution was found at all). This is likely due to the symmetric nature of our problem, the
structure of the instances and the fact that, due to the cutting plane approach, only a partial information
about the nature of the problem at hand is given to the ILP-solver.

Construction Heuristic: Phase One The construction heuristic first creates a feasible solution in a
greedy fashion, and then tries to remove unnecessary land parcels in a post-processing phase. The greedy
heuristic is based on the TM heuristic by Takahashi and Matsuyama (1980) for the Steiner tree problem.
Recall that in the Steiner tree problem, we are given a graph G = (V,E), edge costs c : E → R>0 and
terminal set T ⊂ V and we want to find the minimum cost tree containing all T terminals. In the TM
heuristic, one starts with a partial solution S consisting of a single node from T . Let T ′ = T \ S. Shortest
paths to all t ∈ T ′ are calculated. Let t∗ ∈ T ′ be the terminal in T ′ with minimum shortest-path distance to
S. The terminal t∗ and all nodes and edges on the shortest path from S to t∗ are added to S. This process
is repeated, until all terminals are added in S.

To use a similar heuristic for the GRSC-CB, some adaptations need to be made to deal with the following
differences to the Steiner tree problem: i) the solution can have up to k components, ii) each component
consists of a connected core surrounded by a buffer, iii) there is no set of terminals T to be connected, but the
species protection constraints (S1-PROTECT) and (S2-PROTECT) must be fulfilled instead, i.e., P1(P2)
species from S1(S2) must be protected in the solution (which in turn depends on fulfilling the suitability
quota constraints (S1-SQ), resp., (S2-SQ)).

In our heuristic (see Algorithm 1), the partial solution S is stored as (Sz,Sx), where Sz contains the
core nodes of the partial solution, and Sx contains all nodes of the partial solution. For each species s, we
also keep track of the habitat score of the nodes in the partial solution; these values are stored in Ws(S).
The function us(S) is true, if and only if the suitability quota constraint (S1-SQ), resp., (S2-SQ) for s is
fulfilled by S and it is false, otherwise. The function protectedS1(S), resp., protectedS2(S) is true, if and
only if P1(P2) species from S1(S2) are protected in the partial solution S and it is false, otherwise. A
solution S is feasible if and only if both protectedS1(S) and protectedS2(S) are true. The algorithm also
uses a function computeShortestPaths(V ′, V ′′) which computes the (node-weighted) shortest-paths between
V ′ and any node j ∈ V ′′ and returns the distances. Moreover, the method nodesOnShortestPath(V ′, V ′′)
returns the nodes on the shortest-path between V ′ and V ′′. More details are given below.

During the course of the heuristic, we select nodes i to add to Sz based on shortest-path calculations
similar to the TM heuristic, i.e., we build connected cores. We initialize Sz by randomly selecting k nodes,
which ensures that the final solution has at most k connected components. Whenever a node is added to
Sz, its d-neighborhood is added to Sx (i.e., to accommodate for the the buffer-constraint).

In contrast to the standard TM heuristic, in our approach the terminal set for the shortest-path calcu-
lations is not known in advance. Instead, the set of terminals, denoted by T (S), is dynamically updated
in each iteration, based on the current solution S and the associated values of us(S), protecedS1(S) and
protecedS2(S). Given a partial solution S, a node i belongs to T (S) if and only if adding it to Sz is helpful
with respect to protectedS1(S) or protectedS2(S). A node i is deemed helpful with respect to protectedS1(S),
if protectedS1(S) is false, and i ∈ Vs for at least one s ∈ S1 with us(S) =false, i.e., if adding it as a core
node increases the habitat suitability score for a species from S1 not hosted by S, and S does not already
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Algorithm 1: Construction Heuristic

Data: An instance of the GRSC-CB
Result: A feasible solution S = (Sz,Sx) for the GRSC-CB
/* the set T (S) of terminals is dynamically updated, see the text for details */

randomly pick k nodes from V to initialize Sz
Sx ←

⋃
i∈Sz

δ+
d (i)

while ¬protectedS1(S) ∨ ¬protectedS2(S) do
d← computeShortestPaths(Sz, T (S))
i∗ ← arg minj∈T (S) dj
nodesSP ← nodesOnShortestPath(Sz, i

∗) ∪ {i∗}
for i ∈ nodesSP do
Sz ← Sz ∪ {i}
Sx ← Sx ∪ δ+

d (i)

/* update T (S) */

host P1 species from S1. Helpfulness of i with respect to protectedS2(S) is defined similarly; in addition, all
nodes j ∈ δd(i) are also included in the helpfulness-check (and not just i).

To measure the level of helpfulness of a node, we introduce a node-cost function ∆i(S) that is employed
as cost function for the shortest-path calculations (which are done with respect to the node-cost). The value
of the function ∆i(S) is dynamically updated based on the partial solution given by S. This is done to take
into account that adding a node i to the core (i.e., to Sz) may also cause some other nodes j to be added to
Sx, due to the buffer-constraints. Moreover, by ∆i(S) we also try to take into account that the helpfulness
of a node i changes, depending on the suitability scores wsi of the node and the species already protected by
S. Let

Ci(S) =
∑

j∈δ+d (i)\Sx

cj ,

W1
s (i,S) =

(
wsi +Ws(S)− λs

)(
1− us(S)

)
for s ∈ S1

and

W2
s (i,S) =

( ∑
j∈δ+d (i)\Sx

wsj +Ws(S)− λs
)(

1− us(S)
)

for s ∈ S2,

where the value true as output of us(S) is interpreted as one and false as zero. The value Ci(S) measures
the cost of adding node i to the solution, while W1

s (S) and W2
s (S) tries to capture the helpfulness of adding

i to the solution with respect to a species s. The node cost ∆i(S) is finally defined as follows:

∆i(S) =
Ci(S) + 0.001( ∑

s∈S1

W1
s (i,S)

)(
1− protectedS1(S)

)
+
( ∑
s∈S2

W2
s (i,S)

)(
1− protectedS2(S)

)
+ 0.0001

,

where the value true as output of protectedS1(S), protectedS2(S) is interpreted as one and false as zero.
The construction heuristic is run for nstarts = 20 different random starting solutions Sz.

Primal Heuristic: Phase One As a primal heuristic during the branch-and-cut, we use a slightly
modified version of the construction heuristic: In the calculation of the node-cost Ci, we use ci(1 − x̃i)
instead of ci. Moreover, the randomly generated starting solutions are constructed by considering the of
nodes with ỹi ≥ 0.001. In both cases, we run a post-processing procedure, in which we try to remove
unnecessary nodes from Sz, as described below.
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Construction and Primal Heuristic: Phase Two (Post-Processing) The post-processing is a greedy
local improvement procedure in which we iterate through the nodes i ∈ Sz, and check, if after removing i,
the solution remains feasible. Note that, together with i we are also removing all nodes from δd(i) which
become redundant after removing i. Let us denote this set of nodes with Six where

Six = δ+
d (i) \

⋃
j∈Sz,j 6=i

δ+
d (j).

Let i∗ be the node whose removal (together with Six) results in the largest improvement in the objective
function. We remove i∗ from Sz and Six from Sx, and repeat the process until no additional node can be
removed.

Finally, we point out that a similar heuristic can also be used for GRSC-C by setting the buffer size to
zero, so we have δ+

d (i) = {i}.

3.4 Local Branching-based Heuristic

The solution found by the construction heuristic is further improved using an ILP-based local-search pro-
cedure known as local branching byFischetti and Lodi (2003). Given a feasible solution S, local branching
explores its r-neighborhood by employing an ILP-solver in a black-box fashion. In the following, we provide
specific details of our implementation that deviate from the standard recipe given in Fischetti and Lodi
(2003), following an improved scheme from Fischetti et al. (2017).

In each local search iteration, we start with the basic ILP-formulation of the problem (given in Section 2),
and extend it through an additional local branching constraint which specifies the r-neighborhood with
respect to S. In our case, this ILP-formulation is solved through the branch-and-cut, enhanced by the
primal heuristic. Even though the complexity of the resulting formulation inherits the complexity of the
original problem, its feasible region is significantly smaller due to the choice of the parameter r. Furthermore,
the resulting ILP does not have to be solved to optimality; instead, one interrupts the solver as soon as a
feasible solution is found, i.e., the first-improvement local search strategy is applied. In addition, we impose a
time-limit for each local search iteration. If this time-limit is reached, this means that no improving solution
is found in the current neighborhood. In the latter case, the size of the neighborhood is increased by ∆r.
Whenever a new best solution is found, the size of the neighborhood is reset to r. The procedure is then
repeated with the improved solution S ′ (or with the larger neighborhood), until one of the stopping criteria
is satisfied: (i) the maximum number of local search iterations is reached, (ii) the maximum neighborhood
size is reached, or (iii) the overall time limit for the local branching phase is reached.

We point out that our local branching takes an additional advantage of the primal heuristic as follows:
if the heuristic manages to produce a feasible solution S ′ which improves upon the currently best known
one, but is infeasible with respect to the local branching constraint, the current local search iteration is
interrupted, and the procedure is repeated by exploring the neighborhood of S ′.

Let Sz be the set of i with zi = 1 in a given solution S and let r be a given radius. The r-neighborhood
with respect to S is defined as a set of all feasible solutions whose Hamming distance with respect to Sz is
not bigger than r. Consequently, the following local branching constraint is utilized in our framework:∑

i∈Sz

zi ≥ |Sz| − r. (LOCBRA)

The constraint (LOCBRA) ensures that at least |Sz|−r of the core land parcels of the solution S also belong
to the new solution S ′.

Upon the termination of the local branching procedure, the branch-and-cut is started. The second
important and non-standard feature of our local branching implementation is the utilization of a cutpool,
which collects all violated inequalities detected during the local branching phase. These inequalities are used
to initialize the final call of the branch-and-cut procedure. The arc-node separator inequalities (CORECON)
found during the local branching phase are globally valid, and hence, their collection and recycling through
the cutpool significantly influences the overall computing time. Furthermore, the cuts from the cutpool added
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at the root node also trigger general-purpose cutting planes implemented within an ILP-solver, resulting in
stronger bounds at the root node. Furthermore, the inequalities (CORECON) from the cutpool are also used
to initialize each subsequent local search iteration.

In our implementation, we use r = 5. As a time-limit for the ILPs (i.e., for each single local search
iteration) we set 20 seconds. If no improved solution is found, r is increased by ∆r = 5, until the maximum
neighborhood size of 20 is reached. If an improved solution is found, r is reset to five. These settings have
been determined using preliminary computations.

4 Computational Results

In order to assess the effectiveness and suitability of the proposed approach, we implemented our branch-
and-cut framework and tested it on three data sets. The first data set contains synthetic instances based on
grid-graphs, while the second and third data sets are real-life case studies encompassing instances retrieved
from the geographic and ecological survey data.

The implementation of the branch-and-cut is done using CPLEX 12.7 as a generic-purpose ILP-solver.
All CPLEX-parameters were left at their default values. The experiments were carried out on an Intel Xeon
CPU with 2.5 GHz and 16GB of RAM using a single-thread mode.

4.1 Benchmark Instances

Grid-Graph Instances Following the procedure proposed in Dilkina and Gomes (2010), Wang and Önal
(2016), our grid-graph instances were generated as follows: A grid of n× n nodes (set V ) was created, and
an edge {i, j} between i, j ∈ V exists if and only if i and j are adjacent in this grid. For each node i, the
cost ci was set to an integer value taken uniformly at random from the range [1, 100]. The habitat suitability
wsi for node i and species s was set to an integer value taken uniformly at random from the range [20, 100].
After generating this value, wsi is re-set to zero with probability 20% (for s ∈ S1), resp. 10% (for s ∈ S2) to
account for the fact that normally not all land parcels are suited for all species.

We generated four sets of ten instances according to the following scheme:

• Set 1 : n = 20 (hence V = 400, E = 760), |S1| = 1, |S2| = 3.

• Set 2 : n = 20 (hence V = 400, E = 760), |S1| = 3, |S2| = 9.

• Set 3 : n = 30 (hence V = 900, E = 1740), |S1| = 1, |S2| = 3.

• Set 4 : n = 30 (hence V = 900, E = 1740), |S1| = 3, |S2| = 9.

We considered the following three conservation scenarios:

• Scenario A: P1 = |S1|, P2 = |S2|.

• Scenario B : P1 = |S1|, P2 = d0.5 · |S2|e.

• Scenario C : P1 = |S1|, P2 = 0.

In our experiments, the buffer width d is set to one and scores wsi are set to zero for all nodes i at the
boundary of an instance, as nodes at the boundary cannot have buffer nodes at one or more sides (as no
such nodes exist). We considered k = 1 and k = 3, i.e., the solution can consist of one connected component,
or at most three connected components, and we set λs = d0.05e

∑
i∈Vs

wsi for all s ∈ S. Thus, in total, we
have 240 grid-graph instances (four sets times ten instances times three scenarios times two different values
of k).
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GAP-Instances These real-life instances are based on data of the National Gap Analysis Program (GAP),
an initiative of the U.S. Geological Survey (USGS) (U.S. Geological Survey 2016a,b). We considered three
states of different size, namely Oregon, Pennsylvania and Vermont. In total, 18 real-life instances are
generated – three states times three scenarios (A,B,C, mentioned above) times two different values of k. A
detailed case-study which is conducted on this data set is given in Section 4.4.

4.2 Computational Setting

In order to analyze the influence of valid inequalities proposed in this paper, and the role of primal and local
branching heuristics, the following four settings are compared:

• Basic: This is a basic setting in which only arc-node-separator cuts (CORECON) are separated.

• Basic+: In this setting, in addition to (CORECON), (COVER) and (SCC) are separated as well.

• Basic+CP: The setting is the same as Basic+, but the construction heuristic and the primal heuristic
are turned on.

• Basic+CPLB: Finally, in this extension of the Basic+CP setting, the local branching procedure has been
invoked between the construction heuristic and the branch-and-cut.

By default, in each of the settings, fractional points are separated only at the root node (with at most 20
cuts of type (COVER), (SCC) being separated). Since (SC) are dominated by (SCC), they are not separated
in our framework. The separation threshold τ for (CORECON) cuts is set to 0.5. In the experiments for
the grid-graphs, we used a time-limit of 1800 seconds. A time-limit of 180 seconds was given to the local
branching phase.

In the following, we provide results of the computational comparison of the four settings on the grid-
graph instances, before we provide a detailed analysis concerning the important structural and performance
indicators on the set of real-life instances.

4.3 Results on Grid-Graph Instances

Influence of Valid Inequalities In this section we study the influence of the valid inequalities to the
quality of bounds obtained at the root node of the branch-and-cut tree (root bounds in the following) and
the overall computing time. We also analyze the problem difficulty with respect to the imposed value of k,
which is the maximum allowed number of core components. To this end, we compare the computing times
to optimality for the settings Basic and Basic+, and the relative improvement of the root bound obtained
by additionally including inequalities (COVER) and (SCC). The results of such comparison are reported in
charts of Figure 2, which are analyzed below.

The performance chart given in Figure 2a depicts the cumulative computing time for the settings Basic
and Basic+, and for k = 1 and k = 3. In this chart, a point with coordinates (x, y) indicates that for y% of
the instances of the considered data set, the total computing time was ≤ x seconds. The first observation
that can be made from the obtained result is that solving GRSC-CB with a single connected component
is computationally much more challenging than solving GRSC-CB in which the number of components is
relaxed to a greater value. Whereas almost all of the 240 grid-graph instances could be solved to optimality
for k = 3, around 20% of them remain unsolved within the same time limit if a single core component is
imposed. Furthermore, for a fixed value of k, comparison of computing times between Basic and Basic+

reveals that the time invested into a (rather time-consuming) separation of (COVER) and (SCC) inequalities
does not significantly influence the overall performance. This is due to our moderate separation strategy
which allows for up to 20 cuts of these types to be added at the root node.

To compare the influence of the valid inequalities to the quality of the root bound, we report the relative
improvement of the root bound obtained from the setting Basic+ with respect to the setting Basic. Figure 2b
depicts these values in the cumulative fashion, for k = 1 and k = 3. Formally, the relative root bound
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improvement is defined as RB(Basic+)−RB(Basic)
RB(Basic) · 100%, where RB(.) stands for the the lower bound obtained

at the root node of the branch-and-cut tree. Notice that the reported root bounds already take into account
the general purpose cuts found by CPLEX, which are turned on by default in all our settings. This also
explains why the obtained relative improvements can sometimes take negative values.

The obtained results indicate that the root bound of the setting Basic can be improved by up to 6%, due
to our valid inequalities. These relative improvements are particularly pronounced for the more challenging
setting in which a single core component is imposed.

We therefore conclude that the computational overhead imposed by the separation of valid inequalities
is very moderate compared to the benefits achieved through the improvement of the root bounds, and keep
the separation of valid inequalities turned on by default in the remainder of this study.
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Figure 2: Comparison of the settings Basic and Basic+ for the grid-graphs and k = 1, k = 3.

Influence of Heuristics We now turn our focus on the quality of upper bounds obtained by our solution
framework. To this end, we compare the quality of primal bounds used to initialize the branch-and-cut
procedure. On the one hand, these bounds are obtained by running the construction heuristic only (setting
Basic+CP) or, by running the local branching procedure in addition (setting Basic+CPLB). Figure 3 analyzes
the quality of the construction heuristic and the local branching procedure. In these two cumulative charts,
we plot the primal gap pg[%] against the number of instances: Figure 3a shows the results for k = 1 and
Figure 3b shows the results for k = 3. The primal gap is calculated as 100 · (zH − z∗)/z∗, where zH is
the solution value obtained by the construction heuristic/local branching procedure, and z∗ is the optimal
(or the best known) solution value for the instance. The charts show that the construction heuristic works
already quite well: for around 90% (k = 1), resp., over 60% (k = 3) the primal gap is under 20%. Using the
local branching procedure after the construction heuristic significantly improves this result, for both k = 1
and k = 3. In case of a single core component, for more than 75% of the instances, the optimal solution is
found upon the termination of the local branching, and the worst primal gap is less than 7%. Similarly, for
k = 3, local branching finds the optimal solution for about 75% of the instances, whereas the worst obtained
gap remains below 5%.

We note that there is a moderate computational overhead imposed by the local branching: the average
computing time needed for the construction heuristic is below one second, whereas the local branching phase
requires around 60 seconds, on average over all 240 grid-graph instances. This indicates that local branching
does not necessarily pay off for the small instances that can be solved quickly by enumeration in the branch-
and-cut tree. On the contrary, high-quality solutions are particularly important for larger instances where
the branch-and-cut framework encounters difficulties in closing the final gap. We therefore decide to use
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Figure 3: Primal gap of the solutions obtained by the construction heuristic (C) and by local branching (LB)
and k = 1, k = 3

the setting Basic+CPLB for the case study presented in Section 4.4, since most of the instances considered
therein are of the latter type.

4.4 Case Study: U.S. Wildlife Conservation

With the strong increase in the number of endangered species around the globe, several organizations have
established sophisticated procedures to gather ecological information of vast areas of the habitat of different
types of flora and fauna. Typically, these habitat surveys are comprised of ecological assessment of the
studied area, classification of the species of interest, economical characterizations, and much more. Relevant
examples of research groups, institutes, and public institutions can be found, for instance, in (Cayton et al.
2017a, Corporation 2016, Department of Biosciences (U. of Helsinki) 2016).

A prominent example of an ecology information system is the aforementioned GAP of the USGS. This
program follows the methodology proposed in the seminal work of (Scott et al. 1993), and it is the result of
decades of exhaustive efforts devoted to provide clear, geographically-explicit information on the distribution
of native vertebrate species, their habitat preferences, and their management status, in order to determine
actual needs in biodiversity protection.

Among the different datasets provided by the GAP program, it is possible to obtain, for each U.S. state, a
representation of its territory mapped into so-called hydrological units (HU); these units and their adjacencies
are used to build G = (V,E). Although the databases supplied by the GAP program have been used before
for analyzing the current wildlife conservation policies (see, e.g., Drew et al. (2011), Lacher and Wilkerson
(2014), Meretsky et al. (2012), Minor and Lookingbill (2010)), we are not aware of OR-oriented papers
using this GAP data. For this study, we have used data from three U.S. states of varying sizes (Oregon,
Pennsylvania and Vermont). For a given state encoded by a graph G = (V,E), the problem parameters are
obtained as follows.

• The set S consists of the terrestrial mammals living in the state according to the GAP data. All
species which are classified as endangered or vulnerable (at federal or state level) by the corresponding
Department of Wildlife are put into S1 and the remaining species are put into S2. The complete lists
of animals in set S1 for each considered state is given in Table 1. As an interesting observation, for
Vermont, two of the species (American Marten, Eastern Mountain Lion) listed by the Department of
Wildlife do not occur in the GAP-data of the state.

• In the GAP-data, there are also species distribution models for each species available on a 30 meters
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Table 1: Animals in S1 for the considered states

Oregon (see (Oregon Department of Fish and Wildlife 2015))

Canadian Lynx (Lynx canadensis)
Gray Wolf (Canis lupus)
Columbian White-tailed Deer (Odocoileus virginianus leucurus)
Fisher (Martes pennanti)
Pygmy Rabbit (Brachylagus idahoensis)

Pennsylvania (see (US Fish and Wildlife Service 2016))

Indiana Bat (Myotis sodalis)
Northern long-eared Bat (Myotis septentrionalis)

Vermont (see (Vermont Fish & Wildlife Department 2015))

Canadian Lynx (Lynx canadensis)
Eastern Small-footed Bat (Myotis leibii)
Little Brown Bat (Myotis lucifugus)
Northern Bat (Myotis septentrionalis)
Indiana Bat (Myotis sodalis)
Eastern Pipistrelle (Pipistrellus subflavus)

× 30 meters cell basis, i.e., for each such cell and species, there is an ”yes/no” flag indicating if the
particular cell is suitable for the species. We calculate the score wsi of each node i (i.e., each HU) and
species s by counting the number of ”yes”-cells within the HU.

• In order to avoid any arbitrary estimation, the cost of taking a land parcel i ∈ V as part of the reserve
is given by the area ai (in squared meters) of the corresponding HU (see, e.g., Adams et al. (2016),
Hermoso et al. (2012), Stewart et al. (2007)).

Table 2 gives details about the problem instances (column source gives the source articles used for
classification of species into S1 and S2).

Table 2: Characteristics of the states under consideration

state area (km2) #parcels avg. parcel-area (km2) |S1| |S2| source

Oregon 254,799 3134 81.3 5 69 Oregon Department of Fish and Wildlife (2015)
Pennsylvania 119,280 1452 82.2 2 27 US Fish and Wildlife Service (2016)
Vermont 24,906 301 82.7 6 20 Vermont Fish & Wildlife Department (2015)

Spatial Analysis and Benefits of the GRSC-CB Model We now compare the four models addressed
in this article for reserve set covering, namely GRSC, GRSC-B, GRSC-C and GRSC-CB. Recall that the
problems GRSC and GRSC-B can be modeled as compact ILP formulations and given to a black-box ILP-
solver without any additional interventions. For the models GRSC-C and GRSC-CB, the branch-and-cut
implementation described in this article is used.

Table 3 gives a comparison of the results for the real-life instances for GRSC, GRSC-B, GRSC-C and
GRSC-CB for k = 3. The table gives the number of components of the solution (#co.), the number of
land parcels (#lp.), the best objective value (z∗), and the runtime (t[s.]). The time-limit for these runs
was set to 3 hours and an entry TL indicates that the instance could not be solved to optimality within
this given time-limit. In this case, the number in parentheses next to TL gives the optimality gap, which is
calculated as 100 · (z∗ − LB)/z∗, where LB is the obtained lower bound. In addition, Figure 4 gives a plot
of zGRSC−CB/zGRSC , zGRSC−CB/zGRSC−B and zGRSC−CB/zGRSC−C (where zP is the best solution value
obtained for problem P ∈ {GRSC,GRSC-B,GRSC-C,GRSC-CB}). This ratio is an indicator for the potential
increase in cost incurred by using the more sophisticated reserve design strategy GRSC-CB compared to the
simpler strategies (of course, a solution of a less-constraint problem may also fulfill the constraints explicitly
imposed in GRSC-CB). The two compact models (GRSC, GRSC-B) were given directly to CPLEX, while
setting Basic+CPLBwas used for GRSC-C and GRSC-CB.
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The obtained results reveal that the model GRSC is the easiest to solve (only one instance remains
unsolved within the time-limit, and many are solved within a few seconds only), but gives very fragmented
reserves, consisting of 12 to 310 connected components. The structure of the solutions is slightly better
when buffer constraints are imposed: Except for OR instance with Scenario A, the solutions for GRSC-B
consist of at most four connected components, and for five of the nine instances, they consist of at most 2
components, i.e., they are even feasible for GRSC-CB with k = 3. The cost of the solutions for GRSC-C
and GRSC is very similar, i.e., just imposing connectivity of the reserve only marginally increases the cost
of the reserve. On the other hand, imposing buffer constraints has a much stronger impact on the solution
in terms of the overall cost: the cost for the solutions of GRSC-CB (and also GRSC-B) is up to 2.5 times
higher than the cost of the solutions without buffer requirements.
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We now look closer into the spacial structure of the obtained solutions, when the four models are applied
to the same instance. Figure 5 shows the best solutions attained for instance OR and Scenario C for all
considered problem variants (note that for GRSC-C and GRSC-CB, we also compare the solutions with
k = 1 and k = 3). The reported solutions show the potential of the developed framework to design reserves
that respond to different ecological needs. It is not surprising that GRSC solutions produce very fragmented
reserves as the one depicted in Figure 5a. Such solutions may be suitable when existing protected areas need
to be reinforced by intensifying the protection policy by means of cost-efficient actions. On the contrary, if the
conservation planners seek to design reserves that are comprised by less scattered units, but do not explicitly
require the areas to be connected in the strong sense, the solutions obtained by using GRSC-B (see e.g.,
Figure 5b) seem quite suitable. This solution is comprised of only four components, and the components are
spatially compact, which are both desirable characteristics in many planning contexts. The solutions reported
in Figures 5c and 5e represent optimal solutions for GRSC-C with k = 1 and k = 3, respectively. Comparing
the spatial structure of these two solutions, we observe that different values of k result in spatialy completely
different solutions. This result demonstrates how important for the decision makers is to determine the
right choice of the cardinality bound k when reserves with connectivity requirements have to be designed.
Moreover, the same effect of k holds for the solutions of the GRSC-CB.

Finally, Figures 5d and 5f depict the optimal GRSC-CB solutions for k = 1 and k = 3, respectively.
Due to the presence of the buffer layer, these solutions are by far more compact than their counterparts
obtained by the alternative three models, GRSC, GRSC-B or GRSC-C. This balance of connectivity and
compactness makes clear that the GRSC-CB formulation is capable of successfully embodying these two
ecologically functional characteristics to the obtained solutions.

The diversity of the produced solutions are an evidence that connectivity and buffer zones are impor-
tant features that greatly influence the spatial layout of the obtained reserves. Imposing these features
allows to define different spatial arrangements, leading to different ecological profiles that address different
conservation needs. For instance, the solutions depicted in Figures 5c and 5d resemble wildlife corridors,
which are conservation plans that are suitable when reserves need be spatially and functionally compatible
with other human activities. Therefore, the GRSC-CB model and its variants, along with the correspond-
ing algorithmic framework given in this paper, provide a powerful tool for conservation planning. They
deliver a flexible decision-aid framework that addresses many different modeling requirements for designing
conservation reserves.
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(a) GRSC (b) GRSC-B

(c) GRSC-C, k = 1 (d) GRSC-CB, k = 1

(e) GRSC-C, k = 3 (f) GRSC-CB, k = 3

Figure 5: Solutions obtained for instance OR and Scenario C
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4.5 Case Study: Mitchell river catchment

As well as U.S., other countries have devoted enormous financial and human efforts for gathering and an-
alyzing biodiversity information, and for designing and implementing conservation plans. One important
example corresponds to the Northern Australia Water Futures Assessment program Department of Agri-
culture & Water Resources (2012), which aims at providing information needed to inform the development
and protection of northern Australia’s water resources, so that development is ecologically, culturally and
economically sustainable. Within this program, one can find the Northern Australia Aquatic Ecological
Assets initiative Griffith University (2012) (NAAE), which focuses on conducting fine scale assessments of
particular catchments in northern Australia.

One of the most important catchment areas approached by the NAAE initiative is the Mitchell river
catchment, located in Queensland, northern Australia. Within this catchment area, several freshwater fish
species were classified as threatened, and their main threats were spatially and functionally identified. The
studied area (71,630 km2) was divided into 2,316 land parcels (i.e., sub-cachments), and the connections
among them corresponded to the river stream network (for further details, see Cattarino et al. (2015)).

In the considered region, 46 species (all of them were freshwater fishes) were classified as threatened (the
list of species, and their area of presence, can be found in Table 5 in the Appendix). In Figure 6a we show
the spatial distribution density of the species; darker colors are associated to parcels hosting many species,
while lighter colors are associated to parcels hosting few species. These species were endangered, due to the
presence of four main threats in the catchment: water buffalo (Bubalis bubalis), cane toad (Bufo marinus),
river flow alteration (caused by impoundments, channels for water extractions and levee banks), and grazing
land use; however, a given species was not necessarily menaced by all four threats. In Figure 6b we show
how the number of threats spatially distributes in the considered area.

(a) Species distribution (b) Threats distribution

Figure 6: Spatial distribution of species and threats density in the Mitchell river catchment area

Since we had explicit information of which species and which threats co-occurred in each land parcel, the
suitability score for a given species s ∈ S in a given parcel i ∈ I is given by

wsi = αsi

(
1− #threatssi

#threatss + 1

)3

,

where #threatssi corresponds to the number of threats in i that affect s, #threatss corresponds to total
number of threats that affect species s, and αsi is a binary parameter taking value 1 if species s is hosted
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in land parcel i, and 0 otherwise. This expression was defined following the model proposed in Cattarino
et al. (2015). Since in this dataset species were not classified according to their level of vulnerability, we
considered that all of them were part of S1 (i.e, |S1| = 46).

Obtained results For the Mitchell river catchment dataset, we solved models GRSC, GRSC-B, GRSC-C
and GRSC-CB, using the same algorithmic setting used for the U.S. wildlife dataset. Since S2 = ∅, we
imposed the buffer area to be a boundary of thickness given by d = 1 (Scenario C). Due to the structure
of the stream network, the underlying graph was comprised by several connected components; this implied
that both, the GRSC-C and the GRSC-CB were infeasible for k = 1 and k = 2, so we considered k = 3 in
both cases.

Table 4: Number of components, land parcels, solution value and runtime for the best solution for the
Mitchel river catchment instance.

inst. GRSC GRSC-B GRSC-C, k = 3 GRSC-CB, k = 3
#c. #lp. z∗ t[s.](g[%]) #c. #lp. z∗ t[s.](g[%]) #c. #lp. z∗ t[s.](g[%]) #c. #lp. z∗ t[s.](g[%])

australia 255 402 2866 0.66 5 154 5527 TL (24.37) 3 192 3013 TL (1.28) 3 156 5850 TL (36.37)

In Table 4 (equivalent to Table 3) we report a summary of the results obtained when solving the four
models on the described instances; the corresponding solutions are shown in Figure 7. From the spatial point
of view, we can observe that the GRSC solution (Figure 7a) is highly fragmented (255 components, and 402
land parcels), which is basically due to the presence of many species distributed along the whole studied
area. When requiring the presence of a buffer (GRSC-B), the solution changes substantially (Figure 7b): the
designed reserve is comprised by only 5 components (and 154 land parcels in total). The solution obtained
when solving the GRSC-C with k = 3 (Figure 7c), seems to properly address the fact that species live along
water flows, encompassing three relatively long catchment segments. Finally, the solution obtained when
solving the GRSC-CB with k = 3 (Figure 7d), spans over similar areas as those spanned by the solution
obtained GRSC-C with k = 3, and it is comprised by almost the same number of land parcels (156 compared
to 154). From the conservation point of view, the solutions provided by the GRSC-C and the GRSC-CB (with
k = 3 in both cases), allow a more effective implementation of conservation strategies (i.e., implementation
of measures against the corresponding threats) due to their connectivity and compactness.

From the computational point of view, it is clear that this dataset is much harder than the ones considered
before. The two models requiring a buffer boundary (GRSC-B and the GRSC-CB) are considerably more
difficult than those that do not require it. As can be seen from Table 4, in these two cases, is not possible
to prove optimality within the running time, and the reached gaps are 24.34% and 36.67%, respectively.
Although the GRSC-C optimal solution was not found, the solution computed within the time-limit reached
a 1.28% gap. Despite the lack of optimality proof, the solutions provided for the different models represent
the first attempt to address from a mathematical programming point of view, the conservation planning
challenges arising in the Mitchell catchment area (see Cattarino et al. (2016) for a recent reference on the
use of heuristic algorithms for addressing a conservation planning problem in the considered region).
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(a) GRSC (b) GRSC-B

(c) GRSC-C, k = 3 (d) GRSC-CB, k = 3

Figure 7: Solutions obtained for the Mitchell river catchment instance considering Scenario C
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5 Conclusions

Demographic expansion, natural resource exploitation, and the consequences of climate change, are among
the processes that had resulted in a dramatic loss of biodiversity in the last decades. The maintenance
of biodiversity is crucial for the survival of humankind (Cardinale et al. 2012). Thus, immense efforts
have been devoted in the last decades by international organizations, governments, and foundations, for
the establishment of protected areas aiming at ensuring a sustainable landscape for wildlife. In this paper,
we introduced the Generalized Reserve Set Covering Problem with Connectivity and Buffer Requirements
(GRSC-CB). This problem is an extension of previous modeling approaches for the design of nature reserves.
The problem simultaneously considers, for the first time connectivity requirements, construction of buffer
zones and suitability quotes for species. All these constraints have been identified as being crucial to the
design of useful nature reserves. The GRSC-CB allows to design a reserve comprised of one or more connected
components; each of them consisting of a core surrounded by a buffer zone, satisfying minimum suitability
requirements for each species. We also consider intermediate problems in which only buffer or connectivity
constraints are imposed, denoted by GRSC-B and GRSC-C, respectively, and the Generalized Reserve Set
Covering Problem (GRSC) in which both, buffer and connectivity constraints are dropped.

We proposed a branch-and-cut framework to solve the GRSC-CB and the remaining three problem
variants. The solution framework is enhanced by the use of valid inequalities and also contains a construction
and a primal heuristic, and utilizes a local branching scheme to create feasible solutions of good quality. To
assess the suitability of our approach, we presented a computational study considering grid graphs, as
well as real-life instances representing three different states of the U.S. and a region in northern Australia.
The U.S. instances were constructed using data from the National Gap Analysis Program, an initiative of
the U.S. Geological Survey (U.S. Geological Survey 2016a,b), with the focus on the protection of mammal
species. The Australia instance was constructed using information obtained by the Northern Australia Water
Futures Assessment program Department of Agriculture & Water Resources (2012), and corresponds to a
conservation setting of fresh water fishes.

In our study, we compared the solutions obtained by using GRSC-CB model against the solutions ob-
tained by using less restrictive models (i.e., GRSC, GRSC-B, and GRSC-C). On the one hand, we showed
the effectiveness of the proposed algorithmic framework on synthetic and real-world instances, by providing
optimal or high-quality solutions for many instances of realistic size. On the other hand, and more impor-
tantly, our study demonstrated the practical versatility of the GRSC-CB (and its variants). The spatial
diversity of solutions produced by using the different problem variants showed that connectivity and buffer
zones are important features to consider when designing reserves. Thanks to the flexibility of our models,
the developed algorithmic framework provides a powerful tool which allows decision-makers to create desired
spatial arrangements while responding to different ecological needs.
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Appendix 1: Additional information of Mitchell river catchment

Table 5: Detailed information of the endangered species included in the Mitchell river catchment area.

Name of species Area (km2)
Scleropages jardinii 26130.2
Nematalosa erebi 34153.3
Thryssa scratchleyi 17161
Neoarius berneyi 21077
Neoarius graeffei 8832.2
Neoarius leptaspis 10920.3
Neoarius paucus 45154.8
Anodontiglanis dahli 22921.2
Neosilurus ater 32947.6
Neosilurus hyrtlii 26560.3
Porochilus rendahli 17874.5
Arramphus sclerolepis 18386.5
Zenarchopterus spp. 10130.7
Strongylura krefftii 25112.6
Craterocephalus stercusmuscarum 54071.5
Iriatherina werneri 1639.4
Melanotaenia splendida inornata 70157.5
Pseudomugil tennellus 2118.9
Ophisternon spp. 26898.5
Ambassis sp. 778.9
Ambassis agrammus 8789.8
Ambassis macleayi 51412
Denariusa bandata 11330
Lates calcarifer 22966.9
Amniataba percoides 64519
Hephaestus carbo 10098.4
Hephaestus fuliginosus 64041.6
Variicthys lacustris 365.7
Leiopotherapon unicolor 65926.9
Scortum ogilbyi 60007.9
Glossamia aprion 52607.2
Toxotes chatareus 45386.6
Glossogobius aureus 40946.1
Glossogobius giuris 950.8
Glossogobius sp. 2 24460
Hypseleotris compressa 370.7
Mogurnda mogurnda 14594.7
Oxyeleotris lineolatus 64179.9
Oxyeleotris selheimi 60793.9
Synaptura salinarum 3218.8
Synaptura selheimi 12046.5
Megalops cyprinoides 10908.8
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