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Abstract

This paper presents a new combinatorial optimization problem that can be used to model the

deployment of broadband telecommunications systems in which optical fiber cables are installed

between a central office and a number of end-customers. In this capacitated network design problem

the installation of optical fiber cables with sufficient capacity is required to carry the traffic from the

central office to the end-customers at minimum cost. In the situation motivating this research the

network does not necessarily need to connect all customers (or at least not with the best available

technology). Instead, some nodes are potential customers. The aim is to select the customers to

be connected to the central server and to choose the cable capacities to establish these connections.

The telecom company takes the strategic decision of fixing a percentage of customers that should

be served, and aims for minimizing the total cost of the network providing this minimum service.

For that reason the underlying problem is called the Prize-Collecting Local Access Network Design

problem (PC-LAN).

We propose a branch-and-cut approach for solving small instances. For large instances of practical

importance, our approach turns into a mixed integer programming (MIP) based heuristic procedure

which combines the cutting-plane algorithm with a multi-start heuristic algorithm. The multi-start

heuristic algorithm starts with fractional values of the LP-solutions and creates feasible solutions

that are later improved using a local improvement strategy.

Computational experiments are conducted on small instances from the literature. In addition,

we introduce a new benchmark set of real-world instances with up to 86 000 nodes, 116 000 edges

and 1 500 potential customers. Using our MIP-based approach we are able to solve most of the

small instances to proven optimality. For more difficult instances, we are not only able to provide

high-quality feasible solutions, but also to provide certificate on their quality by calculating lower

bounds to the optimal solution values.
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1 Introduction

Providing future-proof broadband Internet connections is currently a major infrastructural issue

worldwide. More and more information is shared across the Internet and demand for higher data rates

increases with new services. The Digital Agenda for Europe1 of the European Commission stresses

the importance of information and communications technologies and states that “Half of European

productivity growth over the past 15 years was already driven by information and communications

technologies [. . . ] and this trend is likely to accelerate.” It issues the goal of achieving “internet

speeds of 30 Mbps or above for all European citizens, with half European households subscribing

to connections of 100 Mbps or higher” by the year 2020. The German government decided to place

strong emphasis on the expansion of broadband communications in one of its latest economic stimulus

packages2. The rather challenging aim, formulated in 2009, is to provide 75% of all households

nationwide with 50 Mbps connections by the end of 2014. Reaching this goal is only possible by

rolling-out the fiber-optic access networks on a broad scale.

In telecommunication network planning, customer nodes are associated to physical locations

representing buildings, business locations or single households. The following strategies (known

under a common name FTTx) are used for the development of access networks:

• Fiber-To-The-Curb (FTTC) (or Fiber-To-The-Node, FTTN): Part of the connection from cen-

tral offices to customers consists of optical fibers, but end-transmission lines are still made

of copper. Besides the fiber-optic connections that need to be established, also multiplexing

devices have to be installed. These devices receive signals from multiple customers via copper

connections and aggregate them on a high-speed fiber-optic line.

• Fiber-To-The-Building (FTTB): Optical fiber runs all the way to a building. Multiplexing

devices (usually installed in the basement) aggregate signals from short-distance copper lines

to the subscribers within the building onto a fiber-optic line.

• Fiber-To-The-Home (FTTH): Connection between subscribers and central offices runs com-

pletely over an optical fiber.

Which strategy is employed in a particular case depends on various prerequisites. For instance, it

depends on how densely the planning areas are populated (e.g., urban vs. rural areas).

Many local telecommunication carriers are realizing FTTH or FTTB projects. Deutsche Telekom

AG announced plans for the connection of thousands of households in ten German cities with FTTH.

Simultaneously, FTTC solutions are realized by extending VDSL connections3. The largest Austrian

telecommunication provider, Telekom Austria Group, is going to invest one billion Euro in the

1Digital Agenda (May 2010), http://europa.eu/rapid/pressReleasesAction.do?reference=IP/10/581
2Breitbandstrategie der Bundesregierung (February 2009),

http://www.zukunft-breitband.de/BBA/Navigation/Service/publikationen,did=290026.html
3Press release (February 28, 2011), http://www.telekom.com/dtag/cms/content/dt/de/996928
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modernization of the fixed net infrastructure4.

The planning of such access networks is a highly complex task. Manual planning does not allow

for finding provably close-to-optimal solutions. In the last years various uncapacitated optimization

problems have been proposed in the context of FTTx planning (see, e.g. Arulselvan et al. [1], Leitner

and Raidl [9], Gollowitzer and Ljubić [5], Gollowitzer et al. [6]). These optimization problems are

mainly concerned with the design of the underlying network topology, ignoring many hardware

parameters. On a more detailed level, the following aspects have to be considered in addition: There

are cost/capacity relations for various active and passive components, such as transponders, splitters,

fibers and cables. There are overhead cost for trenching. Also existing infrastructure has to be taken

into account. There are two possibilities to deploy fiber-optic access networks: customers might be

connected via passive optical networks (PON) or via Point-to-point. In the first case, signals for

up to 64 customers are transmitted on a single fiber and are split on the optical level somewhere

between the central office and the customer. In the second case a unique fiber starting at the central

office is dedicated to each customer.

This paper deals with the detailed planning of point-to-point FTTH/FTTB telecommunication

networks with a given coverage rate α, (0 < α ≤ 1). This coverage rate is usually determined by a

network carrier and represents the minimal fraction of potential customers that should be offered the

service. Figure 1 shows two deployment scenarios for a real world instance with coverage rates of 0.6

and 0.9, respectively. Square nodes denote customers. The circle node denotes the central office r.

The served customers are depicted with dark squares. Lines denote the denote installed connections

in the solution.

In the context of FTTH/FTTB the potential customers are particular physical locations. Three

important features are associated to each potential customer. Firstly, the number of subscribers

(e.g., apartments and/or offices) in the building. This is denoted as the customers prize. Secondly,

the number of optical fibers required to connect this potential customer is called its demand. Thirdly,

there is a setup cost of installing a suitable device at the customer location. The available hardware

(e.g., splitter devices in case of FTTB) determines the demand and cost for each customer.

For each customer selected for being served, there must be a fiber-optic line running to the central

office. The company provides different types of cables. Each type of cable is characterized by two

features. One is its capacity and represents the number of optical fibers. The other is its cost. For

connecting two sites one may need several cables. Each combination of cables leads to a module with

a given capacity and cost. The capacity of a module is simply the sum of the fibers included in the

cables. The cost of a module is the sum of the cable costs plus the installation on the roads taking

into account the length. The goal is to decide

• which subset of customers to connect so that at least a fraction of α of the overall customers’

prizes is covered, and

• which modules should be installed along the edges so that the total demand for selected cus-

tomers can be routed through the network at minimum cost.

4Press release (July 3, 2009),

http://www.telekomaustria.com/presse/news/2009/0703-telecommunication-infrastructure--en1.php

3

http://www.telekomaustria.com/presse/news/2009/0703-telecommunication-infrastructure--en1.php


Figure 1: Realistic planning scenario with coverage rates of 0.6 up to 0.9.

The fiber-optic lines that are necessary to connect a certain customer need not to run along the same

single path through the network.

Our Contribution: In this work we study exact and heuristic approaches to this problem of

practical relevance. We first propose a branch-and-cut approach that is capable of solving small in-

stances. However, due to the complexity of the problem and size of the instances in real applications,

it is difficult to establish algorithmic approaches that ensure global cost-minimal solutions. In this

work we also propose a new MIP-based approach that is based on an interplay between the cutting

plane approach and a multi-start heuristic. The multi-start heuristic starts with fractional values of

the LP-solutions and creates feasible solutions that are improved using a local improvement strategy.

We introduce a new benchmark set of real-world instances with up to 86 000 nodes, 116 000 edges

and 1 500 potential customers. For these instances our computational experiments show that the

MIP-based approach outperforms the alternative approach of only using the multi-start heuristic

without MIP information.

A preliminary version of this paper was presented in the International Network Optimization

Conference 2011 (Ljubić et al. [11]).
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(a) Instance of the PC-LAN design problem.
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(b) Optimal solution of the PC-LAN instance.

Figure 2: Input graph and optimal solution of a PC-LAN instance.

2 Problem definition

We are given an undirected and connected graph G = (V,E) with a node r ∈ V representing the

central office (or central server or access to the backbone network) and a set of potential customers

K ⊆ V \ {r}. To each potential customer k ∈ K, a positive demand dk, a positive prize pk and

a positive setup cost ck are assigned. We denote by p0 = α
∑
k∈K pk the minimum customer prize

to collect. Let Me be the set of modules that can be installed on edge e ∈ E, each one m ∈ Me

associated with a positive capacity ue,m and a cost ce,m. We assume that modules are sorted such

that ue,m < ue,m+1. The optimization problem of our interest is the selection of the customers to be

served, the single-source multiple-sink routing, and installation of at most one module on every edge.

The connection from the central office to a customer can be seen as a flow that is allowed to split

apart. Thus we are speaking of a bifurcated flow. As a result, an optimal solution of the problem

is not necessarily a tree in the graph. If α = 1, the problem is known as the Local Access Network

Design Problem (LAN), or the Single Source Network Loading Problem (SSNLP). For 0 < α < 1,

we refer to this problem as the Prize-Collecting Local Access Network Design Problem (PC-LAN).

Figure 2 depicts an example with an input graph and a solution of the PC-LAN instance with α = 0.7.

The graph G = (V,E) has 14 nodes. For each edge e the length le of e is the Euclidean distance.

Solid lines represent modules with ue,m = 100 and ce,m = 120le. Dashed lines represent the module

with ue,m = 40 and ce,m = 10le. Rectangle nodes are customers with their demands dk written at

the corresponding labels. Customer prizes and cost are defined as pk = dk, ck = dk/2, respectively.

A coverage rate of 70% is requested, hence p0 = 0.7
∑
k∈K dk = 80.5. The served demand by the

optimal solution in the figure is 85.
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2.1 Related work

The literature contains some approaches for solving LAN, which is a special case of PC-LAN where

α = 1. LAN has been studied in Raghavan and Stanojević [15] and Salman et al. [17] where the

authors assume that the stepwise link capacities satisfy economies of scales. Both papers consider

flow-based MIP formulations and work with relaxations obtained by approximating the noncontin-

uous stepwise function by its lower convex envelope. In Ljubić et al. [10], exact approaches for

LAN with general stepwise functions, based on Benders’ decomposition on various MIP models are

proposed. More general multiple-source multiple-sink variants of the LAN problem have also been

approached. See e.g. recent works in Frangioni and Gendron [4], among others. However all these

articles deal with problems where all customers must be served, while in PC-LAN we also need to

deal with the problem of selecting a subset of the customers to be served.

More practice-oriented approaches have been studied in Martens et al. [12]. By using a two-step

approach with suitable MIP formulations, it is possible to optimize fiber-optic networks in realistic

scenarios (see Martens et al. [13]). Also Orlowski et al. [14] conducted various practice-oriented case

studies that originated from planning scenarios by a German carrier. Finally we point out that there

are many other works in the literature focusing on other designing aspects of fiber-to-the-home net-

works. For example, in recent works of Gualandi et al. [7] and Kim et al. [8], the authors concentrate

on facility location aspects rather than on network design ones.

2.2 A compact MIP formulation

We now show a Single Commodity Flow (SCF) formulation of the PC-LAN problem. This and

other formulations can be derived from the models given in Ljubić et al. [10] for the problem where

all customers must be in the network. We make use of a binary variable yk to model whether a

potential customer k is served or not. Observe that there always exists an optimal solution of the

problem which is a directed acyclic graph connecting the central node with the subset of selected

customers. The SCF formulation uses this result and works on a bi-directed graph G. The set of

directed arcs is denoted by A. The modules available for the arcs (i, j) and (j, i) are the same as

for the corresponding edge {i, j}, hence M(i,j) = M(j,i) = M{i,j}. To model the non-decreasing step

cost function on every arc, binary variables are used. A binary variable xa,m decides whether the

module m shall be installed on the arc a. For each subset S ⊂ V , we will denote the ingoing cut by

δ−(S) := {(i, j) ∈ A | i ∈ V \ S, j ∈ S}.

To make sure that sufficient capacity is available to install cables between the central node and

the selected customers, we additionally introduce continuous flow variables fij ≥ 0 that represent

the total amount of flow routed from the center towards the customers.

SCF Model

The MIP model reads now as follows:

min
∑
a∈A

∑
m∈Ma

ca,mxa,m +
∑
k∈K

ckyk (1)
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subject to

∑
a∈δ+(i)

fa −
∑

a∈δ−(i)

fa =


−diyi, i ∈ K∑
k∈K dkyk, i = r

0, otherwise

∀i ∈ V (2)

0 ≤ fa ≤
∑
m∈Ma

ua,mxa,m ∀a ∈ A (3)

∑
k∈K

pkyk ≥ p0 (4)

∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (5)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (6)

yk ∈ {0, 1} ∀k ∈ K. (7)

Objective function (1) consists of two terms: the cost for the installation of modules and the cost

issued at customers’ sites. Constraints (2) are the flow preservation constraints: they make sure that

the amount of flow sent to the customers is equal to their demands, in case that they are served.

Capacity constraints (3) ensure that on each link, a module is installed that allows the necessary

amount of flow to be routed through it. The disjunction constraints (5) ensure that at most one

module is installed on every arc. Finally, the coverage constraint (4) states that a subset of customers

achieving at least the requested target prize p0 has to be connected. The presented SCF model is

compact, but plugging it in a black-box MIP solver may not produce satisfactory results, mainly due

to the big-M constraints (3). These constraints require hundreds of thousands of branch-and-bound

nodes to be enumerated before proving the optimality of a solution (see, e.g. Ljubić et al. [10] where

similar results are obtained for the related LAN problem).

2.3 Branch-and-cut approach

Rather than working with the compact model presented above, we remove the flow variables and

use an exponential-size set of constraints to model the problem. These constraints are dynamically

separated using a cutting plane approach. Furthermore, additional strengthening inequalities are

added to improve the lower bounds and consequently reduce the search space and the number of

enumerated nodes within a branch-and-bound tree. In this section we describe the basic ingredients

of our branch-and-cut approach.

CUT Model

The directed cut-set formulation is obtained by projecting out flow variables from the SCF model

and replacing constraints (2) and (3) with the following ones:

∑
a∈δ−(S)

∑
m∈Ma

ua,mxa,m ≥
∑
k∈S

ykdk ∀S ⊂ V s.t. S ∩K 6= ∅ and r /∈ S (8)
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The cut-set inequalities (8) state that every subset of nodes S, containing at least one customer

and not containing r, must have enough incoming capacity to route the total demand requested inside

the set. It is not difficult to see (see, e.g., Ljubić et al. [10]) that the new model, that we will refer to

as the cut-set model (CUT), exhibits the same lower bounds as SCF. These bounds can be further

strengthened as follows. Since (x,y) variables are binary and the coefficients are non-negative, the

cut-set inequalities can be easily strengthened by rounding down some left-hand side coefficients:

∑
a∈δ−(S)

∑
m∈Ma

min

(
ua,m,

∑
k∈S

dk

)
xa,m ≥

∑
k∈S

dkyk ∀S ⊆ V s.t. S ∩K 6= ∅ and r 6∈ S. (9)

Further Valid Inequalities

The CUT model can be further strengthened with the following connectivity cuts. Every set of nodes

containing at least one customer must have at least one incoming arc if the customer is included in

the solution: ∑
a∈δ−(S)

∑
m∈Ma

xa,m ≥ yk ∀S ⊆ V \ {r},∀k ∈ S ∩K. (10)

¿From the knapsack constraint (4), we can derive a family of traditional cover inequalities as

follows. Let J be a minimal subset of customers such that its complement K \ J cannot satisfy the

required coverage demand, i.e.,
∑
k∈K\J pk < p0 and pl +

∑
k∈K\J pk ≥ p0, for any l ∈ J . The set J

is called a minimal cover with respect to coverage requirement p0. Let COV be the collection of all

minimal covers with respect to p0. Then, the following minimal cover inequalities are valid for our

problem: ∑
k∈J

yi ≥ 1 ∀J ∈ COV . (11)

These inequalities can be further strengthened by lifting. In general the separation of cover in-

equalities is NP-hard. See, e.g., the recent work of ? ] where heuristic separation approaches are

proposed.

Another family of cover inequalities can be derived from the cut-set inequalities (8). Given a cut-

set inequality (8) defined by S ⊂ V, r 6∈ S, define the index set I(S) := {(a,m) | a ∈ δ−(S),m ∈Ma}

and the demand inside of S as B :=
∑
k∈K∩S dk. Set J ⊂ I(S) is called a cover with respect to

I(S) if
∑

(a,m)∈J ua,m < B and a maximal cover if, in addition, for all J ′ such that I(S) ⊇ J ′ ⊃ J :∑
(a,m)∈J′ ua,m ≥ B. If J is a maximal cover with respect to I(S), then the following maximal cover

inequalities are valid: ∑
(a,m)∈I(S)\J

xa,m ≥ 1 +
∑

k∈K∩S

(yk − 1). (12)

These inequalities are also NP-hard to separate. However, modern MIP solvers have build-in mech-

anisms for detecting knapsack-type inequalities (like (4) or (8) in our case) and using heuristic

techniques for separating cover inequalities (like (11) or (12)).

Non-customer nodes V \ (K ∪ {r}) cannot have incoming (or outgoing) arcs only. Therefore, we

can add the following degree-balance constraints that are valid due to the fact that the final solution
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is an acyclic graph: ∑
(l,i)∈A,l6=j

∑
m∈Mli

xli,m ≥
∑

m∈Mij

xij,m ∀(i, j) ∈ A, i 6∈ K, i 6= r (13)

∑
(j,l)∈A,l6=i

∑
m∈Mjl

xjl,m ≥
∑

m∈Mij

xij,m ∀(i, j) ∈ A, j 6∈ K, j 6= r. (14)

The following in-degree inequalities are very useful for the initialization of the LP model:∑
a∈δ−(i)

∑
m∈Ma

xa,m ≥ yi ∀i ∈ K (15)

Notice that these are the cut-set inequalities (10) associated to all the singletons S.

Finally, the following constraints are valid:∑
m∈Mij

(xij,m + xji,m) ≤ yi ∀(i, j) ∈ A. (16)

They are implied by the family of connectivity constraints (10), together with the in-degree con-

straints (15). However we have empirically observed that they speed-up the branch-and-cut perfor-

mance if added at the initialization phase.

Separation

The cutting plane approach is performed at each node of the branch-and-bound tree. It starts with

the linear programming relaxation of the CUT model without (8). This relaxation is strengthened

with the rounded cut-set inequalities (9) associated to all the singletons S and with the inequali-

ties (13), (14), (15) and (16) mentioned above. Other inequalities are generated in an iterative way

as it is described below.

At each iteration a fractional solution (x∗,y∗) is given. The separation problem of cut-set

inequalities in general multiple-source multiple-sink case is NP-hard and can be reduced to the

max-cut problem Barahona [2]. However, inequalities (8) for PC-LAN can be separated in poly-

nomial time as follows. For a given fractional solution (x∗,y∗), we define the directed support

graph G′ = (V ′, A′) where V ′ := V ∪ {t} with an additional sink t, and A′ := A1 ∪ A2 being

A1 := {a ∈ A |
∑
m∈Ma

ua,mx
∗
a,m > 0} and A2 := {(k, t) | k ∈ K}. The capacity associated to each

arc a ∈ A1 is set to
∑
m∈Ma

ua,mx
∗
a,m, and the capacity of each arc a = (k, t) ∈ A2 is set to dky

∗
k. If

the minimum cut between r and t in G′ is less than
∑
k∈K dky

∗
k, it defines a violated inequality (8).

Finally, the inequality is rounded and then inserted into the LP model.

In addition, also violated connectivity constraints (10) are dynamically separated. To this end,

given a fractional solution (x∗,y∗), we define a network from G where the capacity associated to

each arc a ∈ A is
∑
m∈Ma

x∗a,m. Then, if the minimum cut between r and any customer k in G is

less than y∗k this cut defines a violated inequality (10).

In general, a minimum cut problem has several optimal solutions. Especially when the dimension

of the network is very large as is the case in our PC-LAN instances. Therefore, it is possible to find

several violated inequalities from a given fractional solution. Multiple, nested cuts are produced for

a fractional solution, as follows: The minimum cut problem is solved. Then the capacity of the arcs

in the cut is increased. This defines a new minimum cut problem. This new problem is solved and if
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the associated inequality is violated it is added to the model. This procedure is repeated to produce

multiple, nested cuts. Among all cuts with the same max-flow value, we prefer sparser ones. To

detect them, we use the technique of adding an epsilon-capacity to every arc before calculating the

flows. That way, cuts with less arcs are preferred to the more dense ones.

3 MIP-based heuristic approach

This section describes a MIP-based approach to find high quality feasible solutions to large-sized

instances of the PC-LAN. It consists of three main ingredients:

1. Cutting Plane phase: The cutting plane approach works with relaxations of the CUT model

described above. In the separation phase (cf. Section 2.3), a new set of violated inequalities is

inserted into the LP. The LP is resolved and the optimal LP-solution (x∗,y∗) is taken as input

for the following Network Construction phase.

2. Network Construction phase: First, a set of customers is selected according to the fractional

values y∗. Next, a network is constructed iteratively by using shortest path calculations on

the graph with adapted edge weights. The fractional values x∗ are taken into account for this

construction.

3. Local Improvement phase: The solution found in the construction phase is subjected to a

local improvement procedure. Flow routed along an expensive edge together with affected

customers are removed, leaving a partial solution. Then the partial solution is repaired by

adding new customers and extending the network design. Two different definitions of expensive

are alternated.

The first phase is described in Section 2.3, and we now describe the remaining two phases. Before

that, we first introduce the notation that is used in this section.

3.1 Notation

For the sake of a simpler description of the heuristic algorithm we use the following notation. We

represent the modules Me by numbers in {1, 2, . . .}. A network design can be represented by a vector

z ∈ N|E| consisting of module indices ze ∈ {0} ∪Me. For example, ze = 3 means that the third

available module for e is installed; ze = 0 means that there is no installation on e. Capacities per

edge are denoted by g ∈ R≥0. A flow through the network is represented by a vector f ∈ R|A|≥0 . The

function µe : R≥0 7→ Me maps some required capacity to the index of the most appropriate module

on edge e, i.e., the cheapest module with sufficient capacity, or the largest module if there is no

module with sufficient capacity. More formally, for some required capacity b ≥ 0:

µe(b) =


0 if b = 0

arg min{m∈Me|ue,m≥b} ce,m if b > 0 and ∃m ∈Me|ue,m ≥ b ∀e ∈ E.

|Me| otherwise

An edge e is said to be saturated by a required capacity ge if the largest module is already used on

this edge and no free capacity is left, i.e., ze = |Me| and ge = ue,ze . Given a current capacity vector
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g, a suitable design vector z and some additionally required capacity b ≥ 0, we define the following

edge weight approximations:

we (ge, ze, b) =

ce,µe(ge+b) − ce,ze , if ge < ue,|Me|

∞, otherwise

∀e ∈ E. (17)

Hence we represents the cost for expanding the installation on e from the currently selected module

ze to the module µe(ge + b). If the required capacity ge saturates the edge e, such an expansion is

impossible and the edge weight is infinite.

3.2 Network construction

Starting from a fractional solution (x∗,y∗) obtained after solving the LP-relaxation, we build a

feasible solution by applying the following three procedures.

3.2.1 Rounding

Let y∗ be a solution of the LP-relaxation of the CUT model. We sort the customer indices in order

of decreasing fractional values y∗k. We then define an integer feasible selection y by greedily setting

indices of customers with large fractional values to one until the coverage constraint (4) is satisfied.

The fractional vector x∗ is used to compute a vector of minimum required capacities g∗:

g∗e =
∑
m∈Me

ue,m(x∗ij,m + x∗ji,m) ∀e = {i, j}.

Note that g∗ may not define the undirected capacity vector of a feasible network design. The

fractional solution (x∗,y∗) may not satisfy all cut-set inequalities (8) associated to every set S, but

only to those inequalities that have been separated so far.

3.2.2 Construction

Using the previously generated vector y and g∗, this procedure constructs a feasible network design

of the PC-LAN. Algorithm 3.1 describes the main steps. The initialization phase defines a demand

per node b ∈ R|V |≥0 as:

bk =

dkyk, if k ∈ K

0, otherwise.

An initial network design z is defined via the most appropriate module per edge with respect to

g∗, i.e., ze := µe(g
∗
e ) for all e ∈ E. The algorithm subsequently modifies b, creates an undirected

flow g and updates the design z. In each iteration a node v with positive demand bv > 0 is chosen.

Denote the demand to be transported as b := bv and cancel the node demand of v: bv := 0. The

values of g, z and b uniquely determine the edge weight approximation w via (17). This vector w

defines the edge weights for the shortest paths calculation on G. A shortest path from v to r is

computed: SPw(v) = 〈v, v1, v2, . . . , r〉. Along this path, the current demand b is transported. Denote

the remaining capacity on e by ū and the maximum that can be transported by b̄. The flow g is

increased: ge := ge + b and the necessary installations ze := µe(ge) are made for all e ∈ SPw(v).
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Once Line 23 is reached, the node demand has been transported from v to r and the next iteration

starts.

A special case occurs when an edge e on SPw(v) does not offer sufficient remaining capacity ū, i.e.,

b > ū in Line 18. Then, only this maximum available capacity ū is transported on e. Now the node

demands are changed appropriately at each endpoint of e. The node closer to v, denoted i, receives

an additional demand of b − ū. The node closer to r, denoted j, receives an additional demand of

ū. The edge e becomes saturated and the heuristic continues by picking the next randomly chosen

node with positive node demand in Line 5. The heuristic terminates when b = 0 and z is feasible

for the chosen subset of customers represented by y.

Of course, no shortest path may exist. This can be due to an infeasible input or due to the

greedy decisions taken in the course of the algorithm. In this case the heuristic terminates in Line 11

without finding a feasible solution.

3.2.3 Flow Calculation

After the construction has produced a feasible solution z, redundant capacities may have been

installed along the edges. To reduce the installation cost, a minimum-cost flow problem is defined on

the subgraph of G induced by ze > 0. The flow cost are defined as
ce,ze
ue,ze

, and the capacity is set to

ue,ze for all edges. The min-cost flow problem is solved and yields a directed flow vector f . A new

design vector z′ can be derived from f by setting z′e := µe(fij + fji) for all e ∈ E. Clearly, z′e ≤ ze

for all e ∈ E. The directed flow vector f also allows to express the design in terms of directed xa,m

variables:

xij,m :=

1, if fij > 0 and m = µ{ij}(fij)

0, otherwise.

.

3.3 Local improvement

Given an integer feasible solution represented by the vector (z,y,f), we attempt the following Local

Improvement strategy. The main steps are given in Algorithm 3.2. Initialize the new solution

(z′,y′,f ′) as z′ := 0, y′ := y, f ′ := f . Decompose the flow on each arc a into commodity flows, i.e.,

compute a flow per customer per arc. Pick an edge ẽ maximizing ce,ze . Those customers k that have

a positive flow on this edge ẽ are removed from the selection, i.e., set y′k := 0. In addition, the flow

for these customers is removed from f ′. Compute the required capacity per edge g′ on behalf of the

reduced flow f ′. Define the edge weight approximation w as described by equation (17). Let lk be

the length of the shortest path SPw(k) from k to r for all currently unselected customers, i.e., y′k = 0.

Select customers with small lk values and add them to a new set y′′ until the combined selection

y′+y′′ satisfies the coverage constraint
∑
k∈K pk(y′k+y′′k ) ≥ p0. Now start the Network Construction

(Algorithm 3.1) with the minimum required capacity g′ and the set of newly selected customers y′′.

The result is a new network design z′. Set y′ := y′ + y′′. If the new solution (z′,y′) has a smaller

objective value than the currently best found solution (z,y), the new solution (z′,y′) becomes the

new best solution. Otherwise the edge that had been selected in Line 6 is added to a taboo list T .

In order to achieve more diverse results we alternate the two criteria in Line 6 and Line 21 as

12



Algorithm 3.1 Network Construction.

Input: customer selection y ∈ {0, 1}|K|, minimum required capacity g∗ ∈ R|E|≥0
1: init node demand b ∈ R|V |≥0 : bk := ykdk for all k ∈ K and bv = 0 for all v /∈ K

2: init design ze := µe(g
∗
e) for all e ∈ E

3: init undirected flow ge := 0 for all e ∈ E

4: while ∃v ∈ V : bv > 0 do

5: pick a random node v ∈ V : bv > 0

6: b := bv // the demand to be transported

7: bv := 0

8: define edge weight w : we(ge, ze, b) ∀ e ∈ E according to (17)

9: compute a shortest path SPw(v) from v to r in 〈G,w〉

10: if there is no shortest path then

11: return failed

12: end if

13: for e = (i, j) ∈ SPw(v) = 〈v, v1, v2, . . . , r〉 do

14: ū := ue,µe(ge+b) − ge // remaining capacity

15: b̄ := min(b, ū) // maximum that can be transported

16: ge := ge + b̄

17: ze := µe(ge)

18: if b > ū then // insufficient remaining capacity

19: bi := bi + b− ū

20: bj := bj + ū

21: goto Line 5

22: end if

23: end for

24: end while
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follows. The criterion for picking an edge with highest absolute cost ce,ze in Line 6 is modified to

pick the edge with highest relative cost, i.e.,

ẽ := arg max
e={i,j}∈E,(fij+fji)>0,e/∈T

(ce,ze/fe) .

The criterion for choosing new customers with smallest shortest path lengths lk in Line 21 is modified

to choose customers mimizing the ratio of prizes over costs, i.e.,

k̃ := arg max
k∈K,y′

k
+y′′

k
=0

(
pk

ck + lk

)
.

The two options for these two criteria give four variations of Algorithm 3.2, that are cyclicly repeated.

until 20 edges have been considered for deletion without improving the objective value.

3.4 Multi start modifications

As stated in Section 3, the Network Construction phase followed by the Local Improvement Phase is

repeated in a multi-start fashion. To get a wide variation in the solutions during multi-starting we

implemented the following modifications to the base algorithms provided in Sections 3.2 and 3.3.

For some PC-LAN instances it is advantageous to send the flow to groups of customers along

the same path. If economies of scale are given, as is frequently the case with this type of network

design problems, larger modules have a smaller relative cost ue,m/ce,m than smaller modules. In

situations like this the Network Construction heuristic described in Section 3.2 should be modified

to first cluster some neighboring demands and second search for a routing to the access point for

the combined demands. On the other hand, sometimes the opposite is true: Economies of scale are

not given. For example, when smaller modules represent existing infrastructure and larger modules

represent new connections that involve a high setup cost. For these problems it can be crucial to

facilitate the existing infrastructure as much as possible and avoid the larger modules. Under these

circumstances the heuristic should do the opposite of routing clustered demands together. Instead,

it would be better to split the given demands apart and route the partial demands individually in

order to facilitate the existing infrastructure in an optimal way.

In order to accommodate for these two contradicting ideas, we employ several variants of the

basic algorithm from Section 3.2.2. To enable a clustering of demands, the loop in Lines 13-23 of

Algorithm 3.1 is changed so that the installation is not necessarily done along the whole path right

from v to the central office r, but instead stops at some earlier node j. Two criteria are used to

select j: (i) j is the first node with a positive demand bj > 0 encountered along the path, or (ii) j

is at most q edges away from v. Observe that the demands are clustered if criterion (i) is applied

and the parameter q is set to a small number. To implement this variant, these next instructions are

inserted between Lines 22 and 23:

if criterion (i) or (ii) then

bj := bj + b

goto Line 5

end if.
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Algorithm 3.2 Local Improvement.

Input: design z ∈ N|E|, customer selection y ∈ {0, 1}|K|, flow f ∈ R|A|≥0
1: s := 0 // improvement counter

2: T = ∅ // taboo list

3: while s < 20 do

4: z′ := 0,y′ := y,f ′ := f

5: compute fka ∈ R|A|×|K|≥0 such that
∑
k∈K f

k
a = fa ∀a ∈ A // flow decomposition

6: ẽ := arg maxe={i,j}∈E,(fij+fji)>0,e/∈T (ce,ze) // pick edge ẽ

7: for all k ∈ K with fk(ij) > 0 or fk(ji) > 0 on ẽ = {i, j} do // reduction

8: y′k := 0

9: f ′a := f ′a − fka ∀a ∈ A

10: end for

11: g′ ∈ R|E|≥0 := 0 // required capacity

12: for all e = {i, j} ∈ E do

13: g′e := f ′ij + f ′ji

14: end for

15: y′′ := 0 // additional customers

16: for all k ∈ K with y′k + y′′k = 0 do // compute shortest path lengths

17: define edge weight w : we(g
′
e, z
′
e, dk)∀ e ∈ E according to (17)

18: compute the shortest path SPw(k) and denote the length by lk

19: end for

20: while
∑
k∈K pk(y′k + y′′k ) < p0 do

21: k̃ := arg mink∈K,y′k+y′′k=0 lk

22: y′′
k̃

:= 1

23: end while

24: (z′,f ′) := Network Construction (g′,y′′)

25: y′ := y′ + y′′

26: if
∑
e∈E ce,z′e +

∑
k∈K ck(y′k) <

∑
e∈E ce,ze +

∑
k∈K ck(yk) then // improvement

27: z := z′,y := y′,f := f ′ // keep new best solution

28: i = 0

29: else // no improvement

30: i := i+ 1

31: T := T ∪ {ẽ} // the edge from Line 6 becomes taboo

32: end if

33: end while

34: return (z,y,f)
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The idea of this clustering is to merge customers that are close to each other with respect to the

stepwise edge cost function. To provide an anti-clustering variant of the algorithm, two additional

modifications of the algorithm are introduced. The first is a redefinition of the node demands.

Instead of one number bv per node v, we use a list of subdemands Bv = {bv,1, bv,2, . . . } for every

node that can be treated independently. The initialization in Line 1 changes to

Bk := {ykdk} for all k ∈ K

Bv := ∅ for all v ∈ V \K.

In Line 5, one of the subdemands bv,t of a node v with at least one positive subdemand is chosen

and Lines 6-7 become

b := bv,t

Bv := Bv \ {bv,t}.

The update of the node demands in case of insufficient remaining capacity in Lines 19-20 becomes:

Bi := Bi ∪ {b− ū},

Bj := Bj ∪ {ū}.

Whereas the update of node demands in case of criterion (i) or (ii), introduced above, becomes:

if criterion (i) or (ii) then

Bj := Bj ∪ {b};

goto Line 5

end if.

The second modification to help with anti-clustering is to initially split the demands in two Bk =

{ykdk/2, ykdk/2} or three Bk = {ykdk/3, ykdk/3, ykdk/3} partial demands in Line 1.

A specific variant of the Network Construction algorithm can be chosen with four parameters:

• Activate criterion (i), or do not activate it.

• Select a value for q ∈ {1, . . . , |V |} for criterion (ii).

• Join node demands by using one value bv per node, or do not join but use a list of values Bv.

• Select a splitting ratio ∈ {1, 2, 3} for the initial definition of node demands.

Each time the Network Construction algorithm is executed, a specific variant is chosen by the means

of a learning adaptation mechanism known as Reactive Search Optimization. Initially pre-specified

settings for the four parameters are used. Then the settings for the parameters are varied from a

diversification of the settings towards an intensification. That is, from randomly perturbed settings

towards settings that have produced the best objective values so far.

4 Computational results

This section discusses the performance of the approaches described in Section 3 on two sets of

benchmark instances: (i) small instances that are graphs generated by Salman et al. [17] and used

for testing the LAN problem, and (ii) new set of large-scale instances arising from the real-world
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motivation of our research. The computations are performed on a computer with Intel Xeon 2.6

GHz and 3 GB RAM. We have used CPLEX 12.2 to solve the linear programs and also as a MIP

framework.

4.1 Benchmark instances

Small Instances

This is a group of 60 randomly generated problems originally published in Salman [16]. They were

also used in [17, 3, 10]. The instances contain 20, 30 and 40 nodes and there are 12 groups in

total with 5 instances per group. There are 9 cable types obeying economies of scale in each of the

instances. The cheapest cable type has a capacity of 6. The convex combinations of these cable

types generate up to
⌈∑

k∈K dk/6
⌉

modules. See [3, 17] for a detailed description. The groups are

created according to the number of nodes, location of the root node (’c’ being central, or ’r’ being

random position), and the level of demand (’l’ stands for low demand, which is randomly generated

between 0 and 30; ’h’ stands for high demand, randomly generated between 0 and 60).

Large instances

Starting from real-world inputs, we have generated three new large-sized benchmark instances using

real-world locations. The instances are named A, B and C. The number of nodes in our instances

is 86 745, 48 247 and 77 329, respectively. The number of edges is 116 750, 65 304 and 107 696 and

the number of potential customers is 1 157, 720 and 1 498, respectively. The other features of the

PC-LAN instances are generated following the procedure described here. We are given three types

of nodes: physical locations of customers, location of the central office and locations of intermediate

nodes. For each customer location, we are given the number of subscribers associated to this location.

Usually, several splitter devices with various splitting ratios (e.g., 1:4, 1:16, 1:32) are available. Their

costs obey economies of scales. For example, to connect 16 subscribers, a device must be installed

that costs ¤2000 and one optical fiber should come in that building. To connect a building with

17 subscribers, a device that costs ¤3000 and 2 fibers are needed and this larger device is sufficient

to support up to 32 subscribers. It is not feasible to connect only a fraction of subscribers at the

customer node. Instead, decisions have to be made whether all subscribers or none of them are

going to be served. This allows for preprocessing of input data and exact calculation of customers’

demands and the corresponding set-up costs.

These instances consider three types of links: existing fibers, existing ducts and public streets.

Existing and currently unused optical fiber cables can be used with a very small cost. In existing

ducts, a limited number of additional cables can be installed for relatively little cost. Along street

segments, new trenches can be built and new ducts and cables can be laid. In addition to the cost for

the ducts and cables there is a significant overhead cost for new trenches. Different cable technologies

are available. They differ in terms of the number of fibers per cable and cost per meter. Existing fiber

and existing ducts can be used simultaneously. If new trenches are dug, any existing infrastructure

is removed and replaced by the new installations.
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In addition the practical situation will be further complicated by the availability of different

cable technologies. They can provide different numbers of fibers per cable. Other more expensive

technologies can provide the same number of fibers in a cable of smaller diameter. Using these would

allow to put more cables, hence more fibers in an existing duct. Furthermore between two locations,

there will sometimes be different existing ducts. Independent decisions about how many cables of

which technology to put into each of them will lead to many different possible combinations. Taking

these aspects into account, we pre-computed the available modules for each edge. The minimum,

average and maximum number of modules per edge in instance A are 3, 9 and 131, respectively. For

instance B they are 3, 9 and 84 and for instance C, 3, 10 and 161. This shows the high diversity in

the input data defining our instances.

We considered values of α ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Hence the set of benchmark instances

contains 21 examples of PC-LAN.

4.2 Performance of the branch-and-cut algorithm

We first present the results of our branch-and-cut algorithm on the set of small instances. For the

set of small instances, the main results are summarized in Table 1 and Figure 3. We consider the

following two settings: (1) BC+, which is the branch-and-cut approach with the MIP heuristic as

described in Section 3, and (2) BC, which is the branch-and-cut approach with the default CPLEX

heuristics. For each of the 12 groups in Table 1 we report the following values: “c/r” and “h/l”

columns describe the type of instances (as explained above). In addition, for the two branch-and-cut

settings, with and without our proposed MIP-heuristic, we report the following values: the first

obtained percentage gap at the root node (gapf [%]) and the time in CPU seconds when this gap is

achieved (tf [s]), gap at the root node (gapr[%]) and the time in CPU seconds needed to solve the

LP-relaxation at the root node (tr[s]), and the final gap obtained after the time limit of 1 000 seconds

is reached (gap[%]). The value t[s]) provides the total running time. All values are averaged over 5

instances per each group. Let LB denote the best lower bound (or the optimal solution, if known)

of an instance, and let UB be the value of a feasible solution. The reported gaps are calculated as

100(UB − LB)/UB.

Additional information regarding the performance of the two branch-and-cut settings is available

at Figure 3. Each point (x, y) on these charts is to be interpreted as follows: y% of all instances

obtained the gap which is ≤ x. Three charts correspond to the: first gaps at the root node, gaps at

the root node and final gaps after 1 000 seconds, respectively.

Summarizing the information of Table 1 and Figure 3 we conclude that at the beginning of the

optimization process, BC+ finds feasible solutions of relatively good quality much faster than the

BC setting with the default CPLEX heuristic. More precisely, in less than a second, BC+ obtains

solutions that are at most 4% above the lower bounds, on average. At the same time, BC needs a few

seconds to detect solutions that are between 13% and 185% above the lower bounds, on average. Even

after finishing the complete cutting plane phase at the root node, there are still significant differences

in the quality of upper bounds obtained by BC+ and those obtained by BC (cf. Figure 3(b)). This

can also be observed by comparing the columns denoted by gapr[%] in Table 1 for the two settings.
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Finally, if sufficient running time is available, then both approaches succeed in closing the gap, and

we observe that BC+ becomes more successful with the increasing instance size.
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Figure 3: Results on small instances: (a) gaps of first feasible solutions detected at the root node, (b)

gaps at the root node, (c) final gaps.
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4.3 Solving the large instances

In this section we hybridize the proposed cutting plane approach with the multi-start heuristic, in

order to provide high-quality solutions for large-scale instances and to give the certificate of their

quality at the same time. For this purpose, we ran the code for 10 hours with particular settings

described below.

Separation Settings: In preliminary experiments, we tested different configurations and se-

lected the following scheme of alternating two configurations, that worked best for our instances. In

configuration (I), we favor connectivity cuts, and to this end we produce at most two nested cut-set

inequalities (9) and at most 2 000 nested connectivity cuts (10). In the second configuration (II), we

separate at most 20 nested cut-set inequalities (9) and do not generate connectivity cuts. We apply

configuration (I) iteratively until no more violated inequalities are found, or until the improvement of

the objective value in the last ten iterations is too small. Then we apply configuration (II) iteratively

until no more violated inequalities are found, or until the improvement is too small. Let o be the

current objective value, let oI be the objective value derived ten iterations ago with configuration (I),

and let oII be the objective value derived ten iterations ago with configuration (II). The relative

improvement for configuration (I) is said to be too small once (o − oI)/o drops below ε = 10−4.

Note that (o − oI)/o may again become greater than ε while configuration (II) is active. Thus the

algorithm may switch back to configuration (I) and vice-versa. Once no connectivity cuts, nor cut-set

inequalities exist, or both values (o− oI)/o and (o− oII)/o are below ε, we resort to branching.

Non-MIP variant of the heuristic To measure the impact of the MIP information in our

heuristic approach we have also designed an alternative heuristic variant which does not make use

of a MIP solver. This variant may be of interest for practical purposes since a company may desire

not to purchase and install a black-box MIP solver in order to heuristically solve instances. Our

non-MIP variant works as follows.

1. Compute a selection of customers y that satisfies the coverage constraint (4).

This is done similarly to the customer selection in the Local Improvement Algorithm 3.2,

Lines 15-23. Since there are no currently selected customers, this set is empty y′ = 0. Also,

initially there is no current installation, i.e., z′ = 0 and no minimum required capacity, i.e.,

g′ = 0. Now y := y′′ denotes a customer selection, feasible with respect to inequality (4).

2. Apply the construction phase 3.2.2 on y and no initial required capacity, i.e., g∗ = 0

These two steps compensate for the missing fractional solution in the algorithmic framework.

Computational results This section compares the MIP-based approach described in Section 3

and the non-MIP variant when solving our benchmark instances. We apply a time limit of 10 hours

for both approaches. The MIP-based approach applies only the Cutting Plane phase in the first 2

hours. In the remaining 8 hours, every Cutting Plane phase is followed by multi-starting Network

Construction, followed by Local Improvement as long as a better solution is produced. Inside the

Local Improvement, the removal of different edges is repeatedly tried, until 20 recent attempts did
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# α LB UB gap Gapnon GapMIP |V ∗| |V ∗1 |

A 0.4 894318 1103084 18.93 9.10 0.00 1712 14

A 0.5 1245096 1558613 20.12 6.27 0.00 2462 11

A 0.6 1617097 2064569 21.67 4.99 0.00 3098 47

A 0.7 2032880 2699669 24.70 2.30 0.00 4196 51

A 0.8 2599170 3433859 24.31 0.00 0.57 5454 108

A 0.9 3400201 4386960 22.49 0.00 1.60 6776 19

A 1.0 7188015 8584895 16.27 0.00 3.01 9970 18

B 0.4 522753 568518 8.05 13.43 0.00 1130 15

B 0.5 715968 778720 8.06 11.75 0.00 1288 9

B 0.6 938149 1003232 6.49 12.84 0.00 1654 15

B 0.7 1228323 1322599 7.13 7.76 0.00 1932 19

B 0.8 1601173 1771221 9.60 3.72 0.00 2521 26

B 0.9 2126598 2349981 9.51 2.63 0.00 3206 31

B 1.0 3463753 3916245 11.55 0.00 1.08 5286 26

C 0.4 1005973 1106272 9.07 16.02 0.00 2968 26

C 0.5 1383417 1565520 11.63 18.94 0.00 3446 46

C 0.6 1844854 2249367 17.98 6.53 0.00 4089 55

C 0.7 2349758 3018622 22.16 2.73 0.00 5691 90

C 0.8 3011135 3927335 23.33 0.00 1.14 7047 100

C 0.9 4016022 5180962 22.49 0.00 1.17 8552 97

C 1.0 6278802 7384655 14.98 0.00 2.40 11607 112

Table 2: Results of the MIP-based heuristic versus the non-MIP variant on large instances.

not improve the solution. The non-MIP approach multi-starts until the time limit of 10 hours is up.

Inside the Local Improvement the iteration continues until the solution has not improved in the 200

recent attempts.

Table 2 compares the performance of the MIP heuristic and the non-MIP variant. For the three

instances (A, B and C) and for each coverage rates the following results are reported:

• # is the instance character.

• α is the coverage rate.

• LB gives the lower bound obtained while running the MIP-based heuristic.

• UB gives the best upper bound obtained by the MIP-based heuristic or the non-MIP variant.

• gap shows the optimality gap (UB − LB)/UB in percent.

• GapMIP denotes the relative distance (UBMIP−UB)/UB in percent, where UBMIP is the upper

bound obtained by the MIP-based heuristic.

• Gapnon denotes the relative distance (UBnon −UB)/UB in percent, where UBnon is the upper

bound obtained by the non-MIP variant.
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• |V ∗| gives the number of nodes in the best solution with value UB.

• |V ∗1 | gives the number of nodes in the best solution with in-degree greater than 1, where edges

are understood to be oriented in the direction of a flow from r to the customers.

A value of 0.00 in GapMIP and Gapnon implies that the corresponding heuristic approach found the

best upper bound. Bold values indicate which of the approaches provides the best upper bound. A

value of 0 in column |V ∗1 | would imply that the solution is a tree, thus this column gives a measure

of deviation from tree.

For none of the 21 instances the MIP-based approach finished the root node of the branch and

bound tree in the time limit of 10 hours. Table 2 shows that the MIP-based heuristic found the best

solution in 14 out of the 21 instances. The average value of GapMIP is 0.52 while the average value of

Gapnon is 5.67. So on average the MIP-based heuristic is closer to the best found solution than the

non-MIP variant. And also the largest advancement of MIP over non-MIP is more pronounced than

the other way around. The largest advancement of the MIP aproach over the non-MIP approach,

seen for C with α = 0.5 is |Gapnon−GapMIP| = 18.94. While the largest improvement of the non-MIP

approach over the MIP-approach, seen for B with α = 1.0 is 3.01. The MIP-based heuristic is clearly

better on instances with smaller values of α, which can be seen from the relatively larger distances

of Gapnon. This can be explained by the fact that our MIP-based heuristic is better designed to

exploit the combinatorial nature of the problem by selecting the appropriate subset of customers,

guided by the LP-information. On pure LAN instances, all customers have to be served, i.e., yi = 1,

for all i ∈ K, and therefore the advantage of using the LP-information is not given anymore. Similar

situation happens for large coverage values, where many of y-variables are close to one.

Comparing the growth of the cost of the optimal solution (by assuming that the provided lower

bound are safe estimates of the optimal values), we observe that increasing the coverage rate by 10%,

may lead to the total increase of the investment cost by more than 100% (cf. instance A, and the

increase from α = 0.9 to α = 1.0). In the remaining two instances, the corresponding increase from

the coverage of 90% to the full coverage, results in the increase of the investment cost by more than

50%. This clearly explains why the decision makers prefer the PC-LAN model over the LAN model

when deploying the local access networks. Typical coverage values considered by decision makers

clearly depend on the available budget, but they usually range between 60% and 90%.

To take a closer look at the performance of the two heuristic approaches during the 10 hours,

we have selected two plots, one with the coverage rate of 70%, where the MIP-heuristic significantly

outperforms the non-MIP variant, and one with the coverage rate of 100%, where the MIP-heuristic

gives a solution which is 1% percent worse than the best solution found by the non-MIP variant.

However, the advantage of the MIP-heuristic is that it also provides the lower bounds as certificates

of the solution quality. We point out that the instance B, which is the smallest among the three

considered graphs, contains more than 48 000 of nodes and more than 65 000 of edges, and that

the final gaps we report lie between 6.5% and 11.5%. Figure 4 illustrates the performance of the

two approaches on the instance B with α = 0.7, where the MIP-based heuristic ends with a better

solution than the non-MIP variant. MIP Heuristic - Upper Bound and Lower Bound show a value

in every iteration of the MIP approach. Non-MIP - Upper Bound shows a value every time an
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Figure 4: Instance B with α = 0.7, where the MIP-based heuristic performs better than the non-MIP

variant.
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improved solution is found. A value of 100 for the relative objective value in the figure corresponds

to GapMIP = 0.0 in Table 2. The time is represented in hours. Note that the MIP approach starts

with an initial heuristic solution computed similarly to the non-MIP variant. This initial heuristic

multi-starts as long as the solution gets better in every iteration. The next 20%, or 2 hours of the

runtime are spent, iterating in the Cutting Plane phase to build up a set of cutting planes before

Network Construction and Local Improvement algorithms are executed. We observe that the non-

MIP variant slowly improves the quality of the solution and in the last almost two hours there is no

more improvement. In contrast to this, the MIP approach finds a significantly better feasible solution

on the first execution of Network Construction and Local Improvement after 2 hours. Furthermore,

the MIP approach slowly improves the quality of upper and lower bounds providing the final gap of

7.13% between the lower and the upper bound.

Figure 5 illustrates the performance on the instance B with coverage rate 1.0, where the non-MIP

variant ends with a better solution than the MIP-based heuristic. A value of 100 for the relative

objective value in the figure corresponds to Gapnon = 0.0 in Table 2. We observe that the non-MIP

variant, again, slowly improves the quality of the solution. On the other hand, the MIP approach

does not seem to draw a noticeable advantage of the information from the fractional solutions. The

MIP approach behaves similar to the non-MIP variant with the exception of investing much of the

runtime in cutting planes and LP solutions. Thus it does not quite achieve the same solution quality

as the non-MIP variant.

Table 3 presents further results of the MIP-based heuristic on our 21 instances. The meaning of

the columns is the following:

• gap′ is the percentage deviation between the initial solution value UB′ (before solving the first

linear relaxation) and the best lower bound obtained while running the MIP-based heuristic

(LB). It is computed as 100(UB′ − LB)/UB′.

• Gap′MIP denotes the gap of the initial solution before solving the first linear relaxation. As in

the previous table, this gap has been calculated with respect to the best upper bound UB, and

it is a percentage, i.e. it is computed as 100(UB′ − UB)/UB.

• t′MIP is the time (in seconds) to produce the initial solution.

• tMIP is the total time (in seconds) of the MIP-based heuristic minus the time consumed to

compute the lower bound (i.e., separation phase and MIP solver).

• nMIP gives the number of improved solutions found during the MIP-based heuristic.

• nLP gives the number of iterations of the cutting-plane algorithm, i.e., the number of LP

solutions.

• n(9) shows the number of generated rounded cut-set inequalities (9).

• n(10) shows the number of generated connectivity cuts (10).

• n(9) shows the average number of generated rounded cut-set inequalities (9) per fractional

solution in the second half of the iterations of the cutting-plane algorithm.

• n(10) shows the average number of generated connectivity cuts (10) per fractional solution in

the second half of the iterations of the cutting-plane algorithm.
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Figure 5: Instance B with α = 1.0, where the non-MIP variant performs better than the MIP-based

heuristic.
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# α gap′ Gap′MIP GapMIP t′MIP tMIP nMIP nLP n(9) n(10) n(9) n(10) t(9) t(10)

A 0.4 27.44 11.73 0.00 68 9411 4 17 34 10074 2.0 492.3 99 5999

A 0.5 27.86 10.74 0.00 23 8938 4 17 34 11891 2.0 595.5 74 5102

A 0.6 28.19 9.07 0.00 142 12188 6 15 30 11957 2.0 658.4 79 6933

A 0.7 30.06 7.67 0.00 303 14365 6 13 26 12601 2.0 826.3 84 7316

A 0.8 27.57 4.50 0.57 39 12915 5 13 26 14116 2.0 943.3 81 7640

A 0.9 23.84 1.77 1.60 659 8370 2 12 24 15576 2.0 1159.6 52 5724

A 1.0 18.72 3.01 3.01 381 8421 1 8 16 13608 2.0 1514.0 15 6204

B 0.4 22.89 19.24 0.00 15 18477 6 125 790 4419 6.1 9.1 918 1603

B 0.5 22.10 18.03 0.00 86 18818 4 89 394 5601 3.6 13.0 421 2022

B 0.6 23.74 22.62 0.00 30 16329 10 61 302 6290 8.0 8.1 485 2318

B 0.7 19.90 15.95 0.00 91 12675 5 33 84 7692 3.1 87.6 110 2994

B 0.8 17.68 9.82 0.00 171 14659 5 25 50 9835 2.0 214.4 59 3461

B 0.9 17.93 10.27 0.00 186 19103 7 23 46 10623 2.0 256.2 51 3576

B 1.0 16.32 5.69 1.08 461 13909 7 16 32 12733 2.0 553.7 17 4120

C 0.4 26.85 24.31 0.00 459 23623 3 37 74 8738 2.0 43.3 447 4886

C 0.5 29.94 26.13 0.00 455 23863 8 24 48 9287 2.0 105.0 423 5953

C 0.6 27.44 13.04 0.00 426 21522 8 20 40 12010 2.0 271.7 291 7059

C 0.7 28.53 8.91 0.00 1523 22666 7 14 28 11288 2.0 476.3 270 8598

C 0.8 28.05 6.56 1.14 1324 20981 8 14 28 13683 2.0 666.5 253 10102

C 0.9 26.57 5.57 1.17 844 15655 6 15 30 16787 2.0 825.9 153 7992

C 1.0 18.17 3.90 2.40 3157 17509 5 12 24 18288 2.0 1173.4 60 8981

Table 3: Details of the MIP-based heuristic on the large instances.
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• t(9) shows the time consumed in separating rounded cut-set inequalities (9).

• t(10) shows the time consumed in separating connectivity cuts (10).

¿From this table it can bee seen that around half of the total time of 10 hours (36 000 seconds)

in the MIP-based heuristic is consumed by the cutting-plane procedure where inequalities are sep-

arated and linear programming relaxations are solved. However, as previously observed, this time

consumption increases the solution quality when the coverage rate α is small. The objective value

of the initial heuristic solution computed before the first iteration of the cutting-plane procedure is

similar to the objective value of the best solution when α is large. In particular, we even observe

that on instance A with 1.0 of coverage rate, the initial solution available in the first 5 minutes

of the computation was not improved during the whole 10 hours of the MIP-based heuristic. The

situation is different when the coverage rate is small. Note that the number of generated inequalities

(9) and (10) is strongly affected by the separation settings described in Section 2.3. We also tested

different settings to encourage finding more rounded cut-set inequalities, but the overall performance

of the approach was not better. As shown in the table, on average we generate two rounded cut-set

inequalities from each fractional solution, which means that configuration (I) was executed once on

each cutting-plane iteration. Columns n(9) and n(10) indicate the average numbers of inequalities

generated at the end of the cutting-plane process. For example, in the last 30 cutting-plane iterations

only an average of 8.1 connectivity cuts are generated when solving instance B with 0.6 coverage

rate. Finally, we also observe that the number of separated connectivity cuts (10) increases with the

increasing coverage rates.

Conclusion

We have proposed a MIP-based approach to solve a new network design problem arising in a telecom-

munication context where not all customers need to be served. Instead, the company is interested in

finding a good feasible solution to reach at least a given percentage. The problem is called PC-LAN

and to our knowledge this is the first work to solve it. Based on a mathematical formulation, we

propose a branch-and-cut approach. On small instances this approach finds optimal solutions. On

large instances it has been adapted to find satisfactory solutions. Our procedure creates feasible

solutions from the fractional ones obtained by separating two families of inequalities. A local search

approach is used to improve each feasible solution, and all the approach is embedded in a multi-

start framework. To measure the convenience of having a MIP solver inside our heuristic approach,

we have also implemented a variant without using the cutting-plane ingredient. Our experiments

have shown that the MIP-based approach significantly outperforms the non-MIP variant for coverage

rates below α = 0.8. These coverage rates are also typical for real-world applications motivating our

research.
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