
The bi-objective prize-collecting Steiner tree

problem

Markus Leitner

Institute of Computer Graphics and Algorithms

Vienna University of Technology, Austria

leitner@ads.tuwien.ac.at

Ivana Ljubić, Markus Sinnl

Department of Statistics and Operations Research

University of Vienna, Austria

{ivana.ljubic,markus.sinnl}@univie.ac.at

May 27, 2013

Abstract

We consider the bi-objective prize-collecting Steiner tree problem, whose
goal is to find a subtree considering the conflicting objectives of minimiz-
ing the edge costs for building that tree, and maximizing the collected
node revenues. From a practical perspective, the problem is important
whenever node revenues and edge costs cannot be easily expressed using
the same (e.g., monetary) units. For example, in wildlife corridor de-
sign, nodes correspond to land parcels and their revenues correspond to
their associated wildlife benefit. We consider five iterative mixed integer
programming frameworks that identify the complete Pareto front, i.e.,
one efficient solution for every point on the Pareto front. More precisely,
the following methods are studied: an ǫ-constraint method, a two-phase
method, a binary search in the objective space, a weighted Chebyscheff
norm method and a method of Sylva and Crema. We also investigate
how to exploit and recycle information gained during these iterative MIP
procedures in order to accelerate the solution process. We consider (i)
additional strengthening valid inequalities, (ii) procedures for initializ-
ing feasible solutions, (iii) procedures for recycling violated cuts using
cut pools, and (iv) guiding the branching process by previously detected
Pareto optimal solutions. This work is a first study on exact approaches
for solving the bi-objective prize-collecting Steiner tree problem. Standard
benchmark instances from the literature are used to assess the efficacy of
the proposed methods.

1 Introduction

Many problems arising in the design of telecommunication, district heating, or
water distribution networks, in forestry planning or even in image processing
and system biology can be modeled as variants of the prize-collecting Steiner tree

1

problem (PCSTP) (see e.g., [1] for a recent survey). The problem is defined as
follows: Given an undirected graph G = (V,E), with node revenues r : V → N0,
and edge costs c : E → N, find a subtree G′ = (V ′, E′), V ′ ⊆ V,E′ ⊆ E,
such that

∑
v∈V ′ rv −

∑
e∈E′ ce is maximized. If node revenues and edge costs

are measured using the same (e.g., monetary) units, this objective function
corresponds to the net-worth maximization problem. Difficulties arise, however,
if “node revenues” are used to model aspects that cannot be so easily expressed
using the same units. For instance, in wildlife corridor design (see [8]), the goal is
to determine a subset of land parcels that connect areas of biological significance
for a given species. In this case, nodes correspond to land parcels and their
revenues correspond to habitats’ suitability. Typically, in such applications,
the problem is modeled as a budget-constrained prize-collecting Steiner tree
problem (see [8]), where the budget limits are provided by decision makers,
and the collected revenues are maximized subject to the given budget. From
the perspective of a decision maker it would be preferable to consider both
objectives, namely, the cost minimization and the revenue maximization, as
part of the optimization process. In that case, the decision maker would be able
to easily perform a sensitivity analysis regarding the variations of the budget
and the corresponding deviations of the collected revenue. Therefore, for dealing
with tree problems in which the tree cost has to be minimized, on the one hand,
and the collected revenue should be maximized, on the other hand, we propose
to solve the PCSTP as a bi-objective optimization problem.

Problem Formulation

The set of all subtrees of G will be modeled using a rooted Steiner arborescence
model originally proposed by [12], see also [23]. Let T be the set of terminal
nodes, (i.e., nodes with positive revenue), and V \T be the set of potential Steiner
nodes (i.e., nodes with zero revenue). We create a directed graph (V ∪ {0}, A)
with a root 0 as follows: A = {(i, j), (j, i) | ∀e = {i, j} ∈ E} ∪ {(0, t) | ∀t ∈ T },
set cij = cji = ce, for all e = {i, j} and c0t = 0, for all t ∈ T . Using binary
variables xa, for all a ∈ A to indicate whether an arc is part of a solution and
binary variables yv, for all v ∈ V to indicate if a vertex v is part of a solution,
the following inequalities are used to model the set of all feasible arborescences
of G rooted at 0:

P = {(x,y) ∈ {0, 1}|A|+|V | | x(δ−(i)) = yi, ∀i ∈ V, x(δ+(0)) = 1,

x(δ−(W)) ≥ yk, ∀W ⊆ V, k ∈ W},

where δ+(W) and δ−(W) denote the outgoing and incoming cutset, respectively,
for any W ⊆ V , and x(A′) =

∑
a∈A′ xa for a given A′ ⊆ A. Connectivity

constraints x(δ−(W)) ≥ yk make sure that there is a directed path between
the root and any other node of the solution, and the root-outdegree constraint
x(δ+(0)) = 1 ensures that the subgraph obtained after removing node 0 from
the solution is connected. The bi-objective prize-collecting Steiner tree problem
(BOPCSTP) can now be defined as follows:

(min
∑

a∈A

caxa,max
∑

t∈T

rtyt) subject to (x,y) ∈ P . (1)

Thereby, the two objective functions need to be simultaneously optimized, i.e.,
no objective is more significant than the other one. Figure 1 shows an instance

2

of the BOPCSTP, two Pareto optimal solutions and the Pareto front, cf. Sec-
tion 2.1.

6 3

4 2

4

5 3

3

4

3

5

(a)

6 3

4 2

4

5 3

3

4

3

5

(b)

6 3

4 2

4

5 3

3

4

3

5

(c)

0 5 10 15

6
8

10
12

14

cost

re
ve
n
u
e

(d)

Figure 1: (a) An instance of the BOPCSTP. The costs of the edges and the
revenues of the terminals are indicated by the numbers on the edges and nodes;
the squares are Steiner nodes. (b), (c) Two Pareto optimal solutions with cost
eight and revenue ten, and cost ten and revenue eleven, respectively. (d) Pareto
front for this instance.

Let σ = (x,y) denote the vector representing a feasible BOPCSTP solution.
Notice that replacing the maximization problem of the second objective with
the minimization problem min

∑
t∈T rt(1−yt), yields the same solution σ. This

follows from the fact that the difference between the two objective values is∑
t∈T rt, which is a constant. From this point of view, the node revenues can

be interpreted as penalties, which have to be paid, if a node is not part of the
solution tree and the second objective becomes penalty minimization. Therefore,
in the remainder of this paper, we will refer to the BOPCSTP as the bi-objective
minimization problem minσ∈P(z1(σ), z2(σ)) where

z1(σ) =
∑

a∈A

caxa and z2(σ) =
∑

t∈T

rt(1− yt).

Our goal is to find one efficient solution for every point on the Pareto front.

Scientific Contribution. In this paper we consider five iterative mixed in-
teger programming (MIP) frameworks for bi-objective combinatorial optimiza-
tion problems applied to the BOPCSTP. We solve the BOPCSTP using: an
ǫ-constraint method, a two-phase method, a binary search in objective space,
for which we also propose a small improvement, a method based on a weighted
Chebyscheff norm and a method of Sylva and Crema [38]. Moreover, we show
how to recycle the information gained during these iterative procedures: We
accelerate the solution process by defining various strengthening inequalities,
exploiting methods for generating feasible solutions, re-using violated cutting
planes, and by guiding the branching process. This paper is a first study on ex-
act approaches for solving the bi-objective prize-collecting Steiner tree problem.

Outline of the Paper. The rest of the paper is organized as follows: We first
review previous work on bi- and multi-objective spanning and Steiner tree prob-
lems. We also briefly review related literature on the single objective PCSTP
in this section. In Section 2 solution methods are described, while in Section 3

3

details about used acceleration techniques are given. Section 4 provides the
results of our computational study and describes all computational details of
the iterative branch-and-cut approaches. Finally, some conclusions are drawn in
Section 5.

Previous and Related Work

Multicriteria Optimization on Trees. In the earliest works on bi- and
multi-objective tree problems, several variants of the minimum spanning tree
problem with more than one set of edge costs are considered (see e.g., Hamacher
and Ruhe [15], Ramos et al. [31], Steiner and Radzik [37]). These algorithms
for bi- and multi-objective spanning trees use combinatorial arguments and
are based on efficient algorithms for the single-objective problem (see also the
survey by Ruzika and Hamacher [33]). Moreover, Sourd and Spanjaard [36]
introduced a general multi-objective branch-and-bound algorithm and applied
it to the bi-objective minimum spanning tree problem. Vujošević and Stanojević
[41] introduced a bi-objective variant of the Steiner tree problem with edge
capacities and edge costs. They presented heuristic approaches that aim to
maximize the capacity and minimize the total cost of a solution. Levin and
Nuiriakhmetov [22] proposed a heuristic to solve a Steiner tree problem with
more than one set of edge costs. Another bi-objective variant of the Steiner tree
problem was presented by Martins and Ferreira [25], who proposed a heuristic
aiming to simultaneously minimize the total solution costs and the number of
intermediate (i.e., Steiner) nodes.
The BOPCSTP differs from these bi-objective spanning/Steiner tree problems,
since feasible solutions for these problems are only spanning trees or Steiner trees
spanning the given set of terminals, whereas in our problem, even a single-node
subtree is a feasible solution.

PCSTP. Segev [35] introduced the node-weighted Steiner tree problem in
graphs. In this modification of the classical Steiner tree problem, non-positive
weights are associated to nodes and the objective is to find a subtree that min-
imizes the sum of the edge-cost and node-weights. This problem (as well as
its maximization counterpart) is not approximable within any constant ratio.
Bienstock et al. [5] considered a different minimization problem, to which they
refer as the prize-collecting Steiner tree problem: The goal is to find a subtree
that minimizes edge-cost plus node-weights of those nodes not connected by
that tree. For this version of the problem (with non-negative node weights) Bi-
enstock et al. [5] presented a factor three approximation algorithm and were the
first to call the problem PCSTP. Other approximation algorithms with better
approximation ratios were presented by Goemans and Williamson [13], Johnson
et al. [17], Feofiloff et al. [11] and Archer et al. [2], which achieves the best
known approximation ratio of (2− ǫ).

MIP approaches to the PCSTP based on single- and multi-commodity flow
formulations were introduced by Segev [35]. Lucena and Resende [24] proposed
a cutting plane algorithm to find lower bounds and da Cunha et al. [7] a relax
and cut algorithm to find primal and dual bounds. Haouari et al. [16] con-
sidered Lagrangian dual approaches for a generalized variant of the PCSTP
with additional quota constraints. Ljubić et al. [23] proposed a branch-and-cut

4

approach using connectivity inequalities for directed Steiner trees previously
studied by Fischetti [12].

2 Solution Methods

In the last decades, many algorithmic approaches were proposed for solving bi-
objective combinatorial optimization problems (see e.g., the survey by Ehrgott
and Wiecek [9]). In this study on the BOPCSTP we will concentrate on iterative
MIP approaches that repeatedly solve single-objective problems (possibly aug-
mented with some additional constraints) with a modified objective function.
One of our major goals is to computationally compare these methods and to
study how to recycle the information gained through solving a series of MIPs.
For this computational study we select five iterative MIP approaches proposed in
the literature in the last decades. For one of them, namely, the binary search in
the objective space, we also present slight modifications that reduce the number
of iterations and improve the performance. The chosen approaches explore the
Pareto front in different ways, which is why they are chosen as representatives
of iterative MIP approaches for bi-objective combinatorial optimization.

Since the main focus is on iterative MIP frameworks, we do not consider
methods like bi-objective branch-and-bound or bi-objective branch-and-cut al-
gorithms, see, e.g., Jozefowiez et al. [18], Mavrotas and Diakoulaki [26], Sourd
and Spanjaard [36]. Note finally that all considered methods could be paral-
lelized by partitioning the problem into intervals like described in, e.g., Lemesre
et al. [21]. Hybridizations of the considered methods are also possible, and
are expected to further improve the performance of these iterative frameworks.
Study of these parallelizations and/or hybridizations, however, remains out of
scope of this paper.

2.1 Preliminaries

In the following we recall the basic concepts about efficiency and nondomi-
nance needed to understand and solve bicriteria optimization problems (see,
e.g., Przybylski et al. [28] for more details). Note that our problem is a bi-
objective integer programming problem and as such it is more difficult to solve
than bi-objective linear programming problems (the latter ones are much better
studied and understood).

Let z(σ) = (z1(σ), z2(σ)) be a vector of two minimization objective func-
tions, σ a feasible solution, P be the feasible region and Z = {z(σ) : σ ∈ P}
be the set of objective vectors. P is called the decision space and Z is called
the objective space. A solution σ ∈ P is efficient (Pareto optimal), iff there is
no σ

′ ∈ P , s.t. zi(σ
′) ≤ zi(σ) for i = 1, 2 with at least one strict inequality.

The set of efficient solutions is denoted by PE and the corresponding vectors
z(σ) are called non-dominated (ND). The set of these solutions is denoted by
ZN and called non-dominated frontier or Pareto front.

Note that |ZN | ≤ |PE|, since different efficient solutions can have the same
non-dominated vectors. For the BOPCSTP, we can derive an upper bound on
the number of non-dominated vectors as follows: Note that any point (z1, z2),
which lies on the Pareto front, must have unique coordinates in both objective
functions. Thus the maximum number of points is bounded by the minimum

5

of the maximum values, which both objective functions can attain. Since z1
is at most the cost of a minimum Steiner tree connecting all terminals (denote
this cost by C) and z2 is at most

∑
t∈T rt, the number of vectors on the non-

dominated frontier is at most min(C/∆c, (
∑

t∈T rt)/∆), where ∆c and ∆ are
the greatest common divisors for edge costs and node revenues, respectively.

The set PE is the disjoint union of supported efficient solutions (SE) and
non-supported efficient solutions (NSE). Supported efficient solutions are all
efficient solutions, where the associated point lies on the convex hull of all solu-
tions in the objective space. They can be found using the weighted sum method,
cf. Section 2.3. Non-supported efficient solutions are all remaining efficient so-
lutions, i.e., their associated non-dominated points lie in the interior of this
convex hull. Supported efficient solutions that correspond to extreme points of
the convex hull of all solutions in the objective space are called extreme efficient
solutions. The corresponding subsets in the objective space are called supported,
non-supported and extreme non-dominated points, respectively.

Important concepts which will be used by all of the following methods are
the ideal point and the Nadir point.

Definition 1 (Ideal point and Nadir point). Given a bi-objective combinato-
rial optimization problem with objectives z1(σ) and z2(σ), the ideal point zI is
defined as zI = (zI1, z

I
2) = (minσ∈P z1(σ),minσ∈P z2(σ)). The Nadir point zN

is defined as zN = (zN1 , z
N
2) = (minσ∈P{z1(σ) : z2(σ) ≤ zI2},minσ∈P{z2(σ) :

z1(σ) ≤ zI1}).

Obviously the points (zI1, z
N
2) and (zN1 , z

I
2) are the boundary points of the

non-dominated frontier. In the BOPCSTP, the point (zI1, z
N
2) corresponds to

a solution consisting of a single terminal with the highest revenue and (zN1 , z
I
2)

corresponds to a minimum Steiner tree connecting all terminals. To simplify
notation, we will sometimes slightly abuse the notation in the following sections
and refer to some z = (z1, z2) not only as solution value, but also as feasible
solution σ ∈ P such that z(σ) = z or as a tree corresponding to this solu-
tion. Moreover, we will sometimes use the terms non-dominated point and its
associated Pareto optimal solution interchangeably. For two distinct vectors
za, zb ∈ Z such that za1 < zb1, by [za, zb] we will denote the interval between
the two vectors in the objective space. Finally, some methods will also find
weakly Pareto optimal solutions (we will point out how to deal with this in the
description of the respective methods).

Definition 2 (Weakly Pareto Optimal Solutions). A solution σ ∈ P is weakly
efficient/Pareto optimal, iff there is no σ

′ ∈ P, s.t. z1(σ′) < z1(σ) and z2(σ
′) <

z2(σ).

2.2 ǫ-Constraint Method

In the ǫ-constraint method for bi-objective optimization, one objective function
is kept, while an upper bound is imposed on the other objective function by
adding an additional constraint (for a default description of this approach for
multi-criteria optimization, see, e.g., Ehrgott and Wiecek [9]).

We now present an approach combining the ǫ-constraint method with a
branch-and-cut framework, similar to the one of Bérubé et al. [4] used for solv-
ing the traveling salesman problem with profits. In our approach, the second

6

objective is relaxed and added as constraint. Hence, for a given ǫ ≥ zI2, we
obtain the following ǫ-constraint problem P (ǫ) for the BOPCSTP:

P (ǫ) : min{
∑

a∈A

caxa | (x,y) ∈ P ,
∑

t∈T

rt(1 − yt) ≤ ǫ}

Note that every optimal solution for a given value of ǫ is (weakly) Pareto
optimal. In the ǫ-constraint method, this fact, together with the integrality
of the input, is used to systematically find one solution for every point on the
Pareto front by successively decreasing ǫ by ∆ (recall that ∆ is the greatest
common divisor of all revenues rt, t ∈ T). Since we replace the second objective
by an ǫ-constraint, the starting boundary point is the Pareto optimal point
with the minimum possible value for the first objective, i.e., ǫ = zN2 . This
point corresponds to a solution containing no edges in which a terminal with
maximum node revenue r∗ = maxt∈T rt is selected (ties are broken randomly).

We therefore initialize ǫ =
∑

t∈T rt − r∗ −∆ and set ǫ = z2(σ
∗)−∆ in each

iteration after computing the optimal solution σ
∗. The algorithm terminates

when the Pareto optimal point with the minimum possible value of the second
objective is reached, i.e., when ǫ becomes less than or equal to zI2. This point
corresponds to a solution which is the minimum cost Steiner tree connecting all
terminals. An overview of this approach is given in Algorithm 1. The Pareto
optimal solutions are kept in the set Sol .

Algorithm 1 ǫ-Constraint Method for the BOPCSTP

zI1 ← 0; zI2 ← 0; r∗ ← maxt∈T rt; zN2 ← r∗

Sol ← {(zI1, z
N
2)}; ǫ←

∑
t∈T rt − r∗ −∆

while ǫ ≥ zI2 do

σ
∗ ← argmin P (ǫ)

Sol ← Sol ∪ {σ∗}
ǫ← z2(σ

∗)−∆
Remove weakly Pareto optimal points from Sol

Choosing the cost of the solution tree as objective function and the lost
revenue as ǫ-constraint has two main advantages: First, the ǫ-constraint is of
knapsack-type, so it implies further strengthening inequalities that are described
in Section 3.1. Second, there is no need to compute the ideal and Nadir points
separately to find the boundary points of the non-dominated frontier, since these
points are found in the first and last iteration of the algorithm as described
above.

Since we are only minimizing the first objective, the set Sol may contain so-
lutions with the same cost but different penalties, i.e., the proposed algorithm
may also find weakly Pareto optimal solutions. We can easily resolve this prob-
lem in pseudo-polynomial time: In a post-processing phase, among all solutions
with the identical z1 value, we only keep the single solution with the minimal
z2 value. Alternatively, one can also use a modified objective function (see,
e.g. Schweigert and Neumayer [34]): z′(σ) = γz1(σ) + z2(σ), with γ chosen s.t.
γ ≥ zN2 + 1. This way, only Pareto optimal solutions are found, since both ob-
jectives get minimized. However, our preliminary tests showed that modifying
the objective function deteriorates the performance, so we will not consider this
variant in the computational results given in Section 4.

7

2.3 Two-Phase Method

The two-phase method was introduced by Ulungu and Teghem [39] for the
bi-objective assignment problem and was subsequently used to solve various
bi-objective variants of problems such as the knapsack problem [40] or the in-
teger minimum cost flow problem [29]. It is the most-popular method to solve
bi-objective combinatorial optimization problems, when the associated single-
objective counterpart is easily solvable, i.e., by a specialized, (pseudo) poly-
nomial time algorithm. This stems from the fact that using this method, in
the first phase, no constraints need to be added to the problem at hand, but
only the coefficients of the objective function have to be modified. Hence any
single-objective algorithm for the considered problem can be recycled. In our
case, however, there is no efficient single-objective algorithm (the PCSTP is NP-
hard), so there are no benefits at hand when comparing the two-phase method
with the other iterative MIP approaches.

In the first phase of this approach, the following weighted sum problem,
denoted by P (λ1, λ2), is repeatedly solved for different combinations of nonneg-
ative weight parameters λ1, λ2:

P (λ1, λ2) : min{λ1

∑

a∈A

caxa + λ2

∑

t∈T

rt(1− yt) | (x,y) ∈ P}

This weighted sum problem is embedded into an interval-based algorithm (see
Algorithm 2), where we set λ1 = za2 − zb2 and λ2 = zb1 − za1 for a given interval
[za, zb] in the objective space. The new objective function is parallel to the
segment connecting za and zb. Each optimal solution of P (λ1, λ2) corresponds
to a supported non-dominated point that lies in the efficient frontier between za

and zb (including za and zb). If the line parallel to [za, zb] belongs to the convex
hull of the efficient frontier, then multiple supported non-dominated solutions
exist on this line. Therefore, in the default implementation of this algorithm,
it is assumed that all optimal solutions of P (λ1, λ2) are determined. Among
these optimal solutions, we define point z̃ to be the most left one (according
to the z1-coordinate) and point ẑ to be the most right point. Now, if z̃ 6= za

and ẑ 6= zb, the starting interval [za, zb] is divided into two new intervals [za, z̃]
and [ẑ, zb] and the process is repeated until all intervals are proceeded and
no further optimal solutions are found. At the beginning, this interval-based
algorithm is initialized with a single interval connecting the two boundary points
of the efficient frontier. At the end, the set SE contains all supported efficient
non-dominated points. For further details, see, e.g. Przybylski et al. [28].

In the second phase, all non-supported non-dominated points are found. For
this purpose we apply the ǫ-constraint method (cf. Section 2.2) to the intervals
between consecutive supported non-dominated points. Algorithm 3 provides a
detailed overview of phase two, where P ′(ǫ, za, zb) denotes the previously defined
problem P (ǫ) additionally augmented with the following two constraints:

λ1

∑

a∈A

caxa + λ2

∑

t∈T

rt(1− yt) ≥ λ1z
a
1 + λ2z

a
2 (2)

∑

t∈T

rt(1− yt) ≥ zb2 +∆ (3)

Inequality (2) states that the non-supported non-dominated points are above

8

Algorithm 2 Two-Phase Method: Phase One

Compute the ideal point zI and the Nadir point zN

I ← {[(zI1, z
N
2), (z

N
1 , z

I
2)]}; SE ← {(z

I
1, z

N
2), (z

N
1 , z

I
2)}

while I 6= ∅ do
select an interval [za, zb] and remove it from I
λ1 ← za2 − zb2 ; λ2 ← zb1 − za1
Opt← all argmin P (λ1, λ2)
SE ← SE ∪ {z(σ)}σ∈Opt

if {za, zb} ∩ {z(σ)}σ∈Opt = ∅ then
σ̃ ← argmin

σ∈Opt{z1(σ)}; z̃← z(σ̃)
σ̂ ← argmax

σ∈Opt{z1(σ)}; ẑ← z(σ̂)

I ← I ∪ {[za, z̃], [ẑ, zb]}

the line segment connecting the current interval [za, zb] in the objective space,
while constraint (3) ensures that the solution differs from zb.

Algorithm 3 Two-Phase Method: Phase Two

Sol ← SE found in phase one
let z1, . . . , z|SE| be the supported non-dominated points sorted in increasing
order of z1
for i = 1, . . . |SE| − 1 do

za ← zi, zb ← zi+1, ǫ← za2 −∆
while P ′(ǫ, za, zb) has at least one feasible solution do

σ
∗ ← argmin P ′(ǫ)

Sol ← Sol ∪ {σ∗}
ǫ← z2(σ

∗)−∆

Note that with the incorporation of the ǫ-constraint method in the sec-
ond phase, there is no need to search for all optimal solutions of the problem
P (λ1, λ2) in the first phase. It suffices to find a single optimal solution (in
which case ẑ and z̃ are identical), and the remaining supported non-dominated
points will be found in the second phase. This is an important performance en-
hancement since enumerating all optimal solutions with standard MIP solvers
is rather slow. Thus, in our default implementation, we consider a variant in
which only a single solution is found in the first phase, for each pair (λ1, λ2).
The second phase then detects the remaining supported non-dominated points
along with the non-supported ones. Note that in this variant at least the set of
extreme non-dominated points is identified in the first phase.

2.4 Binary Search in the Objective Space

Riera-Ledesma and Salazar-González [32] proposed an algorithm that explores
the objective space in a similar fashion as the two-phase method, but runs in a
single phase and determines both supported- and non-supported points in the
same run. We call their approach binary search in the objective space. The
main idea behind this approach is to recursively divide the objective space into
intervals and search for solutions inside of them.

Assume that za and zb are two non-dominated points with za1 ≤ zb1 that

9

specify the current interval [za, zb] in the objective space. The algorithm repeat-
edly solves the single-objective problem P (za, zb), which, for the BOPCSTP, is
defined as follows:

P (za, zb) : min{λ1

∑

a∈A

caxa + λ2

∑

t∈T

rt(1 − yt) | (x,y) ∈ P ,

∑

a∈A

caxa ≤ zb1 −∆c,
∑

t∈T

rt(1− yt) ≤ za2 −∆, λ1 = za2 − zb2 , λ2 = zb1 − za1}

The two added inequalities restrict the objective space to a region in which we
search for a new efficient solution. An overview of the algorithm is given in
Algorithm 41. As in the two-phase method, the point z∗ = z(σ∗) corresponding
to the optimal solution of P (za, zb), is then used to define two new intervals
[za, z∗] and [z∗, zb]. Note that if there exists a solution of P (za, zb), then the
corresponding point z∗ is always non-dominated. Due to the added two in-
equalities, we allow non-supported points to be found as optimal solutions of
P (za, zb) which is the main difference of this approach when compared to the
two-phase method. Before choosing the next interval to investigate, we sort the
interval set I according to z1 and pick the topmost. This way we explore the ob-
jective space in a systematic way, which is beneficial for some of the acceleration
methods, e.g., cut pool and feasible starting solutions (see Section 3).

Algorithm 4 Binary Search in the Objective Space

Compute the ideal point zI and the Nadir point zN

I ← {[(zI1, z
N
2), (z

N
1 , z

I
2)]}; Sol ← {(z

I
1, z

N
2), (z

N
1 , z

I
2)}

while I 6= ∅ do
select an interval [za, zb] ∈ I and remove it from I
if zb1 −∆c ≥ za1 +∆c ∧ zb2 +∆ ≤ za2 −∆ then

σ
∗ ← argmin P (za, zb)

if σ
∗ 6= ∅ then

Sol ← Sol ∪ {z(σ∗)}
I ← I ∪ {[za, z(σ∗)], [z(σ∗), zb]}

A drawback of this method is that even for the “empty intervals” (i.e., in-
tervals containing no non-dominated points, except the two ones on its border),
a MIP has to be executed until infeasibility is detected. On the other hand,
the advantage of this method is that it does not find weakly Pareto optimal
solutions.

2.4.1 A New Improvement of the Binary Search in the Objective

Space

Notice that for a given interval [za, zb], we need to solve the MIP P (za, zb) only
if zb1 − ∆c ≥ za1 + ∆c and zb2 + ∆ ≤ za2 − ∆ holds (otherwise there will be no
non-dominated points in this interval, see Figure 2a).

By the definition of the objective function P (za, zb), a newly discovered non-
dominated point is the outmost point in the objective space, which lies on a line

1Note that due to small typographical errors in Riera-Ledesma and Salazar-González [32]
our description is slightly different then the originally proposed one.

10

z1

z2

za

zb
z∗

za2 −∆

za1 +∆c zb1 −∆c

zb2 +∆

(a) Pareto optimal solution.

z1

z2

za

zb

z∗

za2 −∆

zb1 −∆c

z̃a

z̃b

(b) Interval tightening.

z1

z2

za

zb

z∗

za2 −∆

zb1 −∆c

z̃a

z̃b

(c) Interval tightening.

Figure 2: Illustration of effect of the chosen weight.

parallel to the line through [za, zb] (cf. Figure 2a). Notice that all non-dominated
points lying below the [za, zb] segment are supported non-dominated points and
those above it are non-supported ones. We now propose an improvement of the
binary search method that computes better interval bounds for two new intervals
defined after a non-supported non-dominated point z∗ is found.

Proposition 1. Let z∗ be an optimal solution of P (za, zb) for a given interval
[za, zb]. If z∗ is non-supported, then the two new intervals to be solved are
defined as [z̃a, z∗] and [z∗, z̃b], where

z̃a = (z̃a1 , z̃
a
2) with z̃a1 = ⌈(λ1z

∗
1 + λ2z

∗
2 − λ2(z

a
2 −∆))/λ1⌉, z̃a2 = za2

and ∆c = 0 in the associated problem P (z̃a, z∗). Similarly,

z̃b = (z̃b1 , z̃
b
2) with z̃b1 = zb1 , z̃b2 = ⌈(λ1z

∗
1 + λ2z

∗
2 − λ1(z

b
1 −∆c))/λ2⌉

and ∆ = 0 in the associated problem P (z∗, z̃b).

Proof. Since z∗ is a non-supported optimal solution, it is placed above the seg-
ment [za, zb]. By the definition of the objective function (it is parallel to the
segment [za, zb]), there will be no further points in the shaded region given in
Figure 2b, except on the line through z∗ parallel to [za, zb]. Thus, the inter-
section points z̃a and z̃b of this line segment with the upper z1-boundary, i.e.,
zb1 − ∆c, and upper z2-boundary, i.e., z

a
2 − ∆ of the current interval are valid

boundary points. Further Pareto optimal solutions can only be found in the
shaded regions shown in Figure 2c. Finally, the values of the intersection points
can be rounded up, since the objective value is always integer, which concludes
the proof.

This new result may reduce the overall number of MIP iterations. In partic-
ular, empty intervals can be detected earlier and discarded without running the
underlying MIP model. The influence of this enhancement to the performance
of the binary search method is studied in Section 4.

2.5 Chebyscheff Norm Method

Chebyscheff norm methods use the weighted Chebyscheff distance of both objec-
tives to an ideal point as objective function, i.e., min{max{β|(z1(σ)− zI1|, (1 −

11

β)|z2(σ) − zI2|}}, for some weight parameter β. Such a method was first in-
troduced by Eswaran et al. [10] for general bi-objective problems. Based on
this, some specialized methods for bi-criteria combinatorial optimization were
presented in Neumayer and Schweigert [27], Ralphs et al. [30].

For the BOPCSTP the resulting optimization problem can be modeled as
MIP P (β) by introducing an auxiliary variable ξ in the following way:

P (β) : min{ξ | ξ ≥ β
∑

a∈A

caxa, ξ ≥ (1− β)
∑

t∈T

rt(1− yt), (x,y) ∈ P}

Depending on the value of β, one obtains so called level-lines, on which
Pareto optimal solutions lie. We used the weighted Chebyscheff norm (WCN)
algorithm as described in [30]; see Algorithm 5.

Algorithm 5 WCN Algorithm

compute the ideal point zI and the Nadir point zN

I = {[(zI1, z
N
2), (z

N
1 , z

I
2)]}

Sol = {(zI1, z
N
2), (z

N
1 , z

I
2)}

while I 6= ∅ do
select an interval [za, zb] ∈ I and remove it from I
β ← za2/(z

a
2 + zb1)

σ
∗ ← argmin P (β)

if z1(σ
∗) 6= za1 ∧ z1(σ

∗) 6= zb1 then

Sol ← Sol ∪ z(σ∗)
I ← I ∪ {[za, z(σ∗)], [z(σ∗), zb]}

The algorithm is similar to the binary search in the objective space, the
main difference lies in the definition of the underlying MIP problem. Instead
of adding constraints based on the current interval to find new Pareto optimal
solutions, only the weight parameter β of the Chebyscheff norm is modified.
Choosing β = za2/(z

a
2 + zb1), one either obtains a new Pareto optimal solution or

one of the interval defining solutions (see Ralphs et al. [30] for further details).
If a new non-dominated point is found in an iteration, it must lie in the current
interval defined by [za, zb]. Thus, the two new resulting intervals are added to
the interval set.

Using the weighted Chebyscheff norm as objective can result in finding dom-
inated solutions, since solutions with the same value for z1 and different value
for z2 (and vice versa) can lie on the same level line, i.e., it is possible that
the algorithm finds points which are only weakly Pareto optimal. To deal with
this, two ways are presented by Ralphs et al. [30]: Either one considers the aug-
mented Chebyscheff norm, i.e., the term ρ(z1(σ) + z2(σ)) for a small ρ > 0 is
added to the objective function, or one needs to enumerate all solutions of P (β)
for each considered value of β. Since enumeration of all optimal MIP solutions
is a time consuming task, we implemented the first variant with ρ = 0.00001.

2.6 Method of Sylva and Crema [38]

This method, which is also suitable for multi-objective problems, starts with
solving the weighted sum problem P 1(λ1, λ2) = P (λ1, λ2) for arbitrary nonneg-
ative weights λ1, λ2, where P (λ1, λ2) is defined as in Section 2.3 (λ1 = λ2 = 1

12

in our default setting). The solution σ
∗
1 of P 1(λ1, λ2) with objective values

z1(σ∗
1) = (z1(σ

∗
1), z2(σ

∗
1)) is an efficient solution. To find another efficient

solution, a set of constraints with two new binary variables k21 and k22 , cut-
ting off z1(σ1) and all solutions dominated by it is added, yielding problem
P 2(λ1, λ2,σ

∗
1):

P 2(λ1, λ2,σ
∗
1) : min{λ1

∑

a∈A

caxa + λ2

∑

t∈T

rt(1− yt) | k
2
1 + k22 ≥ 1, (x,y) ∈ P

zℓ(σ)− (zℓ(σ
∗
1)−∆ℓ)k

2
ℓ − zNℓ (1− k2ℓ) ≤ 0, k2ℓ ∈ {0, 1}, ℓ = 1, 2}

with ∆1 = ∆c and ∆2 = ∆. The added constraints work as follows: A new
Pareto optimal solution needs to have less cost or a lower penalty than σ

∗
1 ,

i.e., z1(σ) ≤ z1(σ
∗
1) − ∆c or z2(σ) ≤ z2(σ

∗
1) − ∆ must hold. Variables k12

and k22 ensure that this holds for one of the inequalities and that the other
inequality is still valid by subtracting the corresponding value of the Nadir point.
Using the solution σ

∗
2 of P 2(λ1, λ2,σ

∗
1), a new problem P 3(λ1, λ2,σ

∗
1 ,σ

∗
2) with

three more constraints and two more binary variables k31 , k
3
2 is defined in the

same way as above. This process is repeated, until for some t, the problem
P t(λ1, λ2,σ

∗
1 , . . . ,σ

∗
t−1) becomes infeasible.

We now present a simplification of this method in the bi-objective case: In
this case, for a solution σ

∗
i found in the current iteration, a new Pareto optimal

solution must either have less costs or a lower penalty than σ
∗
i . Therefore,

we can can replace the inequality ki1 + ki2 ≥ 1 with an equality and the new
constraints can be rewritten as follows:

z1(σ)− (zN1 − z1(σ
∗
i) + ∆c)k

i ≤ z1(σ
∗
i)−∆c,

z2(σ)− (zN2 − z2(σ
∗
i) + ∆)(1 − ki) ≤ z2(σ

∗
i)−∆.

Correctness of this new set of constraints can be easily checked by inserting the
two possible values of ki: If ki = 0, the solution must have lower costs than the
current solution, due to the first constraint, while the second constraint poses
no restriction on the penalty, since every Pareto optimal solution has a penalty
lower or equal to zN2 . The case for ki = 0 is analogous.

The method has the advantage that only a single MIP needs to be solved for
each non-dominated point (and one infeasible MIP at the end). These MIPs,
however, become more difficult to solve at every step, due to the added con-
straints and variables.

3 Acceleration Methods

Next, we discuss potential speed-up methods for the described solution ap-
proaches, which are based on exploiting and recycling the information contained
in a set of already identified Pareto optimal solutions. Depending on the ap-
proach, the already identified solutions provide lower and/or upper bounds for
the optimal value of the current iteration. Moreover, the “special constraints”
of the underlying approaches (e.g., the interval defining constraints) also allow
to derive some strengthening inequalities.

13

3.1 Cover and Lifted Cover Inequalities

The interval-based constraint
∑

t∈T rt(1− yt) ≥ r, which appears in the binary
search in the objective space, the two-phase method and the Chebyscheff norm
method (cf. Sections 2.3, 2.4, and 2.5), is a knapsack-type constraint, since it can
be rewritten as

∑
t∈T rtyt ≤

∑
t∈T rt − r. It is well known that such knapsack

constraints can be used to derive strengthening cover inequalities to a MIP (see,
e.g., Kaparis and Letchford [19]). Let R =

∑
t∈T rt− r and C ⊂ T be a minimal

cover, i.e., C is a minimal set s.t.
∑

t∈C rt > R. Then the associated cover
inequality is

y(C) ≤ |C| − 1, (4)

where y(T ′) =
∑

t∈T ′ yt for a given T ′ ⊆ T . This cover inequality means that
at least one t ∈ C must not be selected in a solution. By defining C′ = {u ∈
T \ C : ru ≥ maxs∈C rs}, we can strengthen (4) and derive the extended cover
inequality

y(C ∪C′) ≤ |C| − 1. (5)

Separation of cover inequalities is a weakly NP-hard problem, however, once
we detect a cover C, it is possible to further strengthen these inequalities by
considering the family of lifted cover inequalities:

y(C) +
∑

t∈C′

πtyt ≤ |C| − 1. (6)

We apply the procedure from Balas and Zemel [3], which was also used in Bérubé
et al. [4] for the ǫ-constraint method. The lifting coefficients πt, ∀t ∈ C′, are
obtained in the following way: Assume that the elements from C are indexed
by 1, . . . , |C|, and sorted in an non-increasing order according to their revenues.
Then, the coefficients πt are calculated as follows:

πt = h where h = argmink∈{1,...,|C|}

k∑

l=1

rl ≤ rt <

k+1∑

l=1

rl,

where r|C|+1 =∞. See [3] for conditions under which these constraints are facet
defining.

Likewise, the other interval-based constraint involving the second objective,
i.e., the

∑
t∈T rt(1 − yt) ≤ r̄, which appears in all methods except the one of

Sylva and Crema, is also a knapsack-type constraint. If D ⊂ T is a minimal
cover, i.e., V \D is a maximal set s.t.

∑
t6∈D rt <

∑
t∈V rt − r̄, we end up with

the following cover inequality associated with D:
∑

t∈D

(1 − yt) ≤ |D| − 1, (7)

which can be rewritten as y(D) ≥ 1.
This inequality implies that at least one t ∈ D must be selected in a solution.

It can be extended and lifted in the same spirit as described above, i.e., if
D′ = {u ∈ T : ru ≥ maxs∈D rs}, we obtain

y(D ∪D′) ≥ |D′|+ 1. (8)

14

3.2 Visit Inequalities

Visit inequalities are another family of knapsack-type inequalities that cut off
previously “visited” solutions. For example, Bérubé et al. [4] show how to use
these inequalities in combination with the ǫ-constraint method. We extend this
idea and show that these inequalities can also be used in combination with the
binary search in the objective space. Visit inequalities can be derived from
lower and upper bound solutions defined with respect to the second objective.
Let TU

S be the terminal set associated with a solution, which defines an upper
bound w.r.t. the second objective in the current iteration. Since we need to find
a solution with smaller penalty in the current iteration, at least one terminal
not in TU

S must be part of the solution. Thus we can add the inequality

y(T \ TU
S) ≥ 1. (9)

Furthermore, when given a terminal set T L
S associated with a solution defining

a lower bound w.r.t. the second objective, we can add

y(TL
S) ≤ |TL

S | − 1. (10)

This inequality is valid since at least one of the terminals must not be selected.
Both types of visit inequalities can be lifted in the same way as described in the
previous subsection.

3.3 Cutset-Cover Inequalities

Consider again the cover inequalities (7). Since at least one of the terminals inD
must be connected to the root in a solution, the following family of cutset-cover
inequalities (see, e.g., Gollowitzer et al. [14]) is valid for the BOPCSTP:

x(δ−(W)) ≥ 1 ∀W ⊆ V,D ⊆W. (11)

The separation of these constraints during a single MIP iteration (branch-and-
cut) will be discussed in Section 4.2. Cutset-cover inequalities are also applied
to the visit inequalities (9).

3.4 Asymmetry Constraints

Since every feasible subtree can be represented in various ways as a rooted
arborescence, our directed cutset model for the PCSTP introduces a lot of sym-
metries. To get rid of them, and to achieve a bijection between arborescences
and PCSTP solutions, we use the following constraints (see also Ljubić et al.
[23]):

x0j ≤ 1− yi ∀i < j, j ∈ T. (12)

These inequalities make sure that the root of each arborescence is the terminal
node with the smallest index.

3.5 Path Inequalities

The following family of inequalities are derived from upper bound constraints∑
t∈T (1−yt)rt ≤ r̄. Consider a breadth-first-search tree of G rooted at a termi-

nal t ∈ T , and denote with V t
h the nodes h arcs away from t in it. Let ht be the

15

index such that
∑

0≤i≤ht

∑
j∈V t

i

rj ≥
∑

j∈T rj − r̄ and
∑

0≤i≤ht−1

∑
j∈V t

i

rj <∑
j∈T rj− r̄. Then, at least one arc crossing from V t

ht−1 to V t
ht

must be selected,
if terminal t is chosen as root of the arborescence, which is stated as:

∑

(i,j):i∈V t

ht−1
,j∈V t

ht

xij ≥ x0t ∀t ∈ T. (13)

Note that the asymmetry constraints can be used to strengthen the path in-
equalities: If terminal t is a root of the arborescence, each terminal t′ with
index smaller than t cannot be part of this solution. Thus, when constructing
the sets V t

h for the path inequalities, these terminals can be ignored, and also
the coefficients next to arcs adjacent to such t′ can be down-lifted to zero.

3.6 Feasible Starting Solutions

Further acceleration of a single MIP iteration can be achieved by providing a
starting solution to the MIP model. Potential starting solutions are kept in a
list L, which is updated during the solution process to contain solutions that are
non-so-far dominated. L is initialized with all non-optimal incumbent solutions
of the first iteration. In the following iterations, potential starting solutions are
added to L in two ways: (i) For the Pareto optimal solution computed in the
previous iteration, a terminal t not in this solution with minimum connection
costs (i.e., a closest terminal to this Pareto optimal solution with respect to
edge costs) is added. If there are several terminals with the same minimum
connection costs, one with the highest revenue is chosen, in case of ties the
terminal with minimal index is chosen. (ii) All so-far non-dominated incumbent
solutions discovered in the current iteration are added to L.

The starting solution for an iteration is then chosen from L as follows: The
elements of L are evaluated using the objective function of the current iteration
and the one with the best objective value is chosen. Note that for the two-phase
method, binary search in the objective space and the Chebyscheff norm method,
the solution of the current iteration needs to lie in the current interval [za, zb],
thus only solutions of L, which lie inside this interval are considered. For the
ǫ-constraint method and the method of Sylva and Crema, we restrict the search
to solutions with a cost value, which is at most 100∆c larger than the solution
of the previous iteration.

3.7 Guiding the Branching Process

For guiding the branching process, we consider two strategies in which different
priorities are associated with decision variables. In the basic branching strat-
egy, no information from the iterative ILP framework is used, i.e., branching
is guided as for the single-objective PCSTP: The highest branching priority is
associated with terminal-variables, followed by variables for potential Steiner
nodes, followed by arc-variables.

In the advanced branching strategy, we collect information gained in the pre-
vious iterations to guide the branching process. In the first iteration, branching
priorities are initialized as above. Every time a terminal or Steiner node oc-
curs in a Pareto optimal solution of an iteration, the branching priority of the
corresponding variable is increased for all following iterations.

16

3.8 Cut Pools

The idea of cut pools for bi-objective MIP approaches is to store cuts from pre-
vious iterations and reuse them [32]. We implemented a cut pool for directed
cutset constraints in the following way: During the first branch-and-cut itera-
tion, all violated cuts detected by the maximum-flow algorithm are stored in
the current cut pool. In each following iteration, violated cutset constraints are
separated as follows: (i) check, if there exist violated cuts in the cut pool created
in the previous iteration (ii) add all these cuts and delete them from the current
cut pool; in case no such cuts exist, call the separation routine (cf. Section 4.2).
In either case, all detected violated cuts are inserted in the new cut pool that
is used in the next iteration.

4 Computational Results

In this section, we describe further implementation details of the presented MIP
approaches and provide a detailed analysis of our computational experiments.
The computational results are obtained using a single core of an Intel Xeon
X5500 with 2.67Ghz and 24GB RAM. CPLEX 12.4, which was used as MIP
solver, was configured as follows: All CPLEX cuts were disabled and the dual
simplex algorithm with steepest edge pricing, as recommended by Koch and
Martin [20], was used.

4.1 Benchmark Instances

As test instances we used the wildlife corridor instances obtained using the
instance generator of Dilkina and Gomes [8], which is also used in Álvarez
Miranda et al. [1]. These instances consist of 4-grid graphs with costs and
revenues on the nodes. The nodes describe land parcels, which can be purchased
by paying the costs, and the revenues indicate the wildlife benefit of the parcel.
The instances can be transformed into PCSTP instances by setting the cost of
every incoming arc (i, v) of a node v to the cost of v. In every instance, there
are also some land parcels i ∈ L, which must be part of every feasible solution.
Thus, we add yi = 1, ∀i ∈ L, to our formulation, and the node in L with the
smallest index is used as root node. The obtained instances are rooted directed
graphs with asymmetric arc weights. Hence, there is no artificial root node and
the asymmetry constraints (12) are not valid in this case.

The instance sets will be referred to with 15-U-T , which indicates the settings
used in the instance generator of Dilkina and Gomes [8]. The underlying graphs
are 15 × 15 grid graphs. Costs and revenues are uncorrelated, i.e., they are
chosen uniformly at random between zero and ten. In every instance, there are
three land parcels, which must be part of every solution, i.e., |L| = 3. When
T = R, random nodes are chosen as these parcels, and when T = F , one of these
parcels is randomly chosen out of all nodes, the other two are the upper left
and the lower right node of the grid graph. Each instance set consists of twenty
instances and individual instances will be referred to with an index number,
e.g., 15-U-F-4 for the fourth instance from set 15-U-F.

Moreover, we also used the PCSTP instance sets C and D from Ljubić et al.
[23]. Both sets contain 20 graphs with two settings for the revenues – these
instances will be referred to as C1-A, C1-B and so on. Instances from set C

17

have |V | = 500, 625 ≤ |E| ≤ 12500 and 5 ≤ |T | ≤ 250, while |V | = 1000,
1250 ≤ |E| ≤ 25000, and 5 ≤ |T | ≤ 500, holds for instances of set D.

Preprocessing. Before running an iterative MIP framework, the instances
are preprocessed using the basic preprocessing steps known for the PCSTP: The
least-cost test, i.e., remove all edges (i, j), where cij is larger than the cost of
the shortest path between i and j, the degree-one test, i.e., remove all potential
Steiner nodes with degree one and their adjacent edge and the degree-two test,
i.e., replace each potential Steiner node i of degree two and its two adjacent
edges (i, j), (i, k) by a new edge (j, k) with cost cij + cik. These reduction steps
are applied iteratively, until no more nodes or edges get removed by them. Note
that other known preprocessing techniques that delete or modify terminals can
not be used in combination with iterative MIP frameworks for the BOPCSTP.

4.2 Solving a Single MIP iteration: Branch-and-Cut Al-
gorithm

Each single iteration of the five MIP frameworks considered is solved by means of
a branch-and-cut algorithm. The latter algorithm basically solves the underlying
MIP problems defined above (P (ǫ), P (λ1, λ2),. . .) by dynamically separating:
connectivity constraints, cover inequalities, visit inequalities and cutset cover
inequalities. Path inequalities are inserted at the MIP initialization phase. In
this section we describe the main ingredients of a single branch-and-cut iteration.

Constraint Separation. For each fractional solution occurring during the
course of a branch-and-cut tree, we identify violated connectivity constraints
using the maximum flow algorithm of Cherkassky and Goldberg [6]. As sug-
gested in Koch and Martin [20] and Ljubić et al. [23], we also use nested, back
and minimum cardinality cuts. Note that we only search for violated constraints
for terminals t ∈ T , if y∗t ≥ 0.5 in the current LP-solution (x∗,y∗) since prelim-
inary tests showed that this strategy yields computational advantages.

If the current LP-solution (x∗,y∗) is integral, we identify possibly existing
violated connectivity constraints as follows: By breadth-first-search, identify
the node set V ∗

0 of nodes reachable from the root node 0 in the support graph
G∗ = (V ∪ {0}, (i, j) ∈ A : x∗

ij = 1). If there exists a terminal t with y∗t = 1,
but t 6∈ V ∗

0 ,
∑

(i,j)∈A:i∈V ∗

0
,j 6∈V ∗

0

xij ≥ yt is a violated cutset constraint. We also

add nested cuts by setting x∗
ij = 1 for all arcs (i, j) contained in an added cut

and repeating the search.
The separation of a cover inequality amounts to solving a knapsack problem.

Since this strategy is very costly, we use the heuristic described in Section 3.3
of Kaparis and Letchford [19]. The separation of the cutset-cover inequalities
(11) can also be done with a maximum flow algorithm, but this time on a
slightly modified graph: For each identified cover D ⊂ T , add a sink node t
and arcs (t′, t), ∀t′ ∈ D. Let the capacity of arcs (i, j) ∈ A be x∗

ij and the
capacity of auxiliary arcs (t′, t) be one. If the value of the maximum 0-t flow
is less than one, the associated cut W defines a violated cutset-cover inequality
x(δ−(W)) ≥ 1. Again we apply nested cuts and back cuts. Visit inequalities
are uniquely determined by the lower and upper bounding solution and lifted as
described in Section 3.1. Path inequalities are determined in polynomial time

18

by running the breath-first search algorithm as described in Section 3.5 and
are added at the initialization of the MIP. All other mentioned inequalities are
separated in the following order: (i) violated cutset inequalities from the cut
pool, (ii) the dynamically separated cutset inequalities, (iii) visit and visit-cover
inequalities, (iv) cover and cutset-cover inequalities. If a violated inequality is
found at some step, the LP is resolved before the remaining separation steps
are performed. Moreover, when the current LP-solution is integer, only steps
(i) and (ii) are performed, i.e., only cutset inequalities are considered.

Branch-and-Cut Configuration. We initialize each MIP model by adding
flow-balance constraints (14), subtour elimination constraints for subtours of
length two (15), as well as asymmetry constraints, cf. Section 3.4.

x(δ−(i)) ≤ x(δ+(i)) ∀i ∈ V \ (T ∪ {0}) (14)

xij + xji ≤ yi ∀i ∈ V, (i, j) ∈ A (15)

Since the wildlife corridor instances are 4-grid graphs, for them we also add
all 4-cycle inequalities

x(A(C)) ≤ y(C \ i) ∀i ∈ C, ∀C ∈ C4,

to our formulation, where C4 denotes the set of all 4-cycles C of graph G and
A(C) is the arc set associated with C.

4.3 Analysis of the Computational Results

In the following, we will abbreviate the acceleration methods described in Sec-
tion 3 as follows: V stands for the visit and cover inequalities with the associated
cutset inequalities, P for the path inequalities, S stands for using feasible starting
solutions, B for the advanced branching strategy and C for the cutpool. If none
of the methods is used, we will write N. For the binary search in the objective
space, setting N− means N without using interval tightening, cf. Proposition 1.

At first, we concentrate on the wildlife instances and present a computa-
tional comparison of all solution methods described in Section 2. For all meth-
ods, the best possible combination of the acceleration methods was used (we
will provide a more detailed analysis of the effects of the acceleration methods
for the ǫ-constraint method and binary search in the objective space below).
The combinations are as following: SBC for the ǫ-constraint method (eps) and
the method of Sylva and Crema (SC), FBCV for the binary search in the objec-
tive space (BS), two-phase method (TPM) and the Chebyscheff norm method
(Ch). Note that for the two-phase method and the Chebyscheff norm method,
visit inequalities are not valid and thus V indicates only cover and cutset-cover
inequalities. For the binary search in the objective space, we used the tightened
intervals, cf. Proposition 1. Branching priorities are initialized with value two
for terminals, value one for Steiner nodes and zero for arc variables. Priorities
are increased by one each time a node appears in a Pareto optimal solution of
an iteration.

Figures 3a and 3b show boxplots of the CPU-times for instance sets 15-U-F
and 15-U-R, respectively. The stars in the boxes indicate the average CPU-
times over 20 instances, and the numbers shown above the boxes explain for

19

eps BS TPM Ch SC
method

C
P

U
−

ti
m

e
[s

]
3
0
0

6
0
0

9
0
0

0 0 0 20 20

(a) 15-U-F

eps BS TPM Ch SC
method

C
P

U
−

ti
m

e
[s

]
3
0
0

6
0
0

9
0
0

0 0 0 20 20

(b) 15-U-R

Figure 3: All five iterative MIP approaches with best settings (time limit set to
1 800 seconds)

how many out of the 20 instances, we were not able to discover the complete
Pareto front within the given time limit of 1 800 seconds. BS and eps clearly
exhibit better performance than the other three methods. Using Ch or SC, no
instance could be solved within the given time limit (even when raising the limit
to 7 200 seconds). For Ch, often a single ILP iteration requires an extremely
high number of branch-and-bound nodes and therefore the whole time limit is
exceeded. This may be due to the min-max objective function and/or potential
numerical problems caused by the non-integrality of parameters β and ρ. In SC,
every iteration takes more and more time, i.e., the need of adding constraints
and variables in each iteration is manifested in the runtime. TPM does not
suffer from either of these problems, however, it cannot exploit its strength of
using a polynomial time algorithm in the first phase, since the PCSTP is NP-
hard. Thus it ends up as a sort of hybrid of eps and BS with worse performance.
In contrast to BS, for example, in order to prove emptiness of an interval, the
same Pareto optimal point may be computed twice within the TPM .

A closer comparison of eps and BS methods is given in Figures 4 and 6,
respectively. Figures 4a and 4b provide a more detailed analysis of the effect of
the acceleration methods in combination with the ǫ-constraint method. With
respect to the considered acceleration methods, we observe that branching pri-
orities, feasible starting solutions and the cutpool all have a positive effect. On
the other hand, using cover, visit and the respective cutset inequalities has no
or negative effect on the computational performance. This can be partially ex-
plained by the fact that the runtime for an individual MIP is already very short
when using the other acceleration methods. The fraction of weakly dominated
solutions found by the eps method is around ten percent for all settings.

Figures 5a and 5b plot the runtime versus the size of the Pareto front (using
eps with setting SCB). While for set 15-U-F, there seems to be a correlation
between the size of the Pareto front and the runtime, the picture is not so clear
for 15-U-R. For the set 15-U-F, instance 15-U-F-19 has the largest Pareto front
consisting of 823 points and the largest front for set 15-U-R has 912 points and
is obtained from instance 15-U-R-15. The highest computation times are needed
for instances 15-U-F-20 and 15-U-R-20 with 381 seconds and 591 seconds, re-
spectively.

Figures 6a and 6b detail the effects of the acceleration methods in combi-
nation with binary search in the objective space. Interestingly, for BS, using

20

N B SB SBC SBCV
settings

C
P

U
−

ti
m

e
[s

]
0

6
0
0

1
2
0
0

1
8
0
0

1 0 0 0 0

(a) 15-U-F

N B SB SBC SBCV
settings

C
P

U
−

ti
m

e
[s

]
0

6
0
0

1
2
0
0

1
8
0
0

2 0 0 0 0

(b) 15-U-R

Figure 4: ǫ-constraint method and acceleration methods

0 100 200 300 400 500 600

70
0

80
0

90
0

1
0
0
0

CPU−time [s]

si
ze

 o
f
P
ar

et
o
 f
ro

n
t

(a) 15-U-F

0 100 200 300 400 500 600

70
0

80
0

90
0

1
0
0
0

CPU−time [s]

si
ze

 o
f
P
ar

et
o
 f
ro

n
t

(b) 15-U-R

Figure 5: Runtime vs. size of Pareto front, ǫ-constraint method with setting SCB

visit, cover and the associated cutset inequalities has a larger effect than for
eps. This may be explained by the fact that, in contrast to eps, cover (6) and
visit inequality (9) can be defined from upper and lower interval bounds. The
runtime for proving emptiness of an interval turned out to be relatively high.
In some cases, it was four times higher than the average runtime needed to find
a point on the Pareto front in an interval.

Figures 7a and 7b detail the performance of the solution methods for instance
sets C and D. Time limits were 1 800 and 7 200 CPU-seconds, respectively. The
general trends are similar to the one for the wildlife instances, i.e., eps and BS
clearly outperform the other methods. For these instance sets, however, some
instances with a rather small number of terminals could be solved with Ch and
SC.

Figures 8a and 8b give a more in-depth look for eps in combination with
acceleration methods for these instance sets, this time also the path inequalities
are tested. However, they result in a performance loss. The effects of the
other acceleration methods are similar to the effects observed for the wildlife
instances, branching priorities, starting solutions and the cut pool improve the
performance, while cover, visit and the associated cutset inequalities have little
effect.

Figures 9a and 9b show a plot of the runtime vs. the size of the Pareto
front using eps with setting SCB. In contrast to the wildlife instances, where
the underlying graphs all had the same size, we see the influence of the graph
attributes (i.e., density and number of terminals) on the runtime. For the set

21

N− N B SB SBC SBCV
settings

C
P

U
−

ti
m

e
[s

]
0

6
0
0

1
2
0
0

1
8
0
0

0 0 0 0 0 0

(a) 15-U-F

N− N B SB SBC SBCV
settings

C
P

U
−

ti
m

e
[s

]
0

6
0
0

1
2
0
0

1
8
0
0

1 1 0 0 0 0

(b) 15-U-R

Figure 6: Binary search in the objective space and acceleration methods

eps BS TPM Ch SC
method

C
P

U
−

ti
m

e
[s

]

0 0 2 16 24

0
60

0
12

00
18

00

(a) Set C

eps BS TPM Ch SC
method

C
P

U
−

ti
m

e
[s

]
0

18
00

36
00

54
00

72
00

5 6 9 22 24

(b) Set D

Figure 7: All five approaches with best settings

N B SB SBC SBCV SBCP
settings

C
P

U
−

ti
m

e
[s

]
0

60
0

12
00

18
00

6 4 0 0 0 0

(a) Set C

N B SB SBC SBCV SBCP
settings

C
P

U
−

ti
m

e
[s

]
0

18
00

36
00

54
00

72
00

14 12 5 5 6 7

(b) Set D

Figure 8: ǫ-constraint method and acceleration methods

22

0 200 400 600 800 1000 1200

0
5
0
0

1
0
0
0

1
5
0
0

CPU−time [s]

si
ze

 o
f
P
a
re

to
 f
ro

n
t

(a) Set C

0 1000 2000 3000 4000 5000 6000 7000

0
5
0
0

1
0
0
0

1
5
0
0

CPU−time [s]

si
ze

 o
f
P
a
re

to
 f
ro

n
t

(b) Set D

Figure 9: Runtime vs. size of Pareto front, ǫ-constraint method with setting SCB

N− N B SB SBC SBCV
settings

C
P

U
−

ti
m

e
[s

]
0

60
0

12
0
0

1
8
0
0

4 3 0 0 0 0

(a) Set C

N− N B SB SBC SBCV
settings

C
P

U
−

ti
m

e
[s

]
0

18
00

36
00

5
4
0
0

7
2
0
0

14 13 8 8 6 6

(b) Set D

Figure 10: Binary search in the objective space and acceleration methods

C, instance C5-B with 625 edges and 250 terminals has the largest Pareto front
consisting of 1 462 points. The largest front for set D discovered within the time
limit has 2 141 points and is obtained from instance D5-A, which has 1 250 edges
and 500 terminals.

Figures 10a and 10b detail the effects of BS in combination with acceleration
methods. Again, the same picture as for the wildlife instances emerges, every
acceleration method has some positive effect on the runtime.

5 Conclusion

In this article, we introduced the bi-objective prize-collecting Steiner tree prob-
lem (BOPCSTP). As opposed to the single-objective variant where net-worth
(i.e., the difference between revenues and costs) is maximized, in the BOPCSTP
revenues and costs are considered as individual objective functions. The goal of
the BOPCSTP is to find one solution for each point on the Pareto front. After
formally introducing the problem we showed how to apply five iterative mixed-
integer programming frameworks to the BOPCSTP. An important aspect of this
work was to study acceleration methods that exploit and recycle information
gained during the previous iterations and to apply them to the considered MIP
frameworks.

A computational study was performed on instances borrowed from wildlife
corridor design and from the single-objective PCSTP. Wildlife corridor design

23

is a problem for which the BOPCSTP is especially suitable, since costs and
revenues are not given in the same units and thus net-worth maximization gives
less insights into the nature of the problem. The obtained results show that the
ǫ-constraint method and the binary search in the objective space clearly out-
perform all other considered methods, i.e., the two-phase method, the weighted
Chebyscheff norm based approach, and the method by Sylva and Crema. In par-
ticular, the proposed acceleration methods turn our to be of huge importance for
the practical performance, since they significantly speed-up the solution process
and allow for solving more instances within the given time limits.

Acknowledgments

Markus Leitner is supported by the Austrian Science Fund (FWF) under grant
I892-N23 and Ivana Ljubić is supported by the APART Fellowship of the Aus-
trian Academy of Sciences. This support is greatly acknowledged.

References

[1] E. Álvarez Miranda, I. Ljubić, and P. Toth. Exact approaches for solving
robust prize-collecting Steiner tree problems. Eur. J. Oper. Res., 229(3):
599–612, 2013.

[2] A. Archer, M. H. Bateni, M. T. Hajiaghayi, and H. J. Karloff. Improved
approximation algorithms for prize-collecting Steiner tree and TSP. SIAM
J. Comput., 40(2):309–332, 2011.

[3] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal
covers. SIAM J. on Appl. Math., 34(1):119–148, 1978.

[4] J. F. Bérubé, M. Gendreau, and J. Y. Potvin. An exact ǫ-constraint method
for bi-objective combinatorial optimization problems: Application to the
traveling salesman problem with profits. Eur. J. Oper. Res., 194(1):39–50,
Apr. 2009.

[5] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A
note on the prize collecting traveling salesman problem. Math. Program-
ming, 59(1):413–420, 1993.

[6] B. V. Cherkassky and A. V. Goldberg. On implementing the push - relabel
method for the maximum flow problem. Algorithmica, pages 390–410, 1997.

[7] A. S. da Cunha, A. Lucena, N. Maculan, and M. G. C. Resende. A relax-
and-cut algorithm for the prize-collecting Steiner problem in graphs. Dis-
crete Appl. Math., 157(6):1198–1217, 2009.

[8] B. Dilkina and C. Gomes. Solving connected subgraph problems in wildlife
conservation. In CPAIOR 2010, volume 6140 of Springer Lecture Nodes in
Comput. Sci., pages 102–116, 2010.

24

[9] M. Ehrgott and M. M. Wiecek. Mutiobjective Programming. In F. S.
Hillier, editor, Multiple Criteria Decision Analysis: State of the Art Sur-
veys, volume 78 of Internat. Ser. in Oper. Res. & Management Sci., pages
667–708. Springer New York, 2005.

[10] P. K. Eswaran, A. Ravindran, and H. Moskowitz. Algorithms for nonlinear
integer bicriterion problems. J. of Optim. Theory and Appl., 63(2):261–279,
1989.

[11] P. Feofiloff, C. G. Fernandes, C. E. Ferreira, and J. C. de Pina. Primal-dual
approximation algorithms for the prize-collecting Steiner tree problem. Inf.
Process. Lett., 103(5):195–202, 2007.

[12] M. Fischetti. Facets of two Steiner arborescence polyhedra. Math. Pro-
gramming, 51:401–419, 1991.

[13] M. X. Goemans and D. P. Williamson. The primal-dual method for ap-
proximation algorithms and its application to network design problems. In
D. S. Hochbaum, editor, Approximation algorithms for NP-hard problems,
pages 144–191, 1997.

[14] S. Gollowitzer, B. Gendron, and I. Ljubić. A cutting plane algorithm for
the capacitated connected facility location problem. Comp. Opt. and Appl.,
2013. doi: 10.1007/s10589-013-9544-9.

[15] H. W. Hamacher and G. Ruhe. On spanning tree problems with multiple
objectives. A. of Oper. Res., 52(4):209–230, 1994.

[16] M. Haouari, S. B. Layeb, and H. D. Sherali. The prize collecting Steiner
tree problem: models and Lagrangian dual optimization approaches. Comp.
Opt. and Appl., 40(1):13–39, 2008.

[17] D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner
tree problem: theory and practice. In D. B. Shmoys, editor, SODA, pages
760–769. ACM/SIAM, 2000.

[18] N. Jozefowiez, G. Laporte, and F. Semet. A generic branch-and-cut algo-
rithm for multiobjective optimization problems: Application to the multi-
label traveling salesman problem. INFORMS J. on Comp., 24(1):554–564,
2012.

[19] K. Kaparis and A. Letchford. Separation algorithms for 0-1 knapsack poly-
topes. Math. Programming, 124(1-2):69–91, 2010.

[20] T. Koch and A. Martin. Solving Steiner tree problems in graphs to opti-
mality. Networks, 32:207–232, 1998.

[21] J. Lemesre, C. Dhaenens, and E. G. Talbi. Parallel partitioning method
(PPM): A new exact method to solve bi-objective problems. Comput. &
Oper. Res., 34(8):2450–2462, Aug 2007.

[22] M. S. Levin and R. I. Nuiriakhmetov. Multicriteria Steiner tree problem for
communication network. Inform. Technology in Engrg. Systems, 3:199–209,
2009.

25

[23] I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fis-
chetti. An algorithmic framework for the exact solution of the prize-
collecting Steiner tree problem. Math. Programming, 105:427–449, 2006.

[24] A. Lucena and M. G. C. Resende. Generating lower bounds for the prize
collecting Steiner problem in graph. Electronic Notes in Discrete Math., 7:
70–73, 2001.

[25] L. Martins and N. G. Ferreira. A bi-criteria approach for Steiner’s tree prob-
lems in communication networks. In Proc. of the 2011 Internat. Workshop
on Modeling, Analysis, and Control of Complex Networks, pages 37–44.
ITCP, 2011.

[26] G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed
zero-one multiple objective linear programming. Eur. J. Oper. Res., 107
(3):530–541, June 1998.

[27] P. Neumayer and D. Schweigert. Three algorithms for bicriteria integer
linear programs. OR Spectrum, 16(4):267–276, 1994.

[28] A. Przybylski, X. Gandibleux, and M. Ehrgott. Two phase algorithms for
the bi-objective assignment problem. Eur. J. Oper. Res., 185(2):509–533,
2008.

[29] A. Raith and M. Ehrgott. A two-phase algorithm for the biobjective integer
minimum cost flow problem. Comput. & Oper. Res., 36(6):1945–1954, 2009.

[30] T. K. Ralphs, M. J. Saltzman, and M. M. Wiecek. An improved algorithm
for biobjective integer programming and its application to network routing
problems. A. of Oper. Res., 147(1):43–70, Sep 2006.

[31] R. M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of
the optimal biobjective spanning tree. Eur. J. Oper. Res., 111(3):617–628,
1998.

[32] J. Riera-Ledesma and J. J. Salazar-González. The biobjective travelling
purchaser problem. Eur. J. Oper. Res., 160(3):599–613, 2005.

[33] S. Ruzika and H. W. Hamacher. A survey on multiple objective minimum
spanning tree problems. In J. Lerner, D. Wagner, and K. A. Zweig, editors,
Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes
in Computer Science, pages 104–116. Springer, 2009. ISBN 978-3-642-
02093-3. doi: 10.1007/978-3-642-02094-0 6.

[34] D. Schweigert and P. Neumayer. A reduction algorithm for integer multiple
objective linear programs. Eur. J. Oper. Res., 99(2):459–462, 1997.

[35] A. Segev. The node-weighted steiner tree problem. Networks, 17(1):1–17,
1987.

[36] F. Sourd and O. Spanjaard. A multiobjective branch-and-bound frame-
work: Application to the biobjective spanning tree problem. INFORMS J.
Comput., 20(3):472–484, 2008.

26

[37] S. Steiner and T. Radzik. Solving the biobjective minimum spanning tree
problem using a k-best algorithm. Technical report, King’s College London,
2003.

[38] J. Sylva and A. Crema. A method for finding the set of non-dominated
vectors for multiple objective integer linear programs. Eur. J. Oper. Res.,
158(1):46–55, 2004.

[39] E. Ulungu and J. Teghem. The two phases method: An efficient procedure
to solve bi-objective combinatorial optimization problems. Foundations of
Comput. and Decision Sci., 20(2):149–165, 1995.

[40] M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu. Two-phases method and
branch and bound procedures to solve the bi–objective knapsack problem.
J. of Global Optim., 12(2):139–155, 1998.

[41] M. Vujošević and M. Stanojević. A bicriterion Steiner tree problem on
graph. Yugoslav J. Of Oper. Res., 13(1):25–33, 2003.

27

	Introduction
	Solution Methods
	Preliminaries
	-Constraint Method
	Two-Phase Method
	Binary Search in the Objective Space
	A New Improvement of the Binary Search in the Objective Space

	Chebyscheff Norm Method
	Method of Sylva2004

	Acceleration Methods
	Cover and Lifted Cover Inequalities
	Visit Inequalities
	Cutset-Cover Inequalities
	Asymmetry Constraints
	Path Inequalities
	Feasible Starting Solutions
	Guiding the Branching Process
	Cut Pools

	Computational Results
	Benchmark Instances
	Solving a Single MIP iteration: Branch-and-Cut Algorithm
	Analysis of the Computational Results

	Conclusion

