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Abstract. This paper is concerned with the connected facility location
problem, which has been intensively studied in the literature. The un-
derlying polytopes, however, have not been investigated. This work is
devoted to the polytope associated with the asymmetric version of the
problem. We first lift known facets of the related Steiner arborescence and
of the facility location polytope. Then we describe other new families of
facet-inducing inequalities. Finally, computational results are reported.

1 Introduction

In the last years, the connected facility location (ConFL) problem and variants of
it have received considerable attention from the operations research community
(see, e.g., [1,2] and the references therein). The problem is of practical impor-
tance, e.g., in telecommunications, to model the deployment of fiber-to-the-curb
networks, or in the design of data management networks. In this paper we are
dealing with an asymmetric ConFL (aConFL): Given an assignment graph with
connections between a set of customers and a set of potential facility locations,
and a directed graph connecting facilities with each other using a (potentially
empty) set of intermediate nodes, the goal of aConFL is to decide which facili-
ties to open, how to assign customers to facilities and how to connect all open
facilities to a dedicated root node at minimum cost.

Despite the large body of work on the ConFL, to our knowledge, there are no
results on the facial structure of the underlying polytopes of ConFL. Our work
is a first polyhedral study on aConFL. Our motivation for studying aConFL is
twofold: 1) in some practical applications traversal of an edge in two opposite
directions may involve different costs, and 2) the best performing computational
approaches to ConFL are based on directed reformulations. In this paper we
prove that some of these inequalities used in previous computational studies
are facet-defining, and derive some new families of facet-defining inequalities.
The obtained theoretical results are supported by a computational study on a
newly generated benchmark set of digraphs. Polyhedral results for the symmetric
version of the problem and a more extensive computational study are in [3].



The remainder of this article is organized as follows. Section 2 contains our
main results considering the facet-defining inequalities of the aConFL polytope.
In Section 3 we present our computational study.

More formally, in aConFL we are given a directed graph D = (V,AS , AJ )
where the node set V = S ∪ J ∪ {0} is the disjoint union of Steiner nodes S,
customer nodes J and a dedicated root node 0. Facility nodes I ⊆ S can be
used to open facilities in which case facility opening costs fi ≥ 0, ∀i ∈ I, incur.
For later use, let K := S \ I denote the intermediate nodes that cannot be used
as facilities, and let K0 := K ∪ {0} and S0 = S ∪ {0}. The arc set AS ⊆ {(s,
t) : s, t ∈ V \ J} represents possible connections between Steiner nodes. The arc
set AJ ⊆ {(i, j) : i ∈ I, j ∈ J} represents possible assignments of customers to
facilities. In the context of telecommunication, AS represents potential fiber optic
connections in the core network, and AJ represents the copper cables connecting
the customers to the core network through facilities. Arcs a ∈ AS are associated
with establishing costs ca ≥ 0, ∀a ∈ AS , and arcs (i, j) ∈ AJ are associated with
assignment costs cij ≥ 0. The aConFL problem consists of selecting a subset of
I of open facilities, connecting them through an arborescence rooted at 0 (that
may use other Steiner nodes) and assigning each customer to exactly one open
facility at the minimum cost.

In the following, we assume that |I| ≥ 3 and |J | ≥ 3. We also assume that
subgraph (S ∪ {0}, AS) (also called core graph) is a complete digraph in which
all in-going arcs to the root node are removed, and that subgraph (I ∪ J,AJ )
(also called assignment graph) is complete bipartite, i.e., AJ = {(i, j) : i ∈ I,

j ∈ J}. Note that any instance of the undirected ConFL can be transformed
into a aConFL instance by replacing each undirected core edge by a pair of
oppositely directed arcs. Additionally, if no root node is given, both aConFL
and ConFL can be transformed into a rooted aConFL instance by adding an
artificial root node 0 together with arcs (0, i), ∀i ∈ I, and additionally ensuring
that the out-degree of this artificial root node is one.

2 The aConFL Polytope

We model aConFL using node decision variables ys ∈ {0, 1}, ∀s ∈ S, which
indicate if node s is part of the solution and facility decision variables zi ∈ {0,
1}, ∀i ∈ I, which indicate whether facility i is opened. Furthermore, arc decision
variables xa ∈ {0, 1}, ∀a ∈ AS , specify which arcs of the core graph are part
of the directed arborescence, and assignment variables aij ∈ {0, 1}, ∀i ∈ I,
∀j ∈ J , indicate whether facility i serves customer j. Let A = AS ∪ AJ denote
the union of core and assignment arcs. For a set H ⊂ V , we define δ−(H) := {(u,
v) ∈ A : u 6∈ H, v ∈ H} and δ+(H) := {(u, v) ∈ A : u ∈ H, v 6∈ H} and for sets
H,L ⊂ V , we define (H : L) := {(u, v) ∈ A : u ∈ H, v ∈ L}. Moreover, for any
vector µ ∈ {0, 1}M over a ground set M , we write µ(M ′) =

∑

m∈M ′ µm, for any
M ′ ⊆ M . The aConFL problem can now be formulated as follows:



min
∑

a∈AS

caxa +
∑

i∈I

fizi +
∑

(i,j)∈AJ

cijaij (1)

a(δ−(j)) = 1 ∀j ∈ J (2)

aij ≤ zi ∀i ∈ I, ∀j ∈ J (3)

zi ≤ yi ∀i ∈ I (4)

x(δ−(s)) = ys ∀s ∈ S (5)

x(δ−(H)) ≥ ys ∀H ⊆ S, ∀s ∈ H (yCuts)

(x, y, z, a) ∈ {0, 1}|AS|+|S|+|I|+|AJ | (6)

Constraints (2) ensure that every customer is assigned to exactly one facility,
while constraints (3) make sure that assignment arcs can only be used if the
corresponding facility is opened. Inequalities (4) are the coupling constraints
between node and facility variables and equations (5) link node variables to the
set of arc variables corresponding to ingoing arcs. Together with the directed
cutset constraints (yCuts) which ensure that there is a directed path from the
root node 0 to every other node in the solution, they also ensure that the solution
cannot contain cycles. Thus, the solution is a directed arborescence rooted at 0.
Let Q denote the aConFL polytope, i.e.:

Q = conv{(x, y, z, a) ∈ {0, 1}|AS|+|S|+|I|+|AJ | | (x, y, z, a) satisfies (2)–(6)}.

2.1 Dimension of the aConFL polytope

To establish the dimension of Q and some of its facet-inducing inequalities, we
consider the intermediate polytopes

Qy(S
′) = {(x, y, z, a) ∈ Q : ys = 1, s ∈ S′} ∀S′ ⊆ S.

The projection of Qy(S
′) into the x space is the Steiner arborescence polytope

S(S′) with terminal set S′ which has been studied by [4] The projection of
Qy(S

′) into the (z, a) space is the facility location polytope U , with facilities I

and customers J , studied in (for example) [5]. Since

Qy(S) = S(S)× {ys = 1, s ∈ S} × U ,

the facets of S(S) and the facets of U are also the facets of Qy(S). Since the
dimension of S(S) is |AS | − |S| and the dimension of U is |AJ | + |I| − |J |, we
have the following result:

Theorem 1. dim(Qy(S)) = |AS |+ |AJ |+ |I| − |S| − |J |.

Besides, we can show that:

Theorem 2. For all S′ ⊆ S, dim(Qy(S
′)) = |AS |+ |AJ |+ |I| − |S′| − |J |.



The dimension of Q immediately follows from Theorem 2:

Corollary 1. dim(Q) = |AS |+ |AJ |+ |I| − |J |.

The proof of Theorem 2 also reveals that the following family of valid inequalities
is facet-inducing.

Theorem 3. Inequalities ys ≤ 1 are facet-inducing for every s ∈ S.

Proof. The face induced by ys = 1 corresponds to S′ = {s} in the proof of
Theorem 2. ⊓⊔

2.2 Facets obtained by Lifting

The proof of Theorem 2 shows that removing a node from S′, S′ ⊆ S, increases
the dimension of Qy(S

′) by one. Thus, the facet-defining inequalities given in
this section can be obtained by lifting (see, e.g., [6]).

Theorem 4 provides facet-inducing inequalities obtained by lifting from the
facility location polytope U and using the results of [7]. Let H be a family of
injective mappings h : I 7→ J , for |I| ≤ |J |, i.e., i 6= i′ ⇒ h(i) 6= h(i′).

Theorem 4.

(a) Inequalities aij ≤ zi are facet-inducing for all i ∈ I and all j ∈ J .
(b) Inequalities aij ≥ 0 are facet-inducing for all i ∈ I and all j ∈ J .
(c) Inequalities zi ≤ yi are facet-inducing for all i ∈ I.
(d) Let |I| ≤ |J | and let h ∈ H be an injective mapping. Then inequalities

∑

i∈I aih(i) + zi ≥ 2 are facet-inducing.

The following facet-defining inequalities can be obtained by lifting from the
Steiner arborescence polytope S(S).

Theorem 5.

(a) Inequalities xst ≥ 0 are facet-inducing for all (s, t) ∈ AS , if s 6= 0 or |S| ≥ 4.
(b) Inequalities x(δ−(H)) ≥ ys are facet-inducing for all H ⊆ S with |H | ≥ 2,

|H ∩ I| ≤ |I| − 1 and s ∈ H.
(c) Inequalities x(δ−(H))≥1 are facet-inducing for all H ⊆ S, |H ∩ I|= |I|.

2.3 New Facets

For proving that some additional inequalities are facet-inducing, the following
well-known result (restated appropriately for our formulation) will be used:

Lemma 1. [6] Let (A=, b=) be the equality set of Q, denote its size with m, and
let F = {(x, y, z, a) ∈ Q : πxx + πyy + πzz + πaa = π0} be a proper face of Q.
Then the following two statements are equivalent:

1. F is a facet of Q.



2. If F ⊆ G = {(x, y, z, a) ∈ Q : {αx + βy + γz + δa = λ0}, then (α, β, γ, δ,
λ0) = (s(πx, πy , πz, πa) + tA=, sπ0 + tb=), for some s ∈ R and t ∈ R

m.

In the following proofs we will construct feasible solutions L ∈ F for the face
F under consideration and insert them into the equality defining G in order to
determine the coefficients of G and then use Lemma 1. We denote the left-hand
side of G, i.e., the evaluation of αx + βy + γz + δa for some L by L(L).

First, we consider the inequalities

x(δ−(H)) +
∑

i6∈I∩H

aij ≥ 1, ∀j ∈ J, ∀H ⊆ S (aCuts)

These inequalities, already considered in [1] for ConFL, state that for each
customer j and any subset H of the core nodes (excluding 0), j is either served
by a facility outside of H , or there has to be an arc going into H . Note that
when |H ∩ I| = |I|, the inequalities reduce to x(δ−(H)) ≥ 1.

Theorem 6. Inequalities (aCuts) are facet-inducing iff 2 ≤ |H ∩ I| ≤ |I| − 1.

Proof. Let F = {(x, y, z, a) ∈ Q : x(δ−(H)) +
∑

i6∈I∩H aij = 1} be the proper
face induced by (aCuts) for some j ∈ J and H ⊂ S, 2 ≤ |H ∩ I| ≤ |I| − 1. In
the following, we describe feasible solutions as tuples Lq = (Vq ∩ H,Vq \H, Iq,

Aq∩AS , Aq∩AJ ). Thereby, Vq ⊆ S is the set of core nodes of solution Lq, Iq ⊆ I

its set of open facilities and Aq ⊂ AS ∪ AJ its set of arcs. For the rest of the
proof, we will need the following feasible solutions from F , where i, i′, i1, i2 ∈ I,
s, s1, s2, t, t1, t2 ∈ S, and j′ ∈ J , j′ 6= j. Note that in some solutions, we make
use of the assumption |H ∩ I| ≥ 2.

– L1 = ({i1, i2}, ∅, {i1}, {(0, i1), (i1, i2)}, (i1 : J))
– L2 = ({i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)}, (i1 : J))
– L3 = ({i, s}, ∅, {i}, {(0, i), (i, s)}, (i : J))
– L4 = ({i, s}, {t}, {(0, i), (i, s), (s, t)}, (i : J))
– L5 = ({i}, ∅, {i}, {(0, i)}, (i : J))
– L6 = ({i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)}, {(i2, j′), (i1 : J \ {j′}}))
– L7 = ({i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)}, (i1 : J))
– L8 = ({i, t}, {s1}, {i}, {(0, s1), (s1, t), (t, i)}, (i : J))
– L9 = ({i, t}, {s2}, {i}, {(0, s2), (s2, t), (t, i)}, (i : J))
– L10 = ({i, t1}, {s}, {i}, {(0, s), (s, t1), (t1, i)}, (i : J))
– L11 = ({i, t2}, {s}, {i}, {(0, s), (s, t2), (t2, i)}, (i : J))
– L12 = (∅, {i′}, {i′}, {(0, i′)}, (i′ : J)) (assumption: |H ∩ I| ≤ |I| − 1)

We now suppose F ⊆ G and determine the coefficients of G.

(a) γi = 0, ∀i ∈ I: If i ∈ H , this follows from L(L1) = L(L2). Else, it is
obtained from L(L1′) = L(L2′), where L1′ and L2′ are obtained from L1

and L2, respectively, by assuming i2 ∈ I \H .
(b) αst = −βt, ∀s ∈ H , ∀t ∈ S \H : Obtained from L(L3) = L(L4).



(c) αst = −βt, ∀s, t ∈ H : If |H | ≥ 3, the relation is obtained from L(L3) =
L(L4′) where L4′ is obtained from L4 by assuming t ∈ H . Else, {s, t} ⊆ I

by assumption and the relation is obtained from L(L5) = L(L5′) for i = s

and where L5′ is obtained from L5 by adding node t ∈ H and arc (i, t).
(d) αst = −βt, ∀s ∈ S0 \H , ∀t ∈ S \H : If s 6= 0, this is follows from L(L3′) =

L(L4′) where L3′ and L4′ are obtained from L3 and L4, respectively, by
assuming s ∈ S \H . For s = 0, compare an arbitrary solution with a variant
of it additionally considering a new node t ∈ S \H and arc (0, t).

(e) δij′ = δHj′ , ∀i ∈ H ∩ I, ∀j′ ∈ J : Obtained from L(L6) = L(L7)

(f) δij′ = δHj′ , ∀i ∈ I \ H , ∀j′ ∈ J , j′ 6= j: Obtained from L(L6′) = L(L7′),
where L(L6′) and L(L7′) are obtained from L(L6) and L(L7), respectively,
by assuming i2 ∈ I \ H . Note that j′ 6= j must hold since, neither L(L6′)
nor L(L7′) would lie on F otherwise.

(g) αs1t = αs2t, ∀s1, s2 ∈ S0 \H , ∀t ∈ H : Obtained from L(L8) = L(L9) using
the result from (d).

(h) αst1 + βt1 = αst2 + βt2 , ∀s ∈ S0 \H , ∀t1, t2 ∈ H : If s 6= 0, the result follows
from L(L10) = L(L11) using the result from (c). For s = 0 consider variants
of L10 and L11 obtained by contracting arc (0, s).

(i) αst + βt = ρ, ∀s ∈ S0 \H , ∀t ∈ H : Follows from (g) and (h).
(j) δi′j = ρ+ δHj , ∀i′ ∈ I \H : Obtained from L(L5) = L(L12) using the results

of (e),(f), and (i).

Inserting the obtained coefficients in the equation defining G, using equations (5)
and inserting an arbitrary solution from F (yielding λ0 = ρ +

∑

j∈J δIj ), the
equation can be simplified to

ρ(x(δ−(H)) +
∑

i6∈I∩H

aij) +
∑

j∈J

δHj a(δ−(j)) = ρ+
∑

j∈J

δHj

which is a linear combination of the equation defining F and equations (2).
To show that |H ∩ I| ≥ 2 is also a necessary condition, observe that when
|H∩I| = 1, inequalities (aCuts) are dominated by x(δ−(H)) ≥ yi. For |H∩I| = 0,
the inequality is the sum of trivial facets xa ≥ 0, for a ∈ δ−(H) and the equation
a(δ−(j)) = 1. ⊓⊔

Theorem 7. Let h ∈ H be an injective mapping and Î ⊂ I. Then, the following
inequalities are valid for aConFL:

z(Î) +
∑

i∈I\Î

(yi + aih(i)) + x(K0 : Î) ≥ 2 (7)

Proof. If z(Î) ≥ 2 or y(I \ Î) ≥ 2 the theorem holds. Since at least one facility
needs to be opened, it is sufficient to consider the following two cases:
1) z(Î) = 0 and z(I\ Î) = 1, i.e., there exists a unique facility i ∈ I\ Î with zi = 1
to which all customers are assigned. Then, validity is implied by aih(i) = 1.

2) z(Î) = 1 and y(I \ Î) = 0. Let i ∈ Î be the unique facility with zi = 1. Since
no nodes from I \ Î are used (y(I \ Î) = 0), validity of the inequality follows
since i must be connected to the root and thus x(K0 : Î) ≥ 1. ⊓⊔



Theorem 8. Inequalities (7) are facet-inducing iff Î 6= ∅ and |I \ Î| ≥ 2.

Proof. For some Î 6= ∅, such that |I \ Î| ≥ 2, let F = {(x, y, z, a) ∈ Q : z(Î) +
∑

i∈I\Î(yi + aih(i)) + x(K0 : Î) = 2} be the proper face induced by (7).

In the following, we describe feasible solutions as tuples Lq = (Vq ∩ Î , Vq ∩

(I \ Î), Vq ∩K, Iq, Aq ∩ AS , Aq ∩ AJ). Thereby, Vq ⊆ S ∪ {0} is the set of core
nodes of solution Lq, Iq ⊆ I its set of open facilities and Aq ⊂ AS ∪ AJ its
set of arcs. For the proof, we will need the following feasible solutions from F ,
where i1, i2, i3 ∈ I, s1, s2, t ∈ K. For solutions in which exactly two facilities,
say i, i′ ∈ I, are open, let A = (i : J \ {h(i)}) ∪ {(i′, h(i))} be an assignment of
customers, s.t. the sum of a-variables in (7) is zero.

– L1 = ({i1}, {i2}, ∅, {i1, i2}, {(0, i2), (i2, i1)}, (i1 : J))
– L2 = ({i1}, {i2}, ∅, {i1}, {(0, i2), (i2, i1)}, (i1 : J))
– L3 = ({i1}, {i2}, ∅, {i1, i2}, {(0, i2), (i2, i1)},A)
– L4 = ({i1}, ∅, ∅, {i1}, {(0, i1)}, (i1 : J))
– L5 = ({i1}, {i2}, ∅, {i2}, {(0, i2), (i2, i1)}, (i2 : J))
– L6 = ({i1}, ∅, {s1}, {i1}, {(0, s1), (s1, i1)}, (i1 : J))
– L7 = ({i1}, ∅, {s2}, {i1}, {(0, s2), (s2, i1)}, (i1 : J))
– L8 = ({i2}, ∅, {s1}, {i2}, {(0, s1), (s1, i2)}, (i2 : J))
– L9 = (∅, {i2}, ∅, {i2}, {(0, i2)}, (i2 : J))
– L10 = (∅, {i1, i2}, ∅, {i1, i2}, {(0, i1), (0, i2)},A)
– L11 = (∅, {i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)},A)
– L12 = ({i1}, {i2, i3}, ∅, {i2, i3}, {(0, i2), (i2, i3), (i2, i1)},A)

We now suppose F ⊆ G and determine the coefficients of G.

(a) γi = 0, ∀i ∈ I \ Î: Obtained from L(L1) = L(L2).
(b) δij = δIj , ∀i ∈ Î, ∀j ∈ J and ∀i ∈ I \ Î, j ∈ J , j 6= h(i): From L(L1) = L(L3)

it follows that all the coefficients δij for a j ∈ J (except when j = h(i) for

i ∈ I \ Î) are the same – the coefficient is denoted by δIj .
(c) αst = −βt, ∀s ∈ S0, ∀t ∈ K: Obtained from L(Ls) = L(Lst) where Ls is an

arbitrary solution lying on F containing s ∈ S0, but not t ∈ K, and Lst is
obtained from Ls by attaching arc (s, t) to it.

(d) αi′i = −βi, ∀i′, i ∈ Î: Follows from L(Li′) = L(Li′i), where Li′ is an ar-
bitrary solution lying on F containing i′ ∈ Î, but not i ∈ Î, and Li′i is
obtained from Li′ by attaching arc (i′, i) to it.

(e) δih(i) = γI + δI
h(i) for i ∈ I \ Î: Obtained from L(L2) = L(L5), which gives

δi2h(i2) = γi1+δI
h(i2)

, where we used results from step (b). This result implies

that γi1 = γi′ for i1, i
′ ∈ Î. Denote this value by γI .

(f) αsi = αI
i , ∀i ∈ Î, s ∈ K: Obtained from L(L6) = L(L7), which gives

αs1i1 = αs1i2 , where we used results from step (c). Thus, all arcs from K to
a facility i ∈ Î have the same coefficient, denote it by αI

i .

(g) α0i = αI
i , ∀i ∈ Î: Obtained from L(L4) = L(L6).

(h) αI
i + βi = ρ, ∀i ∈ Î: Obtained from L(L6) = L(L8), which gives αI

i1
+ βi1 =

αI
i2
+ βi2 , where we used results from steps (b), (c) and (f). Hence, this sum

is a constant value for every node in Î – denote it by ρ.



(i) αti+βi = ρ, ∀i ∈ I \ Î, ∀t ∈ K0∪ Î : We demonstrate this result for t = 0, and
similar solutions can be constructed for t ∈ K ∪ Î. From L(L4) = L(L9) and
using results of (a), (e), we have: α0i1 +βi1+γI+δIh(i2) = α0i2 +βi2+δi2h(i2).

Using one more time the result of (e), we obtain: α0i1 + βi1 = α0i2 + βi2 for
all i1 ∈ Î and i2 ∈ I \ Î. From (h), it follows that α0i + βi = ρ, ∀i ∈ I \ Î.

(j) αi′i+βi = ρ, ∀i′, i ∈ I \ Î: From L(L10) = L(L11) it follows that α0i2 = αi1i2 .
By adding βi2 to both sides and using the result from (i), the result follows.

(k) ρ = γI : From L(L12) = L(L3) and using results from (b), it follows that
γi1 = αi2i3 + βi3. From (e) and (j), we have ρ = γI . Note that for this step
we need that |I \ Î| ≥ 2.

Inserting the obtained coefficients in the equation defining G, we get

ρz(Î) +
∑

i∈Î

((ρ− βi)x(K0 : i)− βix(I : i) + βiyi) +
∑

k∈K

(−βkx(δ
−(k)) + βkyk)+

∑

i∈I\Î

((ρ− βi)x(δ
−(i)) + βiyi + ρaih(i)) +

∑

j∈J

δIj a(I : j) = λ0

By inserting any of the used solutions into the left-hand-side of the equation, we
get λ0 = 2ρ+

∑

j∈J δIj . Using equations (5), the equation can be simplified to

ρ(z(Î) + x(K0 : Î) + y(I \ Î) +
∑

i∈I\Î

aih(i)) +
∑

j∈J

δIj a(δ
−(j)) = 2ρ+

∑

j∈J

δIj .

It can be seen that the equation is a linear combination of the equation defining
F and equations (2). Thus, (7) are facet-inducing when |I \ Î| ≥ 2, Î 6= ∅.

To see that Î 6= ∅ and |I \ Î| ≥ 2 is also a necessary condition, consider the
following cases:

1. For Î = I, the inequality reduces to z(I)+x(K0 : I) ≥ 2, which is dominated
by a(δ−(j) + x(K0 : I) ≥ 2. The latter is a linear combination of a facet
x(δ−(I)) ≥ 1 and an equation of type (2).

2. For Î = I \ {i}, the inequality reduces to z(I \ {i}) + aih(i) + yi + x(K0 : I \
{i}) ≥ 2. Notice that this inequality is dominated by the inequality in which
yi is replaced by x(K0 : i). The latter reduces to z(I \ {i}) + aih(i) + x(K0 :
I) ≥ 2, which is also not facet-inducing, for the same reasons as above.

3. Finally, for Î = ∅, we obtain
∑

i∈I(yi + aih(i)) ≥ 2 which is dominated by
facet-defining constraints

∑

i∈I(zi + aih(i)) ≥ 2. ⊓⊔

For the next family of valid inequalities, we employ a direct proof to show
that the inequalities are facet-inducing.

Theorem 9. Let h ∈ H be an injective mapping, and let Î ⊂ I, and s ∈ K.
Then, the following inequalities are valid for aConFL:

z(Î) +
∑

i∈I\Î

(yi + aih(i)) + ys + x(K0 \ {s} : Î ∪ {s}) ≥ 2 + x(s : I \ Î) (8)



Proof. We will distinguish between the following cases:
1) ys = 0: Inequality (8) corresponds to inequality (7) since ys = 0 implies that
x(s : I \ Î) = 0 and x(K0 \ {s} : Î ∪ {s}) = x(K0 : Î).
2) ys = 1 and x(s : I \ Î) = 0: Since at least one facility must be opened we
obtain z(Î) +

∑

i∈I\Î(yi + aih(i)) ≥ 1 which trivially holds.

3) ys = 1 and x(s : I \ Î) ≥ 1: Let I ′ = {i ∈ I \ Î | xsi = 1} and observe that
∑

i∈I\Î yi ≥
∑

i∈I′ yi ≥ x(s : I \ Î) due to (5). Further note that the path from 0

to s either contains at least one arc from the cut (K0 \ {s} : Î ∪ {s}) or at least
one node i′ ∈ I \ Î. In either case, validity of (8) follows immediately. ⊓⊔

Theorem 10. Inequalities (8) are facet-inducing if |I \ Î| ≥ 2 and Î 6= ∅.

Proof. Let F be the face induced by (8) for given Î ⊂ I, h ∈ H and s ∈ K.
We show how to construct |AS |+ |AJ |+ |I| − |J | affinely independent solutions
lying on F , which implies that F is a facet. We proceed in two steps, in the first
step, we construct solutions that do not contain s and in the second step, we
construct solutions containing s.
1) Let D′ = (V \ {s}, A′

S , AJ) be a digraph obtained by removing s from D.

By Theorem 8, the corresponding inequality (7) (for the given h and Î) is facet-
defining, and therefore we can determine |A′

S | + |AJ | + |I| − |J | affinely inde-
pendent solutions in the associated lower dimensional space. By setting ys = 0
and x0s = xsi = xis = 0, for all i ∈ S, i 6= s, these solutions are extended to
feasible and affinely independent solutions lying on F . Therefore, it only remains
to additionally construct |AS | − |A′

S | = 2|S| − 1 affinely independent solutions
lying on F such that ys = 1. This is done in the next step.
2) The constructed solutions will be described using 6-tuples as in the proof of
Theorem 8. Moreover, we will also use the assignment A defined in the same
proof.

(a) Fix some facility u ∈ Î and the arc (u, s) ∈ AS . Now, pick some facility i′ ∈
I \ Î and for each i ∈ I \ Î, i 6= i′ build the following feasible solutions: Lsi =
({u}, {i, i′}, {s}, {i, i′}, {(0, i′), (i′, u), (u, s), (s, i)},A). Clearly, that way we
create |I \ Î| − 1 affinely independent solutions due to the arcs (s, i). One
more affinely independent solution can be found by switching the roles of i
and i′.

(b) Consider now solutions Lis = (∅, {i, i′}, {s}, {i, i′}, {(0, i), (i, s), (s, i′)},A)
for i′ 6= i ∈ I \ Î. These solutions are all affinely independent due to the
arcs (i, s). Again, we can also define a solution, where i and i′ switch roles
so that in total we obtain |I \ Î| more affinely independent solutions.

(c) We create now solutions Lsk, for each k ∈ K, k 6= s, by adding arc (s, k) to
one fixed solution Lsi from step (a). That way, we obtain |K| − 1 affinely
independent solutions. Moreover, for each k ∈ K, k 6= s, consider solu-
tions Lks = (∅, {i, i′}, {s, k}, {i, i′}, {(0, k), (k, s), (s, i), (s, i′)},A). We addi-
tionally obtain |K| − 1 affinely independent solutions due to arcs (k, s).

(d) One more solution is constructed as: L0s = (∅, {i, i′}, {s}, {i, i′}, {(0, s), (s,
i), (s, i′)},A). This solution is affinely independent from all the previous ones
due to arc (0, s).



(e) Take the solution from step (d) and construct solutions Lsu′ for each u′ ∈ Î

by adding arc (s, u′) to L0s. We obtain |Î| affinely independent solutions this
way.

(f) Consider now solutions Lu′s = ({u′}, {i, i′}, {s}, {i, i′}, {(0, u′), (u′, s), (s, i),
(s, i′)},A) for u′ ∈ Î, u′ 6= u, where u is the facility fixed for the solutions
constructed in step (a). We get |Î| − 1 affinely independent solutions due to
arcs (u′, s).

(g) Note that all 2(|I\Î|+|K|−1+|Î |) = 2|S|−2 solutions constructed so far are
easily seen to be affinely independent, since in every solution, a previously
unused arc is involved. The last affinely independent solution is constructed
as L∗ = ({u}, I \ Î , {s}, {i, i′}, {(0, u), (u, s), (s : I \ Î)},A), where u is the
facility from step (a). This concludes the proof. ⊓⊔

3 Computational Results

3.1 Instances

To our knowledge, no instance sets with asymmetric costs are available for vari-
ants of ConFL or closely related problems. Thus, we generated two sets of ran-
dom instances in the following way (following procedures described in [8,9]): |V |
points, each corresponding to one node in S0 ∪J , are randomly generated in the
Euclidean plane of size 100× 100. Let (ux, uy) and (vx, vy) be the coordinates of
two such nodes u, v ∈ S0 ∪ J and let ∆x(uv) = vx − ux and ∆y(uv) = vy − uy.

Then, arc costs are defined as cuv = ω⌊
√

∆x(uv)2 + ξ∆y(uv)2⌋. Thereby, ω = 1
for core arcs, ω = 3 for assignment arcs, ξ = 1 if ∆y ≤ 0 and ξ = 2 if ∆y > 0.
Facility opening costs fi, ∀i ∈ I are integers chosen uniformly at random from
the interval [30, 60].

The first set of instances, denoted by A, consists of 20 complete graphs with
|I| = |J | = 100 and |K| = 50. The second set of instances, denoted by B, consists
of 20 sparse graphs with |I| = |J | = 150 and |K| = 75. In the latter instances,
an arc between u and v only exists if the Euclidean distance between them is
smaller than 40% of the largest Euclidean distance between any two points in
this graph.

In addition to these randomly generated asymmetric instances, we also
considered the symmetric Stein+UFL instances from [1]. The instances have
|I| = |J | = 200 or |I| = |J | = 300, while |S| ranges between 500 and 1000.
Depending on the size of |S|, we get two sets of instances, denoted by C and
D. In these instances the core network is sparse, while the assignment graph
is complete bipartite. Moreover, in these instances, the average facility opening
costs are approximately 15 times higher than the average arc costs.

3.2 Separation Algorithms

It is well known that cut inequalities (yCuts) and (aCuts) can both be separated
in polynomial time using a max-flow algorithm (once for each core or customer



node, respectively). Since, all coefficients in the objective function are nonneg-
ative, we also obtain a valid model for aConFL when replacing (yCuts) by the
following, so-called (zCuts) inequalities:

x(δ−(H)) ≥ zi ∀H ⊆ S, ∀i ∈ H ∩ I (zCuts)

Though (zCuts) are not facet-inducing, they performed well in practice (see [1]).

3.3 Results

The computational results have been obtained using an Intel Xeon X5500 with
2.67Ghz and 24GB RAM and CPLEX 12.5 as solver for the ILPs. CPLEX-cuts
have been turned off and the highest branching priority was given to facility
variables. Before starting the solution process, all polynomial-size constraints,
plus the inequalities xst+xts ≤ ys, ∀s ∈ S, are added to the model. We have de-
veloped a branch-and-cut approach and tested the performance of the following
settings: 1) yCuts: separating (yCuts) only; 2) aCuts: separating (aCuts) only;
3) y+aCuts: separating (yCuts), and only if no (yCuts) are violated in a branch-
and-bound node, (aCuts) are separated; 4) zCuts: separating (zCuts) only. The
separation routine for a node s (facility i) is called only if the corresponding
LP-value on the right-hand-side is ≥ 0.5.

Figures 1a– 1d show boxplots of the runtimes (in seconds) over all instances
from A, B, C and D, respectively. The star in the boxplot indicates the aver-
age solution time and the number on top of each plot indicates the number of
instances, which could not be solved within the given timelimit (two hours for
B-D and 30 minutes for A).

There is a clear contrast in the performance on the instances A, B and
instances C, D. For the former ones, the aCuts-setting significantly outperforms
the remaining setting. On the contrary, the aCuts-setting is the worst approach
for C, D. This can be explained by the different facility opening costs in the
two groups: for A, B instances, opening a facility costs on average as much as
establishing a link; however, it is about 15 times as expensive in groups C, D.
On average, there are about twelve open facilities in optimal solutions of A,B,
while only around four are open for C,D. Consequently, LP-solutions contain
much less non-zero z- (and y-) variables in the latter case, and therefore, less
separation calls are needed for the zCuts- and yCuts-setting. On the contrary,
the numbers of separation calls for (zCuts) and (aCuts) are comparable for
instances A, B. Therefore, the aCuts-setting is clearly beneficial, as it implies
the strongest LP-bounds (recall that (aCuts) are facet-defining).

Comparing the performance between groups A and B, we observe that the
sparsity of instances (group B) seems to deteriorate the performance of yCuts-
and zCuts-settings.
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(b) Instance set B
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(c) Instance set C
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(d) Instance set D

Fig. 1: Runtimes for the different settings
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