
Two extended formulations for the Virtual Network Function Placement and
Routing Problem

Ahlam Mouacia,b, Éric Gourdina, Ivana Ljubićc, Nancy Perrota

aOrange Innovation, Paris, France
bUniversité Paris Dauphine, Paris, France
cESSEC Business School, Cergy, France

Abstract

Given a bi-directed graph modeling a telecommunication network, and a set of origin-destination
pairs representing traffic requests (commodities) along with their associated Service Function Chains
(SFCs), the Virtual Network Function Placement and Routing Problem (VNFPRP) aims to find,
for each commodity, one latency-constrained routing path that visits the required Virtual Network
Functions in a specific order. The function installation costs together with the node activation costs
have to be minimized.

In this paper, we present two extended Mixed Integer Programming (MIP) formulations to
model the VNFPRP. For each formulation we define the master problem, the pricing problem,
the associated Lagrangian bound and a specific branching scheme, in order to derive an efficient
Branch-and-Price algorithm. We also provide several families of valid inequalities to strengthen
the LP-relaxation bounds. Computational results are reported comparing the performance of the
two Branch-and-Price algorithms with a compact MIP formulation and its Branch-and-Benders-cut
implementation on a set of SNDlib instances representing telecommunication networks.

Keywords: Networks, Column generation, Branch-and-Price, Network Function Virtualization,
Service Functions Chaining.

1. Introduction

The Virtual Network Function Placement and Routing Problem (VNFPRP) is a topical problem
in the design of 5G networks. In this problem, we are given a telecommunication network, a set of
Virtual Network Functions (VNFs), which correspond to software that can be installed on-demand
at network nodes. In addition, we are given a set of customer demands (also called traffic requests
or commodities) asking for services like video streaming, virtual private network (VPN), or on-line
gaming. Each customer demand has to be treated by a given subset of VNFs in a given order,
defined by a Service Function Chain (SFC). SFC is a sequence of VNFs that should be traversed by
a given service flow in a predefined order [26]. For example, the network administrator may specify
a policy that all http traffic should follow the policy chain: “firewall → IDS → proxy” [20].

The infrastructure around VNFs requires a system that performs central orchestration and
management of traffic requests, making sure that the traffic is routed in such a way that service

Email addresses: ahlam.mouaci-magnouche@dauphine.psl.eu (Ahlam Mouaci), eric.gourdin@orange.com
(Éric Gourdin), ivana.ljubic@essec.edu (Ivana Ljubić), nancy.perrot@orange.com (Nancy Perrot)

Preprint submitted to Networks January 17, 2023

function chaining constraint is respected. This is achieved with the Software Defined Networking
(SDN) technology [6]. Thanks to VNFs and SDN, the telecommunication networks are becoming
dynamic and programmable. Moreover, VNFs and SDN help facilitate the service management,
minimize the service installation and management costs, and decrease deployment delays.

The VNFPRP studied in this paper consists of determining: a) the optimal installation of VNFs
at the network nodes, and b) the routing of each traffic demand through a latency-constrained path
satisfying the SFC constraints. The costs for activating network nodes and installing VNFs on them
have to be minimized. Further constraints can be considered, such as node and VNF capacities, or
conflicts between VNFs when installed at the same node.

In this paper, we consider the following assumptions:

• There is sufficient link capacity in the existing network to handle all traffic requests, due to
the fact that we are dealing with the tactical planning rather than with strategic network
design (in which the link capacities are designed according to anticipated traffic requests).

• The routing paths should be elementary (without circuits) to avoid the network loops.

• Each commodity requires the installation of at least one VNF (otherwise, without loss of
generality, these commodities can be eliminated in a pre-processing phase). There is a (partial)
order imposed between VNFs that need to be installed for each commodity.

• Multiple (heterogeneous or the same) VNFs can be installed at the same node in the network.

• A commodity can use the capacity of multiple copies of the same VNFs in the same node.

In this paper we deal with a variant of the VNFPRP, in which we relax the link capacity constraints
based on the assumption cited before. Furthermore, allowing creation of only elementary paths,
aims to minimise the arcs utilization, which is considered as an objective function in multiple earlier
works. We consider also node and VNFs capacity constraints which were relaxed in our previous
work [21], in order to reduce the resolution time. We notice also that adding these constraints in the
model proposed in [21] will in any case change the characteristics of the proposed model, but will
just generate new solutions more suited for the original version of problem. Also, this will allow us
to compare both works and see which decomposition is better for this type of problems. The version
of the problem considered in this paper includes most of the technical constraints encountered by
operational teams in a real-world setting. As a result, its resolution is very challenging. To the best
of our knowledge, the decomposition methods we propose have not been investigated before for the
VNFPRP.

Our contribution. Previous papers related to the VNFPRP mainly rely on compact MIP formu-
lations and heuristics (see, e.g., [1, 2, 3, 13, 15, 30]). These studies show that the computational
performance of compact formulations is fairly limited, mainly because of their relatively weak LP-
relaxation bounds. In this work, to enhance the capabilities of finding exact solutions for larger
instances of practical relevance, we propose two extended MIP formulations for the VNFPRP. In
both formulations, we consider an extended variable space admitting an exponential number of
variables which allows us to develop tighter MIP reformulations.

The first reformulation (denoted as PF) was proposed in [25], where it was used for deriving a
heuristic approach. In the current paper, we provide a branch-and-price algorithm to solve exactly
this PF model. Therein, we separate the VNF placement problem, which is treated at the master

2

level, from the routing problem, which is solved separately for each commodity in the pricing prob-
lem. The second extended formulation (denoted as DW) is an extended formulation obtained from
an alternative Dantzig-Wolfe decomposition approach. The problem is decomposed per commodity
in such a way that: the master problem ensures that exactly one path with its associated VNF
installations is chosen for each commodity, and that node and VNFs capacity constraints are sat-
isfied. The routing and VNF placement constraints associated with each commodity are managed
in the pricing problems. In order to improve the LP-relaxation bounds of our formulations, new
families of valid inequalities are also proposed. All these elements are combined in two efficient
Branch-and-Price algorithms.

Closely related to the VNFPRP is a problem that we studied in [21], where the VNF installation
costs are paid per commodity, whereas in this paper they are paid per VNF. Moreover, in [21],
different capacity constraints were considered. For that problem variant, we proposed in [21] a
compact flow-based formulation and a Branch-and-Benders-cut approach derived from projecting
out flow variables. In the current work, we adapt the compact MIP formulation and the Branch-
and-Benders-cut approach in order to cope with additional constraints and the modified objective
function given by the VNFPRP. In our detailed computational study, the latter two approaches are
compared against to the two Branch-and-Price algorithms.

The LP-relaxation bounds of the two extended formulations dominate the respective bounds of
the compact formulation and its Benders reformulation. This is also confirmed by our empirical
study which also shows that the strongest bounds among all four formulations are obtained with
the model DW. Our study also reveals that the formulation DW suffers from a trade-off between
the strength of the obtained bounds and the computational time needed for solving the pricing
problem.

Outline of the paper. In Section 2, we introduce the main notation, provide the formal problem
definition and give an overview of the related literature. In Sections 3 and 4, we present the two
extended formulations, we discuss the associated pricing problems, detail the computation of the
Lagrangian bound and present branching schemes. In Section 5, we provide a set of valid inequalities
that aim to strengthen the LP-relaxation bounds. In Section 6 we provide implementation details of
the Branch-and-Price (B&P) algorithms for each formulation. In Section 7, we discuss the obtained
numerical results and we conclude the paper with some remarks and perspectives in Section 8. More
detailed computational results are available in the Appendix.

2. Problem definition and related work

Notation. The telecommunication network is modeled as a bi-directed graph G = (N,A). The set
of all physical locations equipped with hardware devices allowing VNFs installation is denoted by
N , and called the set of nodes. The set representing all directed links between nodes is called the
set of arcs, and is denoted by A. At each node u ∈ N at most cu (cu ∈ N) VNFs can be installed,
and an activation cost ψu > 0 has to be paid. The arc latency luv > 0 is defined for each arc
(u, v) ∈ A.

Let F denotes the set of all virtual network functions. Each VNF f ∈ F has a limited (band-
width) capacity mf to manage the traffic demand. For installing a single copy of f at a node
u ∈ N , an installation cost ψf

u > 0 has to be paid. For the set of all traffic requests/commodities,
denoted by C, each commodity k ∈ C is characterized by: a source node, sk; a destination node,
dk (sk 6= dk); a bandwidth bk > 0; a maximum latency value lk > 0; a subset of VNFs, F k ⊆ F ,

3

and a set of incompatibility constraints Ak between VNFs. Recall that each commodity requires
a specific Service Function Chain to handle its data packages in a specific (possibly partial) order.
The fact that the VNF f has to be executed before VNF g in the path associated to the commodity
k is expressed by f ≺k g. Table 1 summarizes all the notation.

Sets
N : Set of all nodes.
A : Set of all arcs.
C : Set of all commodities (traffic requests).
F : Set of all Virtual Network Functions.

(F k,≺k) : (Partially) ordered set of VNFs associated with commodity k, k ∈ C.
Ak : Set of pairs of VNFs which are in conflict for commodity k, k ∈ C.

Parameters
mf : Capacity of VNF f , f ∈ F .
cu : Capacity of node u, u ∈ N .
luv : Latency of link (u, v), (u, v) ∈ A.
ψf
u : Installation cost of VNF f at node u, f ∈ F , u ∈ N .
ψu : Activation cost of node u, u ∈ N .
sk : Source node for commodity k, k ∈ C.
dk : Destination node for commodity k, k ∈ C.
lk : Maximum latency of commodity k, k ∈ C.
bk : Bandwidth of commodity k, k ∈ C.

Table 1: Main notation, parameters and sets.

Definition 1 (VNFPRP). The Virtual Network Function Placement and Routing Problem con-
sists of finding for each commodity k ∈ C, the placement of VNFs f ∈ F k at nodes, and the routing
paths so that the sum of the VNF installation costs ψf

u plus the sum of node activation costs ψu is
minimized. The following constraints have to be satisfied:

• Node-capacity constraints: each node u ∈ N has an installation capacity cu, which means
that the number of VNFs installed at u should not exceed cu.

• VNF-capacity constraints: each VNF f ∈ F has a capacity mf to manage the amount of
data. The sum of bandwidths handled by one copy of f should be at most mf .

• Routing constraints: the sk−dk routing path associated with each commodity k ∈ C should
be elementary.

• End-to-end latency constraints: the sum of arc latencies belonging to the routing path of
each commodity k ∈ C should not exceed the given latency limit of lk.

• Installation constraints: each VNF f ∈ F k required for commodity k ∈ C should be
installed at one of the nodes of the routing path.

• Precedence constraints: for each commodity k ∈ C, the VNFs composing its Service Func-
tion Chain should be traversed in the right order by the routing path.

4

• Conflict constraints (also called anti-affinity/incompatibility constraints): For each k ∈ C,
two functions f and g which are in conflict (i.e., {f, g} ∈ Ak) cannot be installed at the same
node. These constraints are generally used to reduce the impact of an infrastructure failure
[9]

In our previous work, we have shown the following result:

Theorem 2.1 ([21]). The VNFPRP is strongly NP-hard, even without latency, capacity and prece-
dence constraints and with a single commodity.

2.1. Related work
In the context of SDN and VNFs, the major decision problem consists of finding an optimal

installation of VNFs, so that the given traffic requests can be routed within the given network
infrastructure while respecting the SFC constraints [1, 14, 22, 23]. Many different variations of
the problem have been studied in the recent literature. When it comes to the definition of the
objective function, some authors consider non-linear objective functions, others are minimizing the
utilization of the network elements (like the number of links involved), and others are minimizing
the VNF installation costs. In the sequel, we provide an overview of the existing literature.

In [21], we have studied a variant of the VNFPRP, where the VNF installation costs are paid
per commodity, instead of being paid per VNF (as in the current paper) and with slightly different
capacity constraints. We proposed a compact flow-based MIP formulation to model the problem
and provided theoretical results that allowed us to reformulate the problem using Benders decompo-
sition. We also introduced additional valid inequalities and a MIP-based heuristic, the performance
of which we studied in [25]. We combined all these ingredients in a Branch-and-Benders-Cut frame-
work and tested it on two sets of (realistic and randomly generated) benchmark instances. The
obtained results have shown that this algorithm outperforms the compact MIP formulation, and
the automatic Branch-and-Benders-Cut implementation provided by Cplex.

Other problem variants. Different variants were proposed for modeling a simultaneous VNF place-
ment and routing problem. Some articles study the problem in which only single VNF has to be
installed per commodity. For example, Addis et al. [2], propose two alternative compact MILP
formulations to deal with a VNFPR variant in which a single service is installed per each com-
modity (i.e., |Fk| = 1, for all k ∈ C). The authors compare the two formulations empirically and
with respect to the strength of their LP relaxations. They also show that the two models can
be generalized to handle multiple services (see also [11]). Bouet et al. [5] consider the problem of
placing the virtualized Deep Packet Inspection in SDN networks. They propose a method based on
genetic algorithms, that optimizes the cost of DPI engine deployment, minimizing their number,
the global network load and the number of not analyzed flows, while considering arc capacity con-
straints. Moens & De Turck [23], propose a MIP model where both physical and virtual resources
are allocated to the function chains, which is tested with very small instances using Cplex solver.

Several works assume a total order of VNFs and exploit this fact to model the problem as
layered graph to deal with the chaining constraints. Sallam et al. [27] study the Shortest Path
and Maximum Flow Problems under Service Function Chaining constraints for which virtual and
not virtual network functions are considered. Authors solve the SFC-constrained shortest path
problem by transforming the graph into a layered graph. Another layered graph formulation and

5

the associated column generation approach for the VNFPRP with link capacities have been proposed
in [16]. In contrast to our models in which partial ordering of VNFs is allowed, the formulation given
in [16] is only valid when a total order for VNFs is provided. In a related study by Tomassilli et al.
[31], a compact MIP model and a column generation approach are proposed for another variant of
the problem in which latency, precedence, flow, link and node capacity constraints are considered.

In other related papers, different objective functions are tackled. For example, Mehraghdam
et al. [22] model the VNFs placement problem as a Mixed Integer Quadratically Constrained Pro-
gram with two different objectives: minimizing the number of activated nodes or the path latency.
Kuo et al. [18] propose an algorithm for the VNFs placement and path selection problem with
precedence constraints, while maximizing the number of accepted demands. Furthermore, Gupta
et al. [14] provide a MIP formulation to model the placement of VNFs with chaining constraints.
Their objective is to minimize network bandwidth consumption.

The closest version of the problem to ours, considering the problem with almost all its technical
constraints is studied in Allybokus et al. [3]. The authors consider a generic version of the VNFs
placement and routing problem for which many features are taken into account. They also proposed
MIP formulations, either to minimize the total deployment cost or to minimize the number of
rejected demands. A heuristic based on a continuous relaxation of one of the formulations is given,
which appears to be very efficient on instances derived from the “Geant” network topology. However,
the MIP models do not seem to be strong enough for direct resolution with the Cplex solver.

3. First extended formulation: the Path-based Formulation

In this section, we present the first extended MIP formulation, denoted by PF (which stands
for “path-based formulation”) to model the VNFPRP. The formulation has been introduced in [25]
and also used in [21] to generate heuristic solutions, by considering a compact model obtained from
choosing a small but promising subset of columns. In this article instead we focus on developing
an exact method for solving the path formulation, based on a Branch-and-Price procedure. In
this model we use latency-constrained elementary path variables associated to each commodity to
model routing decisions. In this section we discuss theoretical properties of this model, along with
a derivation of a valid Lagrangian bound, whereas the details related to the B&P implementation
are given in Section 6.

In the remainder of this paper we will assume that VNFs used by a commodity cannot be
installed at the source node of the same commodity. This can be done without loss of generality,
by introducing a dummy source node, say ok, for each commodity k ∈ C, and connecting it to the
source sk with an arc (ok, sk) whose latency is set to 0. In the following we denote by Γ−(v) the
set of all incoming neighbors of node v.

3.1. MIP formulation
The set of variables required in the path formulation is described in Table 2. Let us denote

by Pk the set of all latency-constrained elementary paths associated with commodity k ∈ C. We
assume that the set Pk is given and that, for each chosen path, the arcs composing it are known.
Let tpkuv be the parameter that is equal to 1 if arc (u, v) belongs to path p, p ∈ Pk, and equal to 0
otherwise.

The VNFPRP can be modeled as follows:

6

Variables Type
λkp 1, if path p associated with commodity k is chosen; 0, otherwise. Binary

xfku 1, if the virtual network function f is installed at or before node u Binary
for commodity k; 0, otherwise.

yfku 1, if virtual network function f is installed at node u for commodity k; Binary
0, otherwise.

wu 1, if node u is activated; 0, otherwise. Binary

zfu number of VNF f installed at node u. Integer

Table 2: Decision variables of the path formulation

(PF) : min
∑
u∈N

∑
f∈F

ψf
uz

f
u +

∑
u∈N

ψuwu (1)

∑
p∈Pk

λkp = 1 k ∈ C (αk) (2)

∑
f∈F

zfu ≤ cuwu u ∈ N (3)

∑
k∈C

yfku bk ≤ mfz
f
u f ∈ F, u ∈ N (4)

yfku + ygku ≤ 1 k ∈ C, (f, g) ∈ Ak, u ∈ N (5)

∑
p∈Pk

(u,v)∈p

tpkuvλ
k
p − 1 + xfkv − xfku ≤ yfkv k ∈ C, f ∈ F k, (u, v) ∈ A (ηfkuv) (6)

xgku ≤ xfku k ∈ C, f, g ∈ F k : f ≺k g, u ∈ N (7)

yfku ≤ xfku k ∈ C, f ∈ F k, u ∈ N (8)

yfku ≤
∑

(v,u)∈A

∑
p∈Pk

tpkvuλ
k
p k ∈ C, f ∈ F k, u ∈ N (πfku) (9)

∑
u∈N

yfku ≥ 1 k ∈ C, f ∈ F k (10)

xfku =

{
0, u = sk

1, u = dk
k ∈ C, f ∈ F k (11)

(λ, x, y, w) are binary (12)
z is integer (13)

7

Constraints (2) are the path constraints which ensure that exactly one elementary latency-
constrained path p ∈ Pk is chosen for each commodity k ∈ C. Constraints (3) represent the node
capacity constraints, which guarantee that the number of VNFs installed at each node u ∈ N is
bounded by its capacity cu. Constraints (4) are the VNF capacity constraints they ensure that the
volume of data treated by each function f ∈ F should not exceed its capacity mf . Constraints (5)
are the conflict constraints and they guarantee that two VNFs in conflict are not installed at the
same node u ∈ N . Constraints (6) are needed to link node installation variables (y), precedence
variables (x) and path variables (λ): the left-hand-side is forced to 1 (implying that the function
f is installed at the node v) if and only if (i) the path p passing through the arc (u, v) is chosen
for the considered commodity k and (ii) the function f is installed at or before the node v and it is
not installed at or before the node u. Constraints (7) impose the VNFs order for each commodity.
Inequalities (8) link the precedence and the installation variables, x and y, and express the fact that
if VNF f is installed at node u for the commodity k, then f is installed at or before the node u.
Constraints (9) ensure that if a VNF f ∈ F k is installed at a node u for a given commodity k, then
the associated routing path p must enter that node. Constraints (10) guarantee that all required
functions for commodity k ∈ C are installed at the graph nodes. Finally, constraints (11) guarantee
that, for each commodity k ∈ C, no VNF is installed at or before the source node sk and all VNFs
are installed at or before the destination node dk. Model (1)-(13) admits an exponential number
of path variables; thus, a column generation (CG) procedure is needed to solve its continuous
relaxation. In the following, we describe the pricing problem and discuss three possible procedures
for its resolution.

3.2. The pricing problem
Let α, η and π be the dual variables associated with constraints (2), (6) and (9) respectively. Let

DPF denote the dual formulation of the LP-relaxation of the model PF. The number of routing paths
associated with each commodity can be exponential. Thus, the number of constraints associated
to the path variables is exponential in the dual.

For each k ∈ C and p ∈ Pk, the dual constraint associated with the path variable λkp is given as
follows:

αk −
∑
f∈Fk

[
∑

(u,v)∈A

tpkuv ηfkuv +
∑
u∈N

∑
v∈Γ−(u)

tpkvu πfku] ≤ 0, k ∈ C, p ∈ Pk (14)

⇐⇒ αk +
∑

(u,v)∈A

∑
f∈Fk

(πfkv − ηfkuv)tpkuv ≤ 0, k ∈ C, p ∈ Pk (15)

As customary in column generation, the master problem is initialized with a subset of λ variables
(resulting in the so-called restricted master problem), and then the additional variables necessary
to solve the LP-relaxation of the model are generated on the fly by separating the associated dual
constraints (15). The pricing problem then consists of finding for each commodity k, a path p ∈ Pk
with negative reduced costs, i.e., a path p such that:

α∗k +
∑

(u,v)∈p

∑
f∈Fk

(π∗fkv − η∗fkuv) > 0, (16)

where (α∗, η∗, π∗) refers to a sub-vector of an optimal dual solution of the restricted master problem.
This dual solution will be used for defining the pricing problems and computing the Lagrangian
bound (cf. Section Appendix A.3).

8

Thus, for each commodity k ∈ C, a separate pricing problem is defined in order to find an
sk − dk latency-constrained elementary path of minimum cost. Cost per each arc is defined as

c̃uv =
∑
f∈Fk

(η∗fkuv − π∗fkv), (u, v) ∈ A. (17)

If we find a path p ∈ Pk such that
∑

(u,v)∈p c̃uv−α∗k < 0, the associated variable λkp will be inserted
in the restricted master problem. Based on the dual solution, the values defined by (17) may be
negative. Therefore the pricing problem consists of finding an elementary shortest path satisfying
latency constraints on a graph that may contain negative cycles. Hence, the pricing problem is
strongly NP-hard [8]. Four different methods are proposed and computationally evaluated for
solving this pricing problem (see Appendix).

3.3. Linear relaxation of path variables λ
Constraints λkp ∈ {0, 1} are the integrality constraints guaranteeing that the latency-constrained

path cannot be split. Together with constraints (2), they ensure that there is exactly one path used
to route the flow for each commodity. In the following, we show that λkp ∈ {0, 1} can be relaxed.
Let PF’ denote the model PF for which the integrality constraints associated with variables λ are
replaced by: λkp ≥ 0, k ∈ C, p ∈ Pk.

Proposition 1. If the relaxed path formulation PF’ has an optimal solution with fractional λ val-
ues, then it must necessarily admit an integer solution with the same objective value.

The proof of this result can be found in Appendix A.2.

Corollary 3.1. Without loss of generality, constraints λkp ∈ {0, 1}, for all k ∈ C, p ∈ Pk, can be
replaced by λkp ≥ 0 in the model PF.

Corollary 3.1 indicates that, when implementing a B&P procedure to solve the model PF, we
can sidestep branching on the exponential variables λ and apply the regular branching scheme
defined only for x, y, z, and w variables. In particular, this means that (apart from the change of
the coefficients in the objective function), the pricing problem will not be affected by branching
decisions.

4. Second extended formulation: the model DW

In this section, we present an alternative extended formulation for the VNFPRP, to which
we refer as the model DW (where DW stands for Dantzig-Wolfe). First, we introduce the master
problem and then, based on the master problem’s dual solution, we describe the pricing problem and
show how to calculate the value of the Lagrangian bound. At the end of this section, a branching
scheme is proposed.

4.1. MIP formulation
In the following, we use the term path-installation to indicate a path p with pre-installed VNFs

satisfying latency, conflict, and precedence constraints. The master problem aims to choose one
path-installation per each commodity k while respecting node and function capacity constraints.

9

Variables Type
τkp 1, if path-installation p associated with commodity k Binary

is chosen; 0, otherwise.

wu 1, if node u is activated; 0, otherwise. Binary

zfu number of VNF f installed at node u. Integer

Table 3: Decision variables of the model DW

Let us denote by Tk the set of all path-installations associated with commodity k. To create
our master problem, we need three families of variables, as described in Table 3.

The set Tk associated with each commodity k containing all feasible path-installations is sup-
posed to be known. Thus, the placement of each VNF for each path-installation at network nodes
is uniquely defined. Let us denote by afpku the parameter that is equal to 1 if the VNF f is used at
node u for the path-installation p associated with commodity k; and that is equal to 0 otherwise.

The model DW is then given as:

(DW) : min
∑
u∈N

∑
f∈F

ψf
uz

f
u +

∑
u∈N

ψuwu (18)

∑
p∈Tk

τkp = 1 k ∈ C (αk) (19)

∑
f∈F

zfu ≤ cu wu u ∈ N (20)

∑
k∈C

∑
p∈Tk

afpku τkp bk ≤ mfz
f
u f ∈ F, u ∈ N (γfu) (21)

τkp ∈ {0, 1} k ∈ C, p ∈ Tk (22)

wu ∈ {0, 1} u ∈ N (23)

zfu ∈ N u ∈ N, f ∈ F (24)

Constraints (19) represent the routing constraints ensuring that one path-installation is chosen
for each commodity k ∈ C. Inequalities (20) represent the node capacity constraints. Constraints
(21) are the VNF-capacity constraints.

Inequalities (18)-(24) constitute the master problem which admits an exponential number of
variables. Therefore, a column generation procedure is needed to solve its continuous relaxation.
The master problem is initialized with a subset of columns (called the restricted master problem),
and the missing variables necessary to solve its linear relaxation are generated by separating the
following dual constraints:

αk −
∑
u∈N

∑
f∈Fk

afpku bkγ
f
u ≤ 0 k ∈ C, p ∈ Tk, (25)

where we associate variables α and γ to constraints (19) and (21), respectively. The separation of
constraints (25) represents the pricing problem. Let (α∗, γ∗) be components of the dual solution of

10

the restricted master problem, the pricing problem consists of finding a commodity k and a path
p ∈ Tk such that:

α∗k −
∑
u∈N

∑
f∈Fk

afpku bkγ
∗f
u > 0.

4.2. The pricing problem
For each commodity k, we have one pricing problem that aims to find a path-installation. The

left-hand-side in inequalities (25) characterizes the objective function of the pricing problem. We
model the pricing problem as a MIP whose set of variables required is described in Table 4 (the
index k is left out for simplicity).

Variables Type
dfu 1, if virtual network function f is installed at or before node u; Binary

0, otherwise.

hfu 1, if virtual network function f is installed at node u; 0, otherwise. Binary

nuv 1, if arc (u, v) belongs to the routing path; 0, otherwise. Binary

Table 4: Decision variables of the pricing problem for the model DW

The MIP formulation of the pricing problem is given as follows:

max α∗k −
∑
u∈N

∑
f∈Fk

hfubkγ
∗f
u

∑
(u,v)∈A

nuv −
∑

(v,u)∈A

nvu =

−1 if u = dk,
1 if u = sk,
0 otherwise.

u ∈ N (26a)

∑
(u,v)∈A

nuvluv ≤ lk (26b)

hfu + hgu ≤ 1 (f, g) ∈ Ak, u ∈ N (26c)

nuv − 1 + dfv − dfu ≤ hfv f ∈ F k, (u, v) ∈ A (26d)

dgu ≤ dfu f, g ∈ F k : f ≺k g, u ∈ N (26e)

hfu ≤ dfu f ∈ F k, u ∈ N (26f)

hfu ≤
∑

(v,u)∈A

nvu f ∈ F k, u ∈ N (26g)

∑
u∈N

hfu ≥ 1 f ∈ F k (26h)

dfsk = 0 f ∈ F k (26i)

dfdk = 1 f ∈ F k (26j)

(d, h, n) is binary (26k)

11

Constraints (26a) are the flow-preservation constraints ensuring that the path goes from the
source node sk to the destination node dk. Inequalities (26b) represent the latency constraints.
Inequalities (26c) are the anti-affinity constraints which ensure that two VNFs f and g in conflict
are not installed at the same node u. Constraints (26d), (26e), (26i) and (26j) represent the
precedence constraints. Constraints (26f) are the linking constraints between variables d and h, the
right-hand-site is forced to 1 in order to ensure that if VNF f is used at node u, then it is used at
or before u. Inequalities (26g) link variables h and n, they guarantee that the routing path enter
all nodes at which VNFs are installed. Finally, constraints (26h) guarantee that all required VNFs
for the current commodity are installed at nodes.

Proposition 2. The binary constraints imposed on the arc variables n in the pricing problem (26a)-
(26k) can be relaxed and replaced by nuv ≥ 0, for all (u, v) ∈ A.

Proof . Observe that variables n do not appear in the objective function, and that the location
variables h (which basically determine the value of the solution) remain binary. Therefore, if
there exists a feasible solution of the pricing problem with fractional n values, there also exists
a latency constrained path (corresponding to binary n values) which satisfies all the constraints
(26a)-(26k). To show the latter result, one has to follow similar arguments as those given in the
proof of Proposition 1 provided in Appendix A. �

4.3. Branching on τ variables
The LP-relaxation of the Dantzig-Wolfe formulation solved by CG procedure is not necessarily

integral. Furthermore, applying the Branch-and-Bound algorithm on the restricted master problem
with only the generated columns at the root node will not guarantee a feasible solution and so an
optimal solution. Moreover, at each branching node, there may exist new columns with a negative
reduced cost which should be added to the master problem. Therefore, in order to find an optimal
integer solution, we should generate columns at each branching node.

Various branching schemes, specific (like the one proposed below) or generic (see e.g., [32]),
can be used to generate integer solutions using column generation procedure embedded within the
Branch-and-Bound algorithm. The resulting algorithm is called Branch-and-Price.

In the following, a commodity k ∈ C is called fractional if it admits a fractional τ variable. For
a path-installation p ∈ Tk, we use the notation u ∈ p to indicate that the path-installation p passes
through the node u. Recall that, the notation afpku = 1 is used to indicate that the path-installation
p passes through the node u on which the VNF f is installed for commodity k.

Proposition 3. For any given LP-solution of the (restricted) master problem with fractional τ
variables, at least one of the following cases is valid for each fractional commodity k ∈ C:

Case 1. There exist two nodes u, v ∈ N \ {sk} satisfying: 0 <
∑
p∈Tk

u∈p,v∈p

τkp < 1

Case 2. There exist a function f ∈ F k and a node u ∈ N \ {sk} satisfying: 0 <
∑
p∈Tk

afpku =1

τkp < 1

12

Proof . Let us suppose that k is a fractional commodity but neither Case 1 nor Case 2 holds.
Hence, we have: ∑

p∈Tk
u∈p,v∈p

τkp ∈ {0, 1} u, v ∈ N (27)

∑
p∈Tk

afpku =1

τkp ∈ {0, 1} u ∈ N, f ∈ F k. (28)

From (28) we can distinguish two cases: (a) there exists a node u ∈ N and a function f ∈ F k such
that

∑
p∈Tk

afpku =1

τkp = 1, or (b)
∑
p∈Tk

afpku =1

τkp = 0, for each u ∈ N and f ∈ F k.

(a) By constraints (19), and because k is a fractional commodity, all path-installations of Tk in the
solution are fractional. Let p1 ∈ Tk be a fractional path-installation passing through node u
on which VNF f is installed (i.e., 0 < τkp1

< 1). As
∑
p∈Tk

afpku =1

τkp = 1, there must exist another

fractional path-installation p2 ∈ Tk \ {p1} passing through node u on which VNF f is installed.
Since p1 6= p2, we have two cases:

(I) p1 and p2 pass through the same nodes but with different function installations, i.e.,
there exists at least one VNF g ∈ F k \ {f} installed on a different node. Let denote
by v (resp. w, v 6= w) the node belonging to the path-installation p1 (resp. p2) on
which g is installed. As the hypothesis (28) is valid for any VNF in F k and any node in
N \ {sk},

∑
p∈Tk

agpkv =1

τkp ∈ {0, 1} must hold. Given that τkp1
> 0, then (1)

∑
p∈Tk

agpkv =1

τkp > 0. Thus

∑
p∈Tk

agpkv =1

τkp = 0 cannot hold. Accordingly,
∑
p∈Tk

agpkv =1

τkp = 1. We know that 0 < τkp2
< 1 and

that g is not installed on v for p2, we will have: (2)
∑
p∈Tk

agpkv =1

τkp < 1. Therefore, (1) and (2)

contradict hypothesis (28).
(II) p1 and p2 pass through at least one different node, i.e., there should exist another node

v 6= u belonging to p2 and not to p1. We notice that VNF f is installed only on node
u for both p1 and p2, and that another VNF g 6= f can or not be installed on node
v belonging to the path-installation p2. Since p2 contains u and v and τkp2

> 0, this
implies: (i)

∑
p∈Tk

u∈p,v∈p

τkp > 0. Moreover, as
∑
p∈Tk

afpku =1

τkp = 1 and τkp1
> 0 and we know that

path-installation p1 does not pass through node v, then the value τkp1
can be deleted from

the following sum:
∑
p∈Tk

u∈p,v∈p

τkp , which implies that (ii)
∑
p∈Tk

u∈p,v∈p

τkp < 1. Therefore, (i) and

(ii) contradict hypothesis (27).

(b) Recall that for each commodity k, we assume that F k 6= ∅ (otherwise the commodity can be
pre-processed and eliminated). This, together with constraints (19), contradicts the assumption

13

that for all functions f ∈ F k, no path-installation p ∈ Tk is chosen such that afpku = 1 (i.e., it
contradicts the hypothesis

∑
p∈Tk

afpku =1

τkp = 0).

Therefore, the result holds.

5. Strengthening inequalities

In this section, we derive several families of valid inequalities that can strengthen the LP-bounds
of both proposed extended formulations. We first present inequalities that can be used to directly
enhance the model PF. We then present inequalities that are valid for both models and that can be
exploited in case a function’s capacity is smaller than the respective traffic demand. We close this
section by explaining how some of inequalities proposed for the model PF could be used within the
Dantzig-Wolfe decomposition to strengthen the model DW.

5.1. Valid inequalities for the model PF
Proposition 4. Inequalities (29) and (30) are valid for the VNFPRP:

yfku ≤ wu, u ∈ N, k ∈ C, f ∈ F k. (29)

yfku + ygku ≤ wu, u ∈ N, k ∈ C, (f, g) ∈ Ak. (30)

Proof . For a given commodity k ∈ C, if the VNF f ∈ F k is installed at node u, then node u
should be activated. If two VNFs f and g are in conflict for a commodity k ∈ C, at most one of
them can be installed at the same node u, if u is activated.

Let Dk = (F k, E) be the conflict graph associated with commodity k, k ∈ C, where nodes in Dk

represent the VNFs f ∈ F k. An edge e ∈ E between two nodes f and g in Dk represents the fact
that f and g are in conflict. Let Dk denote the set of all maximal cliques in Dk and let ω(Dk) be
the clique-number (i.e., the size of the maximum clique) in the conflict graph. Linear inequalities
(30) can be generalized for each clique Q in Dk.

Proposition 5. Inequalities (31) are valid for the VNFPRP:∑
f∈Q

yfku ≤ wu, u ∈ N, k ∈ C, Q ∈ Dk. (31)

Proof . For a given commodity k ∈ C, nodes in Q represent the set of VNFs in conflict, i.e., they
cannot be installed at the same node. Therefore, at most one VNF in Q can be installed at node
u, provided that the node u is activated.

Given a commodity k ∈ C and a node u ∈ N , if there is a unique path p going from sk to u in
G, let Ap be the arcs belonging to the path p.

Proposition 6. For a given commodity k ∈ C, and a node u ∈ N , if there exists a unique path
from sk to u in G, then inequalities (32) are valid for the VNFPRP:∑

f∈Q
xfku ≤ |Ap|, u ∈ N, k ∈ C, Q ∈ Dk : |Ap| < |Q|. (32)

14

Proof . Given a fixed commodity k, let u be a node for which we have a unique path p going
from sk to u, and let Q be a clique in the graph Dk, such that |Ap| < Q. The number of VNFs in
conflict installed at or before node u should be less than or equal the number of arcs in the path p;
otherwise, two or more functions in conflict need to be installed at the same node, which leads to
an infeasible solution.

Proposition 7. Inequalities (33) are valid for the VNFPRP.∑
u∈N

wu ≥ max{1,max
k∈C

ω(Dk)}. (33)

Proof . Recall that each commodity requires at least one VNF. As all required VNFs should be
installed at graph nodes, at least one node in the graph must be activated. Furthermore, if there
is a conflict between VNFs associated with one commodity k, then the number of activated nodes
should be at least equal to the maximum number of VNFs in conflict, which is the clique number
of Dk.

Proposition 8. Inequalities (34) are valid for the VNFPRP.∑
u∈N

∑
f∈Q

yfku ≥ |Q|, k ∈ C, Q ∈ Dk. (34)

Proof . From inequalities (10), all VNFs required for each commodity k ∈ C should be installed at
graph nodes, thus the number of nodes necessary to install VNFs in conflict should be at least equal
to the number of VNFs in conflict, which is equal to the size of the cliques from Dk, k ∈ C.

Let Cu ⊆ C be a subset of commodities for which there exists at least one latency-constrained
path visiting node u, (i.e., if k /∈ Cu, this means that all paths associated with k do not enter the
node u). Let Nk be the set of nodes belonging to at least one latency-constrained path associated
with commodity k ∈ C (this can be checked in polynomial time using a min-cost flow algorithm for
example).

Proposition 9. The following inequalities are valid for the VNFPRP.∑
k∈C\Cu

∑
f∈Fk

yfku = 0, u ∈ N, (35)

∑
k∈C\Cu

∑
f∈Fk

xfku = 0, u ∈ N. (36)

Moreover, inequalities (37) are valid and dominate inequalities (10);∑
u∈Nk

yfku ≥ 1, k ∈ C, f ∈ F k, (37)

∑
f∈F

zfu = 0, u ∈ N \ {∪k∈CNk}, (38)

∑
u∈N\{∪k∈CNk}

wu = 0. (39)

15

Proof . If there exists a node u ∈ N which is not visited by any commodity k ∈ C, then no
function f ∈ F k can be installed at u (35), thus at or before u (36). Therefore, VNFs associated
with commodity k ∈ C can be installed only at nodes in Nk (37). In consequence, u cannot be
activated (39), so the number of VNFs installed on it is equal to zero (38).

Proposition 10. Inequalities (40) are valid for the VNFPRP:

zfu ≥ d
bk
mf
eyfku , k ∈ C, f ∈ F k, u ∈ N. (40)

Proof . The number of VNFs installed at node u is at least equal to the number of VNFs needed
to handle one commodity k ∈ C.

Proposition 11. Inequalities (41) are valid for the VNFPRP:

xfku ≤ 1− yfkdk , k ∈ C, u ∈ Γ−(dk), f ∈ F k, (41)

Proof . If a VNF f associated with commodity k ∈ C is installed at the destination node, then,
this function cannot be installed at or before any predecessor of dk.

5.2. Strengthening inequalities for both models
Besides inequalities (33), (38) and (39) which are also valid for the model DW, in the following

we propose additional inequalities that involve only z and w variables, and are therefore valid for
both formulations studied in this paper. With valid inequalities given in Proposition 10 we address
the setting in which the capacity of a function is not sufficient to handle the full demand of a given
commodity (i.e., multiple copies of the same function need to be installed). Proposition 12 provides
further generalizations of this setting.

Proposition 12. Node capacity constraints (3) do not define facets of the polyhedron of the VNF-
PRP if there exists a node u, such that cu >

∑
k∈C

∑
f∈Fk

d bk
mf
e.

1. Therefore, inequalities (42) are valid for the VNFPRP and dominate inequalities (3).∑
f∈F

zfu ≤
∑
k∈C

∑
f∈Fk

d bk
mf
ewu, u ∈ N. (42)

2. Moreover, if |Cu| < |C|, then the linear inequalities (43) dominate (42):∑
f∈F

zfu ≤
∑
k∈Cu

∑
f∈Fk

d bk
mf
ewu, u ∈ N. (43)

3. In addition if there exists a conflict between functions in F k for a given commodity k ∈ C,
with mf1 ≤ mf2 ≤ · · · ≤ mf|Q| , Q ∈ Dk and cu ≥

∑
k∈C

∑
f∈Fk

d bk
mf
e, then inequalities (43) are

dominated by the following inequalities.

∑
f∈F

zfu ≤
∑
k∈C

∑
Q∈Dk

[(
∑
f∈Fk

d bk
mf
e)−

|Q|∑
i=2
fi∈Q

d bk
mfi

e]wu, u ∈ N. (44)

16

Proof .

1. If there exists a node u having enough capacity to install VNFs required for all commodi-
ties, then the number of VNFs needed to treat all commodities bandwidth is bounded by∑

k∈C
∑

f∈Fkd bk
mf
e, which is the maximum number of VNFs necessary to handle all demands.

2. Only VNFs associated with commodities having at least one path passing through a node u
can be installed at node u.

3. The number of VNFs installed at node u when the conflict constraints are considered is
bounded by the maximum number of copies needed to install the VNFs with the smallest
capacity for each commodity (i.e., in the worst case we will keep the VNFs with the maximum
instantiation installed at node u and install other VNFs at the other nodes).

5.3. Strengthening the model DW
Valid inequalities proposed for the model PF can be “translated” into valid inequalities for the

model DW. In this subsection we illustrate how this can be done for inequalities (29), (30) and (40).
The remaining inequalities can be translated accordingly. In order to add (29), (30) and (40) to
the master problem of the model DW, we rewrite them using parameters a as (45), (46) and (47),
respectively: ∑

p∈Tk

afpku τkp ≤ wu, k ∈ C, u ∈ N, f ∈ F k (45)

∑
p∈Tk

(afpku + agpku)τkp ≤ wu, k ∈ C, u ∈ N, (f, g) ∈ Ak (46)

zfu ≥ d
bk
mf
e
∑
p∈Tk

afpku τkp , k ∈ C, f ∈ F k, u ∈ N (47)

Adding these valid inequalities generates new (non-negative) dual variables in the dual of the master
program, that we denote by δ, η and ϕ, respectively. Thus, dual constraints (25) need to be replaced
by the following inequalities:

αk −
∑
u∈N

 ∑
f∈Fk

(bkγ
f
u + d bk

mf
eϕfk

u + δfku)afpku +
∑

(f,g)∈Ak

ηfgku (afpku + agpku)

 ≤ 0, k ∈ C, p ∈ Pk

6. Two Branch-and-Price algorithms

In this section, we explain major implementation ingredients of the two Branch-and-Price algo-
rithms derived from the models PF and DW, respectively. Further implementation details regarding
specific pricing algorithms and derivations of Lagrangian bounds are given in the Appendix.

6.1. Generic column generation framework
Initialization. The restricted master problem of both models is initialized by a subset of columns
building a heuristic solution which is obtained in the initialization phase of the algorithm (see
Section 6.3). If no solution has been found during a time-limit, the CG framework is initialized
with an artificial column whose cost is set to a very large number.

17

Bounding. At each iteration of the column generation procedure, the restricted master problem is
solved, and a dual solution is provided. Accordingly, the objective function of the pricing problem
for each commodity k is updated, and the pricing problem is solved. Depending on the pricing
strategy (see Appendix A.5) multiple columns per commodity having negative reduced costs (or at
most one) are added to the restricted master problem. During this process, to reduce the number
of CG iterations, we keep track of the Lagrangian bound (see Appendix A.3 and Appendix A.4)
and compare it to the objective value of the current restricted master problem. If the difference
between the two values is smaller than ε, the column generation procedure is stopped and we resort
to branching.

Pricing for the model PF. We consider three methods for solving the pricing problem for the
formulation PF: 1) We utilize dynamic programming; 2) Based on Yen’s algorithm [33], we derive
a reduced cost method, and use it in two different ways; and 3) We model the pricing problem as a
MIP that we solve using an off-the-shelf solver. These strategies are explained and computationally
evaluated in the Appendix.

Pricing for the model DW. In order to price the columns associated with the DW formulation,
the MIP model presented in Section 4.2, is solved for each commodity k ∈ C, using an off-the-
shelf solver. Thus, at each iteration of the column generation procedure at most one column per
commodity with negative reduced cost is generated by the pricing problems. As in the case of the
model PF, the column generation phase terminates when no more columns with a negative reduced
cost are found, or when the gap between the current value of the restricted master problem and
the Lagrangian bound is smaller than ε.

6.2. Branching
At the end of the column generation phase, the integrality of the solution of the relaxed master

problem is verified. If the current solution is not integer, we branch on the most fractional variable,
applying the BFS (Breadth-First Search) based branching strategy. Specifically, we explore all the
nodes of the same level in the branching tree before moving to the next level. In our implemen-
tation the algorithm explores all nodes admitting a fractional feasible solution of the same level
by applying the respective branching scheme described below. For each branching node with a
fractional solution, two children nodes are created and saved in a queue. The nodes in the queue
are explored using the FIFO (First In First Out) method. A global lower bound is calculated at
each level. In our preliminary experiments, we also tried the diving strategy as an alternative to the
BFS-based branching. Whereas diving is very useful when searching for feasible solutions (see e.g.,
[10, 12, 17]), in our case this strategy did not prove useful, because a high-quality feasible solution
is used to initialize the CG procedure (see Section 6.3).

Branching scheme for the model PF. In Corollary 3.1 we showed that the binary constraints on λ
variables in the PF model can be relaxed to λ ≥ 0. Hence, in our BP implementation of the PF
model, we branch only on the (x, y, z, w) variables.

Different branching schemes have been tested for the model PF; The one outperforming all
others is to branch first on the most fractional w variables (by imposing either w ≥ 1 or w ≤ 0),
secondly on z by setting either z ≥ dz∗e or z ≤ bz∗c, thirdly on y which are forced to be y ≥ 1 or
y ≤ 0 and finally on x variables using x ≥ 1 or x ≤ 0.

18

Branching scheme for the model DW. In our branching scheme for the model DWwe start branching
on z variables by setting z ≥ dze, or z ≤ bzc and then on w variables by setting w ≤ 0, or w ≥ 1.
When z and w variables are integers, we continue by branching on the τ variables. Given that
the path-installation variables are generated as and when they are needed, we follow the specific
branching scheme for τ variables proposed in Proposition 3. Specifically, if we find a pair of two
distinct nodes u, v ∈ N such that

∑
p∈Tk:u∈p,v∈p

τkp is fractional we create two branches by imposing

constraints that limit the respective sum to 0, or 1, respectively. If none such pair can be found,
we search for a node u ∈ N and a function f̄ ∈ F k such that

∑
p∈Tk:af̄pku =1

τkp is fractional, and create

two branches correspondingly.
A branching scheme is said to be complete, if it can generate any feasible solution. From

Proposition 3 we conclude that our branching scheme proposed for the model DW is complete, as
at least one of the two cases should hold for any fractional commodity.

6.3. Heuristics
Before entering the B&P phase, we generate a heuristic solution which provides a high-quality

upper bound and a promising set of columns that we use to initialize the CG procedure. For the
model PF, we employ the MIP-based heuristic presented in [25]. The heuristic solves a compact
model derived from the formulation PF in which only a small subset of latency-constrained paths is
considered. To obtain this subset, we run Yen’s algorithm [33] which provides κ elementary paths
between two nodes, sorted from the shortest to the longest one. The number of generated paths
per commodity is capped by κ, and we let κ ∈ {10, 15, 20, . . . , 50}. As soon as the underlying MIP-
based heuristic finds a feasible solution for a fixed κ value, we stop. However, for some instances,
even for κ = 50 we fail to find a feasible solution.
For the model DW, we start with an artificial column, price-in the columns with negative reduced
cost, and then convert the obtained linear program into a MIP.
In both cases, there is a time limit after which this MIP-based heuristic initialization is aborted.

7. Computational results

In this section we analyze the scalability and the efficiency of the two proposed B&P algorithms
and show the benefits of the valid inequalities defined in Section 5. The B&P algorithms are
compared to two other exact methods using the commercial solver Cplex: the first one is a compact
MIP formulation (denoted by C and provided in the Appendix) proposed in [21] and the second one
is the Automatic Benders approach by Cplex [4] applied to the model C in which a family of flow
variables is linearly relaxed. Our experiments are designed so as to evaluate the effectiveness and
the performance of the proposed extended formulations in terms of CPU time, quality of bounds
and final gaps. Eventually we also measure the advantage of the proposed valid inequalities in
improving the LP-bounds and reducing the final gaps.

All the experiments described in this section were made using a computer with Intel(R)Xeon(R)
CPU E5-2650 v2 processor clocked at 2.60GHz, 32 cores, 2 threads per core and 252GB RAM, under
Linux operating system. All methods are implemented using the Python API for Cplex, which is
run in single-thread mode with a default memory limited to 20GB. All Cplex parameters were set
to their default values. A default time limit of one hour is set for each tested instance. For the
initialization heuristic used within the B&P algorithm (cf. Section 6.3), the time limit is fixed to
900 seconds.

19

The following settings represent all tested methods in our computational experiments:

• PF: The Branch-and-Price implementation of the model PF with the best-performing pricing
method (more details are given in Appendix A.5);

• PF+VI: The setting PF in which Valid Inequalities (29)− (41) and (42)−(44) presented in
Section 5 are additionally used to initialize the model;

• DW: The Branch-and-Price implementation of the model DW presented in Section 4;

• DW+VI: The setting DW in which Valid Inequalities (33), (38), (39), (42)− (47) from Section 5
are added to the model;

• C: compact formulation based on the original model proposed in [21] with a modified objective
function and extended with node-capacity and VNF-capacity constraints (see Appendix);

• AB: Branch-and-Benders-cut approach derived from the formulation C (in which binary flow
variables are linearly relaxed and projected out). The implementation is based on automatic
Benders decomposition of Cplex [4].

7.1. Benchmark instances
In order to perform our experiments, we have generated a set of instances derived from the

SNDlib library [29] of telecommunication networks. An instance from SNDlib contains a graph
defined by its set of nodes, its set of arcs and a set of commodities. For each commodity, a source
node, a destination node and a bandwidth value are given. Based on a longitude and latitude values
which are provided for every node, and using the fibre propagation delay per km (see, e.g., [7, 19]),
we calculate the latency value of each arc in this graph (for more details, see [25]).

The remaining parameters required for our settings are generated as follows (see also [25]). To
construct the set of VNFs, we consider six Virtual Network Functions typically employed in service
function chaining [16, 28]: F = {NAT: Network Address Translator, FW: Firewall, TM: Traf-
fic Monitor, WOC: WAN Optimization Controller, IDPS: Intrusion Detection Prevention System,
VOC: Video Optimization Controller}. For each generated instance, we divide the set of commodi-
ties in five categories defining the offered services: Online Gaming, Video Streaming, Voice over
IP, Web Services, and Other Services. Accordingly, a latency value lk and a set of chained service
functions F k are defined. Table 5 shows the considered services and the associated latency value
and SFC (representing a partial order between VNFs). For each service we consider at most one
anti-affinity constraint (AAC) between VNFs. We suppose that we cannot install Firewall and
Network Address Translator at the same node. For each commodity k ∈ C, first the length of the
shortest path l(SPk) between source and destination is calculated (with respect to arc latencies).
Accordingly, the demand k is randomly assigned to one of the categories, for which the latency
value (cf. the first column in Table 5) is bigger than l(SPk). Namely, if l(SPk) = 55ms, this im-
plies that the commodity can be assigned to any of the five categories, and we randomly choose
one. Each input graph from the SNDlib corresponds to one instance-type from SNDlib: {“Abi-
lene”, “Atlanta”, “Di-yuan”,“France”, “Geant”, “Newyork”, “Nobel-eu”, “Nobel-germany”, “Nobel-us”,
“Pdh”, “Polska”, “Ta1”}, and for each instance-type we generate ten different instances by randomly
assigning demands to services. The generated instances can be found in the github repository [24].

20

Latency value Service SFC
≤ 60 ms Online Gaming (O-G) NAT-FW-TM-WOC-IDPS

≤ 100 ms
Video Streaming (V-S) NAT-FW-TM-VOC-IDPS
VoIP NAT-FW-TM-FW-NAT

≤ 500 ms Web Services (W-S) NAT-FW-TM-WOC-IDPS
≤ ∞ ms Other services (O-S) NAT-FW-TM-WOC-VOC

Table 5: Five services and their respective SFCs and latency values.

7.2. Obtained results
In the sequel we summarize the major results obtained by our computational study. Tables with

more detailed information provided per each instance can be found in Appendix A. This subsection
is divided into two parts. The first part compares the LP-relaxation bounds generated by applying
the column generation algorithm to the models PF and DW, respectively. The comparison between
the four different pricing methods proposed for the model PF in terms of CPU time, number of
added columns and generated iterations can be found in Appendix A.5.1. After determining the
best configuration (i.e., the best pricing method) for the model PF, we focus on the improvement
of the LP-gap, with respect to the LP-relaxation bounds provided by the compact formulation (C).
We compare the two extended formulations, with and without adding valid inequalities.

In the second part of the empirical study, we compare the two proposed B&P algorithms (PF
and DW) with two other alternative MIP approaches, namely the Compact formulation (C) and the
Branch-and-Benders-cut (AB). We report the overall CPU time in seconds, and compare the quality
of lower bounds after reaching the time limit. We also report the number of added columns and
generated iterations during the B&P algorithms.

We recall that the time limit is equal to 1 hour for all instances solved with exact methods,
which does not include the time for the initialization heuristic (fixed to 900 seconds). We notice
that the heuristics can find a feasible solution for all solved 120 instances.

7.2.1. Comparison of LP-relaxation bounds
Based on the comparison of CPU times between the four pricing methods proposed for the

Path formulation (cf. Appendix A.5.1), in the following, we will consider Red Cost 2 as our
default pricing method for the model PF. This setting will be denoted by PF in the remainder of
this section.

We now turn our attention to the comparison of the quality of LP-relaxation bounds and the
CPU time required for solving LP-relaxation of the formulations PF, DW and C. We also show
the relative improvement of lower bounds, with respect to the LP-bounds provided by C, by both
extended formulations with and without adding valid inequalities.

Figure 1 provides a cumulative chart in which we report the CPU time for all 120 instances from
our test bed. We observe that in less than 31 seconds the LP-solution for any of the considered 120
instances can be found by the compact formulation C. The CPU time consumed by the model PF
is below 1000 seconds. Finally, the model DW can solve only 91 instances at the root node without
exceeding the time limit.

Figure 2 depicts the CPU time consumed by PF, PF+VI, DW and DW+VI settings at the root node
of the branching tree. We observe that adding valid inequalities to both formulations increases
the CPU time. Valid inequalities slow down the resolution at the root node for the model PF;

21

75% of instances were solved with CPU time below 300secs, whereas after adding valid inequalities,
the same percentage of instances needs up to 1025secs. Moreover, the overall number of solved
instances decreases from 120 to 109. Similarly, for the model DW, after adding valid inequalities
the number of instances for which LP-relaxation can be solved drops from 92 to 66 instances.

0 500 1000 1500 2000 2500 3000 3500
CPU time (s)

0

20

40

60

80

100

120

#
 s
ol
ve
d
Pr
ob

le
m
s

PF
C
DW

Figure 1: CPU time needed to solve the LP-relaxation
of the PF, C and DW formulation.

0 500 1000 1500 2000 2500 3000 3500 4000
CPU time (s)

0

20

40

60

80

100

120

#
 s
ol
ve
d
Pr
ob

le
m
s

PF
PF+VI
DW
DW+VI

Figure 2: CPU time needed to solve LP-relaxation for
PF and DW with and without valid inequalities.

Figure 3: Relative improvement of LP-relaxation bounds of C by using PF and DW with/without valid inequalities.

In the following, we focus on 52 instances whose LP-relaxation could be solved at the root node
by PF, PF+VI, DW, DW+VI without exceeding the time limit (2 among 54 instances solved by DW+VI
are not solved by PF+VI). 1 We compare the relative improvement of lower bounds with respect to
the LP-bounds obtained by the compact formulation C. Figure 3 illustrates the relative improvement
of lower bounds, calculated as ((LBa - LBC) / LBC) * 100, with a ∈ {PF, PF+VI, DW, DW+VI}. We

1By looking into the structure of the remaining 68 instances, we realize that it is a combination of graph density
(i.e., the ratio |A|/|N |) and the number of commodities, that makes some instance types more challenging than the
others. These 68 instances have either the ratio |A|/|N | > 4, or the large number of commodities with respect to the
number of nodes (|C|/|N | > 10). Given that graph density and the number of commodities affect both, the number
of inequalities in the master and in the pricing problem, this explains why such instances become computationally
more difficult to solve.

22

observe that the lower bound at the root node could be improved by between 1% to 14% (resp. by
between 3% to 29%) with PF (resp. DW) method for all considered instances without adding valid
inequalities. Moreover, the effects of adding the valid inequalities to both extended formulations
are shown. We notice that valid inequalities significantly improve the quality of LP-relaxations
bounds at the root node. The LP-relaxation bounds of the C formulation are improved from 6% to
90% for 75% of instances solved by the setting PF+VI. This improvement ranges between 14% and
100% for 75% of instances solved by DW+VI.

7.2.2. Comparison between the proposed B&P algorithms, a compact formulation and its Branch-
and-Benders-cut implementation

In this section, we first look at some performance indicators of our two Branch-and-Price algo-
rithms (settings PF+VI and DW+VI, respectively), and then we compare them against two alternative
exact approaches (the first one is based on solving the compact formulation, and the second one is
based on solving its Benders reformulation).

Box-plots given in Figures 4(a), 4(b) and 4(c) compare the overall number of added columns
during the B&P algorithm, the number of branching nodes and the number of generated iterations
for PF+VI and DW+VI, respectively. We observe that the setting PF+VI needs more columns and more
iterations and also branches more than DW+VI (within the same time limit). This is not surprising,
due to the following observations: 1) The vast number of added columns for PF+VI is explained
by the fact that we are adding all columns with negative reduced cost at each iteration of the CG
procedure. This is in contrast to DW+VI where we are using MIP-based pricing method to add only
the most violated ones; 2) The number of variables that are required to be integer in the model
PF is much larger compared to the model DW, which also explains the larger number of branching
nodes for the setting PF+VI; 3) Finally, the CPU time required for a single pricing iteration is much
lower for the setting PF+VI than for DW+VI.

PF+VI

2000

4000

6000

8000

10000

#
 C
ol
um

ns

DW+VI

0

1000

2000

3000

4000

5000

6000

7000

8000

#
 C
ol
um

ns

PF+VI
DW+VI

PF+VI
0

500

1000

1500

2000

2500

#
 B
ra
nc
hi
ng

 N
od

es

DW+VI

0

25

50

75

100

125

150

175

200

#
 B
ra
nc
hi
ng

 N
od

es

PF+VI
DW+VI

PF+VI
0

500

1000

1500

2000

2500

#
 It
er
at
io
ns

DW+VI

50

100

150

200

250

300

350

#
 It
er
at
io
ns

PF+VI
DW+VI

(a) # Columns (b) # Nodes (c) # Iterations

Figure 4: The number of added columns, generated nodes and CG iterations for the settings PF+VI and DW+VI.

Finally, we compare the two proposed B&P algorithms (settings PF+VI and DW+VI) against the
following two alternatives:

• Compact formulation (denoted as setting C) based on the original model proposed in [21] with
a modified objective function and capacity constraints (see Appendix).

• Branch-and-Benders-cut approach derived from the formulation C and implemented using
automatic Benders decomposition of Cplex (setting AB).

23

Figure 5: Relative improvement of the global lower bound with respect to GLBmin.

As we are comparing four exact methods, we focus on the quality of global lower bounds obtained
upon the termination of the respective branching procedures. The global lower bound (possibly,
the optimal solution value) obtained at the time limit by the setting a is denoted by GLBa, where
a ∈ M = {PF+VI, DW+VI, C, AB}. Let GLBmin be the worst global lower bound provided by these
methods:

GLBmin = min
a∈M

GLBa.

We then calculate the relative improvement of the global lower bound with respect to GLBmin as
follows:

IMPa = (GLBa −GLBmin)/GLBmin ∗ 100%,

Figure 5 displays the values of IMPa across the set of 52 instances for which all tested methods
could solve the LP-relaxation at the root node. We notice that for 75% of these instances (i.e., 39
instances) DW+VI improves the GLBmin by 5%, the compact formulation improves it by 2.5%, the
setting AB improves it by 2.1%, whereas PF+VI improves it by only 0.6%. Slight differences between
the GLB values provided for C and AB are due to the general purpose cutting planes used by Cplex.
For 50 out of 52 instances, the worst bound is improved by up to 10% using DW+VI, whereas this
improvement is up to 2.5% for PF+VI, and up to 5% for C and AB.

To conclude, the obtained results indicate that the best global lower bounds can be provided by
the B&P algorithm derived from the model DW, enhanced by the valid inequalities. However, we
emphasize that the full potential of our B&P algorithms has not been exploited with the current
implementation, and that it might be unfair to compare our B&P methods against a fully-fledged
state-of-the-art MIP solver like Cplex. This is due to the fact that our B&P algorithms cannot
benefit from advanced MIP features available at Cplex (as opposed to C and AB), as we are using
our own branching procedure in which Cplex is employed only as an LP-solver.

24

8. Conclusion

In this paper we have proposed two extended formulations for solving the Virtual Network
Functions Placement and Routing problem. The variables of the first formulation (denoted by PF)
are latency-constrained paths, whereas the variables of the second formulation (denoted by DW)
are latency-constrained paths that also embed the information regarding the function installations
at their nodes. In order to strengthen the LP-bounds, we have proposed several families of valid
inequalities for both formulations. Their benefits have been computationally demonstrated on a set
of instances derived from telecommunication networks. We have presented a branching scheme for
each formulation and have developed and implemented the associated Branch-and-Price algorithms.
The latter ones are computationally compared with a compact flow-based MIP formulation and a
Branch-and-Benders-cut approach (similar to the one from [21]) derived from the compact model
by projecting out flow variables.
The obtained results have shown that the (LP-relaxation and global) lower bounds of the compact
formulation (and its Benders counterpart) can be improved by both extended formulations. The
overall best global lower bounds can be obtained by the model DW, however its CPU time is sacri-
ficed by the expensive MIP-based pricing procedure. Hence, the model DW suffers from a trade-off
between the quality of its bounds and the time needed to solve the LP-relaxations.
We conclude that the full potential of the extended formulations is still to be exploited. We believe
that there is a theoretical and empirical interest in further studying these models. For exam-
ple, developing some more advanced exact and heuristic pricing schemes could help to resolve the
trade-off between the quality of obtained bounds and the computational difficulty of the pricing
problems. Moreover, there is an interest in studying alternative branching schemes, or more ad-
vanced heuristics for calculating incumbent solutions, in order to reduce the size of the branching
tree.

References

[1] Addis, B., Belabed, D., Bouet, M., & Secci, S. (2015). Virtual network functions placement and routing
optimization. In 4th International Conference on Cloud Networking (CloudNet) (pp. 171–177). IEEE.

[2] Addis, B., Carello, G., & Gao, M. (2020). On a virtual network functions placement and routing problem: Some
properties and a comparison of two formulations. Networks, 75 , 158–182.

[3] Allybokus, Z., Perrot, N., Leguay, J., Maggi, L., & Gourdin, E. (2018). Virtual function placement for service
chaining with partial orders and anti-affinity rules. Networks, 71 , 97–106.

[4] Bonami, P., Salvagnin, D., & Tramontani, A. (2020). Implementing Automatic Benders Decomposition in a
Modern MIP Solver. In International Conference on Integer Programming and Combinatorial Optimization (pp.
78–90). Springer.

[5] Bouet, M., Leguay, J., Combe, T., & Conan, V. (2015). Cost-based placement of vDPI functions in NFV
infrastructures. International Journal of Network Management , 25 , 490–506.

[6] Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bugenhagen, M., Khan, W., Fargano, M., Cui, C., Deng,
H. et al. (2012). Network functions virtualisation: An introduction, benefits, enablers, challenges and call for
action. In SDN and OpenFlow world congress (pp. 1–16). Darmstadt-Germany volume 48.

[7] Chitimalla, D., Kondepu, K., Valcarenghi, L., Tornatore, M., & Mukherjee, B. (2017). 5G fronthaul-latency
and jitter studies of CPRI over Ethernet. Journal of Optical Communications and Networking , 9 , 172–182.

[8] Dror, M. (1994). Note on the complexity of the shortest path models for column generation in VRPTW.
Operations Research, 42 , 977–978.

[9] EISGI, N. (2014). Network functions virtualisation (nfv); service quality metrics. , .
[10] Furini, F., Malaguti, E., Durán, R. M., Persiani, A., & Toth, P. (2012). A column generation heuristic for

the two-dimensional two-staged guillotine cutting stock problem with multiple stock size. European Journal of
Operational Research, 218 , 251–260.

[11] Gao, M., Addis, B., Bouet, M., & Secci, S. (2018). Optimal orchestration of virtual network functions. Computer
Networks, 142 , 108–127.

25

[12] Gérard, M., Clautiaux, F., & Sadykov, R. (2016). Column generation based approaches for a tour scheduling
problem with a multi-skill heterogeneous workforce. European Journal of Operational Research, 252 , 1019–1030.

[13] Gouareb, R., Friderikos, V., & Aghvami, A. H. (2018). Delay sensitive virtual network function placement and
routing. In 2018 25th International Conference on Telecommunications (ICT) (pp. 394–398). IEEE.

[14] Gupta, A., Habib, M. F., Chowdhury, P., Tornatore, M., & Mukherjee, B. (2015). Joint virtual network function
placement and routing of traffic in operator networks. UC Davis, Davis, CA, USA, Tech. Rep, .

[15] Hmaity, A., Savi, M., Askari, L., Musumeci, F., Tornatore, M., & Pattavina, A. (2020). Latency-and capacity-
aware placement of chained Virtual Network Functions in FMC metro networks. Optical Switching and Net-
working , 35 , 100536.

[16] Huin, N., Jaumard, B., & Giroire, F. (2018). Optimal network service chain provisioning. IEEE/ACM Trans-
actions on Networking , 26 , 1320–1333.

[17] Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., & Vanderbeck, F. (2010). Column generation based primal
heuristics. Electronic Notes in Discrete Mathematics, 36 , 695–702.

[18] Kuo, T.-W., Liou, B.-H., Lin, K. C.-J., & Tsai, M.-J. (2018). Deploying chains of virtual network functions: On
the relation between link and server usage. IEEE/ACM Transactions on Networking (TON), 26 , 1562–1576.

[19] Larsen, L. M., Checko, A., & Christiansen, H. L. (2018). A survey of the functional splits proposed for 5G
mobile crosshaul networks. IEEE Communications Surveys & Tutorials, 21 , 146–172.

[20] Li, X., & Qian, C. (2015). The virtual network function placement problem. In IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS) (pp. 69–70). IEEE.

[21] Ljubić, I., Mouaci, A., Perrot, N., & Gourdin, E. (2021). Benders decomposition for a node-capacitated virtual
network function placement and routing problem. Computers & Operations Research, 130 , 105227.

[22] Mehraghdam, S., Keller, M., & Karl, H. (2014). Specifying and placing chains of virtual network functions. In
Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on (pp. 7–13). IEEE.

[23] Moens, H., & De Turck, F. (2014). VNF-P: A model for efficient placement of virtualized network functions. In
Network and Service Management (CNSM), 2014 10th International Conference on (pp. 418–423). IEEE.

[24] Mouaci, A. (Sep 23, 2022). SNDLib instances for the Virtual Function Placement and Routing Problem.
https://github.com/mouaciahlam/SNDLib_instances.

[25] Mouaci, A., Gourdin, E., Ljubić, I., & Perrot, N. (2020). Virtual Network Functions Placement and Routing
Problem: Path formulation. In 2020 IFIP Networking Conference (Networking) (pp. 55–63).

[26] Quinn, P., & Nadeau, T. (2015). Problem statement for service function chaining . Technical Report RFC 7498.
[27] Sallam, G., Gupta, G. R., Li, B., & Ji, B. (2018). Shortest path and maximum flow problems under service

function chaining constraints. In INFOCOM Conference on Computer Communications (pp. 2132–2140). IEEE.
[28] Savi, M., Tornatore, M., & Verticale, G. (2015). Impact of processing costs on service chain placement in

network functions virtualization. In 2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN) (pp. 191–197). IEEE.

[29] SNDlib (Dec 10, 2019). SNDlib. http://sndlib.zib.de/.
[30] Tashtarian, F., Varasteh, A., Montazerolghaem, A., & Kellerer, W. (2017). Distributed VNF scaling in large-

scale datacenters: An ADMM-based approach. In 2017 IEEE 17th International Conference on Communication
Technology (ICCT) (pp. 471–480). IEEE.

[31] Tomassilli, A., Huin, N., Giroire, F., & Jaumard, B. (2018). Resource requirements for reliable service function
chaining. In 2018 IEEE International Conference on Communications (ICC) (pp. 1–7). IEEE.

[32] Vanderbeck, F. (2011). Branching in branch-and-price: a generic scheme. Mathematical Programming , 130 ,
249–294.

[33] Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Management Science, 17 , 712–716.

26

https://github.com/mouaciahlam/SNDLib_instances
http://sndlib.zib.de/

	Introduction
	Problem definition and related work
	Related work

	First extended formulation: the Path-based Formulation
	MIP formulation
	The pricing problem
	Linear relaxation of path variables

	 Second extended formulation: the model DW
	MIP formulation
	The pricing problem
	Branching on variables

	Strengthening inequalities
	Valid inequalities for the model PF
	Strengthening inequalities for both models
	Strengthening the model DW

	Two Branch-and-Price algorithms
	Generic column generation framework
	Branching
	Heuristics

	Computational results
	Benchmark instances
	Obtained results
	Comparison of LP-relaxation bounds
	 blackComparison between the proposed B&P algorithms, a compact formulation and its Branch-and-Benders-cut implementation

	Conclusion

