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Abstract The Maximum (Node-) Weight Connected Subgraph Problem(MWCS)
searches for a connected subgraph with maximum total weightin a node-weighted
(di)graph. In this work we introduce a new integer linear programming formulation
built on node variables only, which uses new constraints based on node-separators.
We theoretically compare its strength to previously used MIP models in the literature
and study the connected subgraph polytope associated with our new formulation. In
our computational study we compare branch-and-cut implementations of the new
model with two models recently proposed in the literature: one of them using the
transformation into the Prize-Collecting Steiner Tree problem, and the other one
working on the space of node variables only. The obtained results indicate that the
new formulation outperforms the previous ones in terms of the running time and in
terms of the stability with respect to variations of node weights.

1 Introduction

TheMaximum (Node-) Weight Connected Subgraph Problem(MWCS) is the prob-
lem of finding a connected subgraph with maximum total weightin a node-weighted
(di)graph. It belongs to the class of network design problems and has applications
in various different areas such as forestry, wildlife preservation planning, systems
biology, computer vision, and communication network design.
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Lee and Dooly [18] introduced a cardinality-constrained version of the problem
for building a designed fiber-optic communication network over time, where the
given node weights reflect their degree of importance. They defined themaximum-
weight connected graph problemfor an undirected graph with given node weights,
in which they search the connected subgraph of maximum weight consisting of ex-
actly a predescribed number of nodes. The same problem version was considered
already in [14] (the authors called itConnected k-Subgraph Problem) for a Norwe-
gian off-shore oil-drilling application.

Another application arises in the area of system biology [8,22, 1]. Yamamoto
et al. [22] suggest the cardinality-constrained MWCS in order to detect core source
components in gene networks, which seem to be responsible for the difference be-
tween normal cells and mutant cells. The input graphs are constructed from gene
regulation networks combined with gene expression data provided as node weights.
Maximum weight connected subgraphs are considered to be good candidates for
these core source components. A directed version of the MWCShas been con-
sidered in Backes et al. [1], where the most deregulated connected subnetwork in
regulatory pathways with the highest sum of node scores (arising from expression
data) is searched. In their model, they call a subgraph connected if all the nodes are
reachable from one node, also called theroot in the subgraph. The detected roots
are likely to be the molecularkey-playersof the observed deregulation.

A budgeted version arises in conservation planning, where the task is to select
land parcels for conservation to ensure species viability,also calledcorridor design
(see, e.g. [7]). Here, the nodes of the graph do not only have node weights associated
with the habitat suitability but also some costs, and the task is to design wildlife
corridors that maximize the suitability with a given limited budget. Also in forest
planning, the MWCS arises as a subproblem, e.g., for designing a contiguous site
for a natural reserve or for preserving large contiguous patches of mature forest [3].

A surprising application of the MWCS arises in activity detection in video se-
quences. Here, a 3D graph is constructed from a video in whichthe nodes corre-
spond to local video subregions and the edges to their proximity in time and space.
The node weights correspond to the degree of activity of interest, and so the maxi-
mum weight connected subgraph corresponds to the portion ofthe video that maxi-
mizes a classifier’s score [4].

All the above mentioned applications have in common that theMWCS arises
with node weights only. In many papers, the MWCS has been solved by transform-
ing the given instance to thePrize-Collecting Steiner Tree Problem. Here, the given
graph has non-negative node weights and negative edge costs, and the task is to
find a maximum weight subtree, where the weight is computed asthe sum of the
node and edge weights in the subtree. The Prize-Collecting Steiner Tree Problem
has been studied intensively in the literature (see, e.g., [16, 20]), and the publicly
available branch-and-cut (B&C) code of [20] is used in many recent applications to
solve the underlying problems to optimality.

However, in their recent work, Backes et al. [1] attack the MWCS directly, which
has the advantage to avoid variables for the arcs. The authors suggest a new integer
linear programming formulation which is based on node variables only. The inten-
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tion of our research was to study the MWCS straightly, and to suggest tight MIP
formulations that improve the MIP models from the literature in theory and practice.

Our Contribution: We propose a new MIP model for the MWCS based on the
concept of node separators in digraphs. We provide a theoretical and computational
comparison of the new model with other models recently used in the literature.
We show that the new model has the advantage of using only nodevariables while
preserving the tight LP bounds of the Prize-Collecting Steiner Tree (PCStT) model.
Furthermore, we study the connected subgraph polytope and show under which
conditions the newly introduced inequalities are facet defining. In an extensive
computational study, we compare different MIP models on a set of benchmark
instances used in systems biology and on an additional set ofnetwork design
instances. The obtained results indicate that the new formulation outperforms the
previous ones in terms of the running time and in terms of the stability with respect
to variations of node weights.

The paper is organized as follows. Section 2 contains a formal definition of the
MWCS and some complexity results. The following Sections provide four different
MIP formulations and polyhedral studies. Our B&C algorithmand the practical
experiments are discussed in Section 5.

2 The Maximum Weight Connected Subgraph Problem

In this section we formally introduce the MWCS for directed graphs and discuss
some complexity results.

Definition 1 (The Maximum Weight Connected Subgraph Problem, MWCS) Given
a digraph G= (V,A), |V| = n, with node weights p: V → Q, the MWCS is the
problem of finding a connected subgraph T= (VT ,AT) of G, that maximizes the
score p(T) = ∑v∈VT

pv and such that there exists a node i∈VT (calledroot or key
player) such that every other node j∈VT can be reached from i by a directed path
in T .

The MWCS in undirected graphs is to find a connected subgraphT that maxi-
mizes the scorep(T). However, ifG= (V,E) is an undirected graph, without loss of
generality we will consider its bidirected counterpart(V,A) whereA is obtained by
replacing each edge by two oppositely directed arcs. Hence,it is sufficient to present
results that hold for digraphs (which are more general), andthe corresponding re-
sults for undirected graphs can be easily derived from them.We assume that in our
MWCS instances always positive and negative node weights are present, otherwise,
the solution would be trivial. Observe that any feasible solution of the MWCS con-
tains a tree with the same solution value. Hence it is equivalent to search a maximum
node-weighted tree in the given graph.
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Furthermore, it can be distinguished between therootedandunrootedMWCS,
i.e., a root noder can be pre-specified or not. In this paper we will concentrateon
the unrooted MWCS, or simply the MWCS in the rest of the paper.

Regarding the complexity of the MWCS, it has been shown that the problem is
NP-hard (in the supplementary documentation of the paper by[15], the authors pro-
vide an NP-hardness proof sketched by R. Karp). Since it is possible to translate the
problem to the Prize-Collecting Steiner tree problem, all its polynomially solvable
cases carry over to the MWCS. E.g., the PCStT is solvable in polynomial time for
the graph class of bounded treewidth [2].

Furthermore, one can show that the following result holds even when the MWCS
is defined on undirected graphs:

Proposition 1 It is NP-hard to approximate the optimum of the MWCS within any
constant factor0< ε < 1.

Proof. For a given MWCS instance, letAPPbe the objective function value of an
approximate solution, and letOPT be the optimal solution value. Recall that for
a given constant 0< ε < 1, a given problem can be approximated within factorε
if and only if APP/OPT≥ ε, for any problem instance. To prove this result for
the MWCS it is sufficient to make a reduction from the SAT problem that works
similarly to the one given in [9, cf. Theorem 4.1]. By doing so, we can show that for
a given formulaφ for SAT, we can build an instanceG = (V,E) of the MWCS in
polytime, such that: (i) ifφ is a yes-instance, then the optimal MWCS solution onG
has valueε(1+ ε3), and (ii) if φ is a no-instance, then the optimal MWCS solution
onG has valueε2. ⊓⊔

Some applications consider thecardinality-constrained MWCS, where the task is
to find a connected subgraph withK nodes. Hochbaum and Pathria [14] have shown
that this problem version is NP-hard even if all node weightsare 0 or 1 and the graph
is either bipartite or planar. For trees and for complete layered DAGs, it is solvable in
polynomial time via dynamic programming [14, 19]. Observe that for this problem
version, the node weights can be assumed to be all positive, and the maximization
variant and the minimization variant are equivalent. Goldschmidt [13] noted that
no approximation algorithm is known with a factor better than O(K), and such an
algorithm is almost trivial to find. The cardinality-constrained MWCS (and also the
MWCS) can be solved by translating it into the edge-weightedversion, which has
been studied as thek-Minimum Spanning Tree Problem(k-MST) or k-Cardinality
Tree Problemin the literature (see, e.g., [10, 6]).

3 MIP Formulations for the MWCS

In this section we revise three MIP models for the MWCS recently presented in the
literature, and propose a novel approach based on the concept of node separators in
digraphs.
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The MIP formulations considered in this paper are based on the observation
that if there is a path betweeni and any other node inT = (VT ,AT), then we will
search for a subgraph which is an arborescence rooted ati ∈ VT . In our models,
two types of binary variables will be used to describe a feasible MWCS solution
T = (VT ,AT): binary variablesyi associated to nodesi ∈ V will be set to one iff
i ∈VT , and additional binary variablesxi will be set to one iff the nodei ∈V is the
key player, i.e., if it is used as the root of the arborescence.

Notation and Preliminaries: A set of verticesS⊂ V (S 6= /0) and its complement
S=V \R induce two directed cuts:(S,S) = δ+ (S) =

{

(i, j) ∈ A | i ∈ S, j ∈ S
}

and
(S,S) = δ− (S) =

{

(i, j) ∈ A | i ∈ S, j ∈ S
}

. When there is an ambiguity regarding
the graph in which the directed cut is considered, we will sometimes writeδG instead
of only δ to specify that the cut is considered w.r.t. graphG. For a setC ⊂ V,
let D−(C) denote the set of nodes outside ofC that have ingoing arcs intoC, i.e.,
D−(C) = {i ∈V \C | ∃(i,v) ∈ A,v∈C}.

A digraphG is called strongly connected (or simply,strong) if for any two dis-
tinct nodesk andℓ from V, there exists a(k, ℓ) path inG. A nodei is a cut point in
a strong digraphG if there exists a pair of distinct nodesk andℓ from V such that
there is no(k, ℓ) path inG− i.

For two distinct nodesk andℓ from V, a subset of nodesN ⊆V \ {k, ℓ} is called
(k, ℓ) node separatorif and only if after eliminatingN fromV there is no(k, ℓ) path
in G. A separatorN is minimal if N\ {i} is not a(k, ℓ) separator, for anyi ∈ N. Let
N (k, ℓ) denote the family of all(k, ℓ) separators. Obviously, if∃(k, ℓ) ∈ A or if ℓ is
not reachable fromk, we haveN (k, ℓ) = /0. Let Nℓ = ∪k6=ℓN (k, ℓ) be the family
of all node separators with respect toℓ ∈V that we will refer to asℓ-separators.

For binary variablesa ∈ {0,1}|F|, we denote bya(F ′) the sum∑i∈F ′ ai for any
subsetF ′ ⊆ F .

3.1 The Prize-Collecting Steiner Tree Model

In [8] the authors observed that the MWCS on undirected graphs is equivalent to the
Prize-Collecting Steiner Tree Problem (PCStT), in the sense that there exists a trans-
formation from the MWCS into the PCStT such that each optimalsolution of the
PCStT on the transformed graph corresponds to an optimal MWCS solution from
the original graph. Recall that, given an undirected graphH = (VH ,EH) with non-
negative node weights ˜pv and non-negative edge costs ˜ce, the PCStT is the problem
of finding a subtreeTH of H that maximizes the function∑v∈TH

p̃v−∑e∈TH
c̃e, i.e.,

the difference between the collected node prizes and edge costs. The transformation
from the MWCS into the PCStT is given as follows: Given an input graphG of the
MWCS we setH := G andw= minv∈V pv (note, thatw< 0). In order to get non-
negative node weights, we set ˜pv := pv−w ∀v∈V andc̃e =−w, for all e∈ E. This
transformation also works for digraphs, i.e., ifH is a digraph, the PCStT consists of
finding a subarborescence ofH (rooted at some nodei ∈V) that maximizes the given
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objective function. The transformation is correct, since any feasible solution is an
arborescence, which has indegree 1 for every node, and the weight transformations
neutralize each other.

We now present the MIP model proposed in [20] for the PCStT that is used
for solving the MWCS after transforming it into the PCStT (see [8]). Consider a
transformation from a (directed or undirected) PCStT instance into a rooted digraph
Gd = (Vd,Ad) that works as follows: If the input graphG = (V,E) is undirected,
then we create the arc setA by bidirecting each edge. In any case we now have a
directed graphG = (V,A). The vertex setVd = V ∪ {r} contains the nodes of the
input graphG and an artificial rootvertexr. We add new arcs from the rootr to
nodesv whose out-degree is non-empty in order to get the arc setAd i.e., Ad =
A∪ {(r,v) | v ∈ V andδ+(v) 6= /0}. All arc weights are set to the weights of their
undirected counterparts, and the weight of an arc(r,v) ∈ Ad is set tow.

In the graphGd, a subgraphTd =
(

VTd ,ATd

)

that forms a directed tree rooted at
r is called arooted Steiner arborescence. It is a feasible solution of the PCStT if
the out-degree of the root is equal to one. To model feasible Steiner arborescences
in Gd, we will use two types of binary variables: (a) binary variablesyi introduced
above associated to all nodesi ∈V, and (b) binary variableszi j , such thatzi j = 1 if
arc(i, j) belongs to a feasible Steiner arborescenceTd andzi j = 0 otherwise, for all
(i, j) ∈ Ad.

The set of constraints that characterizes the set of feasible solutions of the un-
rooted PCStT is given by:

z(δ−(i)) = yi , ∀i ∈V \ {r} (1)

z(δ− (S))≥ yk, ∀S⊆V \ {r}, k∈ S (2)

z(δ+(r)) = 1. (3)

The in-degreeconstraints (1) guarantee that the in-degree of each vertexof the tree
is equal to one. The directed cut constraints (2) ensure thatthere is a directed path
from the rootr to each costumerk such thatyk = 1. The equality (3) makes sure that
the artificial root is connected to exactly one of the nodes. Thus, the MWCS can be
formulated using the following model that we will denote by(PCStT):

max

{

∑
v∈V

(pv−w)yv+ ∑
(i, j)∈Ad

wzi j | (y,z)satisfies (1)-(3), (y,z) ∈ {0,1}n+|Ad|
}

.

The(PCStT) model uses node and arc variables (y andz) given that it relies on
an equivalence with the PCStT. However, considering Definition 1 it seems more
natural to find a formulation based only in the space ofy variables since no arc
costs are involved. In the next section we will discuss several models that enable
elimination of arc variables in the MIP models.
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3.2 Model of Backes et al. 2011

Recently, in [1] a new MIP model for the MWCS is introduced which avoids the
explicit use of arc variables. LetC denote the family of all directed cycles inG. The
new model, that we will denote by(CYCLE), reads as follows:

x(V) = 1 (4)

xi ≤ yi , ∀i ∈V (5)

y(D−(i))≥ yi − xi, ∀i ∈V (6)

y(C)− x(C)− y(D−(C))≤ |C|−1, ∀C∈ C (7)

(x,y) ∈ {0,1}2n. (8)

Inequalities (4) make sure that one node is selected as a root, and inequalities (5)
state that if the node is chosen as a root, it has to belong to the solution. Con-
straints (6) are thein-degree constraints– they ensure that for each node which
is not the root, at least one of the incoming neighbors needs to be taken into the
solution. In a directed acyclic graph, in-degree constraints are sufficient to guaran-
tee connectivity, but in general, imposing only the in-degree constraints may allow
solutions that consist of several disconnected components. To avoid this, cycle con-
straints (7) are added to guarantee connectivity. These constraints make sure that
whenever all nodes from a cycle are taken in a solution, and none of them is set as
the root, at least one of the neighboring nodes fromD−(C) has to be taken as well.

Observation 1 Constraints (7) are redundant for those C∈ C such that C∪
D−(C) =V.

To see this, observe that using the root constraint (4), the cycle constraints (7) can
be rewritten as follows:

y(C)≤ y(D−(C))+ |C|−1+ x(C) = y(D−(C))+ |C|− x(D−(C)),

which is always satisfied by the model due to constraints (5) andyi ≤ 1, for all i ∈V.
In this model an artificial root noder is not explicitly introduced. However, it

is not difficult to see that for any feasible MWCS solution there is a one-to-one
mapping between variableszri introduced above and the variablesxi , for all i ∈V.

The following result shows that the(CYCLE) model provides very weak upper
bounds, in general.

Lemma 1. Given an instance of the MWCS, let OPT be the value of the optimal
solution, and let UB be the upper bound obtained by solving the LP relaxation of
the(CYCLE) model. Then, there exist MWCS instances for which UB/OPT∈ O(n).

Proof. Consider an example given in Fig. 1. The variables of the LP relaxation of
the (CYCLE) model are set as follows:yi = xi = 0 for the nodesi with negative
weights;yi = 1/2 andxi = 0 for the nodesi in the 2-cycles, andxi = yi = 1 for the
node in the center. There areKn = (n−1)/3∈ O(n) branches in this graph. We have
UB= KnM+2M andOPT= 2M, which concludes the proof.⊓⊔
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Fig. 1 An example showing that the LP bounds of the(CYCLE) model can be as bad asO(n). The
labels of nodes represent their weights:M > 0 andL >> M.

3.3 A Model Based on (k, ℓ) Node Separators

We now present an alternative approach to model the MWCS in the space of(x,y)
variables that relies on the constraints that have been recently used by [11] and [3]
to model connectivity in the context of sheet metal design and forest planning, resp.
Notice that for an arbitrary pair of distinct nodes(k, ℓ) in G, if ℓ is taken into the
solution andk is chosen as root, then either (i) there is a direct arc fromk to ℓ, or
(ii) at least one node from any(k, ℓ) separatorN ∈ N (k, ℓ) has to be taken into the
solution. The latter fact can be stated using the following inequalities that we will
refer to asnode-separator constraints:

y(N)− x(N)≥ yℓ+ xk−1, ∀k, ℓ ∈V, ℓ 6= k, N ∈ N (k, ℓ). (9)

If the nodesk andℓ are connected by an arc, thenN (k, ℓ) = /0, in which case we
need to consider the in-degree inequalities (6) to make surek is connected toℓ. Thus,
we can formulate the unrooted MWCS as

(CUT)k,ℓ max

{

∑
v∈V

pvyv | (x,y) satisfies (4)-(6), (9) and(x,y) ∈ {0,1}2n

}

.

Inequalities (9) can be separated in polynomial time in a support graph that splits
nodes into arcs. Given a fractional solution(x̃, ỹ), for each pair of nodes(k, ℓ) such
thatỹℓ+ x̃k−1> 0 we generate a graphGkℓ in which all nodesi 6= k, ℓ are replaced
by arcs. Arc capacities are then set to 1, except for the arcs associated to nodes,
whose capacities are set to ˜yi − x̃i . If the maximum flow that can be sent fromk to ℓ
in Gkℓ is less than ˜yℓ+ x̃k−1> 0, we have detected a violated inequality of type (9).

Using the root constraint (4), inequalities (9) can also be reformulated as follows:

y(N)≥ yℓ+ x(N∪{k})−1 ⇒ y(N)+ x(V \ (N∪{k, l}))≥ yℓ− xℓ,
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which can be interpreted as follows: If nodeℓ is in the solution and it is not the root,
then for eachk ∈V such thatN (k, ℓ) 6= /0 and eachN ∈ N (k, ℓ), either one of the
nodes fromN is part of the solution, or none of the nodes fromN∪{k} is chosen as
the root node.

Inequalities (9) are quite intuitive, however they are not facet defining. In the next
section we will show how the(k, ℓ) node separator constraints can be lifted to obtain
facet defining inequalities.

3.4 A Model Based on Generalized Node Separator Inequalities

Observe that the inequality (9) can be lifted as follows: Assume thatN ∈ N (k, ℓ)
also separates another nodek′ 6= k from ℓ. Since at most one node can
be set as a root, the right-hand side of (9) can be increased asfollows:
y(N)−x(N)≥ yℓ+xk+xk′ −1. In fact, this motivates us to introduce a generalized
family of node separator inequalities, that can be obtainedby a parallel lifting of (9).

Generalized Node-Separator Inequalities:Let ℓ be an arbitrary node inV and let
N ∈ Nℓ be an arbitraryℓ-separator. LetWN,ℓ be the set of nodesi such that there is
a directed(i, ℓ)-path inG−N. More formally:

WN,ℓ = {i ∈V \N | ∃(i, ℓ) pathP in G−N}∪{ℓ}.

Then, for any feasible MWCS solution, the following has to besatisfied: if nodeℓ is
part of a solution, then either the root of the solution is inWN,ℓ, or, otherwise, at least
one of the nodes fromN has to be taken. Hence, the following inequalities, that we
will refer to asgeneralized node-separator inequalities, are valid for the MWCS:

y(N)+ x(WN,ℓ)≥ yℓ, ∀ℓ ∈V, N ∈ Nℓ (gNSep)

Notice that the in-degree inequalities (6) are a subfamily of (gNSep): The in-degree
inequality can be rewritten as∑ j∈D−(ℓ) y j +xℓ ≥ yℓ, i.e., they are a special case of the
generalized node-separator cuts forN = D−(ℓ) in which caseWN,ℓ = {ℓ}. In order
to see that (gNSep) are lifted inequalities (9), notice that(gNSep) can be rewritten
as follows:

y(N)− x(N)≥ yℓ+ x(V \ (N∪WN,ℓ))−1, ∀ℓ ∈V, N ∈ Nℓ.

Together with this observation this proves that the following model is a valid MIP
formulation for the MWCS:

(CUT) max

{

∑
v∈V

pvyv | (x,y) satisfies (4)-(5), (gNSep) and(x,y) ∈ {0,1}2n

}

.
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Proposition 2 Generalized node-separator inequalities can be separatedin poly-
nomial time.

Proof. Consider an auxiliary support graph in which the nodes are splitted as fol-
lows: each nodei ∈V is replaced by an arc(i1, i2). All ingoing arcs intoi are now
connected toi1, all outgoing arcs from nodei are now connected toi2. In other
words, we create a graphG′ = (V ′,A′) such thatV ′ = {i1 | i ∈V}∪{i2 | i ∈V}∪{r}
(r is an artificial root),A′ = {(i2, j1) | (i, j) ∈ A}∪{(i1, i2) | i ∈V}∪{(r, i1) | i ∈V}.
For a given fractional solution(x̃, ỹ) arc capacities inG′ are defined as:

capuv =











ỹi , if u= i1,v= i2, i ∈V,

x̃i , if u= r,v= i1, i ∈V,

1, otherwise.

(10)

We calculate the maximum flow onG′ betweenr and(ℓ1, ℓ2) in G′ for a nodeℓ such
thatỹℓ > 0. To check whether there are violated inequalities of type (gNSep), it only
remains to show that (i) every minimum cut(S,S) in G′ such that the corresponding
flow is less than ˜yℓ corresponds to a (gNSep) inequality for the givenℓ ∈ V and
someN ∈ Nℓ, or (ii) that a corresponding violated (gNSep) cut can be generated
from (S,S) in polynomial time. Observe that any minimum cut(S,S) in G′ which is
smaller than ˜yℓ can be represented as union of arcs adjacent to the root, plusunion
of arcs of type(i1, i2). Hence, each(S,S) cut implies the following inequalities:

∑
(r, j)∈δ−(S)

x j + ∑
(i1,i2)∈δ−(S)

yi ≥ yℓ. (11)

We can now define a partitioning(U,N,W) of the node setV such that:

W = {i ∈V | i1, i2 ∈ S}, N = {i ∈V | i1 6∈ S, i2 ∈ S}, U =V \ (W∪N).

Rewriting the inequality (11), we obtain:x(W)+ y(N) ≥ yℓ. Observe thatU 6= /0.
Indeed, ifU = /0 thenN∪W =V, but then we havex(N)+ y(W) ≥ x(V) = 1≥ ỹℓ,
i.e., such cuts will never be violated. Hence, given the proper partition(U,N,W),
the setN is obviously a(k, ℓ) separator for anyk ∈ U (after removing(r, i1) arcs
from G′, the arcs(i1, i2) ∈ δ−(S) are arc-separators that separateU from the rest of
the graph). IfW contains only nodes that can reachℓ in G−N, then inequality (11)
belongs to the (gNSep) family. Otherwise we reverse all arcsin G−N and perform
a breadth-first search fromℓ. All nodes that can be reached fromℓ (notice that they
cannot belong toU), by definition, determine the setWN,ℓ. If the original cut (11)
was violated, the new one with the left-hand side equal toy(N)+ x(WN,ℓ) will be
violated as well. ⊓⊔
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3.5 Some More Useful Constraints

In this section we present additional constraints that are useful for practically
solving MWCS instances.

Connected Component Inequalities:In some applications of the MWCS, aK-
cardinality constraint is imposed:∑i∈V yi = K. For a given nodek∈V, let Pk contain
all the nodes that are further thanK−1 hops away fromk. In that case, the following
inequalities are valid for the MWCS:

xk+ yℓ ≤ 1, ∀ℓ ∈ Pk. (12)

Rewriting the connected component cuts, we obtain:

∑
j 6=k

x j ≥ yℓ, ∀ℓ ∈ Pk,

these constraints can be further strengthened by down lifting the coefficients of the
left-hand side. Whenever nodeℓ is in the solution, then eitherℓ is the root, or the
root cannot be more thanK−1 hops away fromℓ. LetWℓ be the set of such potential
root nodes includingℓ. We have

x(Wℓ)≥ yℓ, ∀ℓ ∈V.

Out-Degree Inequalities:The following set of inequalities state that whenever a
nodei such thatpi ≤ 0 is taken into a solution, this is because it leads us to another
node with positive weights:

y(D+(i))≥ yi , ∀i ∈V s.t. pi ≤ 0. (13)

Observe that these constraints are not valid ifK-cardinality constraints are imposed.

Symmetry-Breaking Inequalities: In case the input graph is undirected, there ex-
ist many equivalent optimal solutions with different orientations. In order to break
those symmetries, we can impose the following constraint that chooses the node
with the smallest index to be the root of the subgraph:

x j + yi ≤ 1, ∀i < j. (14)

4 Polyhedral Study

Let P denote the connected subgraph (CS) polytope in the space of(x,y) variables:

P = conv{(x,y) ∈ {0,1}2n | (x,y) satisfies (4), (5), (gNSep)}.
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In this section we compare the proposed MIP formulations with respect to their qual-
ity of LP bounds and we show that, under certain conditions, the newly introduced
generalized node-separator inequalities are facet defining for the CS polytope.

4.1 Theoretical Comparison of MIP Models

Let PLP(.) denote the polytope of the LP relaxations of the MIP models presented
above obtained by replacing integrality conditions by 0≤ xi ,yi ≤ 1, for all i ∈ V,
and letvLP(.) be the optimal LP values of the associated MIP relaxations. For the
PLP(PCStT) polytope, we setProj(x,y)(PLP(PCStT)) = {(x,y) ∈ {0,1}2n | xi =
zri and(y,z) ∈ PLP(PCStT)}. We can show that:

Proposition 3 We have:

1. Proj(x,y)(PLP(PCStT)) = PLP(CUT) ( PLP(CUTkℓ) and PLP(CUT) (

PLP(CYCLE).
2. Moreover, there exist MWCS instances such that vLP(CYCLE)/vLP(CUT) ∈

O(n).
3. The polytopesPLP(CYCLE) andPLP(CUTkℓ) are not comparable.

Proof. 1. Proj(x,y)(PLP(PCStT)) = PLP(CUT): We first show that
Proj(x,y)(PLP(PCStT)) ⊆ PLP(CUT). Let (ŷ, ẑ) be a feasible solution for
the relaxation of thePCStT model, we will show that the solution(x̂, ŷ) such
that x̂i = ẑri belongs toPLP(CUT). Let ℓ ∈ V be an arbitrary node such that
ŷℓ > 0, choose someN ∈ Nℓ and consider the associatedWN,ℓ ⊂ V. Let Gd

be the corresponding directed instance of the PCStT with theroot r (cf. Sec-
tion 3.1). Consider now a cut(Wd,Wd) in Gd whereWd = N ∪WN,ℓ. We have:
δ−

Gd
(Wd) = {(r, i) ∈Ad | i ∈WN,ℓ}∪Rest, whereRest= {( j, i) ∈ Ad | j ∈Wd, i ∈ N}.

Observe thatRest⊆ δ−
Gd
(N) ⊆ ∪i∈Nδ−

Gd
(i). Therefore, we have:

ŷ(N) = ∑
i∈N

ẑ(δ−
Gd
(i))≥ ẑ(δ−

Gd
(N))≥ ẑ(Rest). (15)

Since(Wd,Wd) is a Steiner cut inGd, it holds thatẑ(δ−
Gd
(Wd))≥ ŷℓ. This, together

with (15) implies:

ŷ(N)+ x̂(WN,ℓ)≥ ẑ(Rest)+ x̂(WN,ℓ) = ẑ(δ−
Gd
(Wd))≥ ŷℓ.

To show thatPLP(CUT)⊆Projy(PLP(PCStT)) consider an LP solution(y̌, x̌)∈
PLP(CUT). We will construct a solution(ŷ, ẑ) ∈ PLP(PCStT) such thaťy = ŷ and
ẑr j = x̌ j , ∀ j ∈ V. On the graphG′ (see Proof of Proposition 2) with arc capacities
of (i1, i2) set toy̌i for eachi ∈V, arc capacities of(r, j1) set tox̌ j , and capacities set
to 1 for the remaining arcs, we are able to send ˇyℓ units of flow from the rootr to
everyℓ1 ∈ V ′ such that ˇyℓ > 0. Let f k

i j denote the amount of flow of commodityk,
associated withk1 ∈V ′, sent along an arc(i, j) ∈ A′. Let f be the minimal feasible
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Fig. 2 An example showing thatPLP(CUTkℓ) 6⊆PLP(CYCLE). The LP solutiony4 = y5 = y6 = 1,
y1 = y2 = y3 = x1 = x2 = 1/2 is feasible for the(CUTkℓ) model and infeasible for(CYCLE).

multi-commodity flow onG′ (i.e., the effective capacities onG′ used to route the
flow cannot be reduced without violating the feasibility of this flow). We now define
the values of(ŷ, ẑ) as follows:ẑr j = x̌ j ,∀ j ∈V and

ẑi j =

{

maxk∈V f k
i2 j1

, i, j ∈V

maxk∈V f k
r j1

, i = r, j ∈V
,∀(i, j) ∈ A; ŷi = ẑ(δ−(i)) ,∀i ∈V.

Obviously, the constructed solution(ŷ, ẑ) is feasible for the(PCStT) model and, due
to the assumption thatf is minimal feasible, it follows thaťy = ŷ andx̌ is equivalent
to ẑ, which concludes the proof.

PLP(CUT) ( PLP(CYCLE): Let (x̂, ŷ) be an arbitrary point fromPLP(CUT).
In order to prove that(x̂, ŷ) ∈ PLP(CYCLE) we only need to show that con-
straints (7) are satisfied (recall that in-degree inequalities (6) are contained
in (gNSep)). Given the Observation 1, it is sufficient to consider cyclesC such that
C∪D−(C) ⊂ V. Since for any such cycleC the setD−(C) defines a separator for
any nodeℓ ∈C, from constraints (gNSep) we have that ˆy(D−(C))+ x̂(C) ≥ ŷℓ. For
the remaining nodesj ∈C, j 6= k, we apply the bounds 1≥ ŷ j . Summing up together
these|C| inequalities, we obtain (7).
2. Consider the example given in Fig. 1 for which the(CUT) model finds the opti-
mal solution.
3. The example given in Fig. 1 shows an instance for which the LP solution is fea-
sible for the(CYCLE) and infeasible for the(CUTkℓ) model. The example given in
Fig. 2 shows an instance for which the LP solution is feasiblefor the(CUTkℓ) and
infeasible for the(CYCLE) model. ⊓⊔

4.2 Facets of the CS Polytope

In this section we establish under which conditions some of the presented inequali-
ties are facet defining for the CS polytope.

Lemma 2. If G is a strong digraph, then the dimension of the polytopeP is
dim(P) = 2n−1.

Proof. We will construct the set of 2n feasible, affinely independent solutions as
follows: SinceG is strong, we can findn spanning arborescences by choosing each
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i ∈ V as a root. That way, we buildn affinely independent solutions. In addition,
considern single node solutions (for eachi ∈ V), in which we havexi = yi = 1
and all remainingx j = y j = 0, for all j 6= i. The matrix obtained by merging the
characteristic vectors of these solutions has full rank, 2n. ⊓⊔

Lemma 3. Trivial inequalities xi ≥ 0 are facet defining if G is strong and i is not a
cut point in G.

Proof. Consider a familyT of spanning arborescences on the setV \ {i} in which
each j 6= i is taken once as a root. This is possible becauseG− i remains a strong
digraph. There aren− 1 such solutions, and they are affinely independent. Add
now toT single node solutions, for eachj ∈V \ {i}. Finally, add toT a spanning
arborescence inG with a root j 6= i. The matrix associated to incidence vectors from
T has full rank, 2n−1. ⊓⊔

Lemma 4. Trivial inequalities yi ≤ 1 are facet defining if G is strong.

Proof. Consider a spanning arborescenceT rooted ati. We will then apply apruning
techniquein order to generaten affine independent feasible MWCS solutions. We
start withT in which casey consists of all ones. We iteratively remove one by one
leaves fromT, until we end up with a single root nodei. Thereby, we generate a
family T of n affinely independent solutions. We then add toT n− 1 solutions
obtained by choosing a spanning arborescence rooted atj, for all j 6= i. The matrix
associated to incidence vectors fromT , has full rank, 2n−1. ⊓⊔

Notice thatyi ≥ 0 are not facet defining inequalities becauseyi = 0 impliesxi = 0.
Similarly, xi ≤ 1 do not define facets ofP because they are dominated byxi ≤ yi .

Lemma 5. Coupling inequalities yi ≥ xi are facet defining if G is strong and i is not
a cut point in G.

Proof. Construct a familyT of n affinely independent solutions by applying prun-
ing to a spanning arborescence rooted ati. Add then toT additionaln−1 arbores-
cences on the setV \{i} in which eachj 6= i is taken once as a root (this is possible
becauseG− i remains strong). The matrix associated to incidence vectors fromT ,
has full rank, 2n−1. ⊓⊔

Proposition 4 Givenℓ ∈V and N∈ Nℓ, the associated(gNSep)inequality is facet
defining if G is strong, N is a minimalℓ-node separator and the subgraph induced
by WN,ℓ (|WN,ℓ| ≥ 2) is strong.

Proof. We prove the result by the indirect method. LetF(ℓ,N) = {(x,y)∈ {0,1}2n |
y(N)+x(WN,ℓ) = yℓ}. Consider a facet defining inequality of the formax+by≥ a0.
We will show that if all points inF(ℓ,N) satisfy

ax+by = a0, (16)

then (16) is a positive multiple of (gNSep). Considerℓ′ ∈W, ℓ′ 6= ℓ. A path fromℓ to
ℓ′, completely contained inWN,ℓ and rooted atℓ exists inG (WN,ℓ is strong) and it is
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a feasible MWCS solution that belongs toF(ℓ,N). Let (x1,y1) be the characteristic
vector of this path. A subpath obtained after removingℓ′ from this path, also rooted
at ℓ, is another feasible solution fromF(ℓ,N), and let(x2,y2) be the corresponding
characteristic vector. We have:ax1+by1−ax2−by2= 0. Therefore we haveb′ℓ = 0,
for all ℓ′ ∈ W, ℓ′ 6= ℓ. Consider now a nodek ∈ U = V \ (N∪WN,ℓ). To show that
bk = 0, for all k∈U , we distinguish the following cases:
(1) If D−(k)∩U 6= /0, then there exists an arc(k′,k), k′ ∈ U that builds a feasible
MWCS solutionB from F(ℓ,N). Also, the single node solutionB′ = {k′} belongs
to F(ℓ,N). After subtracting the equations (16) with the substitutedcharacteristic
vectors ofB andB′, we obtainbk = 0.
(2) If there exists an arc(i,k) ∈ A for somei ∈ N, then, consider a pathP from
i to ℓ that does not crossN∪U (suchP exists becauseN is minimal) and a path
P′ = P∪{(i,k)}, in both of them we seti as root. BothP andP′ belong toF(ℓ,N).
After subtracting the equations (16) with the substituted characteristic vectors ofP
andP′, we obtainbk = 0.
(3) Finally, if there exists an arc( j,k) ∈ A for some j ∈ WN,ℓ, we consider a path
Q from ℓ to j in WN,ℓ (such path exists becauseWN,ℓ is strong) and a pathQ′ =
Q∪{( j,k)}. Both Q andQ′ belong toF(ℓ,N). After subtracting the equation (16)
with the substituted characteristic vectors ofQ andQ′, we obtainbk = 0. Hence,
the equation (16) can be rewritten asax+∑i∈N∪{ℓ}bixi = a0. Notice that a single
node solution{k} belongs toF(ℓ,N), for eachk ∈ U . By plugging the associated
vector into (16), it follows thatak = a0, for all k ∈ U . Consider now two spanning
arborescences inWN,ℓ, one rooted atℓ, the other rooted at arbitraryℓ′ 6= ℓ (this
is possible, becauseWN,ℓ is strong). After subtracting the equation (16) with the
substituted characteristic vectors of those two arborescences, we obtainaℓ′ = aℓ =
α, for all ℓ′ ∈WN,ℓ. SinceN ∈Nℓ and it is minimal, for eachi ∈ N there existk∈U
such that there exist a pathPk from k to ℓ that crossesN exactly at the nodei. Let P′

k
be a subpath ofPk from i to ℓ. Both paths belong toF(ℓ,N) and after subtracting the
associated equations (16), it follows thatai = ak, and henceai = a0, for all i ∈ N.

So far, (16) can be rewritten asa0x(WN,ℓ)+αx(WN,ℓ)+∑i∈N∪{k}biyi = a0. After
plugging in the characteristic vector ofP′

k into this equation, it follows thata0 +
bi + bℓ = a0, and therefore we havebi = −bℓ = β , for all i ∈ N. Equation (16)
becomes nowa0x(WN,ℓ)+αx(WN,ℓ)+βy(N)−βyℓ = a0. Notice that solution{ℓ}
also belongs toF(ℓ,N), which implies thatα −β = a0. Finally, substitutinga0 in
the previous equation, and using the equation (4),x(V) = 1, we end up with the
following form of (16):

β [−x(WN,ℓ)+ y(N)− yℓ =−1],

which together with equation (4) concludes the proof.⊓⊔
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5 Computational Results

For testing the computational performance of the presentedformulations we have
considered both directed and undirected MWCS instances. The (CYCLE) model of
Backes et al. [1] has been developed for directed graphs (regulatory networks) with
K-cardinality constraints, i.e., any feasible solution hasto be comprised by exactly
K nodes (for a givenK > 1). Executables of this implementation are available online
(see [12]). For the(PCStT) and(CUT) models we have developed our own B&C
implementations that work with and without cardinality constraints. The real-world
instances used in [1] requireK-cardinality constraints. Therefore, in the part of our
computational study conducted on digraphs, we impose cardinality constraints for
all three models,(PCStT), (CUT) and(CYCLE). For the other set of instances we
take the size of the unconstrained optimal solution (obtained by the(CUT) model)
and provide the corresponding value ofK as input to the(CYCLE) model.

In the following, we describe (i) components of the designedB&C algorithms
and some implementation details, (ii) a testbed used for theexperiments, and (iii)
an extensive analysis of the obtained results.

5.1 Branch-and-Cut Algorithms

Separation of Inequalities: For the(PCStT) model, connectivity inequalities (2)
are separated within the B&C framework by means of the maximum flow algorithm
given by [5]. The separation problem is solved on a support graph whose arc capac-
ities are given by the current LP value ofz variables. We randomly select a terminal
v ∈ V such thatpv > 0 andyv > 0, and calculate the maximum flow between the
artificial root andv, and insert the corresponding constraint (2), if violated.

For the(CUT) formulation, the separation of (gNSep) is performed by solving
the maximum flow problems as described in the proof of Proposition 2, with arc
capacities given by (10).

In all cases, instead of adding a single violated cut per iteration, we usenested,
back-flowandminimum cardinalitycuts (see also [17, 20]) to add as many violated
cuts as possible. We restrict the number of inserted cuts within each separation
callback to 25.

Primal Heuristic: Our primal heuristic finds feasible solutions using the informa-
tion available from the current LP solution in a given node ofthe branch-and-bound
tree. Although we develop two different B&C algorithms, derived from two MIP
models, the embedded primal heuristics are based on the sameidea. We select a
subset of potential “key-players” (nodes with a positive outgoing degree and with
sufficiently largey values) and run a restricted breadth-first search (BFS) fromeach
of them. Out of the constructed connected components, i.e.,feasible solutions of
the MWCS, we select the one with the largest total weight.
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MIP Initialization: We initialize the(PCStT) model with the root out-degree con-
straints (3). For the undirected MWCS, we also add symmetry-breaking constraints
(similar to (14)) and inequalitieszji + zi j ≤ yi , for all e : {i, j} ∈ E since they
avoid too frequent calls of the maximum flow procedure. For the variants where
no cardinality constraint is defined, we also include the flow-balance constraints:
z(δ−(i)) ≤ z(δ+(i)), for all i ∈V such thatpi ≤ 0. These constraints ensure that a
node with non-positive weight can not be a leaf in an optimal PCStT solution.

We initialize the(CUT) model with the constraints (4), (5), (6). For the cases
where no cardinality constraint is imposed, the out-degreeconstraints (13) are
also included. Finally, the symmetry-breaking constraints (14) are added for the
undirected case.

Implementation: The proposed approaches were implemented using
CPLEXTM12.3 and Concert Technology. All CPLEX parameters were set to
their default values, except the following ones: (i) CPLEX cuts were turned off, (ii)
CPLEX heuristics were turned off, (iii) CPLEX preprocessing was turned off, (iv)
the time limit was set to 1800 seconds (except for the instances from [1]), and (v)
higher branching priorities were given toy variables, in the case of the(PCStT)
models, and tox variables, in the case of the(CUT) model. All the experiments
were performed on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM,
where each run was performed on a single processor.

5.2 Benchmark Instances

We have considered two sets of benchmark instances arising from applications in
systems biology and from network design.

System Biology Instances:We have considered instances used in [8] and [1]. In [8],
only a single protein-protein interaction network is considered. The instance is pre-
sented as an undirected graph comprised by 2034 nodes (proteins) and 8399 edges
(interactions). The considered protein-protein interaction network corresponds to a
well studied human one and the protein scores come from a lymphoma microarray
dataset (LYMPH). The instance is available at [21].

In [1], six instances of regulatory networks, i.e., directed graphs, were consid-
ered. These instances have the same underlying network (KEGG human regulatory
network of protein complexes), which is a graph comprised by3917 nodes and
133 310 arcs. The differences between the six benchmark instances of this set
are the scores associated to the proteins (or protein complexes) which depend
on the pathogenic process under consideration. All the instances are available
online (see [12]). For providing a valid comparison with themethod proposed
in [1], it is necessary to impose cardinality constraints tothe solutions. Values
K ∈ {10,11, . . . ,25} are considered. This leads to 16 different instances for each of
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the six different score settings.

Network Design Instances:These are Euclidean random instances which are gen-
erated as proposed by Johnson, Minkoff, and Phillips in their paper on the Prize-
Collecting Steiner Tree Problem [16]. The topology of theseinstances is similar to
street networks. First,n nodes are randomly located in a unit Euclidean square. A
link between two nodesi and j is established if the Euclidean distancedi j between
them is no more thanα/

√
n, for a fixedα > 0.

To generate node weights, we performed the following procedure: δ% of the
nodes are randomly selected to be associated with non-zero weights. Out of them,
ε% are associated with a weight taken uniformly randomly from[−10,0] and the
remaining ones are associated with a weight taken uniformlyrandomly from[0,10].

When generating these instances we do not impose whether links are directed or
not. When reading the input files we define if the link betweeni and j corresponds to
an edgee: {i, j} or to an arca : (i, j). This allows us to use the same set of instances
for both, the directed and the undirected case.

For the computational experiments we consideredn ∈ {500,750,1000,1500},
α ∈ {0.6,1.0}, δ ∈ {0.25,0.50,0.75}, ε ∈ {0.25,0.50,0.75}. This leads to 18 in-
stances for each fixed value ofn.

5.3 Algorithmic Performance

MWCS on Digraphs: For this study, we consider the instances GSE13671,
GDS1815, HT-29-8, HT-29-24, HT-116-8, HT-116-24 from [1] and our randomly
generated instances.

In Fig. 3, using the box plots we show the log10-values of the running times for
the three approaches considering all instances of [1] and all values ofK. There are
16×6= 96 problems in total for each approach. The values marked with an asterisk
correspond to the log10-values of the mean running time (shown as the label next to
the asterisk). The values marked with symbol× correspond to the log10-values of
the maximum running times (the label next to it shows the nameof the instance,K,
and the running time). The obtained results indicate that, for this group of instances,
(PCStT) is the approach with the worst performance since most of the running times
are at least one order of magnitude larger than the ones of theother two approaches.
When comparing(CUT) and(CYCLE), one can observe that the distribution of the
running times of the(CYCLE) model has a larger dispersion (thebox is wider) and
its outliers are almost one order of magnitude larger than the maximum running
times of the(CUT) model. In a few cases however the(CYCLE) model solves some
instances faster than the(CUT) model (which can be seen from the minimum values
and the values in the first-quartile). Overall, the mean value of the running times
of the (CUT) model is 22 sec which is almost three times smaller than the mean
running time of the(CYCLE) model (77 sec). The value of the maximum running
time of the(CUT) model is 193 sec which is more than 10 times smaller than the
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Fig. 3 Box plots of log10-values of the running times [sec] (instances from [1],K ∈ {10, . . . ,25}).

maximum running time of the(CYCLE) model (2245 sec, reached forK = 18 for
the instance GSE13671, see Fig. 3). The fact that the box of the (CUT) model is
considerably narrower than the box of the(CYCLE) model, indicates that the(CUT)
approach is more robust regarding the variation of the scores of protein complexes
and the value ofK.

In Table 1 we report for each instance from [1] the average values (over all
K ∈ {10, . . . ,25}) of the running times and the average number of cuts added for
each of the(PCStT), (CUT) and(CYCLE) models (cf. columns Time(sec), #(2),
#(gNSep) and #(7), respectively). In columnδ we show the fraction of nodes with
a score different than 0 and in columnε the fraction of them with a negative score.
The results indicate that the performance of the(CYCLE) model strongly depends
on the instances under consideration (the average running times of GSE13671 are
two orders of magnitude larger that the ones of HT-116-8), which also explains the
dispersion shown in Fig. 3. Likewise, for the(PCStT) model, the average running
time for the instance HT-29-8 is an order of magnitude largerthan for the instance
GSE13671. In contrast to the unstable performance of(PCStT) and(CYCLE) mod-
els, the(CUT) model seems to be more independent on the type of considered
instances. From the same table we may conclude that the number of cuts needed to
prove the optimality is one order of magnitude smaller for the(CUT) model than for
the other two models. This means that the (gNSep) cuts are more effective in closing
the gap than the (7) and (2) cuts. Regardingδ andε, it seems that the(CUT) model
is not sensitive to their values, while the(CYCLE) model performs better whenε is
smaller.

For the set of Euclidean network instances, running times ofthe (CUT) and
(CYCLE) model are given in Fig. 4(a) and 4(b), respectively (for manyinstances
we reached the time-limit for the(PCStT) model, so we do not consider it here).
This time we group instances according to different combinations of(δ ,ε) values.
Each box contains 16×8= 128 values obtained for the settings:K ∈ {10, . . . ,25},
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n ∈ {500,750,1000,1500} andα ∈ {0.6,1.0}. Comparing Fig. 4(a) and 4(b) we
observe that although the average running times (marked with asterisk) of the
(CUT) model are in general one order of magnitude smaller than those of the
(CYCLE) model, both of them present a similar pattern: (i) For a givenδ , the
increase ofε from 0.25 to 0.75 produces a worsening of the algorithmic perfor-
mance. This worsening is visible not only in the increase of the running times, but
also in their higher dispersion (wider boxes and more outliers). Increasingε (for
a fixed δ ), means that a larger proportion of nodes has a negative weight; since
our goal is to find a connected component of exactlyK nodes the more nodes with
negative weight, the more difficult is the task of reaching the “attractive” nodes
that lead to a better solution. (ii) On the other hand, increasingδ from 0.25 to 0.75
produces an improvement of the algorithmic performance, i.e., the more nodes
with non-zero weights, the easier the problems. One possible reason for this could
be the symmetries induced by a large portion of nodes with zero weight (as it is
the case forδ = 0.25). Hence, by decreasing this portion (i.e., increasingδ ) the
cutting-planes that are added through the separation become more effective, and
the primal heuristic is able to find more diverse, and eventually better, incumbent
solutions.

MWCS on Undirected Graphs: For this computational comparison we do not im-
pose cardinality constraints. In order to be able to performa comparison with the
(CYCLE) model that requires a digraphG andK as its input, we run the(CYCLE)
model with (i)G transformed into a digraph, and (ii) with the value ofK set to be
the size of the optimal unconstrained MWCS solution (obtained by, e.g., the(CUT)
model). For these graphs we impose a time limit of 1800 seconds. Fig. 5 shows the
performance profile of the three approaches regarding the total running time. Fig. 6
shows the performance profile of the achieved gaps within this time limit. We ob-
serve that also in the case of undirected graphs, the(CUT) approach significantly
outperforms the(CYCLE) and the(PCStT) approach: While the(CUT) approach
produces solutions of less than 1% of gap in almost 100% of theinstances, the
(PCStT) approach produces solutions with more than 15% of gap in morethan 40%
of the instances. The(CYCLE) approach solves about 50% of instances to optimal-
ity, with most of the gaps of the unsolved instances being below 15%.

In Table 2 we provide more details on these results. Each row corresponds to
a fixed value ofn, with 18 different instances obtained by varyingδ , ε and α.
Column #NOpt indicates how many out of those 18 instances were not solved to
optimality within the imposed time limit of 1800 seconds. For a givenn, and for each
of the three approaches we additionally report on the following values: the average
running time (cf. column Time(sec)); the average gap of those instances that were
not solved to optimality (cf. column Gap(%)), and the average number of inserted
cutting planes (cf. columns #(2), #(gNSep), #(7), respectively). These results show
that the(CUT) model is by far more effective than the(CYCLE) model for this
group of instances. The average running times of the(CUT) model are one order
of magnitude smaller than those of the(PCStT) and(CYCLE) model. All but four
instances can be solved by the(CUT) model to optimality, while in the case of the
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Fig. 4 Dependance of the running times on the(δ ,ε) settings.

(CYCLE) and(PCStT) model, 29 and 42 instances remain unsolved, respectively.
The number of cutting planes of type (gNSep) needed to close the gap is one order
magnitude smaller than the number of cuts of type (7) or (2).

So far, it seems clear that for the considered instances the(CUT) model sig-
nificantly outperforms the(PCStT) approach. However for the LYMPH instance
studied in [8], for whichδ = 1.0 andε = 0.97, the(PCStT) model takes only 3.19
seconds to find the optimal solution while the(CYCLE) model takes 15.56 seconds,
and the(CUT) model 50.70 seconds. The optimal solution, whose objectivevalue
is 70.2, is comprised by 37 nodes with positive weight and 9 with negative weight.
It is not easy to derive a concrete answer of why, for this particular instance, the
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Fig. 5 Performance profile of running times on random undirected instances.
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Fig. 6 Performance profile of final gaps (%) on random undirected instances.

(PCStT) model is faster than the(CUT) model. The following two factors could be
responsible for this behavior: (i) the sparsity of the graph(the number of edges is ap-
proximately four times the number of nodes, while in random instances this ratio is
almost 10) which means that the number ofz variables is not too large, and (ii) there
are significantly less symmetries due to the fact that there are no nodes with zero
weight. These factors might explain why, in this particularcase, it becomes easier
to solve the problem with the prize-collecting Steiner treereformulation, rather than
directly looking for a connected component that maximizes the objective function.
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6 Conclusion

Our work was motivated by the wide range of applications of the MWCS and a
recent work of Backes et al. [1] who were the first ones to propose a MIP model
for the MWCS derived on the set of node variables only. In thispaper we were
able to provide a tight MIP model that outperforms the model from [1] both the-
oretically and computationally. The new model also works onthe space of node
variables and is valid for all previously studied variants of the MWCS (cardinality
constrained, budget constrained and undirected/directedone). We have studied the
CS polytope and we have shown that the newly introduced family of generalized
node-separator inequalities is facet defining. Our computational study has shown
that the new approach outperforms the previously proposed ones, in particular if the
inputs are digraphs with non-empty subsets of zero-weight nodes.
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lvarez-M

iranda
and

Ivana
Ljubić
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Table 1 Average values for instances from [1] (K ∈ {10, . . . ,25}).

(PCStT) (CUT) (CYCLE)

Instance δ ε Time(sec) #(2) Time(sec) #(gNSep) Time(sec) #(7)
GSE13671 0.89 0.73 176.11 1206 17.85 97 341.95 3754
GDS1815 0.92 0.64 878.63 3565 46.09 225 37.95 1264
HT-29-8 0.92 0.66 2846.36 5400 22.03 182 14.17 178
HT-29-24 0.92 0.61 196.56 1292 11.40 61 60.59 1330
HT-116-8 0.92 0.54 623.10 2214 15.26 108 3.21 129
HT-116-24 0.92 0.55 237.78 1149 19.82 93 4.19 130

Average 826.42 2471 22.07 128 77.01 1131

Table 2 Average values for different values ofn (random instances,α ∈ {0.6,1.0}, δ ,ε ∈ {0.25,0.50,0.75}, 18 problems per eachn).

(PCStT) (CUT) (CYCLE)
#nodes #arcs Time(sec) Gap(%) #(2) #NOpt Time(sec) Gap(%) #(gNSep) #NOpt Time(sec) Gap(%) #(7) #NOpt

500 4558 677.24 >15.00 1055 5 15.30 – 69 0 615.36 5.50 4289 6
750 7021 1243.57>15.00 1552 11 108.78 1.27 99 1 471.68 2.64 1721 4
1000 9108 1304.76>15.00 1955 12 150.03 0.29 201 1 990.84 6.76 3176 9
1500 14095 1526.41>15.00 2021 14 453.82 2.08 373 2 1086.19 10.55 2139 10
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