
Stochastic Survivable Network Design Problems:
Theory and Practice
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Abstract

We study survivable network design problems with edge-connectivity require-
ments under a two-stage stochastic model with recourse and finitely many sce-
narios. For the formulation in the natural space of edge variables we show that
facet defining inequalities of the underlying polytope can be derived from the
deterministic counterparts. Moreover, by using graph orientation properties we
introduce stronger cut-based formulations. For solving the proposed mixed in-
teger programming models, we suggest a two-stage branch&cut algorithm based
on a decomposed model. In order to accelerate the computations, we suggest
a new technique for strengthening the decomposed L-shaped optimality cuts
which is computationally fast and easy to implement. A computational study
shows the benefit of the decomposition and the cut strengthening—which signif-
icantly reduces the number of master iterations and the computational running
time. Moreover, we evaluate the stability of the scenario generation method and
analyze the value of the stochastic solution.

Keywords: stochastic network design problems, stochastic integer
programming, branch&cut, Benders decomposition, integer L-shaped method

1. Introduction

Motivation. Survivable network design problems with edge-connectivity require-
ments (SNDPs) are among the most fundamental problems in the field of net-
work optimization. Many classical network design problems including the short-
est path problem, the minimum spanning tree problem, the Steiner tree problem,
the minimum-weight edge-connected subgraph problem, and edge-connectivity
augmentation problems are special cases of the survivable network design prob-
lem. Applications of the (special cases of the) SNDP can be found in many
different fields, e.g., in the design of supply chain and distribution networks or
in the chip layout design [5, 20, 22, 38]. The field of telecommunications belongs
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to the most important applications that request building cost-effective networks
with higher connectivity requirements.

In a typical telecommunication network [11, 12], an edge weighted graph is
given with three types of nodes: “special” offices (which are nodes of type 2
that correspond to important hubs, business customers, or private households
with high-demanding service packages), “ordinary” offices (nodes of type 1 cor-
responding to regular customers, like single households), and “optional” offices
(nodes of type 0 representing street junctions). The goal is to find a cost-
minimal subnetwork which ensures that all special offices are connected by two
paths, all ordinary offices are at least simply connected, and optional offices can
be used to establish connections, if that would lead to a cheaper solution. This
problem is known as the {0, 1, 2}-SNDP. Here, we consider the general SNDP
with arbitrary connectivity requirements between each pair of nodes.

In practice, however, from the moment that the information concerning the
type of node is gathered until the moment in which the solution has to be
implemented, some of the data might change with respect to the initial setting.
In the present article we define a mathematical model that helps decision makers
to deal with the following two types of uncertainty:

• Uncertainty with respect to node types: Node types may change over
time, subject to many external conditions. For example, socio-economic
factors like customer’s purchase power, recession, or inflation may influ-
ence expected customer’s demand. Furthermore, changes in urban city
planning or political factors can lead to changes in the demand of a whole
neighborhood, or availability of a given location to host an office. Finally,
multiple service providers compete for the customers such that customer
demand highly depends on the competing service offers available at the
market.

For all these reasons, during the strategic planning of a telecommunication
network, it remains unclear which potential customers may be willing to
subscribe to the service and to which particular service package.

• Uncertainty with respect to investment costs: The costs of establishing
links (installing new cables, pipes, etc.) may be subject to inflations and
price deviations. Price deviations are common due to the frequent changes
in the underlying technology and (un)availability of the corresponding
equipment.

Hence, a solution obtained using a classical deterministic model might be-
come suboptimal or even infeasible once the network is deployed in which case
a new solution might have to be redefined from scratch.

Despite the great importance of the SNDP and the relevance of the uncer-
tainty for practical applications, to our knowledge, no publications are available
that investigate the SNDP under these two particular sources of data uncer-
tainty. In this article we attempt to close this gap by considering two-stage sto-
chastic versions of survivable network design problems with edge-connectivity
requirements (for an introduction to stochastic programming see, e.g., [3]).
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Thereby, the uncertain data is modeled using random variables with a set of
scenarios defining their possible outcomes. Typically, a solution is comprised by
first- and second-stage decisions such that a partial subnetwork is built in the
first stage which is then completed once the uncertain data becomes available
in the second stage.

More precisely, in the two-stage stochastic survivable network design problem
(SSNDP), network planners want to establish profitable connections now (in the
first stage) while taking all possible outcomes—the scenarios—into account.
In the future (in the second stage) the actual scenario with its requirements
and connection costs is revealed and additional connections can be purchased
(through so-called recourse actions) to satisfy the now known requirements.
The objective is to minimize the expected costs of the solution, i.e., the sum
of the first-stage costs plus the expected costs of the second stage. Thereby,
all connectivity requirements for all scenarios have to be satisfied. The formal
definition of the SSNDP is given in Section 3.

Previous work. There exists a large body of work on different variants of the
deterministic survivable network design problem. We refer to [20, 22] for a com-
prehensive literature overview on the SNDP. Many polyhedral studies were done
in the 90’s, see, e.g., [14, 22]. A decade later the question of deriving stronger
mixed integer programming (MIP) formulations by orienting the k-connected
subgraphs has been considered by e.g. [1, 30]. Among the approximation algo-
rithms for the SNDP, we point to the work of Jain [18] whose approximation
factor of two remains the best one up to date.

Regarding the stochastic variants there are significantly less results published
so far. To the best of our knowledge, the only results about the SSNDP with
general edge/node-connectivity requirements are contained in our short paper
[27]; cf. the next paragraph. One of the investigated special cases of the SSNDP
is the two-stage stochastic Steiner tree problem in which node types are either
zero or one. For this problem approximation algorithms (see, e.g., [15, 42]), MIP
approaches (see [4]), and heuristics (see [17]) were developed. For the SSNDP
involving node types ≥ 2, up to our knowledge, there only exists an O(1) approx-
imation algorithm (see [16]) for the following special case of the {0, k}-SSNDP:
For each pair of distinct nodes i and j a single scenario, whose probability is pij ,
is given in which nodes i and j need to be k-edge-connected. But in general,
however, it follows by [37] that the SSNDP is as hard to approximate as label
cover—which is Ω(log2−ε n) hard. In fact, the hardness-proof already works for
the stochastic shortest path problem.

Besides the design of survivable networks a lot of research has been done
concerning the design of reliable networks (e.g., recent articles can be found
in the special issue [36]). Design of reliable networks under network uncer-
tainty using the approach of chance-constrained programming (see, e.g., [35]),
has been considered in [43, 44]. In chance-constrained programming, there is
usually one decision horizon (i.e., no recourse) and a feasible solution has to
satisfy the constraints with a given probability. In [43, 44] s-t-paths and the
Steiner tree problem, respectively, have been considered under possible network
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failure scenarios. In contrast to the SSNDP studied in this article, these prob-
lems assume the set of customers remains the same across all scenarios but a
whole subnetwork can be subject to failure. Each failure scenario happens with
a certain probability and the goal is to find a reliable network that ensures given
connectivity requirements with a certain probability. The authors introduce sev-
eral (M)IP formulations, facet-defining inequalities, and provide computational
studies.

Our contribution. Our contribution is twofold, it concerns theoretical models
as well as practical algorithms.

Theory: In the past, the seminal result of Nash-Williams [32] has been
used to develop stronger MIP models for the deterministic SNDP by exploiting
graph orientations [7, 8, 30]. Here, we discuss that graph orientation proper-
ties cannot be used in a straight-forward fashion to develop similar models for
the SSNDP. As an alternative, we propose two general ways to develop semi-
directed MIP models in which only the second-stage solutions are oriented. We
develop two novel cut-based MIP models of the deterministic equivalent for solv-
ing the SSNDP on undirected graphs based on these orientation properties. We
prove that the new models are stronger than the original one based on standard
undirected cuts. Moreover, when considering the undirected formulation of the
SSNDP we show that facet defining inequalities can be easily derived from their
deterministic counterparts.

Computational study: The SSNDP belongs to a broader class of two-
stage integer stochastic programs with binary first-stage solutions and binary
recourse. These NP-hard problems are known to be notoriously difficult to
solve [39]. In this paper, we use a recently introduced decomposition approach
called two-stage branch&cut [4]. This approach uses a Benders decomposition
and two nested branch&cut algorithms and is similar to the integer L-shaped
method [24]. In the subproblems, violated directed cuts are separated, while
the master problem is expanded by L-shaped and integer optimality cuts. To
enhance the algorithmic performance, we propose a new computationally inex-
pensive procedure that strengthens the inserted L-shaped optimality cuts by
simple modifications of the dual solutions of the subproblems. To illustrate the
effectiveness of the strengthening procedure, we compare our approach with the
classical method by Magnanti and Wong [31] for generating Pareto-optimal L-
shaped cuts. Using a large set of realistic instances, we analyze in detail the
characteristics of the proposed models and the obtained solutions as well as the
performance (e.g., on denser graphs), behavior, and limitations of the designed
algorithmic approach. The computational study is completed by an evaluation
of the value of the stochastic solution and an analysis of the stability of the
scenario generation method.

A small portion of results presented in this paper appeared in the conference
proceedings [27]. This article offers a significant extension of the theoretical and
computational results which can be summarized as follows: First, two additional
MIP models are presented and theoretically compared with the one given in [27].
Second, for the undirected cut-based model given in this paper, we prove that
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facet defining inequalities can be derived from their deterministic counterpart
(under some mild conditions). Third, this article contains detailed descriptions
of the two-stage branch&cut algorithm and our cut strengthening procedure
(including proofs of its correctness). Last but not least, we present a compre-
hensive computational study which shows the performance of the decomposition
and the cut strengthening; the latter method is additionally compared to the
method by Magnanti and Wong [31]. The study also contains an analysis of the
value of the stochastic solution and evaluation of the used scenario generation
methods.

Organization of the paper. We start by recalling the basic MIP formulation for
the deterministic SNDP in Section 2. Moreover, we summarize the ideas of
Magnanti and Raghavan [30] for strengthening the undirected formulation by
orienting the solution and describe the corresponding MIP model. This model is
the starting point for our models concerning the stochastic SNDP in Section 3.
Here, the undirected formulation (Section 3.1) and two stronger semi-directed
formulations (Sections 3.2 and 3.3, respectively) are described. Furthermore,
structural results for the associated polyhedron with the undirected formulation
are provided. Section 4 is dedicated to the two-stage branch&cut algorithm with
descriptions of the algorithm and the decomposition. Afterwards, in Section 5,
we describe the procedure for strengthening the generated L-shaped optimality
cuts. The benefit of these cuts—and the decomposition itself—is presented in
the results of the experimental study in Section 6.

2. The deterministic survivable network design problem

Definition. Formally, the deterministic version of the SNDP is defined as fol-
lows: We are given a simple undirected graph G = (V,E) with edge costs ce ≥ 0,
∀e ∈ E, and a symmetric |V | × |V | connectivity requirement matrix r = [ruv].
Thereby, ruv ∈ N∪{0} represents the minimal required number of edge-disjoint
paths between two distinct nodes u, v ∈ V . The goal consists of finding a subset
of edges E′ ⊆ E satisfying all connectivity requirements and minimizing the
overall solution costs which are defined as

∑
e∈E′ ce.

While the given definition of the SNDP is as general as possible, one addi-
tional assumption is made in this paper which is commonly considered in the
literature: it is assumed that the connectivity requirements imply that each
optimal solution comprises a single connected component. In this case the
SNDP—as well as the connectivity matrix—is called unitary. One example for
a non-unitary SNDP is the Steiner forest problem where optimal solutions might
be disconnected.

A closely related problem to the SNDP is the node-connectivity SNDP where
requirements have to be satisfied by node-disjoint paths. A small example de-
picting optimal solutions for both problems is illustrated in Figure 1. For the
ease of presentation, this article focuses on edge-connectivity but the ideas and
algorithms are transferable to the related node-connectivity problem as well.
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Figure 1: (a) An example network where rectangles have connectivity requirement two w.r.t.
each other and all other requirements are zero. Unlabeled edges are assigned cost 1 and labeled
edges cost 2. The bold edges depict the optimal solution for (b) edge-connectivity with costs
6 and (c) node-connectivity with costs 7, respectively.

We note that in some applications (including our example mentioned in the
introduction), edge- or node-connectivity requirements can be specified using
node types ρu ∈ N ∪ {0}, for all u ∈ V . In that case, the required connectivity
between a pair of distinct nodes u, v ∈ V is defined as ruv = min{ρu, ρv}.
In presenting the main results of this paper we will stick to the more general
definition of connectivity requirements using the connectivity matrix r. For
illustrating examples, however, we will use the more intuitive concept of node
types.

(M)ILP models. The classical cut-based integer linear programming (ILP) for-
mulation for the deterministic SNDP (see, e.g., [14, 13]) uses binary decision
variables xe for each edge e ∈ E. We use notations x(E′) :=

∑
e∈E′ xe,∀E′ ⊆ E,

and δ(W ) := {e = {i, j} ∈ E | |{i, j} ∩W | = 1}, for W ⊂ V . Moreover, let us
denote by

f(W ) := max{ruv | u ∈W, v 6∈W}, ∀W ⊂ V,

the connectivity function on G. The SNDP based on undirected cuts then reads
as follows:

(SNDPucut) min
∑
e∈E

cexe

s.t. x(δ(W )) ≥ f(W ) ∀∅ 6= W ⊂ V (ucut :1)

x ∈ {0, 1}|E| (ucut :2)

This model is one of the most famous models in the literature and has
been used in polyhedral studies (see, e.g., [14]) or to estimate the quality of
approximative solutions (see, e.g., [18]). Magnanti and Raghavan [30] showed
how to strengthen this formulation by using a famous theorem by Nash-Williams
[32] about graph orientations that we restate here:

Theorem 1 (Nash-Williams [32]). Let G = (V,E) be an undirected graph
and let κuv be the maximum number of edge-disjoint paths from u to v, where
u, v ∈ V , u 6= v. Then G has an orientation such that for every pair of nodes u
and v in G, the number of pairwise edge-disjoint directed paths from u to v in
the resulting directed graph is at least bκuv2 c.
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If connectivity requirements are in {0, 1} ∪ {2k | k ∈ N} then it is possible
to orient any optimal SNDP solution as follows: Since we are dealing with
the unitary SNDP, any optimal SNDP solution consists of edge-biconnected
components connected with each other by cut nodes or bridges. Using the result
of Theorem 1, each of those edge-biconnected components can be oriented such
that for each pair of distinct nodes u and v from the same component there
exist ruv/2 edge-disjoint directed paths from u to v and ruv/2 edge-disjoint
directed paths from v to u. To orient possible bridges, a node vr is chosen for
which we know that it is a part of an edge-biconnected component and each
bridge is oriented away from this component. To this end, the edge-biconnected
components are oriented, shrunk into single nodes, and the obtained tree is
oriented away from the “root” vr. These orientation properties can be used
to derive an MIP model that uses binary arc variables dij associated to the
orientation. By projecting the arc variables into the space of undirected edges
as xe = dij +dji, for all e = {i, j} ∈ E, it is not difficult to see that the obtained
directed model is stronger than the undirected one given above. In fact, the
directed model is strictly stronger if and only if there exists a pair of distinct
nodes u, v ∈ V , such that ruv = 1 [30].

To model the general SNDP—i.e., the SNDP with arbitrary connectivity
requirements ruv ∈ N ∪ {0}—Magnanti and Raghavan [30] present an extended
MIP formulation which is similar to the one described above with the only
difference that the binary arc variables dij are relaxed to be continuous. This
small change makes the model valid for arbitrary values of ruv and provably
stronger than its undirected counterpart. For describing this model, we will need
the following notation: let A be the arc set of the bidirection of G containing two
directed arcs for each undirected edge, i.e., ∀{i, j} ∈ E : (i, j), (j, i) ∈ A. For
a vertex set W ⊂ V let δ−(W ) = {(i, j) ∈ A | i 6∈ W, j ∈ W} and analogously
δ+(W ) = {(i, j) ∈ A | i ∈ W, j 6∈ W} be the set of ingoing and outgoing
arcs, respectively. By using fractional arc variables dij ,∀(i, j) ∈ A, the resulting
model by [30] reads as follows:

(SNDPdcut) min
∑
e∈E

cexe

s.t. d(δ−(W )) ≥ f(W )/2 ∀∅ 6= W ⊂ V, f(W ) ≥ 2 (dcut :1)

d(δ−(W )) ≥ 1 ∀∅ 6= W ⊂ V, f(W ) = 1, vr 6∈W (dcut :2)

xe ≥ dij + dji ∀e = {i, j} ∈ E (dcut :3)

dij ≥ 0 ∀(i, j) ∈ A (dcut :4)

x ∈ {0, 1}|E| (dcut :5)

Constraints (dcut :2) are classical directed Steiner cuts implying connectivity of
the solution. The directed cuts (dcut :1) ensure that for each two distinct nodes
u, v ∈ V such that u ∈ W, v 6∈ W , ruv/2 directed paths are selected from u to
v and from v to u, respectively. The capacity constraints (dcut :3) enforce that
each selected directed arc is paid for in the objective function.
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(a) (b)

Figure 2: An example SSNDP instance with 20 nodes, 40 edges, and 2 scenarios. Nodes
depicted as blue rectangles imply connectivity requirement 2 (together with the red diamond
which is a special root node) and green circles imply connectivity 1. (a) and (b) show the
optimal solution for the first and second scenario, respectively, with bold edges being selected
first- and dashed edges being selected second-stage edges.

The main results concerning the (strength of the) two presented formula-
tions are summarized in the following theorem. Let PSNDPucut

,PSNDPdcut
denote

the polyhedra defined by the linear relaxation of (SNDPucut) and (SNDPdcut),
respectively. Moreover, let Projx(PSNDPdcut

) denote the projection of PSNDPdcut

onto the space of undirected x-variables.

Theorem 2 (Magnanti and Raghavan [30]). (SNDPdcut) is a valid formu-
lation for the SNDP and (SNDPdcut) is strictly stronger than (SNDPucut), i.e.,
Projx(PSNDPdcut

) ⊆ PSNDPucut
and there exist instances for which the relation-

ship is “⊂”.

3. The stochastic survivable network design problem

Definition. Let G = (V,E) denote the undirected input graph with known first-
stage edge costs c0e ≥ 0 for all e ∈ E. The actual connectivity requirements as
well as the future edge costs are only known in the second stage. These values
together form a random variable ξ for which we assume that it has finite support.
It can therefore be modeled using a finite set of scenarios K = {1, . . . ,K},
K ≥ 1. The realization probability of each scenario is given by pk > 0, k ∈ K,
with

∑
k∈K p

k = 1. Edge costs in the second stage under scenario k ∈ K are

denoted by cke ≥ 0 for all e ∈ E. Furthermore, let rk be the matrix of unitary
connectivity requirements in the k-th scenario.

The two-stage stochastic survivable network design problem (SSNDP) is de-
fined as follows: Determine the subset of edges E0 ⊆ E to be purchased in
the first stage and the sets Ek ⊆ E of additional (recourse) edges to be pur-
chased in each scenario k ∈ K, such that the overall expected costs defined as
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Figure 3: (a) An instance for the SSNDP with a highlighted optimal first-stage solution being
a forest. Figures (b) and (c) depict the optimal solution for scenarios 1 and 2, respectively,
with selected first-stage edges being drawn as solid lines and second-stage edges as dashed
lines. For the orientations in the semi-directed models we assume vertex A being the root
node.

∑
e∈E0 c0e +

∑
k∈K p

k
∑
e∈Ek c

k
e are minimized. Thereby, E0 ∪Ek has to satisfy

all connectivity requirements between each pair of nodes defined by rk for all
k ∈ K. W.l.o.g. we assume that

∑
k∈K p

kcke ≥ c0e, for all e ∈ E; Otherwise,
one would never install such an edge in the first stage. We also assume that
the connectivity requirement rk is unitary for each scenario k ∈ K, as in the
deterministic setting. Figure 2 shows an example of an SSNDP instance with
k = 2 scenarios and its optimal solution.

Solution Topology. Observe that, despite the fact the connectivity requirements
are unitary, the optimal first-stage solution E0 of the SSNDP is not necessarily
connected. This holds even if the connectivity requirements are from the set
{0, 1} only. The optimal first-stage solution may contain several disjoint compo-
nents depending on the values rkuv throughout different scenarios—or depending
on the second-stage cost structure. A small example is shown in Figure 3: This
instance consists of K = 2 scenarios with equal probability and with the set
of nodes {A,C,D} being of “type one” in both scenarios; Node B is of “type
zero”in both scenarios. The costs are given next to the edges in Figure 3(a)
by “c0e(c

1
e, c

2
e)”, for all edges e. The optimal solution consists of the two edges

{A,B} and {C,D} purchased in the first stage expanded by one edge in sce-
nario 1 (edge {B,C}, Figure 3(b)) and in scenario 2 (edge {B,D}, Figure 3(c)).
Hence, the overall expected costs are 3.

Moreover, notice that the connectivity requirements in the scenarios do not
necessarily imply connectivity requirements of the first stage solution. Impos-
ing particular connectivity requirements (between some important nodes, for
example) is not prohibited by our model and can be easily handled by addi-
tional constraints regarding the topology of the first stage solution (similar to
(ucut :1), see, e.g., [12]). However, such additional constraints imply additional
costs and provide sub-optimal solutions, as demonstrated in a simple example
given by Figure 4: Even though all connectivity requirements are identical over
all scenarios, the optimal first stage solution is empty.
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Figure 4: An instance for the SSNDP with two equally probable scenarios which have the
same connectivity requirements: vertices {A,B,C} need to be simply connected. However, in
the optimal solution, no edge is selected in the first stage, cf. Figure (a). Figures (b) and (c)
depict the two scenarios with the selected edges of the optimal solution being drawn as bold
lines. Overall solution costs are 1.25 whereas the selection of any first stage edge would lead
to larger costs.

3.1. Undirected model

We first present the deterministic equivalent—in extensive form—of the SS-
NDP in the natural space of undirected edge variables. Later on we show how
to derive stronger extended formulations using the orientation properties pre-
sented in Section 2 by assigning a unique direction to each edge of a feasible
second-stage solution.

Let binary variables x0e indicate whether an edge e ∈ E belongs to E0,
and binary second-stage variables xke indicate whether e belongs to Ek, for all
scenarios k ∈ K. For E′ ⊆ E let (x0 + xk)(E′) :=

∑
e∈E′(x

0
e + xke). Moreover,

we expand the connectivity function to fk, for each scenario k ∈ K and W ⊂ V :

fk(W ) := max{rkuv | u 6∈W, v ∈W}.

A deterministic equivalent of the SSNDP can then be modeled easily using
undirected cuts as follows:

(UD) min
∑
e∈E

c0ex
0
e +

∑
k∈K

pk
∑
e∈E

ckex
k
e

s.t. (x0 + xk)(δ(W )) ≥ fk(W ) ∀∅ 6= W ⊂ V,∀k ∈ K (UD :1)

x0e + xke ≤ 1 ∀e ∈ E,∀k ∈ K (UD :2)

(x0,x1, . . . ,xK) ∈ {0, 1}|E|(K+1) (UD :3)

This model is a direct extension of the model from Section 2. Constraints (UD :1)
ensure edge-connectivity between each pair of nodes in each scenario realization
while first- and second-stage edges can be used. The additional constraints
(UD :2) simply forbid the installation of the same edge in the first stage and in
any scenario.

Polyhedral properties. Let Sk be the convex hull of all integer points that define
feasible SNDP solutions w.r.t. connectivity requirements rk, i.e.,

Sk = conv{xk ∈ {0, 1}|E| | xk(δ(W )) ≥ fk(W ),∀∅ 6= W ⊂ V }.
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A0 Im Im Im Im
0 A0 1 1 1
0 1 A0 1 1
0 1 1 A0 1
0 1 1 1 A0



A` 1−A` 1−A` 0 1−A`
0 A0 1 A` 1
0 1 A0 A` 1
0 1 1 A` 1
0 1 1 A` A0


Figure 5: Structures of the constructed matrices (with K = 4) from Lemma 1 (left) and
Theorem 3 (right); for the latter we have ` = 3.

Similarly, let S be the convex hull of all integer points that define feasible SSNDP
solutions, i.e.,

S = conv{x = (x0,x1, . . . ,xK) ∈ {0, 1}|E|(K+1) | x satisfies (UD :1),(UD :2)}.

In the following, we will study some properties of the polytope S.

Lemma 1. If the polytopes Sk for all k ∈ K are full-dimensional, then the
polytope S is full-dimensional as well.

Proof. Let m := |E|. We need to show that dim(S) = m(K+ 1). To this end,
we now construct a matrix that contains mK +m linearly independent feasible
solutions to SSNDP. In the last step we extend it by one more solution with the
whole collection of solutions being affinely independent.

The matrix is constructed in (K + 1) · (K + 1) blocks of size m × m and
each row of the matrix represents one feasible solution in S. Each block column
corresponds to a binary variable of the vector (x0,x1, . . . ,xK); the first m rows
represent feasible independent solutions involving the x0 variables, the next Km
solutions are linearly independent with respect to the xk variables, for all k ∈ K.

For each edge e ∈ E let the solution se contain all edges except e. Then,
we observe that for each scenario k ∈ K the collection of the m solutions E =
∪e∈Ese represents a set of m linearly independent points of the polytope Sk.
Let A0 denote the m × m matrix obtained by row-wise concatenation of the
characteristic vectors of these solutions, i.e., A0 = 1− Im .

1. Initialize the first m×m block with A0. Fill out the remaining K blocks
at position [0, k], k ∈ K, with the m×m identity matrix Im.

2. For k ∈ K: set up the block at the position [k, 0] to 0, and the block at
the position [k, k] to A0. The remaining blocks at positions [`, k] are set
to 1, for all ` ∈ K, ` 6= k.

It is not difficult to see that the obtained matrix (cf. Figure 5) has full rank
mK +m. In the last step, we add the vector that is obtained by concatenating
the 0 vector solution for x0 and 1’s for the remaining coordinates x1 to xK .
Subtracting all solutions contained in the matrix from the latter solution gives a
new matrix—with full rank, too. Hence, all solutions are affinely independent.

2
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Theorem 3. If for all k ∈ K, the polytopes Sk are full-dimensional and the
inequality πx` ≥ π0, with coefficients πe ∈ N∪{0},∀e ∈ E, and π0 ≥ 1, defines
a facet of the polytope S` for some ` ∈ K, then the inequality πx0 + πx` ≥ π0
is facet defining for the polytope S.

Proof. We denote the affine independent solutions of the polytope S` that
satisfy πx` = π0 by T `1 , . . . , T

`
m. Since π0 ≥ 1, these points are also linearly

independent (the origin does not belong to the set of feasible points). Let A`

be the matrix obtained by the row-wise insertion of these solutions, and let
1−A` be the complementary matrix of A`. Construction is done by a row-wise
insertion of blocks, similarly as above.

1. Initialize the first m×m block with A` (meaning, set first-stage solutions
to be equal to the solutions of S`). Fill out the remaining blocks at the
position [0, k] with 1−A`, for all k ∈ K, k 6= `. The block at the position
[0, `] is set to 0.

2. For k ∈ K, k 6= `: set up the block at the position [k, 0] to 0, at the
position [k, `] to A` and the block at the position [k, k] to A0 (defined
above). The remaining blocks at [k, i] are set to 1, for all i ∈ K, i 6= k, `.

3. Set up the block at the position [`, 0] to 0, and the block at [`, `] to A`.
The remaining blocks at [`, i] are set to 1, for all i ∈ K, i 6= `.

It is not difficult to see that the obtained matrix (cf. Figure 5) has full rank, i.e.,
(K+ 1)m, and each row satisfies πx0 +πx` = π0 which concludes the proof. 2

Many facet-defining inequalities (see, e.g., [46]), known for the deterministic
case, can therefore be easily translated into facets of the SSNDP. There is also
a large body of work on polyhedral studies for many variants of the SNDP (see,
e.g., surveys in [20, 22]).

Let F be an extended MIP formulation for the SSNDP. We will denote
the polyhedron defined by the LP-relaxation of F by PF and the natural
projection of PF onto the space of undirected (x0,x1, . . . ,xK) variables by
Proj(x0,...,xK)(PF ). Furthermore, for two (extended) formulations F1 and F2, we
will say that F1 is strictly stronger than F2 if and only if Proj(x0,...,xK)(PF1

) ⊆
Proj(x0,...,xK)(PF2) and there exists an instance for which the relationship is
“⊂”, i.e., for which the bound of the LP-relaxation of F1 is tighter than the one
of the LP-relaxation of F2.

3.2. Semi-directed model

It is known that MIP models on bidirected graphs provide better LP-based
lower bounds for many types of network design problems, cf. Section 2. In the
following we present a way for strengthening the model (UD) by bi-directing
the given graph G and replacing edge- by arc-variables in the same model. The
main difficulty with the SSNDP arises from the fact that the first-stage solution
may be disconnected (cf. Figure 3), and as such it cannot be oriented, even
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though the deterministic counterpart admits an orientation. In the following,
we will introduce two extended formulations (semi-directed models) to overcome
these obstacles and provide two MIP models that are strictly stronger than the
model (UD).

The example given in Figure 3 illustrates an instance in which it is impossible
to uniquely orient the edges from E0 since there exists an edge from E0 that
cannot be used in exactly the same direction over all scenarios. More precisely,
the edge {C,D} is selected in the first stage and during the orientation process
it is used in the direction (C,D) in scenario 1 and in the direction (D,C) in
scenario 2, respectively. Therefore, requiring a fixed orientation for an edge in
the first stage would conflict with optimal scenario solutions and would in total
lead to more expensive, suboptimal solutions.

Hence, the first-stage decision variables need to remain associated with undi-
rected edges. However, one can provide a directed formulation once the solution
gets completed in the second stage, i.e., one can orient the edges of E0 ∪ Ek
independently for each scenario, as depicted in Figures 3(b) and 3(c). We set
the root vkr for each scenario k ∈ K to be one of the nodes with the highest
connectivity requirement and search for individual orientations of the scenario
solutions E0 ∪ Ek, for each k ∈ K.

By borrowing the notation from [1], let

Wk
1 :={W |W ⊂ V, fk(W ) = 1, vkr 6∈W}

Wk
≥2 :={W |W ⊂ V, fk(W ) ≥ 2}

be the set of regular cutsets and critical cutsets, respectively.
Given the installation of undirected edges from the first stage, the following

model constructs oriented second-stage solutions. As above, we use variables
x0, . . . ,xK to model the solution edges. In addition, we introduce continuous
variables d1, . . . ,dK associated to directed arcs to “orient” the second-stage
solutions. The first semi-directed model is called (SD1 ):

(SD1 ) min
∑
e∈E

c0ex
0
e +

∑
k∈K

pk
∑
e∈E

ckex
k
e

s.t. (x0 + xk)(δ(W )) ≥ fk(W ) ∀W ∈ Wk
≥2,∀k ∈ K (SD1 :1)

x0(δ(W )) + dk(δ−(W )) ≥ 1 ∀W ∈ Wk
1 ,∀k ∈ K (SD1 :2)

xke ≥ dkij + dkji ∀e = {i, j} ∈ E,∀k ∈ K (SD1 :3)

x0e + xke ≤ 1 ∀e ∈ E,∀k ∈ K (SD1 :4)

dkij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (SD1 :5)

(x0,x1, . . . ,xK) ∈ {0, 1}|E|(K+1) (SD1 :6)

Constraints (SD1 :1) ensure that in each scenario k there are at least rkuv edge-
disjoint paths between u and v, u ∈ W, v 6∈ W , consisting of first- and second-
stage edges. Due to constraints (SD1 :2) there is at least one path from the
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root node vkr to each vertex u whenever rvkru = 1. If an edge is purchased in
the second stage, then constraints (SD1 :2) associated to bridges will force the
orientation of those bridges away from the root node vkr . Furthermore, since
variables dkij are fractional, by using the same arguments as in Theorem 2 the

model is valid for any rkuv ∈ N ∪ {0}. Hence, we have the following lemma.

Lemma 2. Formulation (SD1 ) models the deterministic equivalent of the two-
stage stochastic survivable network design problem correctly.

Proof. Consider an optimal solution to an SSNDP instance with its character-
istic binary vectors being described by x̃ := (x̃0, x̃1, . . . , x̃K). Using x̃ as solu-
tion to (SD1 ), all undirected cuts (constraints (SD1 :1)) are obviously satisfied.
Moreover, due to Theorem 1 and 2 it is possible to find an orientation in each
scenario such that constraints (SD1 :2) are satisfied. Following this orientation
the values for the directed variables dk can be set accordingly. Non-negativity
and all other constraints follow directly. Hence, there is a feasible solution to
(SD1 ) with the same objective value.

On the other hand, each optimal solution to (SD1 ) obviously satisfies all
connectivity requirements and induces a solution to the SSNDP with the same
costs. 2

Note that constraints (SD1 :1) can also be expressed as x0(δ(W ))+dk(δ−(W ))+
dk(δ+(W )) ≥ fk(W ) (which better explains the original intention of this model).
However, one easily observes that this is just an equivalent way of rewriting
(SD1 :1), without any influence on the lower bounds of the given model.

Theorem 4. The semi-directed formulation (SD1 ) is strictly stronger than the
undirected formulation (UD).

Proof. It follows from the proof of Lemma 2 that any solution (x̃0, x̃1, . . . , x̃K)
∈ Proj(x0,...,xK)(PSD1

) is a valid solution to (UD) with the same objective value.
The strict inequality concerning the strength of the formulations is shown

by the example given in Figure 6(a). Assume there are 2 scenarios with equal
probability and the non-zero connectivity requirements r101 = r102 = r112 = 1,
r203 = 1, and c0e = 10, cke = 12,∀e ∈ E, k ∈ {1, 2}. In the optimal solution of
(UD), only edges in the second stage are purchased with a total objective value
of 15: x101 = x112 = x102 = 0.5 and x203 = 1. On the other hand, this solution
is infeasible for the relaxed model of (SD1 ), i.e., there is no solution to (SD1 )
with the same objective value. 2

3.3. Stronger semi-directed formulation

In the following model, which represents an alternative model to (SD1 ),
binary edge variables yk are used to model the second-stage solution. These
variables additionally include the edges that are already bought in the first
stage, i.e., we have yke = 1 if e ∈ E0 ∪ Ek, and yke = 0, otherwise. Moreover,
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Figure 6: Two counterexamples that prove the strength of the new formulations. (a) Instance
with LP (SD1 ) > LP (UD), (b) instance with LP (SD2 ) > LP (SD1 ), and (c) the optimal
LP-solution of (SD1 ): A solid line represents an LP value of 1, a dashed line a value of 0.5.
Rectangles have connectivity requirement two, all other nodes connectivity requirement one.

continuous variables zkij are used to orient the edges from E0 ∪Ek. The model
will be called (SD2 ):

(SD2 ) min
∑
e∈E

c0ex
0
e +

∑
k∈K

pk
∑
e∈E

cke(yke − x0e)

s.t. zk(δ−(W )) ≥ fk(W )/2 ∀W ∈ Wk
≥2,∀k ∈ K (SD2 :1)

zk(δ−(W )) ≥ 1 ∀W ∈ Wk
1 ,∀k ∈ K (SD2 :2)

zkij + zkji ≥ x0e ∀e = {i, j} ∈ E,∀k ∈ K (SD2 :3)

yke ≥ zkij + zkji ∀e = {i, j} ∈ E,∀k ∈ K (SD2 :4)

zkij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (SD2 :5)

(x0,y1, . . . ,yK) ∈ {0, 1}|E|(K+1) (SD2 :6)

The directed cuts (SD2 :1) and (SD2 :2) model the orientation of the solution
and ensure the required connectivities independently for each scenario. Notice
that due to the symmetry, if W ∈ Wk

≥2 it follows that V \W ∈ Wk
≥2, too. Hence,

for each W ∈ Wk
≥2 the ingoing and outgoing cut, i.e., zk(δ−(W )) ≥ fk(W )/2

and zk(δ+(W )) ≥ fk(W )/2, is contained in (SD2 ).
Constraints (SD2 :3) and (SD2 :4) ensure that variables zkij can be used only

along the edges that are either purchased in the first stage or added in the
second stage. In particular, (SD2 :3) forces the orientation of selected first-stage
edges in each scenario. Therefore, these constraints strengthen the model as
they impose restrictions on the first-stage solutions: only first-stage solutions
allowing for feasible orientations are valid. Moreover, it holds yke ≥ x0e which
explains the corrective term in the objective function. Since the variables zkij
are fractional, the model is valid for any rkuv ∈ N ∪ {0}; The straightforward
proof is omitted here.

Lemma 3. Formulation (SD2 ) models the deterministic equivalent of the two-
stage stochastic survivable network design problem correctly.

The following result shows that the new way of orienting the second stage
solutions provides strictly stronger lower bounds than the model shown in the
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previous section. Note that this result applies to two-stage survivable network
design models only, and its proof cannot be derived from Theorem 2.

Theorem 5. The semi-directed formulation (SD2 ) is strictly stronger than the
semi-directed formulation (SD1 ).

Proof. Let (x̂0, ŷ1, . . . , ŷK , ẑ1, . . . , ẑK) ∈ PSD2 . For k ∈ K and (i, j) ∈ A
set λkij := 0 if zkij + zkji = 0 and λkij := zkij/(z

k
ij + zkji), otherwise. Hence,

λkij + λkji = 1,∀{i, j} ∈ E and k ∈ K with ẑkij + ẑkji > 0. Moreover, set x̄0 :=

x̂0, x̄k := ŷk − x̂0, and ∀(i, j) ∈ A with e = {i, j} : d̄kij := ẑkij − λkij x̂0e, for all
k ∈ K.

Obviously, interpreting (x̄0, x̄1 . . . , x̄K , d̄1, . . . , d̄K) as (SD1 )-solution gives
the same objective value. This solution is also feasible due to the following
arguments.

The connectivity constraints (SD1 :1) are satisfied since for each W ∈ Wk
≥2,

k ∈ K, we have:

(x̄0 + x̄k)(δ(W )) = x̂0(δ(W )) + ŷk(δ(W ))− x̂0(δ(W ))

≥
∑

e={i,j}∈δ(W )

(ẑkij + ẑkji) = ẑk(δ−(W )) + ẑk(δ+(W )) ≥ fk(W )

The 1-connectivity constraints (SD1 :2) are also fulfilled since for each W ∈ Wk
1 ,

k ∈ K, we have:

x̄0(δ(W )) + d̄k(δ−(W )) = x̂0(δ(W )) +
∑

(i,j)∈δ−(W ),e={i,j}

(ẑkij − λkij x̂0e)

≥ ẑk(δ−(W )) ≥ 1

The remaining constraints are also satisfied: (SD1 :3): d̄kij+ d̄kji = ẑkij+ ẑkji−x̂0e ≤
ŷke − x̂0e = x̄ke , (SD1 :4): x̄0e + x̄ke = x̂0e + ŷke − x̂0e ≤ 1. Moreover, dkij-variables are

non-negative: d̄kij = ẑkij−(ẑkij/(ẑ
k
ij+ ẑkji))x̂

0
e ≥ ẑkij−(ẑkij/(ẑ

k
ij+ ẑkji))(ẑ

k
ij+ ẑkji) = 0.

Last but not least, it trivially holds x̄0 ∈ [0, 1]|E| and x̄k ∈ [0, 1]|E|,∀k ∈ K,
since x̄ke = ŷke−x̂0e and ŷke ≥ x̂0e. Hence, (x̄0, x̄1 . . . , x̄K , d̄1, . . . , d̄K) is a feasible
solution for (SD1 ) with the same objective value.

To show that there exists an instance for which the strict inequality holds,
consider the graph shown in Figure 6(b). We assume that the input consists
of a single scenario in which the gray nodes require two-connectivity and the
remaining ones only one-connectivity. Furthermore, all edge costs are 1 in the
first stage and 10 in the second stage. The LP solution shown in Figure 6(c)
shows the first-stage solution—nothing needs to be purchased in the second
stage—with a total objective value of 5. This solution is valid for the model
(SD1 ) but it is impossible to “orient” this solution such that it becomes feasible
for the model (SD2 ). 2

Intuitively, formulation (SD2 ) gives stronger lower bounds than (SD1 ) for
instances where the (fractional) undirected first-stage edges allow no valid ori-
entation. Here, the first stage covers cuts in (SD1 ) but (SD2 ) has to purchase
additional arcs in the second stage to ensure feasibility.
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4. Decomposition

Notice that, even for a constant number of scenarios, our deterministic equiv-
alent models contain an exponential number of constraints associated with di-
rected cuts. Although these cuts can be separated in a cutting-plane fashion
leading to a branch&cut approach, the main drawback of such a single-stage
branch&cut approach is that we still have to deal with a large set of variables;
e.g., formulation (SD2 ) contains |E|(3K + 1) variables.

Due to the sparsity and the block-angular structure of the constraint matrix,
decomposition methods (see, e.g., [6, 40, 39]) proved to be an effective way for
solving stochastic optimization problems. Our method of choice in the present
article is Benders decomposition, originally introduced in [2] and also known as
the L-shaped method for linear stochastic programs, cf., [3, 24].

Nowadays most MIP solvers provide branch&cut frameworks such that Ben-
ders decomposition can be implemented as a pure branch&cut approach by the
use of callbacks. In the stochastic programming context, Benders cuts are added
to the master problem to model valid lower bounds on the expected second-stage
costs. This idea has been also exploited in various other applications (includ-
ing some deterministic problems) where “complicated variables” are projected
out and replaced by Benders cuts [5, 28]. Typically, finding a single violated
Benders cut requires solving several compact MIP or LP models.

When applying the Benders decomposition concept to the proposed MIP
models for the SSNDP, attention should be given to the following two non-
standard aspects: a) First of all, one has to deal with the integer recourse. For
that purpose, we integrate a separation of the integer L-shaped cuts within a
branch&cut framework. b) The second main difficulty arises with the fact that
the associated subproblems contain an exponential number of constraints, and
can therefore be solved only by means of a cutting plane approach (for finding
optimal LP solutions), or branch&cut (for finding optimal integer solutions).
Therefore, in order to apply a Benders-like decomposition, one needs to nest
branch&cut algorithms: a branch&cut is employed for solving the master prob-
lem and violated Benders cuts are detected by solving the K subproblems with a
dedicated branch&cut algorithm. In [4], this approach has been called two-stage
branch&cut algorithm (2-stage b&c).

More precisely, in the 2-stage b&c, the variables of the first stage are kept
in the master problem, and the second-stage variables are projected out and
replaced by a single variable per scenario, i.e., Θk,∀k ∈ K. The objective func-
tion of the decomposed model becomes min

∑
e∈E c

0
ex

0
e + Θ with the expected

second-stage costs Θ =
∑
k∈K p

kΘk and with Θk representing a lower bound
on the value of the second-stage subproblem in scenario k ∈ K. For a fixed
first-stage decision x̃0, the problem decomposes into K smaller subproblems,
each of which can be independently solved using a branch&cut approach. Dual
variables of the LP-relaxations of these subproblems impose L-shaped cuts that
are added to the master while the exact solutions of the subproblems impose
integer optimality cuts [24, 47].

The key results that allow us to apply the 2-stage b&c to the SSNDP and
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detect violated L-shaped cuts in polynomial time are 1) the fact that all con-
sidered cut inequalities can be separated in polynomial time (see, e.g., [46]),
and 2) the famous result by Grötschel, Lovász, and Schrijver (cf., e.g, [33]) that
shows the equivalence of optimization and separation. Consequently, in each of
the subproblems, the number of tight inequalities of an arbitrary LP optimal
solution is polynomial, and therefore, only a polynomial number of dual mul-
tipliers will be non-zero in the associated L-shaped constraint. Therefore, we
are able to apply the 2-stage b&c to any of the three formulations considered
in this paper. For the ease of presentation, we will demonstrate how to solve
the SSNDP using the 2-stage b&c applied to the strongest of the three models,
namely (SD2 ). The main details of this algorithm are provided in Section 4.2.

4.1. Decomposition of the (SD2 ) model

For each fixed—and possibly fractional—first-stage solution x̃0, the second-
stage problem decomposes into K independent subproblems, which we will refer
to as restricted deterministic SNDP’s. They are special cases of the determin-
istic SNDP due to the capacity constraints (P :2) (see below). To simplify the
notation, we define Wk := Wk

1 ∪Wk
≥2 and merge the constraints (SD2 :1) and

(SD2 :2) by using functions Φk : 2V 7→ N ∪ {0}, for all k ∈ K, that give the
correct right-hand side of the directed cuts:

Φk(W ) :=

{
1
2f

k(W ), W ∈ Wk
≥2

1, W ∈ Wk
1

For a given first-stage solution x̃0, and for each k ∈ K, these subproblems—
already transformed into standard form—are given as follows:

(P :SD2 ) min
∑
e∈E

ckey
k
e−

∑
e∈E

cke x̃
0
e

s.t. zk(δ−(W )) ≥ Φk(W ) ∀W ∈ Wk (P :1)

zkij + zkji ≥ x̃0e ∀e = {i, j} ∈ E (P :2)

yke − zkij − zkji ≥ 0 ∀e = {i, j} ∈ E (P :3)

−yke ≥ −1 ∀e ∈ E (P :4)

zkij ≥ 0 ∀(i, j) ∈ A (P :5)

yk ∈ {0, 1}|E| (P :6)

To improve readability we move the corrective constant term w.r.t. x̃0 in the
objective function into a second sum, i.e., −

∑
e∈E c

k
e x̃

0
e.

By relaxing the integrality constraints (P :6) and using dual variables αW , βe,
γe, and τe associated to constraints (P :1), (P :2), (P :3), and (P :4), respectively,
we obtain the following dual problem, for each scenario k ∈ K and fixed first-
stage solution x̃0:

(D:SD2 ) max
∑

W∈Wk

Φk(W )αW +
∑
e∈E

(x̃0eβe − τe)−
∑
e∈E

cke x̃
0
e
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γe − τe ≤ cke ∀e ∈ E (D :1)∑
W∈Wk:

(i,j)∈δ−(W )

αW + βe − γe ≤ 0 ∀(i, j) ∈ A, e = {i, j} (D :2)

α,β,γ, τ ≥ 0 (D :3)

Let (α̃, β̃, γ̃, τ̃ ) describe an optimal solution to (D:SD2 ). A (decomposed) L-
shaped optimality cut is then defined as follows:

Θk +
∑
e∈E

(cke − β̃e)x0e ≥
∑

W∈Wk

Φk(W )α̃W −
∑
e∈E

τ̃e (LS)

In the algorithm such a constraint is added if Θk <
∑
W∈Wk Φk(W )α̃W +∑

e∈E(x̃0eβ̃e − τ̃e − cke x̃0e).
Notice that the right hand side of (LS) is a constant. Depending on its

value, the obtained cut can be strengthened by rounding: the coefficients next
to each x0e can be replaced by min{cke − β̃e,

∑
W∈Wk Φk(W )α̃W −

∑
e∈E τ̃e}, for

each e ∈ E and k ∈ K. Validity of this rounding procedure can be easily shown
by case distinction concerning the sign of coefficients next to x0e and the sign of
the right-hand side.

Integer optimality cuts. Let (x̃0, Θ̃) be a first-stage solution with x̃0 being bi-
nary. Moreover, let Q(x̃0, k) denote the optimal binary solution for the kth
scenario with the second-stage value Q(x̃0

ν) :=
∑
k∈K p

kQ(x̃0
ν , k). Finally, let

Iν := {e ∈ E | x̃0ν,e = 1} be the index set of the edge variables chosen in the first
stage, and the constant L be a known lower bound of the recourse function—for
the SSNDP a feasible value is L = 0. To explicitly cut off the solution (x̃0, Θ̃)
we use the general integer optimality cuts of the L-shaped scheme [24]:

Θ ≥ (Q(x̃0)− L)

∑
e∈I

x0e −
∑
e∈E\I

x0e − |I|+ 1

 + L. (int-LS)

These cuts are quite weak since they almost only cut off the current first-stage
solution. However, these cuts are necessary for closing the integrality gap, cf.
[24] (recall that we are dealing with an NP-hard second-stage problem with
binary variables).

A second (even simpler) type of optimality cuts looks like follows:∑
e∈Iν

x0e −
∑

e∈E\Iν

x0e ≤ |Iν | − 1 (i-LS)

These cuts (coined combinatorial Benders cuts in [9]) cut off the current first-
stage solution x̃0 but do not contain the explicit bound on the Θ variable.
Since the coefficients of these cuts are all binary they are numerically more
stable. In our experiments, these cuts turn out being very important for avoiding
numerical problems and tailing off effects, cf. Section 6.
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4.2. Two-stage branch&cut algorithm

To describe the algorithm we use a slightly more general and compact nota-
tion: Let x0 and xk be variable vectors for the first stage and scenario k ∈ K,
respectively. Moreover, let c0 be the objective coefficient vector in the first
stage. With P0

ν being the first-stage polyhedron in iteration ν defined by the
separated L-shaped and integer optimality cuts— and no other constraints—let
RMP denote the relaxed master problem, i.e.,

min{c0x0 + Θ |(x0,Θ,Θ1, . . . ,ΘK) ∈ P0
ν ,Θ =

∑
k∈K

pkΘk,

(Θ1, . . . ,ΘK) ≥ 0,x0 ∈ [0, 1]|E|}. (RMP)

Furthermore, let (R)SP
k

denote the (relaxed) subproblem, i.e., the restricted
deterministic SNDP of scenario k ∈ K. A brief description of the algorithm is
given as follows.

Step 0: Initialization. UB := +∞ (global upper bound, corresponding to a
feasible solution), ν := 0. Create the first pendant node. In the initial
RMP the set of (integer) L-shaped cuts is empty.

Step 1: Selection. Select a pendant node from the branch&bound tree, if
such a node exists. Otherwise STOP.

Step 2: Separation. Solve the RMP at the current node. ν := ν + 1. Let
(x̃0
ν , Θ̃ν , Θ̃

1
ν , . . . , Θ̃

K
ν ) be the current optimal solution.

(2.1) If c0x̃0
ν + Θ̃ν > UB fathom the current node and goto Step 1.

(2.2) Search for violated L-shaped cuts:
For all k ∈ K, compute the LP-relaxation value R(x̃0

ν , k) of RSPk. If

R(x̃0
ν , k) > Θ̃k

ν : insert the rounded L-shaped cut (LS) into RMP .
If at least one L-shaped cut was inserted goto Step 2.
(2.3) If x̃0

ν is binary, search for violated integer optimality cuts:
(2.3.1) For all k ∈ K s.t. x̃kν was not binary in the previously com-

puted LP-relaxation, solve SPk to integer optimality: Let Q(x̃0
ν , k) be the

optimal solution value.
(2.3.2) UB := min{UB , c0x̃0

ν +
∑
k∈K p

kQ(x̃0
ν , k)}.

(2.3.3) If
∑
k∈K p

kQ(x̃0
ν , k) > Θ̃ν insert integer optimality cut (int-LS)

(and optionally (i-LS)) into RMP . Goto Step 2.
(2.3.4) Fathom current node. Goto Step 1.

Step 3: Branching. Using a branching criterion create two branch&bound
(b&b) nodes and append them to the list of pendant nodes. Goto Step 1.

The types of generated cuts are L-shaped optimality cuts (LS), and integer
optimality cuts (int-LS) and (i-LS), respectively. Notice that we do not need
to add any feasibility cuts since we are dealing with a problem with complete
recourse, i.e., every first-stage solution is feasible and can be augmented—and
oriented—to a feasible scenario solution.
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5. Deriving stronger L-shaped cuts

Since the relaxed master problem mainly consists of L-shaped optimality
cuts, the number of master iterations of the 2-stage b&c approach—and hence,
the overall running time—is highly influenced by the strength of the generated
L-shaped cuts. In this paper we propose a new and fast way of strengthening
the generated L-shaped cuts.

Most of the previously proposed strengthening approaches (cf. [10, 31, 34,
41, 48]) require solving an auxiliary LP in order to generate a stronger L-shaped
cut. With our new approach, this is not the case; the procedure is very efficient
and we are able to find a stronger L-shaped cut in linear time (with respect to
the number of variables). Similar approaches were used in stabilization methods
for column generation, cf., e.g., [26, 25].

Instead of solving an additional optimization problem, the L-shaped cuts for
the formulation (SD2 ) of the SSNDP can be strengthened as follows: Notice
that if for an edge e ∈ E the current first-stage solution satisfies x̃0e = 0, then
the corresponding dual variable βe does not appear in the objective function
of the dual (D:SD2 ). Furthermore, the variables γe do not appear in the ob-
jective function neither. Hence, it is not difficult to see that we deal with a
highly degenerate LP and one can expect that the optimal solutions to the dual
subproblem (D:SD2 ) usually produce positive slacks in the constraints (D :2)
(typically, if possible, dual variables with zero coefficients in the objective func-
tion will be fixed to zero by an LP solver). The idea is now to produce another
LP optimal solution of the dual subproblem such that the corresponding slacks
are reduced to zero. Therefore, the values of the dual multipliers (βe) in the
associated L-shaped cut will be increased as follows:

Let (α̃, β̃, γ̃, τ̃ ) be an optimal solution to (D:SD2 ) as before. For all edges
e = {i, j} ∈ E set

β̂e :=

γ̃e − max
a∈{(i,j),(j,i)}

{ ∑
W∈Wk:a∈δ−(W )

α̃W

}
if x̃0e = 0

β̃e otherwise.

If β̂e > β̃e holds for at least one edge e ∈ E the strengthened L-shaped cut is
given as:

Θk +
∑
e∈E

(cke − β̂e)x0e ≥
∑

W∈Wk

Φk(W )α̃W −
∑
e∈E

τ̃e. (l-LS)

Theorem 6. The strengthened L-shaped cuts (l-LS) are valid and strictly stronger
than the standard L-shaped cuts (LS).

Proof. Consider two L-shaped cuts: the standard one implied by the dual
solution (α̃, β̃, γ̃, τ̃ ) and the strengthened one (α̃, β̂, γ̃, τ̃ ) with β̂ being set as
described above. Obviously, (α̃, β̂, γ̃, τ̃ ) is a feasible (and LP-optimal) solu-
tion to the dual subproblem (D:SD2 ) since β̂ is set without violating any dual
constraints.

21



Furthermore, notice that β̂e ≥ β̃e, for all e ∈ E, and that the right-hand-side
of both cuts is identical. Since there exists e1 ∈ E such that β̂e1 > β̃e1 , the
coefficient of x0e1 is strictly smaller for the strengthened L-shaped cut than for
the standard one which concludes the proof. 2

It is well known that there is a trade-off between the invested running time for
finding a Pareto-optimal L-shaped cut and its strength. One can easily construct
an example where the strengthened L-shaped cuts are not Pareto-optimal, i.e.,
they can be dominated by other L-shaped cuts with the same LP-value for
x̃0. Nonetheless, as it is demonstrated in the next section, our procedure is a
good heuristic alternative for strengthening L-shaped cuts without sacrificing
the overall running time.

6. Computational study

Benchmark instances. To evaluate the performance of the 2-stage b&c in prac-
tice we focus on the restricted version of the SSNDP where connectivity re-
quirements in each scenario k ∈ K are defined by nodes of type two (subset
Rk2 ⊆ V ), type one (subset Rk1 ⊆ V ) and type zero (V \ (Rk2 ∪Rk1)). The main
motivation for this choice is the application in the design of telecommunication
networks where nodes of type two are important infrastructure nodes, or busi-
ness customers, nodes of type one are single households, and nodes of type zero
are, e.g., street intersections. For two distinct nodes u and v and each scenario
k ∈ K, the connectivity requirements are therefore: rkuv = 2 if both u and v are
in Rk2 , rkuv = 1 if one of them is in Rk1 and the other in Rk1 ∪ Rk2 , and rkuv = 0,
otherwise.

Deterministic instances were generated by adopting the idea of Johnson,
Minkoff, and Phillips [19], which is frequently used as benchmark in the network
design community. After randomly distributing n ∈ {30, 50, 75} points in the
unit square, a minimum spanning tree is computed using the points as nodes
and the Euclidean distances between all vertex pairs as edge costs. To generate
only feasible instances we augmented this tree by inserting edges between leaves
which are adjacent in the planar embedding. The resulting biconnected graph
is extended by adding all edges for which the Euclidean distance is less than or
equal to 1.6α/

√
n. We have introduced α in order to control the density (i.e.

|E|/n) of the graph1. In our experiments we use α = 0.9 which led to graphs
with average density 2.07, e.g., for n = 30 and n = 75 the density is 1.97 and
2.12, respectively. The edge-connectivity requirements are set as follows. We
have randomly drawn ρ% of the nodes as base sets of R1 and R2 customers.
Here, we use ρ = 40 and we additionally introduce a random root node that is
contained in R2. An example is given in Figure 2.

To transform these instances into stochastic ones we randomly and indepen-
dently generate K̄ = 1000 scenarios. The probabilities are set by distributing

1The original parameter used by [19] was 1.6 and corresponds to α = 1 in our setting.
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10,000 points over all K̄ scenarios. We start by assigning 1 point to each sce-
nario (1 point corresponds to a probability of 0.01%). Then, we distribute the
remaining 10,000 - K̄ points by selecting one of the K̄ scenarios uniformly at
random and increasing its number of points by 1. This procedure continues
until all 10,000 points are distributed. Hence, at the end, each scenario has a
probability ≥ 0.0001 and all probabilities sum up to 1 (since 10,000 points are
distributed).

Edge costs c0 in the first stage are Euclidean distances and in the second
stage for each edge e and scenario k ∈ K randomly drawn from [1.1c0e, 1.3c

0
e].

Edge-connectivity requirements are generated by randomly drawing ρk% from
the vertex sets R1 and R2 each as Rk1 and Rk2 customers, respectively, for
scenario k. Here, we use ρk = 30 for all scenarios k. The special root node was
set to be an Rk2 node in each scenario k.

For each deterministic instance we generated a stochastic instance with
K̄ = 1000 scenarios and took the first K to obtain an SSNDP instance with K
scenarios2. Probabilities for the scenarios of the instances with K < 1000 are
scaled appropriately. Overall, we generated 20 graphs for each n ∈ {30, 50, 75}
and k leading to 840 instances3. Due to the high computational effort we used
580 instances in the experiments: for n = 30 all 280 instances are used, for
n = 50 instances with at most 250 scenarios (180 instances), and for n = 75 we
used instances with at most 100 scenarios (120 instances).

Computational settings. We implemented the (single-stage) b&c and the 2-stage
b&c for the strongest of the three presented models, namely (SD2 ), considering
the following settings:

• EF: single, direct b&c applied to the extended formulation without decom-
position. Recall, the model is defined by using binary variables (x,y, z)
and constraints (SD2 :1)-(SD2 :5). To separate connectivity constraints
(SD2 :1), arc capacities are defined as zkij , for all (i, j) ∈ A, and all
k ∈ K. Then, a flow-based separation procedure known for the deter-
ministic SNDP, cf., e.g., [46], is applied for each scenario k ∈ K. We have
also implemented separation enhancements proposed in [7].

• 2bc: 2-stage b&c with the separation and strengthening of L-shaped
cuts and integer L-shaped cuts. Each subproblem is an instance of a
restricted deterministic SNDP, and the separation of associated cut in-
equalities (P :1) is performed in the same fashion as above, i.e., using the
maximum flow-based procedures from [7, 46].

• 2bc-n: the same as 2bc, but without strengthening the L-shaped cuts.

We used Abacus 3.0 as a generic branch&cut framework with IBM CPLEX
(version 12.1) as LP solver via the interface COIN-Osi 0.102. All experiments

2We use 14 values for K: K ∈ {5, 10, 20, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000}.
3These instances can be downloaded from our SSNDP webpage, see [45].
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were performed on an Intel Xeon 2.5 GHz machine with six cores and 64 GB
RAM under Ubuntu 12.04. Each run was performed on a single core and the
time limit was set to 2 hours. In all three settings, the maximum flow between
the root and the terminals is calculated in a random order of terminals which
may result in different running times for the same setting. We therefore perform
5 independent runs and report averaged values over these runs.

For 2bc and 2bc-n, integer optimality cuts (i-LS) were included by default.
These cuts are numerically more stable and turned out to be necessary in prac-
tice, in order to avoid numerical difficulties with some of the instances.

Value of stochastic solution. Since this work presents the first experimental
study concerning the SSNDP we start by analyzing the value of the stochastic
solution (VSS) in order to asses the actual need for formulating the considered
deterministic problem as a stochastic problem (for a detailed definition of the
VSS and related values we refer the reader to, e.g., [3, 29]).

To calculate the VSS, we first need to find the optimal solution for a deter-
ministic problem in which all random variables are replaced by their expected
values (also known as the expected value problem, EV). Let x̄0 denote an optimal
first-stage solution to this problem. We then evaluate this first-stage solution
by considering the EEV (expected result of the EV solution): this is the optimal
solution value to the original stochastic problem in which the first-stage vari-
ables are fixed to x̄0. Finally, the VSS is obtained as VSS = EEV - opt, where
opt denotes the optimal SSNDP solution. Hence, the VSS measures the quality
of the stochastic solution compared to the solution of the problem using the
expected values—which is obviously much easier to compute. The larger the
gap between the VSS and the EEV, the more risky/costly it is to replace the
uncertain input parameters with their expected values.

For the graphs with 50 vertices Table 1 shows the VSS results, grouped
by the number of scenarios K. We report the relative cost increase of the EEV
solution compared to opt, the number of edges installed in the first stage (for opt
and EEV, respectively). Not surprisingly, the solution costs increase drastically
when the EEV is used: on average, EEV solutions are between 20% and 26%
costlier than the optimal SSNDP solutions. The gap between opt and EEV also
increases with an increasing number of scenarios. Looking at the structure of
optimal EEV solutions, we observe that they typically consist of significantly
more edges installed in the first stage: on average, between 76% and 90% of the
overall solution cost is induced by the first-stage solution, whereas for opt the
corresponding values range between 35% and 50%. Finally, for both opt and
EEV we notice that with increasing number of scenarios the number of edges
installed in the first stage decreases.

Sample stability. Most stochastic programs cannot be solved (directly) because
of, e.g., a continuous distribution of the random variables ξ or due to a huge
number of possible scenarios K. To create a deterministic equivalent of a rea-
sonable size, one typically samples a set of scenarios which then can be solved
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sol. value # edges 1st stage % 1st stage costs
K value increase (%) opt EV sol. opt EV sol.

5

avg 20.25 15.95 40.70 50.13 89.08
min 7.50 6.00 36.00 26.26 73.54
max 35.71 29.00 44.00 77.61 98.69
dev 7.29 5.01 2.18 12.09 6.80

10

avg 24.06 14.50 43.65 42.67 87.96
min 8.75 7.00 38.00 18.12 71.66
max 39.04 29.00 46.00 72.02 99.04
dev 7.73 6.09 2.21 15.82 6.68

20

avg 24.96 12.40 43.15 38.04 79.79
min 15.39 3.00 39.00 9.98 67.37
max 38.16 28.00 48.00 72.69 91.73
dev 6.16 6.60 2.37 17.00 7.30

50

avg 26.95 11.63 42.44 35.44 76.60
min 19.39 2.00 39.00 10.97 67.29
max 34.88 29.00 47.00 73.50 87.90
dev 5.16 6.88 2.31 17.70 5.80

Table 1: Results concerning the VSS for instances with 50 vertices and K ∈ {5, 10, 20, 50}
scenarios. Used abbreviations: average (avg), minimum (min), maximum (max), standard
deviation (dev), solution value (sol), optimum stochastic solution value (opt).

to optimality. It is therefore important to evaluate the underlying scenario gen-
eration procedure and to estimate the required number of scenarios needed to
achieve good and stable solutions. Two related quality measures are in-sample
stability and out-of-sample stability whose definitions we briefly recall here (cf.
[21, 23] for in-depth discussions).

Consider a two-stage stochastic program (in a simplified notation): minx0∈X
f(x0, ξ) where x0 are the first-stage variables, X is the feasible set, f is the
objective function, and ξ the random variables vector4. Moreover, let minx0∈X
f(x0, s̄) denote the stochastic program restricted to a (sampled) scenario set s̄.
Now, let s̄, ŝ denote two scenario sets of the same size and let x̄0, x̂0 denote
optimal solutions to minx0∈X f(x0, s̄) and minx0∈X f(x0, ŝ), respectively. A
scenario generation method is called in-sample stable if the optimal solution
values of two independently sampled scenario sets are similar, i.e., if f(x̄0, s̄) ≈
f(x̂0, ŝ). If f(x̄0, ξ) ≈ f(x̂0, ξ) holds, the method is called out-of-sample stable.

For this analysis we consider instances with 50 vertices that could be solved
to optimality for 1000 scenarios. We then compute the in- and out-of-sample
stability values by sampling K out of these 1000 scenarios; we let the sample
size K vary between 5 and 500. For each fixed value of K, we create 20 instances
by sampling K scenarios out of 1000. Figure 7 shows the results for one repre-
sentative instance from this set with |V | = 50 and |E| = 100; the results for the
other instances look very similar. Given a fixed value of K, blue crosses and red
circles show the distribution of 20 solution values concerning the in-sample and

4We use here a simplified notation for a stochastic (mixed-integer) linear program with fixed
recourse, i.e., minx0∈X f(x0, ξ) is minx0∈X cT x0 +Q(x0, ξ), where Q(x0, ξ) = min{q(ξ)T y |
Wy = h(ξ)− T (ξ)x0, y ∈ Y } with second-stage variables y and feasible set Y , cf. e.g., [3].
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Figure 7: In- and out-of-sample stability for an instance with 50 vertices and 100 edges. The
horizontal axis gives the sample size and the vertical axis the objective value of in-sample (blue
crosses) and out-of-sample stability (red circles), respectively. Each data point represents one
sample. The solid horizontal line is the true optimum solution value opt=5351.23. The dashed
horizontal lines indicate the interval [0.99opt , 1.01opt ].

out-of-sample stability, respectively. The solid horizontal line shows the value of
the optimal solution i.e., the solution obtained by taking all 1000 scenarios into
account. As one can see, already for K ≥ 30 scenarios, out-of-sample stability
can be reached (i.e., optimal first-stage solutions, evaluated on the whole set of
1000 scenarios, fall within a 1% confidence interval). Similarly, in-sample sta-
bility can be reached for K ≥ 150: here, optimal solution values for K-scenario
solutions lie within a 1% confidence interval.

Computational benefits of the decomposition approach. Figures 8 and 9 show
the comparison of the running times of the three considered settings. The
average running times of EF, 2bc and 2bc-n for the instances with 30 nodes are
given in Figure 8. We report that all instances with n = 30 could be solved to
optimality by the decompositions (2bc and 2bc-n) but there are 115 instances
that could not be solved by EF within the time limit of 2 hours. Moreover,
we observe that for up to 50 scenarios, EF is faster, but for instances with 75
or more scenarios, both decomposition approaches clearly outperform EF. For
example, on the instances with 1000 scenarios, 2bc is on average about 22 times
faster than EF. For a lower number of scenarios, EF is superior due to the set-up
overhead needed for the decomposition. With an increasing number of scenarios,
the 2-stage b&c pays off and significantly outperforms the EF approach.

A similar behavior can also be observed on the sets of larger instances: The
upper and lower part of Figure 9 show the distribution of the running times for
instances with 50 and 75 nodes, respectively. Instances are grouped according
to the number of scenarios, with 20 instances per group. For each group of
20 instances, the boxplot representation shows the range between the first and
third quartiles of the corresponding running times—they are represented as the
bottom and top of each box, respectively. Median running times are indicated
by a horizontal line and outlier points by small circles.
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Figure 8: Average running time for graphs with 30 nodes grouped by the number of sce-
narios. EF: direct approach (extended formulation), 2bc-n: 2-stage branch&cut without cut
strengthening, 2bc: 2-stage branch&cut with cut strengthening

# b&b nodes # L-shaped cuts # Int. opt. cuts
K med avg dev med avg dev med avg dev

5 3 945.68 3986.69 242.5 7012.41 28426.94 0 260.43 1099.86
10 5 406.50 1678.75 430.0 4553.05 17001.77 0 96.55 403.01
20 10 26.50 75.24 731.5 1112.45 1566.20 1 4.80 14.23
50 11 55.66 161.90 1188.5 8955.32 32562.01 2 12.33 35.76
75 7 59.92 157.72 1621.0 12421.19 42500.32 2 15.48 45.97
100 5 47.08 138.67 2108.0 10504.61 33817.88 2 14.71 48.04
150 6 46.04 121.47 2849.5 12486.56 33197.29 2 13.10 33.98
200 7 45.46 121.14 3700.0 13188.84 30695.46 1.5 11.27 28.38
250 6 50.22 152.83 5015.5 15921.07 33907.50 1.5 13.47 37.38

Table 2: The median, average, and standard deviation for the number of b&b nodes, L-shaped
cuts and integer optimality cuts for 2bc on instances with 50 vertices and 5 to 250 scenarios.

We observe that already for 20 scenarios 2bc outperforms EF and with an
increasing input size we need less and less scenarios to draw the immediate
advantage of the decomposition. Furthermore, the performance of 2bc remains
relatively stable, whereas high dispersion and skewness of the running times
for EF can be observed. More precisely, out of 20 instances with 50 nodes and
250 scenarios, 18 of them are solved within the time limit of 2 hours using
2bc (the average running time of 2bc is 13 min.), whereas only 5 of them
could be solved with the EF approach (with average running time of 101 min.).
Similarly, for instances with 75 nodes and 100 scenarios, 2bc solves 15 out of 20
to optimality, and within the same time limit EF solves only 3. Outlier points
of the decomposition are due to numerical issues; for all of these instances the
optimal solution is known early but needs to be verified (many b&b nodes).

Table 2 reports the number of b&b nodes, L-shaped cuts, and integer op-
timality cuts for 2bc on instances with 50 vertices. In general, the number of
L-shaped cuts increases with the number of scenarios and the number of b&b
nodes and integer optimality cuts remains quite low. However, as mentioned
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Figure 9: Boxplots showing the running time for graphs with 50 nodes (top) and 75 nodes
(below), respectively, grouped by number of scenarios.

before and as one can see from Figure 9, there are outlier points that highly
influence the average values and the standard deviation.

Strengthening and comparison to Pareto-optimal approach. Figures 8–9 also
highlight the benefits of our strengthening procedure proposed in Section 5.
The running times of 2bc are always smaller and less dispersed when compared
to the running times of 2bc-n. Over all instances, the average speedup obtained
through the strengthening of L-shaped cuts is about four. The average speed-up
increases with an increasing graph size, and the most significant speedup of 16
is achieved when solving the largest instances, i.e., graphs with 75 nodes.

A well-known and frequently used approach for strengthening L-shaped cuts
is the method for finding Pareto-optimal cuts by Magnanti and Wong [31]. In
the following, we compare the performance of three decomposition approaches:
2bc and 2bc-n described above, and 2bc-MW, which is 2-stage b&c with Pareto-
optimal L-shaped cuts added at each iteration (i.e., after solving the subproblem
an additional LP is solved to obtain stronger dual multipliers corresponding to
a Pareto-optimal L-shaped cut).

In Figure 10 we compare the three approaches considering the following two
performance indicators: 1) the average running times (shown by solid lines),
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Figure 10: Average running time (solid lines) and median number of master iterations (dashed
lines) of the 2-stage b&c with cut strengthening (2bc, red lines), without cut strengthening
(2bc-n, blue lines), and with the Magnanti-Wong method (2bc-MW, green lines) for graphs
with 50 nodes.

and 2) the average number of master iterations (shown by dashed lines). The
figure reports results for graphs with 50 nodes, but a similar behavior can be
observed for the remaining instances. Comparing the number of master iter-
ations, we note that the 2bc-n requires the largest number of iterations, and
that the average reduction obtained by our cut strengthening is about 9. The
approach 2bc-MW requires even less master iterations than 2bc; However, there
is a computational overhead associated with 2bc-MW, induced by solving addi-
tional LPs for finding Pareto-optimal cuts. This results in the overall running
time of 2bc-MW which is worse when compared to the running time of 2bc. We
also notice that 2bc-MW outperforms 2bc-n in terms of the running time, which
underlines the importance of the strengthening procedures in the generation
of L-shaped cuts. Finally, we also tried to hybridize 2bc-MW with 2bc, but it
turned out that this method does not improve the running time of 2bc.

Graph density. To show the robustness of our decomposition method we eval-
uate its performance when the graph density |E|/|V | is increased. For this
set of experiments we consider the instances with 50 vertices and 50 scenarios
and insert new edges to obtain an instance with a higher density. Edge costs
of the new edges are generated in the same way as before and edge connecti-
vity requirements remain unchanged. Overall, for each of the 20 instances with
|V | = 50 and K = 50 we generate graphs with density 3, 4, 5, 6, 8, 10, 12,
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Figure 11: Boxplot showing the running time of 2bc and EF when the density of the graphs
increases. Here we use instances with |V | = 50 and K = 50.
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Figure 12: Boxplots showing the impact of a penalty factor for the second-stage costs on
instances with |V | = 50 and K = 50: (left) running time of 2bc and (right) percentage of
first-stage cost w.r.t. optimal solution value.

and 14, respectively; 14 implies that the graph contains more than half of all
possible edges.

Figure 11 shows the running times of 2bc and EF grouped by the graph
density. As one can see the running time of 2bc increases only moderately; the
median running time for density 3 is 28.09 sec. and for density 14 it is 197.86 sec.
Since there are also only a few outlier points we conclude that the performance
of 2bc is robust and remains stable even when the graph density increases. On
the contrary, the direct approach EF performs much worse on denser graphs:
the median running time increases from 200.86 sec. to 3670.13 sec. (density 3
and 14, respectively). Moreover, EF could not solve 25% of the densest instances
within the time limit of two hours.

Second stage as penalty. Last but not least, we consider the impact of the
relative second-stage costs w.r.t. the first-stage costs. Here, we take all instances
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with 50 vertices and simply multiply all second-stage costs with a penalty factor
from the set {0.8, 2, 4, 8, 12}. Figure 12 presents the results for the instances
with 50 scenarios—the results for the other instances look similar. Clearly, a
more expensive second stage leads to the installation of more edges in the first
stage as shown by Figure 12 (right). Moreover, our initial setting of second-
stage costs seems to be reasonable as the optimal solutions consist of both first-
and second-stage edges. With an increasing (or decreasing) factor this changes
drastically and one stage dominates: for a factor of 0.8 or less the optimal first
stage solution is always empty and for a factor of ≥ 8 this holds for the second
stage. Moreover, we conclude that our algorithm performs well even when more
edges are bought in the first stage, cf. Figure 12 (left). This is important since
the decomposed model initially contains no constraints in the master problem.5

7. Discussion, conclusions, and future work

In this paper we introduced the two-stage stochastic version of the surviv-
able network design problem with a finite number of discrete scenarios and
complete recourse. We presented three ways to model this problem: an undi-
rected and two semi-directed formulations. For the undirected model we showed
that facet defining inequalities of the deterministic counterparts can be lifted
and yield facet defining inequalities of the stochastic model. This is the first
result concerning the polyhedra of stochastic network design problems. The
semi-directed formulations rely on orientation properties of edge-κ-connected
graphs, and we prove that they are strictly stronger than the undirected formu-
lation. We also discussed a 2-stage branch&cut algorithm using a decomposition
approach. Moreover, a strengthening procedure is introduced, representing an
easy way for strengthening the L-shaped optimality cuts. Our computational
study showed the benefits of using the decomposition for stochastic network de-
sign problems. Furthermore, the cut strengthening technique highly reduces the
number of master iterations and the computational running time. Compared
to the generation of Pareto-optimal L-shaped cuts with the Magnanti-Wong
method, our new procedure requires slightly more master iterations, but out-
performs the Magnanti-Wong method with respect to running time (due to the
overhead of solving additional LPs for the latter approach).

Our computational experiments show that our two-stage branch&cut ap-
proach is more than an order of magnitude faster than the direct single-stage
b&c approach. For the SSNDP, we are able to solve instances with up to 75
nodes, or 1000 scenarios, respectively, to provable optimality. We are convinced
that our simple and fast cut strengthening technique will be useful for gen-
eral network optimization problems in the two-stage (stochastic optimization)
setting.

5More detailed results regarding our computational experiments (including optimal solu-
tion values, running times, etc.) can be found at [45].
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An open problem remains how to generate Pareto-optimal L-shaped cuts by
a combinatorial algorithm. Our cut strengthening does not ensure the Pareto
optimality—counter examples can be derived easily.

We remark that similar results can be obtained for the stochastic version
of the node-connectivity {0, 1, 2}-SNDP, cf. Section 2. Only recently, in [7],
new graph orientation properties have been given that allow to derive stronger
directed MIP formulations for the deterministic {0, 1, 2}-SNDP with node-con-
nectivity requirements. Using this result and analogously to formulation (SD2 ),
it is possible to formulate a stronger semi-directed model for the stochastic
counterpart. L-shaped cuts and their strengthening can be derived from this
model in a similar way, to be used within the 2-stage b&c.

Last but not least, we like to mention that several interesting problems are
still open for the deterministic SNDP. For example, stronger directed formula-
tions for higher node-connectivity requirements, i.e., > 2, or orienting solutions
where both node- and edge-connectivity is required are still open problems.
However, by using the same techniques presented in this article, any improve-
ments in the deterministic context should be transferable to the related stochas-
tic problems, formulations, and algorithms.
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APART Fellowship of the Austrian Academy of Sciences (OEAW). This support
is greatly acknowledged. The Dortmund part of this work has been partially
supported by the DFG Research Training Group 1855.

References

[1] A. Balakrishnan, T. L. Magnanti, and P. Mirchandani. Connectivity-
splitting models for survivable network design. Networks, 43(1):10–27,
2004.

[2] J. F. Benders. Partitioning Procedures for Solving Mixed-Variables Pro-
gramming Problems. Numerische Mathematik, 4:238–252, 1962.

[3] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer, New York, second edition, 2011.
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