
Institut für Statistik und
Decision Support Systems

Universität Wien

Solving two-stage stochastic Steiner tree
problems by two-stage branch-and-cut

I. Bomze, M. Chimani, M. Jünger, I. Ljubić,
P. Mutzel, B. Zey

TR 2010–03 April, 2010

Solving Two-Stage Stochastic Steiner Tree Problems by
Two-Stage Branch-and-Cut

Immanuel Bomze‡ Markus Chimani∗∗ Michael Jünger†† Ivana Ljubić‡‡

Petra Mutzel§ Bernd Zey§

‡Department of Statistics and Decision Support Systems
University of Vienna, Austria

{immanuel.bomze,ivana.ljubic}@univie.ac.at
∗Institute of Computer Science

Friedrich-Schiller-University of Jena
markus.chimani@uni-jena.de

†Department of Computer Science
University of Cologne

mjuenger@informatik.uni-koeln.de

§Department of Computer Science
TU Dortmund

{petra.mutzel,bernd.zey}@tu-dortmund.de

Abstract

We consider the Steiner tree problem under a two-stage stochastic model with recourse and
finitely many scenarios. In this problem, edges are purchased in the first stage when only probabilistic
information on the set of terminals and the future edge costs is known. In the second stage, one of the
given scenarios is realized and additional edges are puchased in order to interconnect the set of (now
known) terminals. The goal is to decide on the set of edges to be purchased in the first stage while
minimizing the overall expected cost of the solution. We provide a new semi-directed cut-set based
integer programming formulation, which is stronger than the previously known undirected model.
We suggest a two-stage branch-and-cut (B&C) approach in which L-shaped and integer-L-shaped
cuts are generated. In our computational study we compare the performance of two variants of our
algorithm with that of a B&C algorithm for the extensive form of the deterministic equivalent (EF).
We show that, as the number of scenarios increases, the new approach significantly outperforms the
(EF) approach.

Keywords: stochastic Steiner tree, stochastic integer programming, branch-and-cut, Benders decom-
position

∗M. Chimani is funded via a juniorprofessorship by the Carl-Zeiss-Foundation.
†M.Jünger and P.Mutzel gratefully acknowledge the hospitality they enjoyed during their stay as visiting research

professors at the University of Vienna; much of this research was done during this stay.
‡I. Ljubic is supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation (FWF).

1

1 Introduction

Motivation. The classical Steiner tree problem in graphs is a quite well-studied combinatorial op-

timization problem and has a wide range of applications: from the planning of various infrastructure

networks (e.g., communication or energy supply) to the study of protein-interaction networks in bioin-

formatics. Given an undirected graph G = (V,E) with edge weights (costs) ce ≥ 0, for all e ∈ E, and

a subset of required vertices (terminals) R ⊆ V , the problem consists of finding a subset of edges that

interconnects all the terminals at minimum (edge installation) cost.

In practice, however, network planners are often faced with uncertainty with respect to the input data.

The actual demand patterns become known only after the network has been built. In that case, networks

found by solving an instance in which it is assumed that the complete knowledge of the input is known up-

front, might not provide appropriate solutions if deviations from the assumed scenario are encountered.

Stochastic optimization is a promising way to take uncertainties into account.

Our problem. We consider the two-stage stochastic Steiner tree problem (SSTP) with fixed recourse

and finitely many scenarios in which the terminal set and the edge installation costs are subject to

uncertainty. In this model, some edges are purchased in the first stage when only probabilistic information

about the second stage is known. In the second stage, one of the given scenarios is realized and additional

edges are purchased in order to interconnect the (now known) terminal nodes. The costs of these edges

in the second stage are higher than their costs in the first stage. Our goal is to make a decision about

edges to be purchased in the first stage, while minimizing the expected cost of the solution, which is given

as the sum of the purchased edges in the first-stage plus the expected costs of purchasing additional

edges in the second stage.

Previous work. Gupta et al. started a series of papers on approximation algorithms for the SSTP.

E.g., they have provided a constant factor approximation algorithm for the SSTP in the case that the

second stage costs are determined from the first stage costs by multiplication with a fixed inflation

factor [5]. The algorithm is based on a primal-dual algorithm that is guided by a relaxed integer linear

programming (ILP) solution. For the general case that we consider, Gupta et al. [4] have shown that

the problem becomes as hard as Label Cover (which is Ω(2log1−ε n)-hard). We are not aware of any

computational study concerning the SSTP.

Our Contribution. The ILP model used in [5] is based on an undirected cut-set formulation for Steiner

trees. We suggest a new semi-directed ILP model and show that it is stronger than the undirected one.

We show that the recourse function decomposes into a set of independent restricted Steiner arborescence

problems. To solve the problem, we use a Benders-like decomposition method. We nest a branch-and-cut

framework for solving the subproblems [8] into a branch-and-cut master approach in which L-shaped and

integer-L-shaped cuts are generated [2, 7]. In our computational experiments, we study the behaviour

2

of our two-stage branch-and-cut (B&C) algorithm for two differently decomposed variants of our semi-

directed ILP model and compare it to solving the deterministic equivalent (EF) directly. It is the first

time that the stochastic Steiner tree problem is studied computationally. We report optimal results for

SSTP instances with up to 165 vertices and 274 edges.

2 ILP models

2.1 Problem definition

We consider the following two-stage stochastic Steiner tree problem. Let G = (V,E) be an undirected

network with a selected root r and with known first-stage edge costs ce ≥ 0, for all e ∈ E; let Vr := V \{r}.
The set of terminals, as well as the costs of edges to be purchased in the second stage, is known only

in the second stage. These values together form a random variable ξ, for which we assume that it has

a finite support. It can therefore be modeled using a finite set of scenarios K = {1, . . . ,K}, K ≥ 1.

The realization probability of each scenario is given by pk > 0, k ∈ K; we have
∑
k∈K pk = 1. Denote

by qke ≥ 0 the cost of an edge e ∈ E if it is bought in the second stage, under scenario k ∈ K. Denote

the expected second stage cost of an edge e ∈ E by q∗e :=
∑
k∈K pkq

k
e . We assume that q∗e > ce, for all

e ∈ E.1 Furthermore, let Rk ⊆ Vr be the set of terminals under the k-th scenario. We denote by E0 the

set of edges purchased in the first-stage, and by Ek the set of additional edges purchased under scenario

k, k ∈ K.

The SSTP problem can then be formulated as follows: Determine the subset of edges E0 ⊆ E to be

purchased in the first stage, so that the overall cost defined as∑
e∈E0

ce +
∑
k∈K

pk
∑
e∈Ek

qke ,

is minimized, while E0 ∪ Ek spans Rk for all k ∈ K.

Obviously, the optimal first-stage solution of the SSTP is not necessarily a tree [5]. In fact, the optimal

solution might contain several disjoint fragments, depending on the subsets of terminals throughout

different scenarios, or depending on the second-stage cost structure.

2.2 Undirected model, deterministic equivalent

A deterministic equivalent (in extensive form) of the stochastic Steiner tree problem has been originally

proposed in [5]. The authors developed an undirected ILP formulation as a natural extension of the

undirected cut-set model for Steiner trees. We briefly recall this model here. The following two sets of
1In case that there exists an edge e such that q∗e = ce, it will never be purchased in the first stage, since its expected

second stage cost is the same. One would rather wait until a specific scenario is realized, to finally decide on purchasing

such an edge.

3

binary variables are used in this model:

Xe =

1, if e ∈ E0

0, otherwise
and Y ke =

1, if e ∈ Ek
0, otherwise

∀e ∈ E

For D ⊆ E, let (X + Y k)(D) =
∑
e∈D(Xe + Y ke). For S ⊆ V , let δ(S) = {{i, j} ∈ E | i ∈ S and j /∈ S}.

A deterministic equivalent of the SSTP can then be written as:

(SSTPu) min
X∈{0,1}|E|,Y ∈{0,1}|K||E|

{
∑
e∈E

ceXe +
∑
k∈K

pk
∑
e∈E

qkeY
k
e |

(X + Y k)(δ(S)) ≥ 1,∀S ⊆ Vr, S ∩Rk 6= ∅, ∀k ∈ K}

Gupta et al. [5] have shown that the LP-solution of the above model can be rounded to a feasible solution

with value of at most 40 times that of the optimal solution, if the edge costs in the second stage are

given by qke = σkce, for all e ∈ E, k ∈ K, for some fixed scalar σk.

2.3 Semi-directed model, deterministic equivalent

It is well known that directed models for Steiner trees provide better lower LP-bounds (see, e.g., [3]),

and therefore the natural question arises whether we can extend the model (SSTPu) by bi-directing the

given graph G and replacing edge- by arc-variables in the same model. The main difficulty with the

stochastic Steiner tree problem is that the arcs of the first-stage solution cannot be derived using this

technique. It is not difficult to imagine an instance in which an edge {i, j} ∈ E is used in direction (i, j)

for one scenario, and in the opposite direction (j, i) for another scenario.

Cut-set formulation. Despite the difficulty mentioned above, we can model SSTP using oriented

edges to describe the second stage solutions. In other words, we are looking for the optimal first-

stage solution (an undirected subgraph of G) such that each solution of scenario k represents a Steiner

arborescence rooted at r, whose arcs are built upon all the (already installed) first stage edges and

additional second-stage arcs. In order to derive the new model, we first bi-direct graph G by defining

the set of arcs A = {(i, j)∪ (j, i) | {i, j} ∈ E, i, j 6= r}∪{(r, i) | {r, i} ∈ E}. Denote by Ak the arcs of the

optimal solution of scenario k, k ∈ K. For each scenario k ∈ K, we now introduce binary arc-variables

zkij , for all (i, j) ∈ A. A variable zkij is set to 1 iff the final solution after the second stage in scenario k

uses the arc (i, j). Note that for edges bought in the first stage, each scenario solution has to select one

of its corresponding arcs.

The new semi-directed deterministic equivalent (EF) of the SSTP can then be written as:

(EF) min
∑
e∈E

ceXe +
∑
k∈K

pk
∑

e={i,j}∈E
qke (zkij + zkji −Xe)

4

s.t. zk(δ−(S)) ≥ 1, ∀S ⊆ Vr, S ∩Rk 6= ∅, ∀k ∈ K (1)

zkij + zkji ≥ Xe, ∀e = {i, j} ∈ E, ∀k ∈ K (2)

zkij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ K (3)

0 ≤ Xe ≤ 1, ∀e ∈ E, ∀k ∈ K (4)

Here, δ−(S) = {(i, j) ∈ A | i /∈ S, j ∈ S}. Constraints (1) ensure that for each terminal v ∈ Rk, there

is a directed path (using the second stage arcs) from r to v. Inequalities (2) are capacity constraints

ensuring that at least one second stage arc is installed for every edge purchased in the first stage. Proofs

for the following two lemmata can be found in the Appendix.

Lemma 1. Formulation (EF) models the deterministic equivalent of the stochastic Steiner tree problem

correctly. To be more precise, in every optimal solution of the model, variables Xe take value 0 or 1.

Obviously, the semi-directed formulation (EF) for the stochastic Steiner tree problem is at least as strong

as the undirected formulation. We can show that the new formulation is even strictly stronger.

Lemma 2. Denote by ProjX,Y (EF) the projection of the polytope defined by the LP-relaxation of (EF)

onto the space of X and Y variables in which Y ke = zkij + zkji − Xe, for all e = {i, j} ∈ E, for all

k ∈ K. Let Pu be the polytope defined by the LP-relaxation of (SSTPu). Then for any instance of SSTP

we have ProjX,Y (EF) ⊆ Pu and there are instances for which strict inequality holds and the optimal

LP-relaxation value of (EF) is strictly larger than the corresponding LP-relaxation value of (SSTPu).

3 Algorithmic Framework

3.1 Decomposition of the (EF) model

The large number of decision variables makes the extensive form (EF) very difficult to solve when

considering many scenarios. However, we can rewrite the (EF) formulation as:

min
X∈{0,1}|E|

ctX +Q(X)

in which the so-called recourse function Q(X) decomposes into K independent problems, i.e., Q(X) =

EQ(X, ξ) =
∑
k∈K pkQ(X, k). For a fixed vector X̃, the k-th subproblem Q(X̃, k) corresponds to the

following NP-hard restricted Steiner arborescence problem:

(STPk
sd) min

∑
e={i,j}∈E

qke (zkij + zkji − X̃e)

s.t. zk(δ−(S)) ≥ 1, ∀S ⊆ Vr, S ∩Rk 6= ∅ (5)

zkij + zkji ≥ X̃e, ∀e = {i, j} ∈ E (6)

zkij ∈ {0, 1}, ∀(i, j) ∈ A (7)

5

Due to the integrality restrictions on the second stage variables, the recourse function Q(X) is non-convex

and discontinuous.

3.2 A two-stage Branch-and-Cut approach.

The key idea is to apply a nested Branch-and-Cut approach: a Benders-like decomposition method

determines the Master Branch-and-Cut Framework. Let the following problem be the relaxed master

problem (RMP):

(RMP) min
X∈[0,1]|E|,Θk≥0

{ctX + Θ | Θ =
∑
k∈K

pkΘk,

a set of L-shaped cuts and integer L-shaped cuts}.

For a given first stage solution in X, the variables Θk are estimated second stage costs of scenario k

needed for purchasing additional arcs in the second stage in order to interconnect the terminals from Rk.

As optimality cuts we use L-shaped and integer L-shaped cuts [2, 7] to guarantee the convergence of the

algorithm as described below. Observe that no feasibility cuts are needed, since we are dealing with the

problem with complete recourse, i.e., every first-stage solution is feasible.

Step 0: Initialization. UB = +∞ (global upper bound, corresponding to a feasible solution), ν = 0.

Create the first pendant node. In the initial (RMP), the set of (integer) L-shaped cuts is empty.

Step 1: Selection. Select a pendant node from the B&C tree, if such exists, otherwise STOP.

Step 2: Separation. Solve (RMP) at the current node. ν = ν + 1. Let (Xν ,Θν
1 , . . . ,Θ

ν
K) be the

current optimal solution, Θν =
∑
k∈K pkΘν

k.

(2.1) If ctXν + Θν > UB fathom the current node and goto Step 1.

(2.2) Search for violated L-shaped cuts:

For all k ∈ K, compute the LP-relaxation value R(Xν , k) of (STPk
sd). If R(Xν , k) > Θν

k: insert

L-shaped cut (8) into (RMP).

If at least one L-shaped cut was inserted goto Step 2.

(2.3) If X is binary, search for violated integer L-shaped cuts:

(2.3.1) For all k ∈ K s.t. zk is not binary in the previously computed LP-relaxation, solve

(STPk
sd) to optimality. Let Q(Xν , k) be the optimal (STPk

sd) value. If
∑
k∈K pkQ(Xν , k) > Θν

insert integer L-shaped cut (9) into (RMP). Goto Step 2.

(2.3.2) UB = min(UB , ctXν + Θν). Fathom the current node and goto Step 1.

Step 3: Branching. Using a branching criterion, create two nodes, append them to the list of pendant

nodes, goto Step 1.

The algorithm described above is a B&C approach in which each of the subproblems (STPk
sd) is solved

to optimality using another B&C. This explains the name two-stage branch-and-cut.

6

L-shaped cuts. To solve the LP-relaxation of the (EF) formulation via the models (STPk
sd) given

above, we will relax the integrality constraints (7) to 0 ≤ zkij , for all (i, j) ∈ A, for all k ∈ K. Only a small

number among the exponential number of cuts will be needed to solve the LP-relaxations (cf. cutting

plane method). Therefore, in the corresponding dual problems only those dual variables associated to

cuts found in the cutting plane phase will be of interest. We associate dual variables αkS to constraints (5)

and βke to (6).

Denote by (α̃k, β̃k) the optimal solutions of the dual of the k-th subproblem. Instead of inserting one

optimality cut per iteration, we will consider the multicut version of the L-shaped method for this

problem [1]. This multicut approach applies a disaggregation of optimality cuts per each single scenario.

Therefore, the number of master iterations may be significantly reduced, which is of great importance if

the number of scenarios is large, or the recourse function Q(X̃, k) is difficult to solve. For a fixed first-

stage solution (X̃, Θ̃1, . . . , Θ̃K), we will solve LP-relaxations of all K scenarios, and insert the following

L-shaped cuts:

Θk +
∑
e∈E

(qke − β̃ke)Xe ≥
∑

S⊆Vr:S∩Rk 6=∅
α̃kS , (8)

for all k ∈ K where Θ̃k < R(X̃, k).

Integer L-shaped cuts. Let Xν be a binary first stage solution with its corresponding optimal second

stage value Q(Xν) =
∑
k∈K pkQ(Xν , k). Let Iν := {e ∈ E : Xν

e = 1} be the index set of the edge

variables chosen in the first stage, and the constant L be a known lower bound of the recourse function.

The general integer optimality cut in the L-shaped scheme [7] cuts off the solution (Xν ,Θν) and can be

written as:

Θ ≥ (Q(Xν)− L)

 ∑
e∈Iν

Xe −
∑

e∈E\Iν
Xe − |Iν |+ 1

 + L. (9)

Solving the subproblems. Each of the K subproblems is solved using a Subproblem Branch-and-

Cut Framework for the restricted Steiner arborescence problem. The subproblems are solved using the

algorithm given in [8], augmented with (6). Cuts found during the separation of one subproblem are

then stored in a pool where they can be reused by other subproblems (if applicable).

3.3 Reformulation with negative edge costs in the first stage

Alternatively to above, we can consider the following two objective functions when decomposing the

problem: min
∑
e∈E(ce− q∗e)Xe+

∑
k∈K pkΘk for the (RMP) formulation. The second stage subproblem

is then decomposable into the following subproblems:

(STPk
sd∗) Q(X̃, k) = min{

∑
ij∈A

qk{i,j}z
k
ij | zkij satisfies (5)–(7)}.

In this formulation, variables Θk denote the expected costs for interconnecting terminals from Rk plus

purchasing all edges from X̃ in the second stage. The difference in using this decomposition, rather

7

than the one described before, is that the edge costs in the first stage become negative and the initial

iterations of the master B&C will therefore select many instead of few edges. The generated L-shaped

cuts are then written as

Θk −
∑
e∈E

β̃keXe ≥
∑

S⊆Vr:S∩Rk 6=∅
α̃kS . (10)

We will see that, from the computational point of view, this second approach significantly outperforms

the previous one.

4 Computational Results

All experiments were performed on an Intel Core-i7 2.67GHz Quad Core machine with 12 GB RAM,

under Ubuntu 9.04. Each run was performed on a single core. We used ABACUS 3.0 as a generic B&C

framework; for solving the LP relaxations we used the commercial package IBM CPLEX (version 10.1)

via COIN-Osi 0.102.

Depending on the used decompositions (STPk
sd) and (STPk

sd∗), we denote the implementations of the

two-stage B&C algorithms by 2BC and 2BC∗, respectively. Thereby, we use following primal heuristic

at the root node of the B&C tree (after each iteration, until we obtain the first upper bound): Round the

fractional solution X ′ to a binary solution X ′′. If X ′′ is cycle free, solve all K subproblems to optimality

and obtain a valid upper bound UB = ctX ′′+
∑
k∈KQ(X ′′). For solving (EF) directly, we implemented

a branch-and-cut approach analogous to the one given in [8]; we denote the algorithm by EF .

4.1 Benchmark Instances

The benchmark instances used in our study are derived from deterministic inputs taken from the following

two sources.

K and P Groups of Instances. These graphs are instances of the prize-collecting Steiner tree problem,

originally generated in [6]. Our inputs are graphs obtained by applying several reduction procedures as

explained in [8]. The reduced instances contain up to 91 nodes and 237 edges and are available online [9].

lin Instances. These graphs are instances borrowed from the SteinLib [10]. The graphs contain up

to 165 nodes and 274 edges with up to 14 terminals. Although for the deterministic Steiner tree problem

these instances appear to be solvable by preprocessing or by dual ascent heuristics, the same techniques

cannot be applied straight-forwardly to the corresponding SSTP problems.

Converting Deterministic into Stochastic Inputs. Deterministic Steiner tree input graphs G =

(V,E) with edge costs ce, e ∈ E are transformed into the SSTP instances as follows:

8

1. We generate K scenarios. To obtain scenario probabilities pk, we distribute 1000 points (cor-

responding to the probability of 1h, each) among these scenarios randomly (ensuring that each

scenario has at least probability 1h).

2. For each scenario k, we construct Rk by independently picking each terminal or Steiner node with

probability 0.3 or 0.05, respectively.

3. Each second stage edge costs qke is randomly (independent, uniform) drawn from [1.1ce, 1.3ce].

4.2 Comparing the Deterministic Equivalent vs. Two-Stage Branch-and-Cut

Approaches

For the K and P instance groups, we focus on comparing the time to obtain provably optimal solutions,

required by our two decomposition-based algorithms 2BC, 2BC∗ and the standard approach EF. Figure 1

shows the running times in seconds, averaged over all instances of the corresponding group. We observe

that decomposing the problem is not worthwhile for instances with less than 20 scenarios. However, as

the number of scenarios increases, the benefit of decomposing is obvious: already with 100 scenarios, EF

needs 10 times the running time of the two-stage B&C approaches. In additional experiments with 500

scenarios, EF is not able to solve 6 out of 11 instances within two hours, whereas the two-stage approach

2BC∗ needs only 510 seconds on average.

We also observe that 2BC∗ always outperforms 2BC. In particular for the group K instances with 100–

500 scenarios, it is 1.8 times faster. This is because the L-shaped cuts generated by 2BC∗ are sparser (β̃ke

are often 0) and numerically more stable than the corresponding cuts generated by 2BC (cf. Section 3.1).

Table 1 shows the comparison between EF and the two-stage approach 2BC∗. Instances lin01–lin06

were used to generate inputs with K ∈ {5, 10, 20, 50} scenarios. Column |Ravg| gives the average number

of terminals in each scenario; OPT* gives the optimal values (or the best upper bound, if the time limit

of 2 hours is reached). We compare the running time in seconds (t[s]), the number of branch-and-bound

nodes (b&b), the final gap obtained after the time limit of two hours, as well es the overall number of

iterations in the B&C (#iter). We observe that, as the number of scenarios increases, the number of

iterations decreases for 2BC∗. This is due to the larger number of multi-cuts inserted in each primal

iteration. In contrast to this, the number of iterations for EF increases drastically with the number of

scenarios, which explains why instances with more than 20 scenarios are not solvable within the time

limit.

5 Extensions and Future Work

Gupta et al. [5] also consider the SSTP in which the first stage solution is a tree. Using our above ideas

and bi-directing G already for the first stage, we can deduce an even stronger fully directed model that

9

0

400

800

1200

1600

2000

2400

5 10 20 50 100 200

ru
nt

im
e

[s
ec

.]

#scenarios

EF

2BC

2BC*

(a) K group: 11 instances.

0

400

800

1200

1600

2000

5 10 20 50 100

ru
nt

im
e

[s
ec

.]

#scenarios

EF

2BC

2BC*

(b) P group: 5 instances.

Figure 1: Average running times in seconds for both two-stage branch-and-cut algorithms 2BC and

2BC∗, and for the extensive formulation of the deterministic equivalent EF.

ensures that the first-stage solution is a rooted Steiner arborescence as well. It will be interesting to

evaluate the potentially arising benefits.

Along the lines of the algorithm engineering cycle, our above approach leaves multiple areas for further

improvements: The integration of stronger primal heuristics may lead to further significant speed-ups. A

broader set of specifically designed benchmark instances may allow a better insight in the dependencies

between input properties and solvability; e.g., it seems to be hard to generate SSTP instances that

require integer L-shaped cuts in practice. It is also an open question how to integrate further known

strong arborescence constraint classes like flow-balance constraints, as they are not directly valid in our

SSTP setting.

References

[1] J.R. Birge and F. Louveaux. A multicut algorithm for two-stage stochastic linear programs. European

Journal of Operational Research, 34:384–392, 1988.

[2] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York, 1997.

[3] S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions and extension

of facets. Mathematical Programming, 64:209–229, 1994.

[4] A. Gupta, M. Hajiaghayi, and A. Kumar. Stochastic steiner tree with non-uniform inflation. In

APPROX and RANDOM 2007, volume 4627 of LNCS, pages 134–148, 2007.

[5] A. Gupta, R. Ravi, and A. Sinha. LP rounding approximation algorithms for stochastic network

design. Math. of Operations Research, 32(2):345–364, 2007.

[6] D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner tree problem: Theory and

practice. In Proc. 11th ACM-SIAM SODA, pages 760–769. SIAM, 2000.

10

EF 2BC∗

Instance K |Ravg | OPT* t[s] b&b gap #iter t[s] b&b gap #iter

lin01 53 80 5 4.6 797.0 0.2 1 — 34 2.2 1 — 61

lin01 53 80 10 4.2 633.2 0.7 3 — 59 2.5 3 — 50

lin01 53 80 20 4.6 753.9 5.7 3 — 63 6.9 3 — 52

lin01 53 80 50 4.7 768.9 33.4 3 — 70 10.4 3 — 36

lin02 55 82 5 4.6 476.2 0.1 1 — 24 1.1 1 — 45

lin02 55 82 10 5.3 739.1 1.0 1 — 33 3.0 1 — 47

lin02 55 82 20 5.3 752.2 4.9 1 — 69 4.3 1 — 37

lin02 55 82 50 5.1 732.6 31.2 1 — 70 10.7 1 — 35

lin03 57 84 5 4.4 653.0 0.5 1 — 80 1.9 1 — 55

lin03 57 84 10 5.2 834.7 3.8 7 — 90 8.7 7 — 91

lin03 57 84 20 5.8 854.9 10.8 1 — 92 7.3 1 — 41

lin03 57 84 50 5.5 895.7 103.1 3 — 106 21.3 3 — 43

lin04 157 266 5 10.4 1922.1 140.4 3 — 315 959.2 47 — 567

lin04 157 266 10 9.8 1959.1 415.8 7 — 244 989.2 7 — 339

lin04 157 266 20 9.3 1954.9 5498.7 11 — 833 3016.7 13 — 575

lin04 157 266 50 9.8 2097.7 (2h) 1 19.5 185 5330.2 11 — 269

lin05 160 269 5 10.2 2215.5 282.0 53 — 722 2681.2 35 — 1558

lin05 160 269 10 11.4 2210.2 1866.7 5 — 1130 4096.0 35 — 1502

lin05 160 269 20 11.1 2412.2 (2h) 11 5.6 1060 (2h) 17 4.7 890

lin05 160 269 50 11.6 2297.0 (2h) 1 21.3 210 3627.4 1 — 159

lin06 165 274 5 11.0 1975.8 212.8 53 — 797 760.9 19 — 834

lin06 165 274 10 10.6 1918.7 501.7 5 — 260 808.4 3 — 306

lin06 165 274 20 14.0 2457.6 (2h) 11 — 1099 3222.9 11 — 459

lin06 165 274 50 12.6 2186.8 (2h) 1 22.5 221 2795.5 11 — 215

Table 1: Results for lin instances: within the time limit of two hours, EF was not able to solve most of

the instances with 50 scenarios.

[7] G. Laporte and F.V. Louveaux. The integer L-shaped method for stochastic integer programs with

complete recourse. Oper. Res. Lett., 13:133–142, 1993.

[8] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algorithmic frame-

work for the exact solution of the prize-collecting Steiner tree problem. Mathematical Programming,

105(2-3):427–449, 2006.

[9] PCSTP Benchmark: homepage.univie.ac.at/ivana.ljubic/research/pcstp/.

[10] Steinlib: steinlib.zib.de/steinlib.php.

11

◦5 ◦2 // ◦3

�r

OO ppppppppppppp

NNNNNNNNNNNNN

◦1 // ◦4

Figure 2: A network used in the example below. All edge costs are equal to one.

Appendix

Proof of Lemma 1.

Proof. We show that in any optimal solution of (STPsd), values of Xe variables will not be fractional.

So assume that there exists an optimal solution X such that there exists e ∈ E, such that 0 < Xe < 1.

Inequalities (2) imply that for all scenarios k ∈ K zkij + zkji = 1. The term in the objective function

corresponding to edge e is:

ceXe +
∑
k

pkq
k
e (1−Xe) = ceXe + q∗e(1−Xe) = (ce − q∗e)Xe + q∗e .

Since ce − q∗e < 0, we can obviously reduce the value of the objective function by setting Xe := 1, which

is a contradiction to X being the optimal solution.

Proof of Lemma 2.

Proof. It is not difficult to see that the ⊆-relationship holds. To show the strict inequality, consider the

following example.

For the network given in Figure 2, we assume that scenarios are assigned a constant inflation factor, σk,

for all k ∈ K, so that qke = σkce, for all e ∈ E. The following scenario values are given:

Scenario 1: σ1 = 1.5, p1 = 1/4, R1 = {1, 2, 3},
Scenario 2: σ2 = 1.5, p2 = 1/4, R2 = {1, 2, 4},
Scenario 3: σ3 = 3, p3 = 1/2, R3 = {5}.

The optimal LP-solution of (SSTPu) sets Xr5 = Y 1
23 = Y 2

14 = 1 and Y lr2 = Y lr1 = Y l12 = 1/2, for l = 1, 2.

The other variables are set to zero. Therefore, υLP ((SSTPu)) = 2 7/8.

On the other hand, this solution is not feasible for the model (STPsd), which proves the strict inequality

in Lemma 2.

12

