
A Branch-and-Cut-and-Price Algorithm forVertex-Biconnectivity AugmentationIvana Ljubi¢?Faculty of Business, Economics and StatisticsUniversity of ViennaBrünnerstr. 72, 1210 Vienna, Austriaivana.ljubic@univie.ac.atAbstract. In this paper, the �rst approach for solving the vertex-biconnectivity aug-mentation problem (V2AUG) to optimality is proposed. Given a spanning subgraph ofan edge-weighted graph, we search for the cheapest subset of edges to augment it in or-der to make it vertex-biconnected. The problem is reduced to the augmentation of thecorresponding block-cut tree [16] whose connectivity properties are exploited to developtwo minimum-cut-based ILP formulations: a directed and an undirected one. In contrastto the recently obtained result for the more general vertex-biconnected Steiner networkproblem [2], our theoretical comparison shows that orienting the undirected graph doesnot help in improving the quality of lower bounds. Hence, starting from the undirected cutformulation, we develop a branch-and-cut-and-price algorithm (BCP) which represents the�rst exact approach to V2AUG. Our computational experiments show the practical feasi-bility of the BCP: Complete graphs with more than 400 nodes can be solved to provableoptimality. Furthermore, the BCP is even faster than the state-of-the-art metaheuristicsand approximation algorithms, as far as graphs with up to 200 nodes are considered. Forlarge graphs with more than 2000 vertices, optimality gaps that are strictly below 2% arereported.1 The Vertex-Biconnectivity Augmentation ProblemIn the design of modern telecommunication networks, in particular in backbones, survivability isan important issue. In many telecommunication applications it is not acceptable that the failureof a single service node�a multiplexer, switch, or router, for example�leads to a disconnectionof other nodes. Redundant connections need to be established to provide alternative routes incase of a temporary malfunction of any one node.
? Supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation (FWF)

2 Ivana Ljubi¢This kind of redundancy of a network is described in graph theory by means of vertex connectivity.A network is said to be k-vertex connected, k ≥ 2, if for every pair of distinct, non-adjacentvertices u and v, there are at least k vertex-disjoint paths (except for u and v) connecting them.Throughout the paper, the terms: graphs and networks, vertices and nodes, edges and links, areused interchangeably.In the weighted vertex-biconnectivity augmentation problem for graphs (V2AUG), a spanningbut not vertex-biconnected network is given. Thus, the removal of a vertex may disconnect thenetwork into unconnected components. We say that we cover a vertex when we add some linksto ensure that the removal of this vertex no longer disconnects the network. The global aim isto identify a set of additional links at minimum total cost in order to cover all vertices.Formally, the problem is de�ned as follows.De�nition 1. [Weighted Vertex-Biconnectivity Augmentation, V2AUG]Let G = (V, E), E ⊆
(

V
2

), be a vertex-biconnected, undirected graph. Each edge e ∈ E hasassociated costs ce > 0. A connected, spanning, but not vertex-biconnected subgraph G0 = (V, E0),with E0 ⊂ E represents an existing spanning subgraph, and Ea = E \ E0 is the set of edges thatmay be used for augmentation. The objective is to determine a subset of such candidate edges
E′

a ⊆ Ea so that the augmented graph G′ = (V, E0 ∪ E′
a) is vertex-biconnected and the function

c(E′
a) =

∑

e∈E′

a

ce (1)is minimized.In this paper we will refer to the problem brie�y as vertex-biconnectivity augmentation (V2AUG).Furthermore, we will often refer to vertex-biconnectivity simply as biconnectivity, whenever it isclear from context.Eswaran and Tarjan [5] were the �rst to investigate V2AUG. Using a reduction from the Hamil-tonian circuit problem, they proved that the decision problem associated with V2AUG is NP-complete. An exact polynomial-time algorithm that runs in O(|V | + |E|) time could be foundfor the special case when G has unit edge costs [11]. The best approximation ratio of 2 hasbeen achieved by Khuller & Thurimella [16], see also Khuller et al. [15]. A genetic algorithm wasgiven in [17] and has later been improved by Ljubi¢ & Raidl [18] by incorporating advanced localsearch and preprocessing techniques. In this paper, we will refer to this latter memetic algorithmas MA.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 3A lot of work has been done on the related edge-biconnectivity augmentation problem (E2AUG),a thorough review of which can be found in a recent work of Bang-Jensen et al. [1]. As this is thecase in many problems related to the graph biconnectivity, an application of algorithms developedfor the edge-biconnectivity does not lead to appropriate solutions for the vertex-biconnectivity.In particular, Bang-Jensen et al. [1] model E2AUG using a compact ILP model based on theset covering formulation. The corresponding set covering ILP model for V2AUG would not becompact anymore, but would involve an exponential number of variables. For solving such amodel, one might need to develop a sophisticated column generation algorithm.Our Contribution. As our exact approach relies on the augmentation of the block-cut tree,which does not apply to E2AUG, the paper is focused on the vertex-biconnectivity. In Section 2,the connectivity properties of that tree are studied and used to develop two minimum-cut-basedinteger linear programming (ILP) formulations of the problem: a directed and an undirectedone. The former works on the undirected block-cut graph, the latter uses a new orientation-based characterization of the block-cut graph. This characterization is an extension of the generalorientability property for biconnected graphs recently proposed by Chimani et al. [3]. The main(and surprising) result of this theoretical part of the paper is the proof that the orientationbased model of the augmented block-cut tree does not lead to stronger lower bounds than theundirected one.Therefore, starting from the undirected-cut model, we develop a branch-and-cut (BC) algorithmwhose main properties are given in Section 3.1. The main contribution of the practical part of thepaper is the integration of sparse and reserve graph pricing techniques into BC that are describedin detail in Section 3.2. A detailed computational analysis of the in�uence of pricing combinedwith the BC is given in Section 4. We show that, among pricing, another two important featuressigni�cantly improve the performance of the BC algorithm: a) the primal heuristics, and b) theinitialization with high-quality upper bounds obtained after running a metaheuristic describedin [18].This is the �rst exact algorithm for solving V2AUG. Our branch-and-cut-and-price (BCP) algo-rithm is even faster than the state-of-the-art metaheuristics and approximation algorithms, asfar as graphs with up to 200 nodes are considered. Complete graphs with more than 400 nodesare solved to provable optimality. For very large networks (with more than 2000 nodes) we obtainlower bounds that are no more than 2% below the best known feasible solutions.

4 Ivana Ljubi¢The Block-Cut Graph. [5, 10] All maximal subgraphs of a graph G0 that are vertex-biconnected, i.e., its vertex-biconnected components, are referred to as blocks. As we assumethat the graph G0 is not vertex-biconnected, there will be at least two blocks in G0. Any twoblocks of G0 share at most a single vertex, which we call a cut-point�the removal of a cut-pointdisconnects G0 into several connected components. A block-cut tree T = (VT , ET), with vertexset VT and edge set ET , is an undirected tree that re�ects the relations between blocks andcut-points of graph G0 in a simpler way [10, 5]. Figure 1(b) illustrates this. The vertices of theblock-cut tree T = (VT , ET) are partitioned into the sets of cut- and block-vertices, VC ⊂ VTand VB ⊂ VT , respectively.
12

1
2

3 4

5

6

7

8

9

10

11

14

13

{5,6}

{11}

4 10
{7,8,9}{1,2,3} {13}12{}

{14}blocksE0 cut-points block-nodes cut-nodes(a) (b)
{5,6}

{11}

4 10
{7,8,9}{1,2,3} {13}12{}

{14}(c)superimposed augmentation edges (E′

A
)Fig. 1. (a) A connected, but not vertex-biconnected graph G0 = (V, E0); (b) The corresponding block-cuttree T = (VT , ET); (c) A feasible augmentation: the block-cut graph G′

BC = (VT , ET ∪ E′

A).A block-vertex is associated with all vertices of the represented block in G0 excluding cut-points.A cut-vertex vc ∈ VC and a block-vertex vb ∈ VB are connected by an undirected edge {vc, vb}in ET if and only if the cut-point corresponding to vc in G0 is part of the block represented by
vb. Obviously, the resulting structure is always a tree. The computational e�ort for deriving theblock-cut graph is O(|V | + |E|).

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 5In contrast to the above de�nition of the block-cut tree according to [10, 5], we now apply thefollowing simpli�cation: Block-vertices representing blocks that consist of exactly two cut-pointsare redundant in our approach and are therefore removed; a new edge directly connecting thetwo adjacent cut-vertices is included instead. In Figure 1(b), the block-vertex labelled �{}� is anexample.Superimposing and Backmapping Augmentation Edges. [7, 14] After the block-cut tree
T has been derived from graph G0, all augmentation edges in Ea are superimposed on T asfollows: For each edge {u, v} ∈ Ea, a corresponding edge {u′, v′} is created with u′, v′ ∈ VT beingthe vertices that are associated with u and v, respectively; edge costs are adopted, i.e. cu′v′ = cuv.From the such obtained augmented graph we �nally obtain a simple graph, the block-cut graph
GBC = (VT , ET ∪EA), ET ∪EA ⊆

(

VT

2

), by deleting self-loops and multiple augmentation edges.In order to be �nally able to derive the original edges E′
a ⊆ Ea corresponding to a solution

E′
A ⊆ EA identi�ed on the block-cut graph, it is necessary to maintain a back-mapping from EAto Ea.Preprocessing. We can iteratively apply the following basic preprocessing steps to the graph

GBC = (VT , ET ∪ EA): edge-elimination, �xing of augmentation edges, and shrinking of bicon-nected components, as described in [18], until we end up with a block-cut tree that needs to beaugmented in optimal way.Connectivity Properties of the Augmented Block-Cut Tree. Before we describe the ILPformulation for augmenting the block-cut tree, we need to study its connectivity properties.De�nition 2. Let GN = (VN , L), |VN | ≥ 3, be a connected undirected graph with a given set ofvertices ∅ 6= C ⊆ VN . We say that GN is C-vertex-biconnected if and only if the removal of anysingle vertex c ∈ C does not disconnect GN .Denote with V [P] the set of vertices of a path P .De�nition 3. For two distinct vertices x, y ∈ VN and two simple paths P1 and P2 connectingthem in GN , we say that P1 and P2 are C-vertex-disjoint if and only if (V [P1] ∩ V [P2] ∩ C) =

{x, y}.The following generalization of Menger's theorem for the C-biconnectivity case holds:

6 Ivana Ljubi¢Proposition 1. An edge-biconnected undirected graph GN = (VN , L), |VN | ≥ 3, is C-vertex-biconnected if and only if every pair of distinct vertices x, y ∈ VN is connected by at least two
C-vertex-disjoint paths.Our goal will be to augment the block-cut tree at minimum cost so that it becomes VC -vertex-biconnected.De�nition 4. A subset E′

A ⊆ EA is called a feasible augmentation of G0 = (V, E0), or just afeasible augmentation, if after back-mapping of E′
A, we obtain a subset E′

a ⊆ Ea such that thegraph G′ = (V, E0 ∪ E′
a) is vertex-biconnected.The following proposition shows that the problem of augmenting the graph G0 = (V, E0) isequivalent to the problem of augmenting the block-cut tree T = (VT , ET) using augmentationedges of the block-cut graph EA.Proposition 2. Let G′
BC = (VT , ET ∪E′

A) be the graph assigned with a subset of augmentationedges E′
A ⊆ EA. Denote with E′

a the set of augmentation edges of G obtained after back-mapping
E′

A, and with G′ the corresponding augmented graph G′ = (V, E0 ∪ E′
a). Then:1. G′ is vertex-biconnected if and only G′

BC is VC-vertex-biconnected.2. If E′
A is a feasible augmentation of the block-cut tree T then G′

BC is edge-biconnected but notnecessarily vertex-biconnected.2 Minimum-Cut-Based ILP FormulationsThe most e�ective ILP formulations related to edge/vertex biconnectivity network design prob-lems use an exponential number of constraints and therefore rely on the cutting plane and/orthe branch-and-cut methods. Polyhedral structures related to the biconnectivity property are ex-plored in various papers [9, 6, 27, 20]. It has been recently reported in [2, 3] that a BC algorithmhas solved instances of the {0, 1, 2}-survivable network design problem with several thousandsof nodes to provable optimality. Hence, the use of the cutting plane framework is a natural ap-proach for solving V2AUG. Our exact algorithm searches for the optimal augmentation of thereduced block-cut graph as described above. In this section we give two minimum-cut-based ILPformulations, an undirected and a directed one, and show that they both provide lower boundsof the same quality.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 72.1 An Undirected Minimum-Cut-Based ILP FormulationLet E′
A ⊆ EA be a feasible augmentation. According to the De�nition 4, every feasible solutionof V2AUG can be represented by a characteristic vector x:

xe =

1, if e ∈ E′
A

0, otherwise ∀e ∈ EA .We establish an one-to-one correspondence between the variables xe and augmentation edges
e ∈ EA and therefore we use the terms edge and variable of the integer programming formula-tion interchangeably. We also consider the notions cutting planes (or cuts) and inequalities (orconstraints or requirements) as equivalent. For a subset of nodes W ⊂ V , we denote the edges ofthe cut induced by the set W belonging to EA∪ET , EA and ET , with δ(W), δA(W) and δT (W),respectively, i.e.:

δ(W) = {e = {i, j} ∈ EA ∪ ET | i ∈ W, j ∈ VT \ W}, δ(v) = δ({v}),

δA(W) = δ(W) ∩ EA , and δT (W) = δ(W) ∩ ET .Furthermore, for a node v ∈ VT , let δA−v(W) = δA(W) \ δ(v) and δT−v(W) = δT (W) \ δ(v). Forany subset D ⊆ EA, let x(D) =
∑

e∈D xe.Following Proposition 2, an edge set E′
A that augments the block-cut tree T represents a validvertex-biconnected solution if and only if all cut-vertices in T are covered. This leads to thefollowing ILP formulation of the problem:UCut: min

∑

e∈EA
ce · xe (2)

x(δA−v(W)) ≥ 1 ∀v ∈ VC ∀W : ∅ 6= W ⊂ VT − v, δT−v(W) = ∅ (3)
xe ∈ {0, 1} ∀e ∈ EA (4)We refer to (3) as cut-vertex-connectivity requirements�they ensure VC -vertex-biconnectivity ofthe augmented graph G′

BC = (VT , ET ∪ E′
A). In other words, those constraints ensure that aremoval of any cut-vertex v ∈ VC leaves the augmented graph G′

BC − v = (VT \ {v}, (ET ∪E′
A) \

δ(v)) connected.The following lemma is a corollary of Proposition 2.Lemma 1. An optimal solution for UCut gives an optimal solution to the correspondingV2AUG problem.

8 Ivana Ljubi¢Although redundant for the ILP formulation (see Proposition 1) and even for the LP-relaxation (see Lemma 2), one might consider the edge-connectivity constraints that ensure edge-biconnectivity of the augmented block-cut graph.
x(δA(W)) ≥ 1, ∀W : ∅ 6= W ⊂ VT , |δT (W)| = 1 (5)Our computational study has shown that separating these inequalities in the �rst step, and askingfor VC -vertex-biconnectivity of GBC in the second step, signi�cantly speeds up the computation.In the following, let PUCut be the polytope corresponding to the UCut LP-relaxation, i.e., PUCutcontains all points feasible for UCut disregarding the integer properties of the variables:

PUCut = {x ∈ [0, 1]|EA| | x satis�es (3)}. (6)Lemma 2. The edge-connectivity inequalities (5) are induced by the cut-vertex-connectivity in-equalities (3), i.e. they do not strengthen the LP-relaxation of UCut.Proof. Let x′ be a feasible solution of the LP-relaxation of UCut, i.e., x′ ∈ PUCut. Assume that
x′ does not satisfy (5), i.e. that there is a subset ∅ 6= W ′ ⊂ VT such that

x′(δA(W ′)) < 1 and |δT (W ′)| = 1. (7)Denote with e′ = {u′, v′} ∈ ET the edge e′ such that δT (W ′) = {e′}. By construction of theblock-cut tree T , at least one of the end-vertices u′ and v′ is a cut-vertex, say v′. In that case,
δT−v′(W ′) = ∅ and inequality (3) holds, i.e. :

x(δA(W ′)) ≥ x(δA−v′(W ′)) ≥ 1,which is a contradiction to (7). ut2.2 A Directed Minimum-Cut-Based ILP FormulationFor several vertex-biconnected Steiner network problems, directed minimum-cut-based ILP for-mulations obtain stronger lower bounds than their undirected counterparts [3]. The formulationsrely on certain orientation properties of an undirected biconnected graph. An orientation of anundirected graph GN = (VN , L) is a directed graph G′
N = (VN , AL) obtained by uniquely direct-ing each edge from GN . Robbins [26] has shown that for any graph G there exists an orientationof GN with the following property: for every pair of nodes that is edge-biconnected in GN , thereexist two directed paths (u 7→ v) and (v 7→ u) in G′

N .

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 9Recently, Chimani et al. [2, 3] gave a new orientation-based characterization of vertex-biconnectedgraphs:Theorem 1. [Chimani et al., 2008] An undirected graph GN = (VN , L) is vertex-biconnectedif and only if for an arbitrarily chosen root r ∈ VN there exists an orientation of GN with
outdeg(r) = 1 such that, for each v ∈ VN , v 6= r, there are two directed paths (r 7→ v) and
(v 7→ r) that are vertex-disjoint except for r and v.We now show that the following extension of Theorem 1 holds:Theorem 2. [Extension of Theorem 1 to C-biconnectedness] Given an undirected edge-biconnected graph GN = (VN , L) with a set of vertices ∅ 6= C ⊆ VN . The following statementsare equivalent:1. GN is C-vertex-biconnected.2. For an arbitrarily chosen root r ∈ C there exists an orientation of GN with outdeg(r) = 1such that, for each v ∈ VN , v 6= r, there are two directed paths (r 7→ v) and (v 7→ r) that are

C-vertex-disjoint except for r and v.3. For an arbitrarily chosen root r ∈ VN \C there exists an orientation of GN such that, for each
v ∈ VN , v 6= r, there are two directed paths (r 7→ v) and (v 7→ r) that are C-vertex-disjointexcept for r and v.Proof. 1. ⇒ 2.: Assume that GN is C-vertex-biconnected and that r is an arbitrary node from
C. We now show how to orient GN appropriately. First, the maximal biconnected component
Br containing r is detected. Note that there is only one such component, because r ∈ C and
GN is C-vertex-biconnected. Using the result of Theorem 1, the vertices of Br are labeledas visited and Br is oriented so that outdeg(r) = 1 and for each v ∈ Br, v 6= r, there aretwo directed paths (r 7→ v) and (v 7→ r) that are (C-) vertex-disjoint except for r and v.Since GN is edge-biconnected, there still might exist several non-oriented vertex-biconnectedcomponents in GN . An arbitrary block B is called an augmenting block i� exactly one of itsvertices is labeled as visited. Obviously, in every iteration there exists at least one augmentingblock, and, since the graph is edge-biconnected, there are no trivial blocks. We can orientevery augmenting block, starting from its labeled vertex, say vl, as a root. Obviously, vl 6∈ C,since it is a cut-point of GN . By orienting the augmenting block B starting with vl as a root,we ensure that for every node a ∈ B there are vertex-disjoint paths (vl 7→ a) and (a 7→ vl)such that outdeg(vl) = 1. Assuming that B and Br share the common cut-node vl, for any

10 Ivana Ljubi¢
a ∈ B we get two oriented paths (r 7→ a) and (a 7→ r) that are C-vertex-disjoint and obtainedby concatenating paths (r 7→ vl) + (vl 7→ a) and (a 7→ vl) + (vl 7→ r), respectively. Repeatingthis procedure, we construct the appropriate orientation without changing the degree of r.

2. ⇒ 1.: Assume that there exists a cut-vertex vc ∈ C and that there are at least two non-trivialblocks B1 and B2 containing vc. Now take the appropriate orientation for vc set as a root.Since out-degree of vc is equal to one, assume that this outgoing arc leads towards B1. Butthen, for all the nodes from v ∈ B2, v 6= r, there will be no directed path (r 7→ v) which is acontradiction.
1. ⇒ 3.: We choose a root r ∈ VN \ C, label r as visited, and iteratively orient all augmentingblocks in GN . It is obvious that the obtained orientation ensures the existence of C-vertex-disjoint directed paths (r 7→ v) and (v 7→ r) for all v ∈ VN , v 6= r. Thereby, the out-degree of

r will be equal to the number of blocks r is adjacent to.
3. ⇒ 1.: Assume that GN is not C-vertex-biconnected. It is easy to see that there will be atleast one block B1 with maybe several cut-points, but exactly one cut-point c ∈ C. Thecut-vertex c is adjacent to at least one more non-trivial block B2, B1 6= B2. Take the node

vn ∈ B1 ∩ (VN \ C) (observe that there always exists one since GN is edge-biconnected,i.e. B1 is non-trivial). Consider the appropriate orientation for vn chosen as a root. Thisorientation ensures the existance of two directed C-vertex disjoint paths between vn and anynode v ∈ B2, which is a contradiction with c being a cut node in GN .
utIn order to de�ne a directed minimum-cut-based ILP formulation for V2AUG, we �rst transformthe block-cut graph GBC into the bidirected graph ḠBC with arc sets AT and A, correspondingto ET and EA, respectively, with arc weights cij = cji = ce, ∀e = {i, j} ∈ EA. The problem ofsearching for the corresponding feasible augmentation of the block-cut tree G′

BC = (VT , ET ∪E′
A)at minimum cost can then be reformulated as the problem of searching for a feasible orientationof the bidirected block-cut graph Ḡ′

BC = (VT , AT ∪ A′), A′ ⊆ A, at minimum cost.Since the feasible augmentation leads to a block-cut graph which is edge-biconnected, but notnecessarily vertex-biconnected, there might be several vertex-biconnected components to whicha block-vertex vb ∈ VT is adjacent to. Hence, by choosing an arbitrary block-vertex vb to be theroot r, we do not need to take care of the corresponding out-degree constraint as in Theorem 1.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 11As a corollary of Theorem 2 and Proposition 2, in the case of the augmented graph G′ =

(V, E0∪E′
a) and the corresponding augmented block-cut tree G′

BC = (VT , ET ∪E′
A), the followingtheorem holds:Theorem 3. The graph G′ is vertex-biconnected if and only if for an arbitrarily chosen root

r ∈ VB there exists an orientation of G′
BC such that, for each v ∈ VT , v 6= r, there are twodirected paths (r 7→ v) and (v 7→ r) in G′

BC that are VC-vertex-disjoint except for r and v.Proof. Assume that G′ is vertex biconnected. According to Proposition 2, it follows that thecorresponding augmented block-cut graph G′
BC is VC -vertex-biconnected. But then, using The-orem 2, we can �nd the orientation of G′

BC with desired properties.Conversely, if for any r ∈ VB there exists such an orientation, according to Theorem 2, thegraph G′
BC is vertex-biconnected with respect to VT \ VB = VC , which further implies that G′ isvertex-biconnected. utTo model the solution Ḡ′

BC we use variables zvw ∈ {0, 1}, ∀(v, w) ∈ AT ∪ A. Without loss ofgenerality, we choose r to be a leaf of T . Furthermore, for all S, ∅ 6= S ⊂ VT we use the followingnotation:
δ−(S) = {(i, j) ∈ AT ∪ A | i 6∈ S, j ∈ S} δ+(S) = {(i, j) ∈ AT ∪ A | i ∈ S, j 6∈ S},and for all v ∈ VT , and ∀S, ∅ 6= S ⊂ VT \ {v} we de�ne:

δ−
ḠBC−v

(S) = δ−(S) \ (δ+(v) ∪ δ−(v)) and δ+
ḠBC−v

(S) = δ+(S) \ (δ+(v) ∪ δ−(v)).For any D ⊆ AT ∪ A, let z(D) =
∑

ij∈D zij . The ILP formulation based on directed cuts [3]reads then as follows: DCut : min
∑

(i,j)∈A

cij · zij (8)
zij + zji = 1 ∀{i, j} ∈ ET (9)
zij + zji ≤ 1 ∀{i, j} ∈ EA (10)
z(δ−(S)) ≥ 1 ∀ ∅ 6= S ⊆ VT \ {r} (11)
z(δ+(S)) ≥ 1 ∀ ∅ 6= S ⊆ VT \ {r} (12)

z(δ−
ḠBC−v

(S1)) + z(δ+
ḠBC−v

(S2)) ≥ 1 ∀v ∈ VC , ∀ ∅ 6= S1, S2 ⊆ VT \ {r, v} (13)
zij ∈ {0, 1} ∀(i, j) ∈ AT ∪ A (14)

12 Ivana Ljubi¢Equalities (9) ensure that arcs of the block-cut tree are included in the solution, whereas with (10)we model directed augmentation arcs. With inequalities (11) and (12) we ensure the edge-biconnectivity of the solution, i.e., that there are directed paths r 7→ v and v 7→ r, respectively, forany node v ∈ VT . Finally, cut-vertex-disjointness requirements (13) ensure VC -vertex-disjointnessof these two paths, for every v ∈ VT \ {r}.Lemma 3. An optimal solution for DCut gives an optimal solution for the correspondingV2AUG problem.We now show that the ILP model based on undirected cuts is equally strong as the directed one.For that purpose, let us de�ne:
PDCut = {z ∈ [0, 1]|AT∪A| | z satis�es (9)-(13)}.Theorem 4. DCut and UCut formulations are equally strong, i.e.:

Projx(PDCut) = PUCut,where Projx(PDCut) = {x ∈ [0, 1]|EA| | z ∈ PDCut, xij = zij + zji, ∀{i, j} ∈ EA}.Proof. We prove the equality by showing the mutual inclusion:
Projx(PDCut) ⊆ PUCut: Obviously, every directed LP-solution z′ is projected into the undirectedsolution x′ such that it satis�es conditions of PUCut.
PUCut ⊆ Projx(PDCut): Consider a solution x′ ∈ PUCut and set z′ij = z′ji = 1

2x′
ij , {i, j} ∈ EA,and z′ij = z′ji = 1

2 , {i, j} ∈ ET . Assume now that the so constructed solution z′ violates oneof the edge-biconnectivity constraints (11) (or, equivalently, (12)). Then, there exists a set
S′ ⊂ V \ {r} such that z′(δ−(S′)) < 1. From Lemma 2 and (5) we know that 1

2x′(δ(S′)) =

z′(δ−(S′)) ≥ 1 which leads to a contradiction.Assume �nally that there exists a cut-vertex v′ ∈ VC and two subsets S′
1, S

′
2 ⊆ VT \ {r, v′}such that z′ violates vertex-biconnectivity constraints (13), i.e. such that:

z′(δ−
ḠBC−v′

(S′
1)) + z′(δ+

ḠBC−v′
(S′

2)) < 1. (15)If S′
1 = S′

2 or S′
1 = VT \ S′

2, we immediately get a contradiction with undirected cut-vertex-disjointness constraints (3). Therefore, assume that S′
1 6= S′

2 and S′
1 6= VT \ S′

2. Since ET isa spanning tree, for every set S ⊂ VT , we know that |δ(S) ∩ ET | ≥ 1. Obviously, there mustexist two edges e1 = {v1, w1} ∈ δ(S′
1) ∩ ET and and e2 = {v2, w2} ∈ δ(S′

2) ∩ ET such that

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 13
e1 6= e2. Assuming that v′ 6∈ {v1, w1, v2, w2} automatically leads to a contradiction, becausethen e1 ∈ δGBC−v′(S′

1) ∩ ET , and e2 ∈ δGBC−v′(S′
2) ∩ ET , and due to (3):

z′(δ−
ḠBC−v′

(S′
1)) ≥ z′(δ−

ḠBC−v′
(S′

1) ∩ AT) ≥
1

2
, (16)and

z′(δ+
ḠBC−v′

(S′
2)) ≥ z′(δ+

ḠBC−v′
(S′

2) ∩ AT) ≥
1

2
. (17)So let v′ = v1. Observe that after removing v′ from ḠBC (and GBC), (17) still holds. If

|δGBC−v′(S′
1) ∩ ET | = 0, due to (3) we have:

z′(δ−
ḠBC−v′

(S′
1)) =

1

2
x′(δGBC−v′(S′

1)) ≥
1

2
.If, otherwise, |δGBC−v′(S′

1)∩ET | ≥ 1, then (16) holds too, which �nally concludes the proof.
utTheorem 4 con�rms our choice of taking the undirected cut-based model as basis for the devel-opment of the BCP algorithm: UCut has less variables and less constraints, thereby providinglower bounds of the same quality as DCut.We have to point out that one can derive a compact ILP formulation for V2AUG based on multi-commodity �ows on directed graphs, called DFlow, in a similar way as in [3]. However, since theformulations DCut and DFlow are equally strong in general [3], it follows that DFlow cannotimprove the quality of lower bounds of UCut either. Furthermore, we know that �ow-basedformulations are computationally inferior to cut-based models (see [3]), which is an additionalargument for modelling V2AUG with UCut.3 A Branch-and-Cut-and-Price Algorithm for the V2AUGWithin this section we �rst propose a branch-and-cut (BC) algorithm forUCut based on classicalseparation of cut-vertex- and edge-connectivity-inequalities. We then show how to extend the BCapproach with a column generation method. To initialize upper bounds we use values derivedfrom a metaheuristic framework [18]. An e�cient LP-rounding heuristic extended with a localimprovement method is presented, as well.3.1 Ingredients of the Branch-and-Cut ApproachBased on our UCut formulation, we have developed and implemented a branch-and-cut algo-rithm. For a general description of the branch-and-cut scheme see, e.g., [21].

14 Ivana Ljubi¢Since we can solve the separation problem in polynomial time (see below), it follows that we canalso solve the underlying LP-problem in polynomial time [21]. Hence, despite the exponentiallymany UCut-constraints, we can obtain the optimal fractional solution of the LP-relaxation inpolynomial time at the root node of the branch-and-bound tree.We now describe the speci�c ingredients of our BC algorithm.Initialization. We obtain an adequate choice of the initial set of constraints by choosing the de-gree inequalities that correspond to the leaves of the block-cut tree (according to the requirements(5) for |W | = 1):
x(δA(v)) ≥ 1, ∀v ∈ VT , |δT (v)| = 1.For the optimal LP-solution obtained in such a way, further connectivity constraints may beintroduced as cutting planes described below.Separation. Given a solution to the current partial LP, we build the support graph Gx =

(VT , ET ∪ EA, c′), whose edge weights are de�ned as:
c′e =

1, if e ∈ ET

x′
e, otherwise ,where x′

e represents the fractional value of the corresponding variable in the current LP. In eachiteration, violated constraints are detected by means of minimum weight cuts in the supportgraph. For the computation of minimum cuts, we use an e�cient algorithm proposed by Padbergand Rinaldi [22] and implemented by Jünger et al. [13]. The details of this implementation andan exhaustive comparison of a variety of minimum weight cut algorithms are given in [13].We perform separation in two stages. As the block-cut graph needs to be edge-biconnected, we�rst impose the edge-connectivity requirements. An edge-connectivity constraint is detected ifthe minimum cut is found whose weight is less than two. In the second separation phase, whenall edge-connectivity constraints are satis�ed, we check if there are some uncovered cut-vertices.Therefore, for each cut-vertex v ∈ VC , we reduce the support graph Gx by eliminating v from it.In other words, we search for the minimum weight cut in the graph (VT \ {v}, ET ∪EA \ δ(v), c′).If the cut we found is less than one, the corresponding constraint is inserted into the system.In both phases, before resolving the LP, we add multiple disjoint connectivity cuts (see, e.g., [19]).For this purpose, edge weights of the detected cut are set to one in the support graph, and a newminimum cut is calculated. Our computational experiments have con�rmed that this strategy is

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 15bene�cial versus the separation of single connectivity cuts, which is mainly due to the fact thatadding several violated cuts at once saves the time-consuming process of solving several LPs.Finally, our preliminary experiments have also shown that it is bene�cial to insert all violatedconstraints regarding uncovered cut-vertices before resolving the LP.Branching and Enumeration Rules. We branch on a single variable according to theCloseHalfExpensive strategy [28]. Suppose x is the fractional solution of the currently solvedlinear program. Among the set of variables �close� to 0.5, we select the one with the maximumabsolute cost, i.e. with the maximum objective value coe�cient (note that our edge weights arepositive). The best �rst search strategy has been used as the default enumeration strategy: fromthe set of open subproblems the �most promising� one is selected. In our case, the node with themaximal local lower bound is said to be the most promising one.Initializing Upper Bounds. Using good upper bounds plays an important role in the designof branch-and-bound based algorithms. The better the upper bound, the more nodes in thebranch-and-bound tree can be fathomed. For the initialization of upper bounds, we used thememetic algorithm (MA) proposed in [18] which is the state-of-the-art approach to V2AUG.When solving small and medium-sized instances, we observed that there is a trade-o� betweenthe MA's running time and the running time needed to prove optimality. Thus, by default,we used a weaker termination criterium: the population size was set to 100 and the MA wasterminated after a new best solution was not found during the last Ω = 1000 iterations. Theseparameters are set according to preliminary tests. Because of MA's non-deterministic nature, weran it with a �xed seed value. We will refer to this initialization strategy as the weak initializationof upper bounds.3.2 The Branch-and-Cut-and-Price AlgorithmIn this section we propose an enhancement of the previous BC approach, the branch-and-cut-and-price method, which is achieved by embedding a column generation method into each nodeof the branch-and-cut tree. For an introduction to the column generation approach embeddedin an enumeration framework (e.g., branch-and-price, branch-and-cut-and-price), we refer to [4],for example. We also extend the BC with a local improvement algorithm as a primal heuristic.In the following, we highlight the column generation procedure and the primal heuristic.

16 Ivana Ljubi¢Sparse and Reserve Graph Pricing. The size of feasible solutions in our problem is boundedby n (the number of vertices), while the number of variables is bounded by (

n
2

)

−n+1 in the worstcase, when the graph is complete and G0 is a tree. It has been shown that column generation mayalso be used to speed-up the computation of (integer) linear programs even when the number ofvariables is polynomial in input size, if the size of any basic solution is comparatively sparse [12,4]. This increase of speed is achieved by using the sparse and reserve graph pricing technique.The small set of active variables used to initialize the restricted master problem corresponds toa subgraph of the original graph which is called the sparse graph (see [8, 23, 25], for example).In addition to the sparse graph, Jünger et al. [12] proposed the usage of the reserve graph. Inone pricing iteration, all edges from the reserve graph with negative reduced costs are addedto the restricted problem and the LP is resolved. If all edges from the reserve graph price outcorrectly, complete pricing is performed: from the set of all inactive edges, those with negativereduced costs are determined and added to the LP at once. As proposed in [12] in the contextof TSP, we use the 5-nearest neighbor graph to initialize the sparse graph, and its di�erence tothe 10-nearest neighbor graph we set to be the reserve graph.During pricing, we also �x some inactive variables by their reduced costs [23, 28]. If our currentbranch-and-cut node is the root of the remaining branch-and-cut tree, we search for inactivevariables xe, e ∈ EA such that:
c(LB) + re > UBg.Here c(LB) denotes the last computed lower bound, UBg represents the global upper bound, and

re represents the reduced costs of the variable xe. Such variables xe can be discarded forever.The other variables are inserted in a list that maintains possible candidates that can be pricedin later iterations.Primal Heuristic. The initial upper bound of the branch-and-cut algorithm proposed so farcan be improved only if the LP-solution is integer feasible which happens rather rarely. Thereforewe enhance the method with a primal heuristic which is applied at each node of the branch-and-bound tree, before a branching step is applied, in order to generate new and better feasiblesolutions.The fractional LP-solutions occurring in the lower bound computations may give a good insightinto the structure of optimum or near optimum feasible solutions. Our heuristic is designed inthe following way: Starting from the fractional solution x′ of the last LP, we generate a supportblock-cut graph using the edges of the block-cut tree T and the edges (i.e. variables) from the

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 17set EprHeur , where
EprHeur = {e ∈ EA | x′

e ≥ pprHeur}.

pprHeur ∈ [0, 1] is a fractional parameter which controls the in�uence of the LP solution on thegeneration of feasible solutions.If the support graph is not biconnected, we �rst make it feasible by adding an additional subset ofaugmentation edges as described in the following. Later, we apply a local improvement procedurethat removes redundant edges from the support graph.Repairing the Support Graph: Iteratively, non-redundant edges are randomly selected from
EA \ EprHeur and included in the support graph. This process is repeated until all cut-vertices are covered. Intuitively, cheaper edges appear in optimum solutions more likely thanexpensive edges. Therefore, the selection of edges for inclusion is biased toward cheaperedges [24, 18].Local Improvement: Finally, from such a feasible solution, sayE′

A, we eliminate the redundantedges by using the local improvement described below, with one exception; to better exploitthe LP-solution, we forbid elimination of those edges with xe = 1.A feasible augmentation E′
A is said to be locally optimal with respect to the number ofedges, if the removal of any edge e ∈ E′

A violates the biconnectivity property of graph
G′ = (V, E0 ∪ E′

a), where E′
a ⊆ Ea is the set of original augmentation edges correspondingto E′

A. The local improvement operator makes a given feasible solution locally optimal byremoving redundant edges. An edge e ∈ E′
a is said to be redundant if its removal does notviolate the biconnectivity property of G′. As a �rst step, the algorithm identi�es obviouslyessential edges that must remain in E′

a, i.e. those edges that are the only possibility toconnect a certain cut-component of a cut-vertex vc to any other of vc's cut-components. Theremaining not obviously essential edges from E′
A, are then processed one-by-one in decreasing-costs order. They are temporarily removed from E′

A, and the cut-vertices to whose covering econtributes are checked. If any of them are now uncovered, e is not redundant and thereforeincluded in EA once more.In the worst case, the total computational e�ort of this local improvement procedure is O(|EA|2 ·

|VT | · α(|VT |, |EA|)) per call.

18 Ivana Ljubi¢4 Computational ResultsIn this section, we analyze the performance of the proposed branch-and-cut-and-price approach.In particular, �rst we investigate impacts of extending the BC algorithm with pricing. Then westudy the role of the primal heuristic. Finally, we examine the trade-o� between initializing theBCP with high-quality upper bounds and its overall performance.Our algorithm is implemented using C++ under Linux and all the experiments reported in thispaper have been run on a Pentium IV/2.8 GHz PC with 2GB RAM. The only exception are theresults reported in Section 4.1, where, for comparison purposes, we used a Pentium III/800 MHzmachine.We used the ABACUS 2.3 software system1 as a generic implementation of the branch-and-cut-and-price approach [4, 28]. CPLEX 7.12 has been used as the LP-solver. In order to make afair comparison to the existing approaches, the preprocessing proposed in [18] has been appliedto all considered instances, and to all approaches (including metaheuristics and approximationalgorithms) mentioned within the paper. If not otherwise mentioned, reported running timesinclude preprocessing times as well.4.1 Benchmark InstancesAs already observed, shrinking can always trivially reduce the problem of augmenting a generalconnected graph G0 to the problem of augmenting a tree. Therefore, we consider only instancessuch that the �xed graph G0 is a spanning tree. We considered two types of networks that we referto as: (1) randomly generated networks and (2) real-world networks derived from the TSPLIB.These two types of benchmark instances are designed to capture di�erent aspects of networksand to understand the behavior of the BCP on them.Randomly Generated Networks [18]. Table 1 shows the characteristics of 810 instancesoriginally proposed in [18], divided in 27 groups A1 to R2, each consisting of 30 graphs. Wecall instances A1-D4 KRZ instances, since they were created using a random generator proposedby Khuller et al. [15, 29]. KRZ considered graphs with up to 50 nodes and proposed 3 di�erentdensity types (sparse, medium and dense) de�ned by the following functions, respectively: f1(n) =

3n, f2(n) = n ln(n), f3(n) =
(

n
2

). For all unordered pairs of nodes, given a density type1 http://www.informatik.uni-koeln.de/abacus/2 http://www.ilog.com/products/cplex/

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 19
i ∈ {1, 2, 3}, a random integer value r is drawn uniformly in {1, . . . , n(n − 1)}. If r < fi(n), anedge is created with the integer cost uniformly distributed in {1, . . . ,

(

n
2

)

}. A random spanningtree is then determined on the graph, yielding the set of �xed edges E0. When creating graphswith |V | ≥ 70 and for density type i = 1, we were not able to generate vertex-biconnected graphsby applying those rules, and therefore, we changed the function f1 to f ′
1(n) = 0.3

(

n
2

)

, ∀n ≥ 70.Instances are grouped according to their complexity as far as approaches tested in [18] areconsidered. The density types are provided in the column denoted by �type�.Instances of groups M,N and R are generated using primarily the same ideas, but with �xeddensity values (0.15, 0.25 and 0.5, respectively) and with edge costs taken from several intervalsas provided in Table 1. Column dens provides the density of each group, whereas column �ce ∈�gives the intervals from which the edge costs are drawn.Table 1 also shows the comparison between our branch-and-cut algorithm, described in Sec-tion 3.1, and the memetic algorithm (MA) proposed in [18]. The results are averaged over 30di�erent instances of the same group. Column OPT represents the averaged optimal values. Thenext two columns provide MA results: the average percentage gap (%-gap) and the average run-ning time in seconds (t [s]). The last four columns are devoted to the branch-and-cut algorithm:the average running time in seconds (t [s]), the average number of generated subproblems (SP),the average number of generated levels in the branch-and-cut tree (Levels), and the averagenumber of solved linear programs (LPs). To be able to compare our BC approach to MA, weperformed the experiments on the same machine: a Pentium-III/800 MHz.All the instances of this group are now solved to provable optimality. The results show thatthe branch-and-cut algorithm is signi�cantly faster than the MA, which is the fastest heuristicapproach so far. According to results reported in [18], the algorithm of Khuller et al. [15], whichis the best approximation algorithm with factor 2, did not terminate for the instances with 200nodes (R-group) within the allowed maximum time of 20 000 seconds on the same machine. In thebranch-and-cut algorithm, all instances (with the exception of the ones of the N- and R-group) aresolved using slightly more than one subproblem. This means that, in most cases, the cutting planemethod performed in the root node solves the underlying problem to optimality. Furthermore,this means that the lower bounds obtained by relaxing our ILP formulation are quite strong forthese types of graphs. For all these reasons, we consider these randomly generated networks aseasy, and conduct our study on signi�cantly larger and more challenging real-world networksdescribed below.

20 Ivana Ljubi¢
Table 1. Characteristics of randomly generated instances and average results of the memetic algorithmand the BC approach. The branch-and-cut algorithm solved all the instances to optimality in less thana minute. MA BCGroup |V | dens ce ∈ type OPT %-gap t [s] t [s] SP Levels LPsA1 20 0.16 [1..190] 1 511.50 0.00 0.00 0.00 1.17 1.07 1.37A2 30 0.10 [1..435] 1 1764.77 0.00 0.00 0.00 1.07 1.03 1.33A3 40 0.08 [1..780] 1 4055.47 0.00 0.01 0.01 1.00 1.00 1.10A4 30 0.12 [1..435] 2 1948.07 0.00 0.01 0.01 1.27 1.13 1.47A5 40 0.10 [1..780] 2 3753.87 0.00 0.02 0.01 1.27 1.13 1.47B1 60 0.05 [1..1770] 1 13426.03 0.00 0.03 0.02 1.10 1.03 1.37B2 20 0.50 [1..190] 3 163.77 0.00 0.12 0.00 1.60 1.30 2.27B3 50 0.06 [1..1225] 1 8311.93 0.00 0.02 0.02 1.13 1.07 1.30B4 50 0.08 [1..1225] 2 7131.37 0.00 0.08 0.02 1.53 1.27 2.00B5 60 0.07 [1..1770] 2 12460.57 0.00 0.12 0.03 1.27 1.13 1.70B6 70 0.06 [1..2415] 2 19849.73 0.00 0.32 0.05 1.13 1.07 1.47C1 80 0.06 [1..3160] 2 27085.03 0.00 0.41 0.07 1.27 1.13 1.57C2 90 0.05 [1..4005] 2 40478.83 0.00 0.49 0.09 1.13 1.07 1.33C3 100 0.05 [1..4950] 2 52441.30 0.00 0.62 0.12 1.07 1.03 1.33C4 30 0.50 [1..435] 3 341.50 0.00 0.38 0.01 1.07 1.03 1.53D1 70 0.15 [1..2415] 1′ 7339.93 0.00 1.68 0.37 1.27 1.13 1.50D2 40 0.50 [1..780] 3 762.70 0.00 0.75 0.05 1.33 1.17 1.90D3 90 0.15 [1..4005] 1′ 12773.33 0.00 3.91 1.64 1.27 1.13 1.57D4 80 0.15 [1..3160] 1′ 9886.33 0.00 2.87 1.19 1.27 1.13 1.43D5 100 0.15 [1..4950] 1′ 13489.10 0.02 5.90 2.13 1.40 1.20 1.80M1 70 0.15 [10..1000] - 3492.33 0.00 1.70 0.46 1.40 1.20 2.00M2 80 0.15 [10..1000] - 3266.33 0.00 2.86 1.04 1.27 1.13 1.77M3 90 0.15 [10..1000] - 3433.33 0.00 4.31 1.62 1.13 1.07 1.37N1 100 0.25 [11..50] - 389.93 0.17 9.50 2.83 19.07 3.50 18.77N2 110 0.25 [11..50] - 413.63 0.39 13.72 2.95 7.00 2.53 7.63R1 200 0.50 [1..100] - 128.93 0.08 39.78 19.31 2.20 1.50 2.47R2 200 0.50 [5..100] - 331.54 0.42 58.52 16.84 3.60 1.63 3.50

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 21Instances derived from Reinelt's TSP-library (TSPLIB). In order to check the practicalfeasibility of the proposed BCP algorithm, we considered several instances randomly selected fromthe TSPLIB3. In the selected graphs de�ning traveling salesman problems, nodes are de�ned ascities or as drilling points. Due to the real-world aspect of these instances, we take them as thebasis for the rest of our computational study. pr226, lin318, pr439, and pcb442 are of Euclideantype, meaning that the vertices represent points in the Euclidean plane and edge costs are theEuclidean distances of the corresponding points rounded up to the nearest integer value. Theinstance pa561 is a complete graph with edge costs directly given by a matrix � the triangleinequalities are satis�ed.Since all these instances represent complete graphs G, and as the incomplete graphs are of par-ticular interest as well, additional sparse instances pr226-sp, lin318-sp, pr439-sp, pcb442-sp,and pa561-sp are derived from the original TSPLIB-graphs as follows. For each vertex of the orig-inal graph, we take the edges to its d|V | · 10%e nearest neighbors, i.e. we create the 10%-nearest-neighbor graphs. In the case of instance pr226-sp, the 10%-nearest-neighbor graph turned outnot to be biconnected, and the 15%-nearest-neighbor graph is used instead. For the Euclideaninstances we further calculate the Delaunay triangulation yielding additional sparse instancespr226-dt, lin318-dt, pr439-dt, and pcb442-dt. We consider graphs in which k% of nearestneighbors of each node are included in G, where k ∈ {20, 30, . . . , 90}. Finally, we consider twoadditional groups with a larger number of vertices: d1291 and d2103, derived from the TSPLIBas well.In all TSPLIB-derived graphs, the �xed graph G0 is set to be the minimum spanning tree, as thiscorresponds to a real-world situation in which the MST models an existing connected networkthat needs to be augmented.4.2 Branch-and-Cut vs. Branch-and-Cut-and-PriceWe �rst test the bene�ts of incorporating column generation, based on sparse and reserve graphtechniques, into the BC framework. The default initialization of the sparse and reserve graph,with 5− and 10− nearest-neighbor graphs (NNGs) has been changed in the case of pr226 andpr439 groups. In order to ensure feasibility, we initialize the sparse graph with 8− and 6− NNGs,and the reserve graph with 12− and 10−NNGs, respectively. For all computational experimentspresented in this section we used a Pentium IV/2.8GHz with 2 GB RAM. Except for pricing, allother attributes of the BC and BCP are kept the same.3 Available at http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

22 Ivana Ljubi¢

Instances

t [
s]

dt 10 20 30 40 50 60 70 80 90 100

20
40

60
80 BC

BCP−noPrHeur

(a) pr439 Instances

t [
s]

dt 10 20 30 40 50 60 70 80 90 100

10
0

20
0

30
0

BC
BCP−noPrHeur

(b) pcb442Fig. 2. Comparing running times (in seconds) of the branch-and-cut algorithm (BC) and the branch-and-cut-and-price algorithm without primal heuristic (BCP-noPrHeur). Per instance group, results for11 instances with di�erent densities of k% (x-axis) are shown.To be able to investigate the role of pricing in improving the BC performance, we �rst switcho� the primal heuristic. The results depicted on Figure 2 show the comparison of the runningtimes between the branch-and-cut algorithm as described in Section 3.1 and the BCP algorithmwithout primal heuristic (BCP-noPrHeur). Furthermore, we subtracted the preprocessing times(see [18]), thus comparing only the computational e�ort of �pure� exact algorithms. The obtainedresults show that the incorporation of pricing into the branch-and-cut framework for the V2AUGproblem signi�cantly speeds up the computation. For the pcb442 (pr439) group, the overallrunning time can be reduced by about 50% (35%) on average. In addition, one observes thatthe density of an instance does not substantially in�uence the running time, if pricing is used.Conversely, for dense graphs, the overall running time without pricing may be up to three timeslonger (for example, see the graph pcb442, compared to pcb442-sp).4.3 Bene�ts of the Primal HeuristicFigure 3 depicts one example that shows the advantage of using a primal heuristic. The perfor-mance of the BCP algorithm is better, if only promising variables (i.e. those whose LP-valuesare greater than a certain threshold value pprHeur) are used within the upper bounding pro-cedure. We observe that, if all possible augmentation edges (i.e. xij ≥ 0) are used within theupper bounding procedure, there is no signi�cant di�erence between the performance of the BCPalgorithm with or without the primal heuristic.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 23
5 10 15 20

11
80

0
12

00
0

12
20

0
12

40
0

t [s]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

upper bound
lower bound

(a) BCP performance without primal heuristic. 5 10 15 20

11
80

0
12

00
0

12
20

0
12

40
0

t [s]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

upper bound
lower bound

(b) BCP with pprHeur = 0.0.
5 10 15 20

11
80

0
12

00
0

12
20

0
12

40
0

t [s]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

upper bound
lower bound

(c) BCP with pprHeur = 0.2. 5 10 15 20

11
80

0
12

00
0

12
20

0
12

40
0

t [s]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

upper bound
lower bound

(d) BCP with pprHeur = 0.5.Fig. 3. Gap versus time plot for lin318 (70) instance. Due to the application of the primal heuristic,good feasible solutions can be found earlier.Further experiments have shown that the most robust performance is obtained by setting pprHeurto a standard value of 0.5, usually used within similar upper bounding procedures. Indeed, settingthe value of pprHeur too high often leads to infeasible solutions that need to be repaired byrandomly adding additional augmentation edges. This leads to solutions of worse quality and tohigher computational times needed for repairing them.4.4 In�uence of Upper BoundsWe now show the in�uence of the initialization with high-quality upper bounds to the overallperformance of the BCP algorithm. As our heuristic choice, we used the memetic algorithm [18].We considered the following two initialization settings:� In the default BC / BCP implementation, as described in Sections 3.1 and 3.2, respectively,we used the weak initialization. The population size was set to 100 and each MA run was

24 Ivana Ljubi¢terminated when no new best solution could be identi�ed during the last Ω = 1 000 iterations.This setting corresponds to a fast initialization, and therefore to low-quality upper bounds.� In BCP-Strong-Init, the convergence criteria for the MA was stronger (the same as describedin [18]), thus Ω = 10 000 while the population size was set to 800. Here, we allow for longerrunning times to obtain high-quality feasible solutions.Table 2 summarizes the results for all the TSPLIB-derived instances that could be solved toprovable optimality. For the three strategies mentioned above, the running time in seconds (t [s]),the total number of generated subproblems (SP) and the total number of solved LPs (LP) aregiven. Additionally, for BCP and BCP-Strong-Init, tbest [s] shows the time when the optimalsolution has been detected. Column tprep [s] gives the number of seconds we needed to run thepreprocessing [18]. The results indicate unambiguously that the pricing together with the primalheuristic substantially improves the performance of the branch-and-cut algorithm. The overallrunning time can be reduced by more than 50% on average (the average/median BC running timeis 78/34, whereas the corresponding BCP time is 33/18 seconds). Also the size of the branch-and-bound tree can be reduced by about 20% on average (the average/median number of SPs neededto solve the BC is 88/45, whereas the corresponding BCP number is 71/31). Conversely, whencomparing the running times of BCP and BCP-Strong-Init, we observe that the initializationwith the high-quality upper bounds slows down the overall performance. As we will see below,the real bene�ts of the strong initialization are �rst visible when the instances become muchlarger.Table 3 shows the results for large graphs for which we were not able to �nd optimal solutions.For the groups pa561, d1291 and d2103, our branch-and-cut-and-price algorithm terminatedprematurely because of memory limitations. The only exception was the graph d2103 (2), forwhich we found the optimum. Therefore, we measured the following optimality gap:gapg =
UBg − LBg

LBg

× 100%,where UBg represents the costs of the best known feasible augmentation (obtained either withinthe MA, or inside of the BCP), and LBg is the global lower bound. The optimality gapg expressesthat the solution with costs UBg is at most gapg% more expensive than the optimal solution.In Table 3, we consider three di�erent settings: The default BCP implementation as describedin Section 3.2 (BCP), the BCP algorithm without primal heuristic (BCP-noPrHeur), and theBCP with strong initialization (BCP-Strong-Init). In the UB and UB full columns, we show theupper bounds obtained after the weak and the strong initialization, respectively. For each of

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 25Table 2. Comparing the BC algorithm and the BCP algorithm (both with the weak initialization)with the BCP algorithm with the strong initialization (BCP-Strong-Init). The best running times arehighlighted. BC BCP BCP-Strong-InitInstance OPT
tprep [s] t [s] SP LP t [s] SP LP tbest [s] t [s] SP LP tbest [s]pr226-dt 25152 0.3 0.9 5 9 1.0 5 9 0 3.2 5 9 2pr226-sp 22824 0.4 2.0 3 5 2.2 5 10 1 8.9 5 10 8pr226 (20) 22824 0.5 2.3 3 4 2.3 3 9 2 8.9 3 9 8pr226 (30) 22824 0.7 3.7 5 11 3.9 7 18 3 10.1 3 14 9pr226 (40) 22824 0.9 3.9 5 9 3.5 5 13 3 11.9 5 12 10pr226 (50) 22824 1.3 4.5 5 11 3.6 5 14 3 12.4 7 14 10pr226 (60) 22824 2.0 5.0 5 11 4.4 5 13 4 12.1 7 16 11pr226 (70) 22824 2.5 5.8 5 12 5.3 5 13 4 12.4 5 19 11pr226 (80) 22824 2.6 6.1 7 12 5.0 5 10 4 12.1 5 13 11pr226 (90) 22824 2.7 6.7 5 10 5.4 3 13 5 13.4 5 11 12pr226 22824 2.6 6.5 5 10 5.2 3 11 5 14.0 5 12 13pr226-avg 1.5 4.3 4.8 9.5 3.8 4.6 12.1 3.1 10.8 5.0 12.6 9.5lin318-dt 12013 2.4 1.3 3 5 1.5 3 6 1 7.2 3 6 7lin318-sp 11797 2.5 13.1 73 53 11.9 59 66 10 20.5 59 65 19lin318 (20) 11797 3.2 17.7 73 53 12.4 59 65 11 19.6 59 65 18lin318 (30) 11797 6.3 21.4 73 53 13.2 59 66 11 22.9 59 65 21lin318 (40) 11797 10.1 24.5 73 53 14.0 59 65 12 29.6 59 65 28lin318 (50) 11797 10.6 30.6 81 56 14.5 59 65 13 24.8 59 65 23lin318 (60) 11797 19.9 32.7 73 53 16.3 59 66 14 28.3 59 65 26lin318 (70) 11797 24.1 36.4 73 53 16.8 59 66 15 30.0 59 65 28lin318 (80) 11797 29.7 39.5 73 53 18.1 59 68 16 24.6 59 65 23lin318 (90) 11797 32.5 45.8 85 62 18.3 59 68 16 28.3 59 65 26lin318 11797 23.1 44.6 81 56 18.2 59 68 16 28.5 59 65 26lin318-avg 15.0 28.0 69.2 50.0 14.1 53.9 60.8 12.3 24.0 53.9 59.6 22.3pr439-dt 28310 8.5 5.1 15 19 5.4 15 19 1 13.7 15 19 9pr439-sp 26800 10.0 18.8 41 37 14.8 27 31 13 25.3 27 31 24pr439 (20) 26800 14.1 28.8 45 38 19.2 31 32 17 38.8 31 32 37pr439 (30) 26800 32.7 38.6 45 41 21.9 31 33 19 50.2 31 34 48pr439 (40) 26800 32.0 48.8 45 37 25.7 31 32 23 54.6 31 34 51pr439 (50) 26800 49.5 55.4 45 41 29.8 31 33 27 57.9 31 35 55pr439 (60) 26800 76.0 62.9 45 39 31.4 31 35 28 58.0 31 35 55pr439 (70) 26800 89.7 71.8 45 40 32.8 31 34 30 60.9 31 32 58pr439 (80) 26800 99.7 79.0 45 41 36.4 31 36 33 65.9 31 32 63pr439 (90) 26800 107.9 81.8 45 40 40.7 31 33 37 69.4 31 33 66pr439 26800 73.3 84.8 45 39 40.1 31 35 37 69.6 31 35 66pr439-avg 53.9 52.3 41.9 37.5 27.1 29.2 32.1 24.1 51.3 29.2 32.0 48.4pcb442-dt 10328 60.7 17.5 97 99 18.1 97 101 18 28.4 89 100 28pcb442-sp 10460 12.0 84.1 253 195 62.1 195 201 58 82.0 195 202 78pcb442 (20) 10460 18.6 123.2 253 195 86.2 253 198 80 81.8 195 201 77pcb442 (30) 10460 34.5 152.6 253 195 83.5 195 201 76 96.1 195 201 90pcb442 (40) 10460 36.1 195.0 253 195 92.1 195 201 82 105.3 195 200 96pcb442 (50) 10460 46.4 241.1 253 191 96.5 195 200 86 112.0 195 199 102pcb442 (60) 10460 78.8 270.4 253 195 99.6 195 201 89 118.9 195 200 109pcb442 (70) 10460 93.1 321.7 253 195 118.7 253 198 107 131.6 195 201 121pcb442 (80) 10460 101.4 347.4 253 195 104.7 195 201 94 120.5 195 201 110pcb442 (90) 10460 108.0 373.7 253 195 107.7 199 196 96 132.2 195 201 122pcb442 10460 74.0 383.5 253 191 108.4 199 196 96 125.8 199 196 114pcb442-avg 60.3 228.2 238.8 185.5 88.9 197.4 190.4 80.2 103.1 185.7 191.1 95.2

26 Ivana Ljubi¢these settings, we provide the total running time in seconds (t [s], including preprocessing andMA running time) and the optimality gap (gapg).Table 3. Comparing three BCP settings for large instances: the BCP algorithm without the primalheuristic (BCP-noPrHeur), the BCP with the primal heuristic (BCP), and the BCP with the primalheuristic and the strong initialization (BCP-Strong-Init). Both BCP-noPrHeur and BCP use the weakinitialization of upper bounds (see Section 3.1). The best optimality gap values are highlighted.BCP-noPrHeur BCP BCP-Strong-InitInstance UB
t [s] gapg t [s] gapg

UB full
t [s] gapgpa561-sp 794 580.8 2.7 596.1 1.9 784 593.2 1.4pa561 (20) 828 682.3 7.1 681.5 1.8 786 694.0 1.6pa561 (30) 849 750.5 9.8 754.8 3.3 782 763.8 1.1pa561 (40) 837 934.6 8.2 933.6 3.4 785 774.1 1.5pa561 (50) 851 1094.4 10.0 1067.1 3.2 785 852.2 1.4pa561 (60) 805 1018.4 4.1 1208.7 3.2 784 929.0 1.4pa561 (70) 872 1771.4 12.8 1377.7 3.1 785 938.8 1.6pa561 (80) 879 2226.3 13.7 1401.5 3.4 788 1031.2 2.0pa561 (90) 844 2243.6 9.1 1380.0 2.7 785 1042.0 1.6pa561 878 1754.3 13.5 1690.4 3.4 786 842.6 1.7d1291 (2) 12298 1443.4 5.4 1450.7 1.5 11788 1493.2 1.0d1291 (5) 12210 1571.5 4.6 1583.4 1.5 11855 1624.6 1.5d1291 (10) 12634 1772.0 8.3 1768.2 1.7 11924 1810.7 1.7d1291 (30) 13357 3499.8 14.7 3305.1 1.9 11997 3385.3 1.9d2103 (2) 7633 3766.6 0.0 3723.5 0.0 7490 3749.7 0.0d2103 (5) 7610 4637.4 2.7 4653.9 0.4 7521 4692.1 0.4d2103 (10) 7691 5478.1 3.9 5468.6 0.7 7503 5529.3 0.7Table 3 indicates that for large instances it is recommendable to run the MA to obtain as goodsolutions as possible (Ω = 10 000) and to keep higher diversity (population size of 800). Whilefor small and medium-size instances the computation of high-quality upper bounds can slow-down the optimization, for larger instances it helps signi�cantly in reducing the gap between theglobal lower bound and the best-known feasible solution. One observes that, the BCP-Strong-Initapproach produces optimality gaps of up to 2%, the gap of the BCP approach is below 4%, whilethe BCP algorithm without the primal heuristic and with the weak initialization produces theworst solutions, with optimality gaps of up to 14%.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 275 ConclusionsThis paper constitutes the �rst theoretical and computational study on exact approaches tothe weighted vertex biconnectivity augmentation problem. Using the connectivity properties ofthe block-cut graph, we have proposed a new orientation-based characterization of augmentedblock-cut trees. Then, we have derived two ILP formulations with an exponential number ofinequalities relying on the connectivity properties of the block-cut graph. In contrast to recentresults published by Chimani et al. [3] for solving related vertex-biconnected Steiner networkproblems, we have shown that the ILP model on undirected graphs is as strong as the model ondirected graphs, and is therefore preferable in practice.To solve V2AUG, we have extended the traditional branch-and-cut algorithm by a column gener-ation strategy. Furthermore, we have studied the role of the primal heuristic and the importanceof the initialization with good upper bounds for the overall BCP performance.We have obtained optimal solutions for complete graphs with more than 400 nodes. For instanceswith more than 2000 nodes, we have achieved optimality gaps that are strictly below 2%.AcknowledgementsThe author is greatly indebted to: Michael Jünger for providing the implementation of theminimum-cut algorithm [13] and the framework for the sparse and reserve graph pricing [28]; toMaria Kandyba, Petra Mutzel and Günther Raidl for very useful discussions on this topic.References1. J. Bang-Jensen, M. Chiarandini, and P. Morling. A computational investigation of heuristic algo-rithms for 2-edge-connectivity augmentation. Networks, 2009. to appear.2. M. Chimani, M. Kandyba, I. Ljubi¢, and P. Mutzel. Strong formulations for 2-node-connected Steinernetwork problems. In Proceedings of COCOA 2008, volume 5165 of LNCS, pages 190�200. Springer,2008.3. M. Chimani, M. Kandyba, I. Ljubi¢, and P. Mutzel. Orientation-based models for {0, 1, 2}-survivablenetwork design: Theory and practice. Mathematical Programming, 2009. to appear.4. M. Elf, C. Gutwenger, M. Jünger, and G. Rinaldi. Branch-and-cut algorithms for combinatorialoptimization and their implementation in ABACUS. In M. Jünger and D. Naddef, editors, Compu-tational Combinatorial Optimization, volume 2241 of LNCS, pages 157�222. Springer, 2001.

28 Ivana Ljubi¢5. K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM Journal on Computing, 5(4):653�665, 1976.6. B. Fortz and M. Labbé. Exact and heuristic algorithms for the design of survivable networks withbounded rings. Mathematical Programming, 93:27�54, 2002.7. G. N. Frederickson and J. Jájá. Approximation algorithms for several graph augmentation problems.SIAM Journal on Computing, 10(2):270�283, 1981.8. M. Grötschel and O. Holland. Solving matching problems with linear programming. MathematicalProgramming, 33:243�259, 1985.9. M. Grötschel, C. Monma, and M. Stoer. Polyhedral and computational investigations for designingcommunication networks with high survivability requirements. Operations Research, 43(6):1012�1024, 1995.10. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.11. T.-S. Hsu. Simpler and faster biconnectivity augmentation. Journal of Algorithms, 45(1):55�71,2002.12. M. Jünger, G. Reinelt, and S. Thienel. Provably good solutions for the traveling salesman problem.Zeitschrift für Operations Research, 40:183�217, 1994.13. M. Jünger, G. Reinelt, and S. Thienel. Practical performance of e�cient minimum cut algorithms.Algorithmica, 26(1):172�195, 2000.14. S. Kersting, G. R. Raidl, and I. Ljubi¢. A memetic algorithm for vertex-biconnectivity augmentation.In Applications of Evolutionary Computing: EvoWorkshops 2002, volume 2279 of LNCS, pages 102�111. Springer, 2002.15. S. Khuller, B. Raghavachari, and A. Zhu. A uniform framework for approximating weighted connec-tivity problems. In Proceedings of SODA 1999, pages 937�938. SIAM, 1999.16. S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. Journal ofAlgorithms, 14(2):214�225, 1993.17. I. Ljubi¢ and J. Kratica. A genetic algorithm for the biconnectivity augmentation problem. InProceedings of CEC 2000, pages 89�96. IEEE Press, 2000.18. I. Ljubi¢ and G. R. Raidl. A memetic algorithm for minimum-cost vertex-biconnectivity augmenta-tion of graphs. Journal of Heuristics, 9:401�427, 2003.19. I. Ljubi¢, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algorithmic frame-work for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming,Series B, 105(2�3):427�449, 2006.20. T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with connectivityrequirements. Networks, 45(2):61�79, 2005.21. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,New York, 1998.22. M. Padberg and G. Rinaldi. An e�cient algorithm for the minimum capacity cut problem. Mathe-matical Programming, 47:19�36, 1990.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 2923. M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetrictraveling salesman problems. SIAM Review, 33:60�100, 1991.24. G. R. Raidl. An e�cient evolutionary algorithm for the degree-constrained minimum spanning treeproblem. In Proceedings of CEC 2000, pages 104�111. IEEE Press, 2000.25. G. Reinelt. Fast heuristics for large geometric traveling salesman problems. ORSA Journal onComputing, 4:206�217, 1992.26. H. Robbins. A theorem on graphs with an application to a problem of tra�c control. AmericanMathematical Monthly, 46:281�283, 1939.27. M. Stoer. Design of Survivable Networks, volume 1531 of LNM. Springer, 1992.28. S. Thienel. A Branch-And-CUt System. PhD thesis, University of Cologne, Germany, 1995.29. A. Zhu. A uniform framework for approximating weighted connectivity problems. B.Sc. thesis atthe University of Maryland, MD, May 1999.

