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Abstract

We consider a new combinatorial optimization problem that combines network design and
facility location aspects. Given a graph with two types of customers and two technologies
that can be installed on the edges, the objective is to find a minimum cost subtree connecting
all customers while the primary customers are served by a primary subtree that is embedded
into the secondary subtree. In addition, besides fixed link installation costs, facility opening
costs, associated to each node where primary and secondary subtree connect, have to be
paid. The problem is called the Two Level Network Design Problem with Transition Facilities
(TLNDF).

We first model the problem on an extended graph where an additional set of arcs corre-
sponds to the installation of node facilities and propose a cut set based model for the TLNDF
that is defined on this extended graph. We present several theoretical results relating families
of cut set inequalities on the extended graph with subfamilies of cut set inequalities on the
original graph. We then show how a standard multi-commodity flow model defined on the
original graph can be strengthened using disaggregation “by technology”. We prove that the
disaggregated compact formulation on the original graph provides the same lower bound as
the cut set formulation on the extended graph.

We develop a branch-and-cut algorithm for solving the TLNDF. The performance of this
algorithm is improved by separating subfamilies of cut set inequalities on the original graph.
Our computational study confirms the efficiency and applicability of the new approach.
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1. Introduction

The Multi-Level Network Design Problem (MLND) has been originally defined by Bal-
akrishnan et al. [1]: We are given an undirected graph with a set of nodes partitioned into
L levels and a set of edges such that along each edge one of L different technologies can be
installed, with higher grade technologies inducing higher fixed costs. The goal is to find a
(spanning) subtree and decide which technology to install along each edge, so that all cus-
tomers at level ` can communicate with each other along a path using technology of grade
` or higher. We extend the definition of the MLND by introducing the fixed costs for tran-
sition nodes, i.e., the nodes where a change of technology takes place, and by considering
so-called potential Steiner nodes which are nodes that need not be included in the solution.
In this problem, which we denote by Multi-Level Network Design Problem with Transition
Facilities, the overall goal is to find a MLND subtree that minimizes the sum of fixed edge
and facility installation costs. In this paper we study the case with L = 2, which we will
denote by the Two Level Network Design Problem with Transition Facilities (TLNDF).

TLNDF arises in the topological design of hierarchical communication, transportation,
and electric power distribution networks. One of the most important applications of TLNDF
is in the context of telecommunication networks, where networks with two cable technologies,
fiber optic and copper, are built. Telecommunication companies distinguish between primary
and secondary customers. The switching centers, important infrastructure nodes and small
businesses are considered as primary customers (i.e., those to be served by fiber optic con-
nections). Single households are not considered as being consumers of a high potential and
hence they only need to be supplied using copper cables. The secondary technology is much
cheaper, but the guaranteed quality of the connections and bandwidth is significantly below
the quality provided by the primary technology. The goal is to build a network (with tree
topology) such that there is a fiber optic connection between each primary customer and a
designated root node (e.g., a central office), and each secondary customer is connected to
the root along a path using either of the two technologies. Typically, at transition nodes,
expensive switching devices need to be installed to transmit the electrical into optical signal,
and the respective purchasing and equipment operating costs are not negligible. This par-
ticular application involves two new features that have not been considered in the previous
literature (see, e.g., Balakrishnan et al. [2], Duin and Volgenant [10]). First, the application
considers additional transition costs due to the presence of two technologies on the network.
Second, in graphs that represent telecommunication networks nodes like street intersections
need to be considered as well, i.e., we need to allow that the set of primary and secondary
customers is a proper subset of the set of nodes, and a subset of remaining nodes may be a
part of the solution, if it helps in establishing a cheaper connection. Those remaining nodes
will be referred to as potential Steiner nodes.

More formally, the problem can be defined as follows:

Definition 1 (TLNDF). We are given an undirected graph G = (V,E) with a set of cus-
tomers R ⊆ V . To each edge e ∈ E we associate two installation costs, c1e ≥ c2e ≥ 0. These
correspond to the primary and secondary technology, respectively. The set of customers,
R, is partitioned into the sets of primary and secondary customers P and S, respectively
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(P ∩ S = ∅, P ∪ S = R). We are also given a root node r ∈ V , otherwise we choose one of
the primary customers as such. To each node i ∈ V we associate facility opening cost di ≥ 0
that needs to be paid if i is used as a transition node.

Our goal is to determine a subtree T (built of a set of primary and secondary edges, T1
and T2, respectively) with the set F of transition nodes (i.e., nodes that are adjacent to
edges from both T1 and T2), satisfying the following properties:

(P) Each primary node in P is connected to the root node by a path that consists of T1
edges only,

(S) each secondary node in S is connected to the root by a path consisting of edges from
T1 ∪ T2,

(F) facilities need to be open at each transition node i ∈ F and

(M) the sum of fixed edge and facility installation costs∑
e∈T1

c1e +
∑
e∈T2

c2e +
∑
i∈F

di

is minimized.

Figure 1 illustrates a solution of the TLNDF. It uses the following symbols: Squares rep-
resent primary customers, triangles represent secondary customers, dots represent potential
Steiner nodes. A grey fill indicates a transition node. Solid lines indicate the installation of
primary edges (e.g., fiber-optic technology) and grey dotted lines indicate the installation of
secondary edges (e.g., copper wires).

Figure 1: Example of a TLNDF solution
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The following observation can be made about optimal solutions of the TLNDF: i) Since
c1e ≥ c2e for all e ∈ E, there always exist an optimal solution in which the subgraph induced
by T1 is a rooted subtree of T (primary subtree) and the subgraph induced by T2 is a forest
(a union of secondary subtrees) attached to it. ii) If facility opening costs are uniform for
all nodes, leaves of the primary subtree are nodes from P ∪ S. In addition, any leaf of
the primary subtree that has a secondary subtree attached to it will be a primary node.
iii) Otherwise, if facility opening costs are location-dependent, placing facilities at locations
of Steiner nodes or secondary customers may provide cheaper solutions, i.e., a secondary
subtree can be attached to any node from V , and henceforth, a leaf of the primary subtree
can be any node from V .

Notice also that our general definition covers the case in which potential facility locations
are a true subset of V (which can be modeled by setting di := ∞ for the non-facility
locations).

This important problem generalizes problems with tree-star and star-tree topologies in-
cluding connected facility location, hierarchical network design, Steiner trees and uncapaci-
tated facility location.

Overview of the paper. In Section 2 we model the TLNDF in an extended graph, where an
additional set of arcs corresponds to the installation of node facilities. We present several
theoretical results relating families of cut set inequalities on the extended graph with special
families of cut set inequalities on the original graph. Cut set inequalities on the extended
graph can be separated in polynomial time using maximum flow algorithms. We also study
special classes of cut set inequalities that are obtained by projecting subsets of constraints of
the extended graph formulation on the original graph. In Section 4 we show how these can
be separated efficiently on the original graph extended by a single node. Our computational
study, reported in Section 5, confirms the efficiency and applicability of these separation
procedures.

It is quite straightforward to model the TLNDF on the original graph with a standard
multi-commodity flow model. The linear programming (LP) relaxation of the cut set model
on the extended graph is easily shown to dominate the LP relaxation of this flow model.
This dominance result is also known from similar problems (see, e.g., [4]). In this paper
(cf. Section 3), we show that by disaggregating the previous multi-commodity flow formu-
lation by technology we obtain a formulation on the original graph that provides the same
lower bound as the cut set formulation on the extended graph. Our result also extends to
the two level network design problem without transition nodes and, as far as we know, this
is the first time a compact formulation on the original graph is given that provides the same
LP bound as the cut set formulation on the extended graph.
Preliminary results of this work appeared in Gollowitzer et al. [11].

1.1. Literature review

The concept of two level network design problems (more precisely, two-level spanning
trees) has been developed in the 80’s and early 90’s.
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Hierarchical network design (HNDP). The hierarchical network design problem, in which
R = V and |P | = 2, was the “initial” variant of the TLND introduced by Current et al.
[8]. The authors proposed an integer programming model based on subtour elimination
constraints and a heuristic for the problem. Later, Duin and Volgenant [9] proved structural
properties of HNDP that enable reductions of the problem graph and elimination of variables
from an integer programming model. Pirkul et al. [22] derived a heuristic based upon a
Lagrangian relaxation of a flow-based formulation for the problem. A dynamic programming
procedure that finds suboptimal solutions was then proposed by Sancho [24]. Recently,
Obreque et al. [21] proposed a branch-and-cut algorithm for this problem.

Two level network design (TLND). This problem, a generalization of HNDP in which |P | ≥ 2
and R = V , was introduced by Duin and Volgenant [10]. Balakrishnan et al. [2] proposed
several network flow based models for TLND and compared the LP bounds of the proposed
formulations. The same authors also proposed a composite heuristic that provides an approx-
imation ratio of 4/3 if the embedded Steiner tree is solved to optimality and c1e/c

2
e = q > 1

for all e ∈ E. The approximation ratio is 4
4−ρ if the Steiner tree problem is solved with an

approximation ratio of ρ < 2. For non-proportional edge costs, this ratio becomes ρ + 1.
Balakrishnan et al. [1] tested a dual ascent method derived on the strongest formulation
proposed in [2] (which is a directed multi-commodity flow formulation on G, cf. Section 3).
Gouveia and Telhada [15] proposed another formulation in which the primary subtree is
modeled as a directed arborescence embedded into the secondary spanning arborescence.
The authors proposed to solve the problem using a Lagrangian relaxation based method. In
a later paper, Gouveia and Telhada [16] improved this formulation by using a “reformulation
by intersection” concept to derive a new compact formulation whose lower bounds are at
least as strong as the strongest ones proposed in [2]. In a recent work, Chopra and Tsai [4]
developed a branch-and-cut approach for a generalization of the TLND with more than two
levels.

Hierarchical network design with transshipment facilities (HNDF). The HNDP was intro-
duced by Current [6]. In this problem additional transshipment costs need to be paid for
each node of the primary path whenever a change of technology takes place. The main
difference between the HNDF and the TLNDF, besides the restriction |P | = 2 and R = V ,
is that secondary nodes included in the primary path are not considered as “served”, and
therefore they also need to be connected by a (possibly empty) path to a transshipment
facility. In addition, the union of primary and secondary edge sets may form a cycle, i.e.,
the optimal solution is not necessarily a tree.

Current [6] proposed a heuristic approach to HNDF in which, for a given root r and
terminal node t, K shortest paths are calculated. For each of these paths an auxiliary
problem is constructed, in which the nodes of the path are connected to a dummy root
node by edges whose weights are set to their facility opening costs. The edges of the path
are deleted and in the graph obtained by this procedure a minimum spanning tree using
secondary edge costs is calculated. Later, Current and Pirkul [7] described a new formulation
of the problem based on the introduction of the dummy root node (as above) and provided

5



computational results for two Lagrangian based heuristics derived from this model.

Combined network design and facility location and other related problems. A large body of
literature exists on problems that combine network design and facility location decisions.
Contreras and Fernández [5] give a unifying framework for many well-studied problems
including the p-median problem, hub location problems and the ring-star problem. They
give an exhaustive overview of the existing literature and analyze modeling aspects and
algorithmic ideas. Most problems considered there satisfy the assumption that nodes are
customers, potential facility location or both. Among the problems combining network
design and facility location, the connected facility location problem (ConFL) (see, e.g., [12])
is the closest to the TLNDF. More precisely, ConFL is a special case of the TLNDF where the
secondary subtrees are stars. The TLNDF problem also belongs to a class of problems with
a tree-tree topology. The reader is referred to a survey by Gourdin et al. [13], who describe
several variants of related problems such as star-tree, tree-star and star-star problems as well
as other variants of tree-tree problems.

1.2. Notation

It is known that for rooted spanning or Steiner tree problems, modeling the problem
on a directed graph provides models whose LP bounds are stronger than the bounds of
their undirected counterparts (see, e.g., [19]). Henceforth we will consider a directed graph
G = (V,A) that is obtained from the original undirected graph G = (V,E) as follows:
Instead of each edge e = {i, j} ∈ E we use two arcs ij and ji in A, both of which are
assigned the cost of the original edge. Since a solution on the undirected graph corresponds
to an arborescence directed away from the root node, edges {r, j} are replaced by a single
arc rj.

In our models we will use the following binary variables:

x1ij =

{
1, if the primary technology is installed on arc ij

0, otherwise
∀ij ∈ A

x2ij =

{
1, if the secondary technology is installed on arc ij

0, otherwise
∀ij ∈ A, j 6∈ P

zi =

{
1, if a facility is installed on node i

0, otherwise
∀i ∈ V

Observe that no feasible solution will contain secondary arcs pointing to a primary node
(i.e., x2ij = 0 for j ∈ P ). We will ignore the variables corresponding to these arcs in our
models but, to simplify the notation, we will allow them in the indexation of the summation
terms.

For a set W ⊆ V , we will write z(W ) =
∑

i∈W zi. For any W ⊂ V we denote its
complement set by W c = V \W . For any M,N ⊂ V , M ∩ N = ∅, we denote the induced
cut set of arcs by (M,N) = {ij ∈ A | i ∈ M, j ∈ N}. In particular, let δ−(W ) = (W c,W )
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and δ−(i) = (V \ {i}, {i}). For a set of arcs Â ⊆ A, we will write x`(Â) =
∑

ij∈Â x
`
ij, for

` = 1, 2, and (x1 + x2)(Â) =
∑

ij∈Â(x1ij + x2ij).
We will describe models based on these variables, but in the next sections several models

using other variables will be described as well. In order to relate all of these models, for a
mixed integer programming model M let Pa1,...,an(M) denote the orthogonal projection of
the convex hull of LP solutions of M onto the space defined by variables a1, . . . , an.

The illustrations in the next sections use the following symbols in addition to the ones
previously described: r represents the root node and, whenever we solve a problem as the
Steiner tree problem, terminals are denoted by ♦.

2. Cut set-based formulations

In Gollowitzer et al. [11] we show that the TLNDF can be modeled as a Steiner arbores-
cence problem on an extended graph with additional node degree constraints. In this section
we first recall a cut set formulation on the original graph, then we provide the definition of
the extended graph and state the most important results taken from [11]. Finally, we present
a new result that characterizes the inequalities obtained by projecting cut set constraints
from the extended graph into the natural space of variables (x1,x2, z).

2.1. The cut set formulation on the original graph

We recall the following formulation of the TLNDF, that we first introduced in [11].

(TLNDF ) min
∑
ij∈A

(c1ijx
1
ij + c2ijx

2
ij) +

∑
i∈V

dizi

x1(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ P 6= ∅ (x1)

(x1 + x2)(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ S 6= ∅ (x12)

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V \ {r} (1)

zj +
∑

ij∈A,i 6=k

x2ij ≥ x2jk ∀jk ∈ A, k 6∈ P (2)

x1ij, x
2
ij ∈ {0, 1} ∀ij ∈ A (3)

zi ∈ {0, 1} ∀i ∈ V (4)

The primary connectivity constraints (x1) ensure that for every primary node i, there is a
path between r and i containing only primary arcs. The secondary connectivity constraints
(x12) ensure that every secondary node is connected to the root by a path containing primary
and/or secondary arcs. The in-degree constraints (1) ensure that the overall solution is a
subtree. Together with connectivity constraints (x12), the basic coupling constraints (2)
guarantee that if a facility is installed at node j, then j is the root of a secondary subtree.
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2.2. The cut set formulation on the extended graph

The extended graph GNS = (VNS , ANS ), with the root r′ and the set of terminals RNS , is
defined as follows:

VNS :=V ′ ∪ V ′′ ∪ S where ANS :=A′ ∪ A′′ ∪ Az ∪ AS where

V ′ := {i′ | i ∈ V }, A′ := {i′j′ | ij ∈ A},
V ′′ := {i′′ | i ∈ V }, A′′ := {i′′j′′ | ij ∈ A},
S is the set of secondary nodes; Az := {i′i′′ | i ∈ V },

RNS :=P ′ ∪ S where AS := {i′i | i′ ∈ V ′, i ∈ S}
P ′ = {i′ | i′ ∈ V ′, i ∈ P}; ∪ {i′′i | i′′ ∈ V ′′, i ∈ S}.

The graph GNS consists of several components:

i) A subgraph G′ = (V ′, A′) corresponds to the primary network. It contains nodes and
arcs that may be included in the primary subtree.

ii) A subgraph G′′ = (V ′′, A′′) corresponds to the secondary network. It contains nodes
and arcs that may be contained in the secondary subtrees.

iii) Arcs linking nodes in G′ to the corresponding copy in G′′ represent potential facilities.

iv) An additional copy of the secondary nodes (with arcs pointing from their representa-
tives in graphs G′ and G′′) represents terminals that will make sure that each secondary
node is either a part of the primary or the secondary network.

Arc costs Cuv for uv ∈ ANS are defined as follows:

Cuv =


c1ij, u = i′, v = j′, ij ∈ A,
c2ij, u = i′′, v = j′′, ij ∈ A,
di, u = i′, v = i′′, i ∈ V,
0, otherwise,

uv ∈ ANS

We observe that if, for a primary node i ∈ P , its copy i′′ ∈ V ′′ belongs to the optimal
solution on the extended graph, then no ingoing arc of i′′, except for the facility arc i′i′′, will
be used. Thus, we reduce the size of GNS by removing all the arcs, except i′i′′, leading into
primary customer nodes in V ′′. Notice that a third copy of secondary nodes in GNS , namely
the set S, is needed, since the secondary customers can either be part of the primary subtree
or be part of one of the secondary subtrees. The copies of secondary customers in G′ and G′′

are considered as potential Steiner nodes, with their third copy being a terminal. To ensure
the tree topology, we will impose a restriction that for each node i ∈ V at most one of the
copies i′ and i′′ is allowed to have its x1- and x2-in-degree equal to one. Figure 2b) illustrates
GNS corresponding to the original graph shown in Figure 2a). We have the following result:
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Figure 2: a) Instance of TLNDF ; b) Transformed Steiner arborescence instance on GNS .

Lemma 1 ([11]). The TLNDF problem can be modeled as the Steiner arborescence problem
with additional node in-degree constraints on some node pairs on the graph GNS with the root
r′ and terminal set RNS .

To obtain an integer programming (IP) model, we assign binary variables Xij to all arcs
ij ∈ ANS . Let X(δ−(W̃ )) denote the sum of X variables that are in the directed cut set
(W̃ c, W̃ ) in GNS . Based on the classical cut set model for Steiner trees (cf. [3]) we derive the
following IP formulation:

(SA) min
∑

ij∈ANS

CijXij

s.t. X(δ−(W̃ )) ≥ 1 ∀W̃ ⊆ VNS \ {r′}, W̃ ∩RNS 6= ∅ (5a)∑
ij∈A

(Xi′j′ +Xi′′j′′) ≤ 1 ∀j ∈ V \ {r} (5b)

Xij ∈ {0, 1} ∀ij ∈ ANS (5c)

Constraints (5a) are connectivity cuts between the root node and each terminal. Inequali-
ties (5b) ensure that any solution of SA does not contain the copies i′ and i′′ of i ∈ V at the
same time, unless the facility arc i′i′′ is part of the solution.

Lemma 2 ([11]). Cut set inequalities (5a) such that δ−(W̃ ) ∩ AS 6= ∅ are redundant in the
model SA.

A straightforward algorithmic approach based on the separation of inequalities (5a) might
prove to be computationally expensive, since the separation of inequalities (5a) requires the
solution of maximum flow problems on the graphGNS with up to to 3|V | nodes and 2|A|+3|V |
arcs. This has motivated us to investigate and implement a two-phase separation method
where we start by separating cut set inequalities on the original graph and only then move
to separation on the extended graph. The reason for this two-phase approach is that the
corresponding maximum flow algorithm for the cut set constraints on the original graph is
applied to a much smaller graph.
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To find these sets of inequalities on the original graph we add the following constraints
to the model SA. They link the variables on the extended graph and the variables on the
original graph.

x1ij = Xi′j′ ∀ij ∈ A, i′j′ ∈ A′, (6a)

x2ij =

{
Xi′′j′′

0
∀ij ∈ A,

{
i′′j′′ ∈ A′′,
otherwise

(6b)

zi = Xi′i′′ ∀i ∈ V, i′i′′ ∈ Az. (6c)

Adding these equalities to the model SA will not alter its LP value but will allow us to
characterize Px1,x2,z(SA).

Lemma 3. Px1,x2,z(SA) = P(CUT ) where P(CUT ) is given by the set of vectors (x1,x2, z)
satisfying

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V \ {r} (7)

and

x1(δ−(W ′)) + x2(δ−(W ′′)) + z(W ′′ \W ′) ≥ 1
r 6∈ W ′,W ′ ∩W ′′ ∩ S 6= ∅
or W ′ ∩ P 6= ∅.

(x12-z)

where W ′ = {i ∈ V | i′ ∈ W̃} and W ′′ = {i ∈ V | i′′ ∈ W̃} for an arbitrary cut set
W̃ ⊆ VNS \ {r′} such that W̃ ∩RNS 6= ∅ and δ−(W̃ ) ∩ AS = ∅.

Constraints (x12-z) and (7) correspond to non redundant cut sets (5a) and constraints (5b)
on the extended graph, respectively.

The following sets of inequalities are special cases of constraints (x12-z) (see Figure 3).

i) If W ′ = W and W ′′ = ∅, we obtain primary connectivity constraints:

x1(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ P 6= ∅ (x1)

ii) For W ′′ = V and W ′ = W we obtain constraints of the form

z(W c) + x1(δ−(W )) ≥ 1 ∀W ⊆ V \ {r},W ∩ S 6= ∅ (x1-z)

iii) For W ′ = W ′′ = W , we obtain secondary connectivity cuts:

(x1 + x2)(δ−(W )) ≥ 1 ∀W ⊆ V \ {r}, W ∩ S 6= ∅ (x12)

iv) For W ′ = {k}, k ∈ S, and W ′′ = W ∪ {k} we obtain constraints of the form

z(W ) + x1(δ−(k)) + x2(δ−(Wk)) ≥ 1 ∀k ∈ S,W ⊆ V \ {k},Wk = W ∪ {k} (x2-z)

10



a)

4’

r’

1’

2’

3’

4”

r”

1”

2”

3”

2

3

(x1)

(x12)

(x12-z)

b)

4’

r’

1’

2’

3’

4”

r”

1”

2”

3”

2

3

(x2-z)

(x1-z)

Figure 3: a) Illustration of inequalities (x1) for W = {1}, (x12) for W = {3, 4}, and (x12-z) for W ′ = {1, 2},
W ′′ = {r, 1, 2, 3}. b) Illustration of inequalities (x1-z) for W = {2, 3, 4} and (x2-z) for W = {4} and k = 3.

Constraints (x1) ( (x12)) are connectivity cuts for primary (secondary) customers and ensure
a path that consists of primary (primary and secondary) edges between the root node and
each primary (secondary) customer. They have already been stated in [1] for the related
problem without transition nodes. The remaining constraints involving z variables are new.
Constraints (x1-z) state that for any subset of nodes that contains a secondary customer,
there must either be an ingoing primary arc or an installed node facility in its complement.
The interpretation of (x2-z) is not straightforward. However, these constraints were “found”
in an indirect way. By subtracting x1(δ−(k)) and x2(W c, k) on both sides we obtain

z(W ) + x2(W c
k ,W ) ≥ x2(W, {k}) ∀k ∈ S, W ⊆ V \ {k},Wk = W ∪ {k}. (x2-z’)

Constraints (x2-z’) are a generalization of inequalities suggested in [14] for models with node
transition variables. These inequalities state that if there is a secondary arc leading into
node k from a node in a given node set W , then either there is a facility installed in a node
in W or there is a secondary arc leading into W from the complement of W ∪ {k}.

The four sets of constraints just described are the constraints that will be separated in the
first phase of our branch-and-cut algorithm. Separation algorithms for these will be described
in Section 4. Clearly, there are other constraints included in the general description given
by (x12-z) that do not correspond to any constraint of these four sets. For these remaining
constraints, it is not clear how to separate them in the original space. This is precisely the
set of constraints that will be separated in the larger extended graph.

It is obvious that the model defined by (7) and (x12-z) gives a valid model for the TLNDF
defined only on variables x1, x2 and z. Notice that another valid model is obtained by only
considering the inequalities (x1), (x12) and the family (x2-z) for singleton sets W instead of
the whole set (x12-z). In the next section we will present a multi-commodity flow formulation
whose LP relaxation is equivalent to the LP relaxation of this latter model. However, our
computational experiments (cf. Section 5) will show that this model provides much weaker
bounds than the model with all general cut set inequalities (x12-z).
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3. Flow-based formulations

In this section we will present a compact multi-commodity flow formulation that extends
the strongest model proposed in [2] by introducing node transition variables. As we shall
show later, the LP relaxation bound of this model is not as good as the one provided by the
cut set model on the extended graph (presented in Lemma 3). A similar dominance result is
known for the TLNDF problem without node transition costs and is given in Chopra and Tsai
[4]. Therefore, we propose a new model based on multi-commodity flows that is obtained
from the previous one by disaggregating the variables and constraints ”by technology”. We
show that the LP relaxation of the new disaggregated model is equally strong as the LP
relaxation of the cut set model on the extended graph.

3.1. Multi-commodity flow formulation

Let us define the following flow variables: fkij ≥ 0 corresponds to the flow from r to the
commodity k ∈ R, using arc ij ∈ A. A multi-commodity formulation for the classical two
level network design problem (without transition nodes) is the following (cf., e.g., [1]):

(MCF ) min
∑
ij∈A

c1ijx
1
ij+

∑
ij∈A

c2ijx
2
ij

∑
ji∈A

fkji −
∑
ij∈A

fkij =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ R

0 ≤ fkij ≤ x1ij ∀ij ∈ A, k ∈ P
0 ≤ fkij ≤ x1ij + x2ij ∀ij ∈ A, k ∈ S
x1ij, x

2
ij ∈ {0, 1} ∀ij ∈ A

An extension to model transition node costs is obtained by changing the objective function
to

min
∑
ij∈A

c1ijx
1
ij +

∑
ij∈A

c2ijx
2
ij +

∑
i∈V

dizi

and adding the following, previously described compact sets of constraints to MCF :

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V \ {r}

zj +
∑

ij∈A,i 6=k

x2ij ≥ x2jk ∀jk ∈ A, k 6∈ P

zi ∈ {0, 1} ∀i ∈ V

For simplicity we maintain the same designation MCF for this model.

3.2. Disaggregated multi-commodity flow formulation

We now show how to strengthen the MCF model by disaggregating the variables fk by
technology. Consider the following two types of flow variables: f 1k

ij ≥ 0 (f 2k
ij ≥ 0) correspond

to the primary (secondary) flow from r to the commodity k ∈ R, using arc ij ∈ A.

12



Consider then the following model, which extends a model described in Gouveia and
Janssen [14] by node transition variables.

(dMCF ) min
∑
ij∈A

c1ijx
1
ij+

∑
ij∈A

c2ijx
2
ij +

∑
i∈V

dizi

s.t.
∑
ji∈A

f 1k
ji −

∑
ij∈A

f 1k
ij =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ P (8a)

∑
ji∈A

(f 1k
ji + f 2k

ji )−
∑
ij∈A

(f 1k
ij + f 2k

ij ) =


1
−1
0

i = k
i = r
i 6= k, r

∀i ∈ V, ∀k ∈ S (8b)

zi +
∑
ji∈A

f 2k
ji ≥

∑
ij∈A

f 2k
ij ∀k ∈ S,∀i ∈ V, i 6= k (8c)

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈ V (8d)

0 ≤ f 1k
ij ≤ x1ij ∀ij ∈ A, k ∈ R (8e)

0 ≤ f 2k
ij ≤ x2ij ∀ij ∈ A, k ∈ S (8f)

zi, x
1
ij, x

2
ij ∈ {0, 1} ∀i ∈ V, ij ∈ A (8g)

In the context of this model the flow variables f 1k and f 2k can be reinterpreted as indicating
whether arc ij has technology 1 or 2 installed and whether it is in the path to node k. The
new constraints (8c) state that a facility needs to be installed when the technology used on
the arcs changes on the path to node k.

Equations (8a) and (8b) ensure one unit of primary (primary or secondary) flow to
primary (secondary) customer nodes. Constraints (8d) limit the number of ingoing arcs for
each node to one and inequalities (8e) and (8f) link the flow variables and design variables.

3.3. Polyhedral comparison

Next we will show that formulation dMCF on the original graph G provides the same LP
bound as the cut set model on the extended graph given in Section 2.2. To prove this result
we will introduce an auxiliary model and prove that the two models, the cut set model on
the extended graph and the flow model dMCF provide the same LP bound as the auxiliary
model.

The auxiliary model is a straightforward multi-commodity flow reformulation of the cut
set model on the extended graph. To define this model we consider the following sets of
variables. i) Flow variables f 1k

ij and f 2k
ij , that correspond to the flow from r to the commodity

k ∈ R, using arcs i′j′ ∈ A′ or i′′j′′ ∈ A′′, respectively. ii) Variables yki correspond to the flow
of commodity k sent through i′i′′ ∈ Az. iii) Finally, for all k ∈ S, we also define f 1k

k and f 2k
k

to be the flow values on arcs k′k and k′′k in AS, respectively. Obviously, f 1`
k = f 2`

k = 0 for

13



all k 6= `.

(MCFNS) min
∑
ij∈A

c1ijx
1
ij+

∑
ij∈A

c2ijx
2
ij +

∑
i∈V

dizi

s.t. (8a), (8d), (8e), (8f), (8g),

ykr +
∑
rj∈A

f 1k
rj = 1 ∀k ∈ S (9a)

ykr −
∑
rj∈A

f 2k
rj = 0 ∀k ∈ S (9b)∑

ji∈A

f 1k
ji −

∑
ij∈A

f 1k
ij − yki = 0 ∀k ∈ S, i ∈ V \ {r, k} (9c)

yki +
∑
ji∈A

f 2k
ji −

∑
ij∈A

f 2k
ij = 0 ∀k ∈ S, i ∈ V \ {r, k} (9d)∑

jk∈A

(f 1k
jk + f 2k

jk ) = 1 ∀k ∈ S (9e)

0 ≤ yki ≤ zi ∀i ∈ V, k ∈ R (9f)

Using the linking constraints (6) and Xi′i = x1(δ−(i)) and Xi′′i = 1−Xi′i for all i ∈ S, the
max-flow min-cut theorem implies the following

Lemma 4. P(SA) = PX(MCFNS).

We can also show the following

Lemma 5. Px1,x2,z,f1,f2(MCFNS) = P(dMCF ).

Proof. We show the claim by mutual inclusion:
Let (x1,x2, z, f1, f2,y) ∈ P(MCFNS). Then (x1,x2, z, f1, f2) ∈ P(dMCF ): By eliminat-

ing yki from (9a) and (9b) ((9c) and (9d)) we obtain constraints (8b) for the case i = r
(i 6= k, r). Constraints (8b) for i = k are equivalent to (9e). Limiting yki from above in (9b)
and (9d) using (9f) we obtain (8c).

Let now (x1,x2, z, f1, f2) ∈ P(dMCF ) and variables yki be defined as follows.

yki :=
∑
ij∈A

f 2k
ij −

∑
ji∈A

f 2k
ji ∀k ∈ S, i ∈ V \ {r, k} and

ykr :=
∑
j∈A

f 2k
rj ∀k ∈ S.

Then one can easily verify that (x1,x2, z, f1, f2,y) ∈ P(MCFNS).

The two preceding lemmata imply the following

Theorem 1. Px1,x2,z(dMCF ) = Px1,x2,z(SA).
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4. Branch-and-cut framework

Since our models comprise an exponential number of constraints, we solve them using the
cutting plane technique embedded into a branch-and-bound framework, commonly known
as the branch-and-cut approach. Non-standard ingredients of our approach are described
below. The primal heuristic that we use is described in [11].

4.1. Initialization

To reduce the number of separated cut set constraints and improve the general perfor-
mance, in our computational experiments we initialize all models with degree constraints (1),
coupling constraints (2) and the following sets of inequalities:

(x1 + x2)(δ−(j)) ≤ (x1 + x2)(δ+(j)) ∀j ∈ V \R (10a)∑
ij∈A,i 6=k

x1ij ≥ x1jk ∀jk ∈ A, j ∈ V \ {r} (10b)

Inequalities (10a) are strengthening degree balance constraints for potential Steiner nodes.
Inequalities (10b) guarantee that for each outgoing primary arc of a node j ∈ V \ {r} there
is at least one primary arc entering this node.

4.2. Cut separation

In Section 2 we have proposed several classes of valid cut set inequalities for the TLNDF.
In this section we will show that the separation of some of them can be done on the original
graph G, extended by an extra node, while only the more general (x12-z) inequalities need
to be separated on the extended graph.

Separation of constraints (x1) and (x12) is performed on the original graph G: we solve
a maximum flow problem between the root and each i ∈ P and i ∈ S, respectively, using the
values of x1 and x1+x2 as arc capacities. To separate the more general constraints (x12-z), we
build the extended graph GNS , set the arc capacities on G′ and G′′ to x1 and x2, respectively,
and capacities of arcs k′k′′ to zk, for all k ∈ F . To make sure that only non-redundant cuts
between the root and a secondary node i ∈ S are separated, we set the capacities of arcs i′i
and i′′i to M > 1, for each i ∈ S. We will now describe how constraints (x1-z) and (x2-z)
can be separated on graphs that are much smaller than the extended graph GNS .

Lemma 6. Inequalities (x1-z) can be separated by solving the maximum flow problem on a
graph with |V |+ 1 nodes and |A|+ |V | arcs.

Proof. For each k ∈ S we generate a graph Gt = (V ′ ∪ {t}, A′ ∪ At) with weights wuv as
follows:

1. V ′ and A′ are defined as in Section 2.2

2. At = {(i′, t) | i′ ∈ V ′}

3. wi′j′ := x1ij, i
′j′ ∈ A′ and wi′t := zi, i ∈ V \ {k} and wk′t := 1.
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Then each (r′, t)-cut in Gt with a weight of less than 1 corresponds to a violated (x1-z)
inequality for k ∈ W ∩ S.

Lemma 7. Inequalities (x2-z) can be separated by solving the maximum flow problem on a
graph with |V |+ 1 nodes and |A|+ |V | arcs.

Proof. For each k ∈ S we generate a graph Gs = (V ′′ ∪ {s}, A′′ ∪ As) with weights wuv as
follows:

1. V ′′ and A′′ are defined as in Section 2.2

2. As = {(s, i′′) | i′′ ∈ V ′′}

3. wi′′j′′ := x2ij, i
′′j′′ ∈ A′′, wsi′′ := zi, i ∈ V \ {k} and wsk′′ := x1(δ−(k)).

Then each (s, k′′)-cut in Gs with a weight of less than 1 corresponds to a violated (x2-z)
inequality for k ∈ W ∩ S.

a)

4’

r’

1’

2’

3’

t
1

b)

s

4”

r”

1”

2”

3”

x1(δ−(2))

Figure 4: a) Illustration of Gt for k = 3 and inequality (x1-z) for W = {2, 3, 4}. b) Illustration of Gs for
k = 2 and inequality (x2-z) for W = {1, 3}.

We separate violated cut set inequalities in every node of the the branch-and-bound tree
(B&B). To improve the computational efficiency of the separation, for each family of cuts
we search for nested minimum cardinality cuts. To do so, all capacities in the respective
separation graph are increased by some ε > 0. Thus, every detected violated cut contains
the least possible number of arcs. We resolve the linear program after adding at most 50
violated inequalities of any class. Finally, we randomly choose the target nodes to search for
violated cuts. To ensure comparability, we fix the seed value for the computational results
reported.

As mentioned in Section 2, we propose a two-phase approach to separate the cut set
inequalities. In the first phase we add violated inequalities that can be separated on G or
on G extended by a single node. Only when no more violated inequalities of these types can
be found, we resort to the separation on the extended graph.
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The constraint sets (x1-z), (x12) and (x2-z) can be ordered with respect to pairwise
inclusion of the corresponding sets W ′ and W ′′: Consider an inequality (x1-z). By removing
the set V \W ′ from W ′′ we obtain an inequality of the form (x12). By removing all but a
single node k ∈ S from W ′ we obtain an inequality of the form (x2-z). Thus we will always
detect violated inequalities in the following order: (x1) - (x1-z) - (x12) - (x2-z) - (x12-z).

In our computational study (see Section 5) we choose different subsets of the mentioned
four families for the separation in phase one. The four different strategies we experiment
with are given in Table 1.

Phase 1 Phase 2
Model (x1) (x1-z) (x12) (x2-z) (x12-z)
EG+ X X X X X
EG X X
OG+ X X X X
OG X X

Table 1: Constraint subsets in Phase 1 and 2

Strategy EG+ has the advantage of providing the strong lower bounds of the extended
graph model but performs the computationally demanding separation of general cut sets (x12-z)
only when it is needed. Strategy EG provides the same lower bounds as EG+, but it is a
more naive implementation of the previous strategy. The whole separation procedure (ex-
cept for the (x1) cuts) is performed on the extended graph. For the last two strategies,
denoted by OG and OG+, separation is performed on the original graph G or G extended
by an extra node, respectively. Strategy OG+ derives slightly weaker lower bounds than
EG+ and EG because we refrain from the separation of the general family of cut sets (x12-z)
and insert only four special subfamilies, namely (x1), (x1-z), (x12) and (x2-z). Finally, the
weakest lower bounds are obtained using the strategy OG that separates only connectivity
cuts for primary and secondary nodes, and uses a compact constraint set to model the transi-
tion nodes. Inequalities (2) used in the initialization phase of the branch-and-cut procedure
guarantee the feasibility of this model.

5. Computational Study

In this section we report on our computational experience with the four MIP strategies
described above. All experiments were performed on a desktop machine with an 8-core Intel
Core i7 CPU at 2.80 GHz and 8 GB RAM. Each run was performed on a single processor.
We used the CPLEX [17] branch-and-cut framework, version 12.2. All cutting plane and
heuristic routines provided by CPLEX are turned off, the other parameters are set to their
default values. We set the optimal solution value as global cutoff value in the first and second
part of our computations. The primal heuristic was not used in that case.
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5.1. Instances

For our computational study we transform instances of the Steiner tree problem (STP)
using the following procedure: 30% of STP terminals are chosen as primary customers, the
remaining 70% are selected as secondary customers. The primary customer with the lowest
index is chosen as root node. The potential Steiner nodes in the STP instance are potential
Steiner nodes in the TLNDF instance. We allow installation of a facility in every node of
the graph. Primary edge costs equal edge costs of the STP instance. For each secondary
edge e, the cost c2e is defined as qc1e, where q is uniformly randomly chosen from [0.25, 0.5].
Facility opening costs are uniform and equal 0.5 times the average primary edge costs.

The parameters for generating instances have been chosen so that trivial solutions (e.g.,
optimal solutions that do not contain secondary subtrees) are avoided. In our computational
study we also tested the effect of alterations of the above given parameters. We use sets B, C
and D of the Steinlib library [18] with 50-100, 500 and 1000 nodes and up to 200, 12500 and
25000 edges, and the sets of random graphs named K and P proposed by Minkoff and Karger
[20], with a street-like structure and up to 400 nodes and 1576 edges. The latter instances
are available online at [23].

5.2. Results

Preliminary tests showed that all instances from groups B, K100 and P100 can be solved
in less than two seconds by all of the four tested approaches. Of the instances in these three
groups only b11 and b15 were not solved to optimality at the root node of the branch-and-
bound tree, but required to examine two branch-and-bound nodes each.

To avoid possibly misleading conclusions from large relative but small absolute deviations
in the running time, we do not consider these three instance groups in the following.

5.2.1. Comparing lower bounds and running times

We perform the first part of our computational study on the set of 18 instances with
200 and 400 nodes from test sets K and P. Our goal was to test whether the theoretical
results presented in Section 3 are supported by computational experience. Since among the
four MIP approaches presented above, EG and EG+ provide the same LP bounds υLP and
differ only in the separation strategy, we performed this test using only three out of the four
approaches, namely, EG , OG+ and OG . We set the default time limit to 10 minutes. For
each of these approaches, and for each of the 18 instances, Table 2 reports the following
values: the optimal integer solution value (OPT ), the running time (in seconds) needed to
solve the LP relaxation (tLP [s]), the LP gap (calculated as Gap [%]=(OPT − υLP)/OPT ),
the running time (in seconds) of the integer program (tIP [s]), and the number of enumerated
branch-and-bound nodes (#BnB). A dash denotes that the respective model could not solve
the instance within the given time limit. In that case, column #BnB indicates the number
of nodes enumerated until then.

The values in Table 2 confirm the relations stated in Section 3. While the strongest
model, EG , solves to optimality a majority of the instances already at the root node of the
branch-and-bound tree, the LP relaxations of the two weaker models provide weaker lower
bounds (see column Gap [%]) and thus require to enumerate a significantly larger number
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tLP [s] Gap [%] tIP [s] #BnB
Instance OPT EG OG+ OG EG OG+ OG EG OG+ OG EG OG+ OG
K200 385.9 4.3 5.3 2.9 0.00 0.05 2.63 4.6 5.6 355.9 0 1 6832
K400 383.5 36.7 38.9 22.5 0.00 0.37 4.07 38.3 47.4 - 0 7 1033
K400-1 474.2 50.1 48.2 33.5 0.02 0.34 2.46 51.8 58.9 - 0 8 1151
K400-2 456.5 46.3 41.0 26.8 0.00 0.04 2.91 48.2 45.1 - 0 2 1007
K400-3 431.5 43.5 42.2 28.8 0.00 0.05 2.62 45.3 43.2 - 0 1 1075
K400-4 394.4 45.3 40.9 21.8 0.03 0.05 2.20 47.0 42.9 - 1 2 1070
K400-5 539.0 147.3 112.7 98.5 0.00 0.07 2.57 149.0 123.2 - 0 5 495
K400-6 449.5 84.9 82.1 56.2 0.13 0.16 2.25 97.0 89.9 - 5 5 755
K400-7 468.1 57.5 64.4 29.7 0.00 0.49 3.68 59.5 206.9 - 0 172 998
K400-8 459.4 70.1 75.5 73.0 0.00 0.00 1.61 71.5 76.6 - 0 0 879
K400-9 480.5 104.6 95.0 75.2 0.23 0.33 3.29 128.4 153.7 - 13 43 780
K400-10 330.7 20.3 21.2 12.8 0.00 0.12 2.29 21.3 22.9 - 0 3 1888
P200 1051.7 5.5 3.9 2.8 0.00 0.00 0.04 5.9 4.2 2.9 0 0 1
P400 2085.7 35.8 34.8 11.7 0.11 0.11 0.63 42.6 38.4 30.3 3 3 8
P400-1 2183.8 32.5 26.4 24.3 0.00 0.00 0.34 35.2 28.1 118.1 0 0 38
P400-2 2239.2 20.2 18.6 9.3 0.00 0.00 0.20 22.5 20.1 9.7 0 0 0
P400-3 2636.9 40.1 35.6 22.2 0.05 0.05 0.19 42.6 37.3 37.6 1 1 6
P400-4 2104.8 24.6 19.4 18.2 0.00 0.00 0.10 26.4 20.6 18.5 0 0 1

Table 2: Running times of IP and LP, LP gaps and number of enumerated branch-and-bound nodes for three
approaches of different strength.

of nodes before possibly reaching optimality. The running times of the LP relaxations show
that separating violated inequalities from the “small” constraint sets (x1) and (x12) (model
OG) can indeed be accomplished faster than separating inequalities from a larger subset
including (x1-z) and (x2-z) (model OG+) or even the complete set (x12-z) (model EG).
When comparing the running times for the complete integer programs we see that there is
a tradeoff between faster separation and stronger bounds. Whenever there is a significant
difference in the enumerated number of branch-and-bound nodes, the stronger model EG
using the slower separation is faster overall.

In the second part of our computational study we assess whether the cut separation on
graph G in the first phase (EG+) speeds up the overall performance of the model containing
all constraints in (x12-z) (EG). Since the approach OG has shown to be computationally
inferior (cf. Table 2), this study compares only strategies EG+, EG and OG+. We group
the instances in sets C and D according to the number of customers (first two blocks) and
the number of edges in the graph (last two blocks). For each of these groups we calculate
the geometric mean of the running time (tIP [s]) and the number of cuts added (#Cuts). To
take into account the values equal to 0 we resort to the shifted geometric mean for presenting
the number of enumerated branch-and-bound nodes (#BnB) and LP gaps (Gap [%]). We
use the arithmetic mean as shift.3

3For non-negative values vi, i ∈ {1, . . . , k} the shifted geometric mean for shift s > 0 is defined as

µs(v1, . . . , vk) = (
∏k

i=1(vi + s)1/k)− s.
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tIP [s] #BnB #Cuts Gap [%]
Inst. EG EG+ OG+ EG EG+ OG+ EG EG+ OG+ EG OG+

c{01,06,11,16} 3.7 2.8 2.5 1.0 1.0 1.5 133 125 118 0.73 0.84
c{02,07,12,17} 7.0 5.5 4.6 0.0 0.0 0.0 294 262 245 0.00 0.00
c{03,08,13,18} 63.3 62.8 51.8 4.1 3.7 3.5 2239 2041 1683 0.09 0.11
c{04,09,14,19} 65.4 49.4 50.4 0.4 0.1 0.1 2309 2160 1835 0.00 0.00
c{05,10,15,20} 83.3 99.0 102.6 1.5 1.8 2.3 2708 2816 2579 0.04 0.04
d{01,06,11,16} 7.6 7.2 6.6 0.1 0.1 1.0 167 163 159 0.00 2.25
d{02,07,12,17} 17.9 13.0 13.9 0.4 0.0 0.6 343 264 287 2.28 4.21
d{03,08,13,18} 381.0 349.1 362.4 5.1 3.7 6.9 4800 4880 4036 0.09 0.11
d{04,09,14,19} 311.5 332.7 312.1 0.4 0.5 0.4 4948 4977 4053 0.01 0.01
d{05,10,15,20} 879.3 842.5 925.3 14.0 11.9 13.5 8231 7443 7282 0.09 0.10
c{01-05} 4.8 4.5 3.8 0.1 0.1 0.1 737 738 632 0.04 0.07
c{06-10} 8.4 7.6 6.8 0.4 0.4 0.4 786 742 666 0.00 0.00
c{11-15} 36.8 30.0 28.6 1.6 1.6 1.1 935 780 730 0.04 0.04
c{16-20} 243.4 214.0 211.5 3.3 2.8 4.5 1136 1140 1004 0.51 0.54
d{01-05} 21.4 17.3 18.0 0.5 0.5 0.5 1487 1318 1243 0.01 0.01
d{06-10} 49.2 45.5 45.9 1.1 0.7 0.7 1863 1697 1569 1.62 1.69
d{11-15} 122.5 124.1 99.9 2.5 1.3 1.5 1363 1387 1168 0.02 0.02
d{16-20} 1032.0 957.6 1179.7 10.7 8.9 17.1 1830 1666 1700 0.10 3.23

Table 3: Comparison of the 3 selected approaches. The best running times and least number of enumerated
branch-and-bound nodes are shown in bold.

The running times indicate that for most groups the separation on the smaller graph G is
beneficial. While EG+ is faster than EG on 15 groups, it’s the other way around for only 3
groups. The performance of approach OG+ is surprisingly good. Even though the gaps are
slightly larger, omitting the costly separation on GNS leads to better overall running times,
especially on the instances of set C with only few customers (c{1,6,11,16}, c{2,7,12,17}).
However, for the instance group with the largest sets of edges and customers (d{16-20}) the
significantly larger gap requires the enumeration of a lot more branch-and-bound nodes
and leads to a performance worse than the one of the stronger models EG and EG+. We
believe that approach OG+ is suitable for small to medium instances (with a small number
of customers), but does not scale well to dense graphs with large customer sets.

The average values for the number of enumerated branch-and-bound nodes are unex-
pectedly uncorrelated with the strength of the underlying lower bounds. For some instance
groups the “weaker” approach OG+ enumerated less nodes before reaching optimality, even
though it provides the weaker LP bounds. This can be explained by the fact that we use
CPLEX’ default branching strategy. Thus the variables selected for branching and the order
in which the nodes are explored might differ.

An interesting aspect of the results in Table 3 are the number of constraints detected
by the separation procedures. In approach OG+ the least number of cuts is added to the
LP and optimality is enforced by extensive branching. This is as expected, as in OG+

inequalities of the general set (x12-z) are not separated. The number of cuts added by EG
and EG+ indicate another advantage of the latter approach. The inequalities that can be
separated on the smaller graphs are more likely to be binding in the optimal LP solution
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of each branch-and-bound node than some of those detected on the extended graph. Thus,
the linear programs in the branch-and-bound tree need less memory, allowing EG+ better
scalability when system memory becomes the limiting factor.

5.2.2. Influence of instance size on algorithmic performance

To assess the influence of the instance size on the running time we compare the running
times of approach EG+ on all instances in testsets C and D in Tables 4 and 5, respectively.
We conclude that a larger number of nodes and edges in G as well as a larger number
of customers lead to longer running times. This is not surprising as our approach spends
most of the time solving linear programs or separating violated constraints, i.e. calculating
maximum flows. The only instance that is not solved within one hour of running time is d20
with 1000 nodes, 500 customers and 25000 edges. We conclude that for instances with a low
density our approach scales well.

|E|
|P ∪ S| 625 1000 2500 12500

5 0.9 0.6 2.5 46.6
10 1.4 2.1 6.5 48.4
83 9.2 16.5 207.8 494.3

125 10.2 25.4 53.3 431.1
250 15.5 49.5 134.3 933.2

Table 4: Average running times (in seconds)
of approach EG+ for the instances in testset C

grouped by the number of edges and the number
of customers

|E|
|P ∪ S| 1250 2000 5000 25000

5 1.0 6.5 5.7 73.8
10 5.5 2.0 34.4 76.1

167 58.9 220.6 436.8 2616.6
250 49.4 195.7 600.4 2110.3
500 97.2 349.2 571.7 25963.8

Table 5: Average running times (in seconds)
of approach EG+ for the instances in testset D

grouped by the number of edges and the number
of customers

5.2.3. Influence of instance parameters on algorithmic performance

In the last part of our study we assess the effect of changes of the parameters used to
generate the test instances. We compare the performance of EG+ on instance sets generated
using the default parameters to the performance when these parameters are altered.

The following choices of parameters were tested:

• Higher and lower facility opening costs (0.75 and 0.25 times the average primary edge
costs), indicated by d ↑ and d ↓, respectively.

• Higher and lower secondary edge costs (q ∈ [0.5, 1) and q ∈ [0.125, 0.25]), indicated by
c2 ↑ and c2 ↓, respectively.

• Higher/lower facility opening costs combined with lower/higher secondary edge costs.

• Restricting potential facilities to the customer nodes R = P ∪ S (cf. [11]).

In Table 6 we report results aggregated over the 18 instances listed in Table 2. We report
first, second and third quartile (Q1, Q2 and Q3) of the running times (tIP [s]) and number
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of cuts added (#Cuts), the number of instances solved to optimality at the root node of the
branch-and-bound tree (#OptLP) and the shifted geometric mean of the LP gaps (Gap [%],
where we once again use the arithmetic mean as shift). For the default setting indicated
by EG+ we report absolute numbers. For all other parameter settings we report absolute
numbers for #OptLP and Gap [%]. For the runtime tIP [s] and the number of added cuts
#Cuts we report the increase or decrease compared to the respective value for EG+ in per
cent.

tIP [s] #Cuts
Setting Q1 Q2 Q3 Q1 Q2 Q3 #OptLP Gap [%]
EG+ 23.8 43.4 63.0 1817 2215 2897 13 0.04
d ↑ 0.0 34.2 29.2 3.0 16.1 12.0 11 0.06
d ↓ -3.4 -31.0 -28.7 -14.0 -12.9 -12.0 16 0.01
c2 ↑ 31.9 -2.5 6.3 11.0 6.7 13.0 11 0.14
c2 ↓ 2.9 17.5 27.6 -8.0 10.9 1.0 7 0.08
d ↑ c2 ↓ 24.8 71.1 70.3 -5.0 35.3 14.0 5 0.12
d ↓ c2 ↑ 33.2 -11.2 -12.9 -2.0 -3.6 -5.0 13 0.02
F = R -55.5 -34.8 -44.1 -58.0 -38.2 -42.0 12 0.05

Table 6: The influence of variations from the initial parameter settings for generating TLNDF instances.

We observe that increasing facility opening costs and lowering secondary edge costs leads
to a significant increase of the running times. The effects add up when the two deviations are
combined. Reducing the facility opening costs has the opposite effect of increasing facility
opening costs and reduces the running times. Higher secondary edge costs do not show a
similar opposite effect of lowering secondary edge costs.

Reducing the number of possible facility locations reduces the problem complexity and
leads to shorter running times. This is not surprising as the variable space and the separation
graphs for subsets of constraints involving variables z are much smaller in this case.

For all parameter settings (except for combined high facility opening and low secondary
edge costs), the first, second and third quartile of the running time never increases by more
than 35% compared to our default setting. We conclude that the cost structure of the
instance has only little influence on the overall performance of our model.

The key values other than the running times reported in Table 6 confirm that increased
solution time comes along with more detected violated inequalities, a larger LP gap and less
instances for which the LP relaxation of our model provides the optimal integer solution.

To see the effect of different cost parameters on the solution structure consider Figure 5.
Figure 5(a) shows the optimal solution for the default setting (which is the same as the
optimal solution for d ↑, c2 ↓ and F = R). Figure 5(b) shows the optimal solution for
d ↑ c2 ↓. Even though the facility on the right hand side becomes more expensive in d ↑
the solution does not change. Lowering secondary edge costs makes it profitable to change
the path to the secondary customer at the bottom and to open one facility less. Figure 5(c)
shows the optimal solution for c2 ↑ and d ↓ c2 ↑. It illustrates that less difference between
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primary and secondary edge costs will reduce the size and number of secondary customers in
the secondary subforest. Finally, Figure 5(d) shows the optimal solution for d ↓. Lowering
facility opening costs leads to an additional open facility and increases the number of subtrees
in the secondary forest.

6. Conclusions

We introduced a new combinatorial optimization problem combining facility location and
network design decisions. We considered several mixed integer programming formulations
for the problem. Besides formulations derived on the space of original design variables, we
also provided three extended formulations: two of them use a flow and a disaggregated flow
concept, respectively, and the third one uses a reformulation of the problem on an extended
graph in which facility nodes are modeled as arcs.

We provided a theoretical comparison of those models, with respect to the strength of
their LP bounds, and in particular showed that the LP bound of the new model based
on flows “disaggregated by technology” equals the LP bound of the cut set model on the
extended graph. The extensive computational study compares and shows the applicability
of the cutting-plane-based counterparts of these models.

Further interesting topics on TLNDF that have not been covered by this article include
characterizations of facets of the TLNDF polytope, development of approximation algo-
rithms and/or efficient (meta)heuristics. Furthermore, TLNDF can be extended for mod-
eling networks in several stages. Multi-period or two-stage stochastic or recoverable robust
approaches are natural extensions of this problem of great relevance in practice.
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