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Abstract

This article considers the network design problem that searches for a minimum-cost way of in-

stalling capacities on the edges of a network in order to simultaneously route a �ow from a given

access point to a subset of nodes representing customers with positive demands. We �rst consider

compact and exponential-sized MIP formulations of the problem and provide their theoretical and

computational comparison. We also propose a new strong disaggregated �ow formulation. To solve

the problem in practice, we project out the �ow variables and generate Benders cuts within a branch-

and-cut framework.

In an extensive computational study we compare the performance of compact MIP models against

a textbook implementation and several normalization variants of Benders decomposition. We intro-

duce a set of 32 real-world instances and use these, together with 64 other instances from the

literature, to test our approaches. The results show that our branch-and-cut approach beats the

best-performing compact formulation leading to the best algorithm today for solving the considered

data set.

Keywords: Local Access Network Design, Network Loading, Capacitated Network Design,

Benders Decomposition.

1 Introduction

We consider the problem of deploying a broadband telecommunication system that lays optical �ber cable

from a central o�ce to a number of end-customers. In case of the �ber to the home technology (FTTH)

the end-customers represent houses, whereas when deploying �ber to the curb technology (FTTC) the

end-customers are usually multiplexor devices. In both cases, we are dealing with a capacitated network

design problem that requires an installation of optical �ber cables with su�cient capacity to carry the

tra�c from the central o�ce to the end-customers. We start with a network without capacities, or
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with some pre-installed capacities, and search for the installation of cable types on links that enables

simultaneous routing of tra�c so that the whole demand in the network is satis�ed at minimum cost.

This article provides an exact solution method based on a branch-and-cut approach. A new mixed

integer programming formulation (MIP) of the problem, developed by the disaggregation of continuous

�ow variables, is proposed. Although the network loading problem has been intensively studied in the

literature, to the best of our knowledge this speci�c disaggregation has not been considered so far. From

theoretical point of view, the new formulation provides stronger lower bounds when compared to existing

MIP models. To make the new model computationally tractable, we project out �ow variables by using

strengthening, rounded Benders inequalities incorporated into a branch-and-cut framework.

When compared to the best-performing compact formulation, we show that the average gap on a

set of benchmark instances from the literature can be improved from 5.5% to 2.5%. When testing

instances derived from a real-world telecommunication example, we report 8 optimal solutions, whereas

the compact formulation did not solve a single one to optimality.

Problem De�nition The Single-Source Network Loading Problem (SSNLP) is also known as the local

access network design problem arising in the design of telecommunication networks. It can be de�ned as

follows.

Let us consider an undirected and connected graph Gu(V,E) with a designated root node r ∈ V

(representing the central o�ce or access point to the backbone network) and a set of customers D ⊆

V \ {r}. Each customer k ∈ D is associated with a positive demand dk ∈ R>0. Each edge e ∈ E is

associated with a length le ∈ R>0. It is allowed to install combinations of di�erent cable types with

positive costs and capacities on every edge. Salman et al. [36] have shown that, by using dynamic

programming, one can precompute the optimal combination of cable types for each level of �ow and

for every edge. This provides an increasing non-linear step cost function of �ow for every edge of the

network. We consider the optimization problem after this transformation, i.e., instead of searching for

optimal combination of cable types, we are looking for the optimal module of the step cost function to

be installed on every edge. Thereby, we assume that modules Ne = {n1, n2, . . . , n|Ne|} are given for

each edge e ∈ E, with capacities ue,n ∈ R>0 and costs ce,n ∈ R>0 for each 1 ≤ n ≤ |Ne|. We denote

|N | := maxe∈E |Ne|. Then SSNLP looks for a single-source multiple-sink routing and a link capacity

assignment, with an installation of at most one module on every edge, to satisfy all customer demands.

Since we allow the �ow between the access point and some customers to be split apart, we are

speaking about a bifurcated routing formulation. The optimal solution of SSNLP is not necessarily a

tree. Obviously, if there is only one module per edge providing su�cient capacity to route the total �ow

through it, then the optimal solution will be a tree, and the problem is equivalent to the Steiner tree

problem on the graph by considering all customers with positive demand as terminals while minimizing

the sum of edge lengths (le · ce,1) taken into the solution. Furthermore, in case of multiple modules

obeying economies of scales and with su�cient capacity, the optimal solution will be a tree.
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Our de�nition of SSNLP works for the general setting: Economies of scale may not be given over all

modules. We allow the number of modules and their costs and capacities to di�er from edge to edge,

in contrast to the previous approaches where the modules were considered to be uniform. In addition,

capacities on an edge may be limited.

Previous Work Due to its importance in telecommunications, transportation, computer and energy

supply networks, network loading problems have been widely studied in the literature. Many authors

consider a more general variant in which a routing from multiple sources to multiple sinks is required.

Polyhedral structures of the general network design problem with multiple sources and multiple sinks are

studied in [4, 7, 12, 17, 23, 29, 38]. Benders decomposition approaches have been studied as well: for the

multiple-source multiple-sink case, an exact algorithm based on the expansion step cost model from [17]

was given in [21]; the latter approach has been improved recently in [19]. In [14] the authors study the

relationship between metric and Benders inequalities for the general capacitated network design problem.

In [34] the authors look into speeding up Benders decomposition by combining it with local branching.

Metric inequalities for the network loading problem have been studied in [3]. The authors work on the

multi-commodity �ow problem and propose several variants for separating metric inequalities. We build

some of our normalization models by extending their ideas, see Section 4.

SSNLP has been studied only under the assumption that costs and capacities satisfy the concept of

economies of scale, i.e., that the cost per unit capacity of a thick (high capacity) cable is considerably

cheaper than that of a thin (low capacity) cable, thus buying capacities in bulks becomes more economical

when the tra�c increases. For that reason, in the computer science literature, SSNLP is also known as

the single-sink buy-at-bulk network design problem (see, e.g., [35]). In terms of approximation algorithms,

currently the best provable worst-case approximation ratio of 76.5 has been obtained by Gupta et al. [24].

Chopra et al. [10] have shown that the network loading problem with only two cable types and with a

single-source and a single-sink node remains NP-hard. Berger et al. [6] have proposed a tabu-search

heuristic that relies on the computation of k shortest paths, in order to �nd alternative paths from the

root to each customer node.

Salman et al. [36] proposed the search by objective relaxation (SOR) approach for solving SSNLP.

The authors solve SSNLP by considering the �ow problem with a non-linear step cost function. The

step cost function is �rst approximated by its lower convex envelope. The obtained relaxed problem is

solved by a combinatorial algorithm in polynomial time. The process is repeated in every node of the

branch-and-bound tree in which branching is done by dividing the interval of possible �ow values on an

edge into subintervals. In Section 5 we refer to their results where we also use their benchmark instances

to test our approach.

Raghavan and Stanojevi¢ [33] pointed out that the linear programming (LP) relaxation of a single-

commodity �ow model for SSNLP (see Section 2.2) also approximates the step cost function by its lower

convex envelope. Therefore the SOR approach can also be seen as a stylized branch-and-bound on a
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single-commodity �ow model. The authors compared their stylized branch-and-bound approach against

two MIP models based on the aggregated single-�ow formulation. While the authors were able to beat

the explicit cost model, their results were always worse than those obtained by the incremental cost MIP

model.

The rest of the paper is organized as follows. In Section 2 we recall existing MIP formulations and

propose a new disaggregated compact model. A hierarchy of MIP formulations is also given. Section 3

explains how to project out �ow variables of the new compact model and how to generate stronger

cutting planes. Algorithmic aspects of our approach are discussed in Section 4. We implemented several

di�erent approaches for solving the Benders subproblem. An extensive computational comparison of

compact vs. Benders approaches is provided in Section 5.

2 MIP Formulations

Network loading problems are often modeled using compact �ow-based MIP formulations (see, e.g., [14,

23, 33, 36]) involving integer design variables and continuous �ow variables. When disaggregating �ow

variables, we face the trade-o� problem between the increasing quality of lower bounds and the growing

size of the underlying linear program. In this section, we �rst recall three �natural� formulations for

SSNLP: two compact and an exponential-sized one. We then propose a new disaggregated �ow-based

formulation. We �nally provide a hierarchy of di�erent MIP formulations with respect to the quality of

lower bounds from their LP relaxations.

2.1 Transformation into Directed Problem

It is well known that, in general, the MIP formulations of uncapacitated network design problems on

directed graphs provide better lower bounds than their undirected counterparts (see e.g., [11]). However,

the MIP approaches to SSNLP up to now, considered in [33, 36], involve undirected graphs. We propose

to work with directed graphs and for that purpose we transform our input graph Gu = (V,E) into a

directed graph G = (V,A) where A := {(i, j), (j, i) | {i, j} ∈ E; i, j 6= r} ∪ {(r, j) | {r, j} ∈ E}. The

available modules on the arcs remain symmetric, i.e., cij,n = cji,n = c{i,j},n, uij,n = uji,n = u{i,j},n for

all n ∈ N{i,j}. To solve SSNLP, we now search for the directed solution, i.e., for the installation of at

most one module on every arc so that there is enough capacity to route the �ow from r to every k ∈ D.

Lemma 2.1. Let G be the graph as described above. Then, any optimal solution of directed SSNLP on

G contains no directed cycle.

Proof. Let x be an optimal solution of the directed SSNLP problem such that it contains a directed

cycle C. Let f be a feasible �ow sent from r toward all customers k ∈ D using the capacities installed

in x. Denote by ã the arc from C such that ã = arg mina∈C fa. Let us construct a new �ow f ′ such that

f ′a = fa, if a 6∈ C, and f ′a = fa − fã, if a ∈ C. The �ow f ′ is feasible and corresponds to an integral
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solution x′ with x′ã,n = 0, for all n ∈ Nã. The cost of x′ is strictly less than the cost of x, which is a

contradiction.

Corollary 2.2. Given the graph Gu, demands dk, for all k ∈ D and the cost and capacity functions c

and u as described above, any optimal solution of SSNLP on Gu can be transformed into an equivalent

directed solution on G with the same objective value, and vice versa.

2.2 Single-Commodity Flow Formulation (SCF)

The single-commodity �ow formulation, SCF, models the �ow on every arc as the total amount of �ow

routed from the root toward the customers. To model a non-decreasing step cost function on every

arc, binary variables need to be used. There is a possibility to model the problem using the explicit

cost (also called the multiple choice model in [15]), or the incremental cost model. The incremental cost

model for general multi-source multi-sink network design problem was introduced by Dahl and Stoer [17],

while for SSNLP it was tested in [33, 36]. Raghavan and Stanojevi¢ [33] proved that for SSNLP both

models are equivalent in terms of quality of lower bounds, and their LP relaxations both approximate the

monotonically increasing step cost function by its lower convex envelope. A more general equivalence

result for generic minimization problems with separable non-convex piecewise linear costs is given by

Croxton et al. [15], see also Keha et al. [26].

Binary variables xij,n ∈ {0, 1} decide whether the module n shall be installed on the arc (i, j), whereas

�ow variables fij ≥ 0 describe the amount of �ow on arc (i, j) ∈ A. Then SCF model is:

SCF : min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n (1)

s.t.
∑

(i,j)∈A

fij −
∑

(j,i)∈A

fji =


−di, i ∈ D∑
k∈D dk, i = r

0, otherwise

∀i ∈ V (2)

∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (3)

0 ≤ fij ≤
∑
n∈N

uij,nxij,n ∀(i, j) ∈ A (4)

xij,n ∈ {0, 1} ∀(i, j) ∈ A, ∀n ∈ Nij . (5)

The �ow conservation constraints (2) ensure that every customer receives desired amount of �ow, while

the capacity constraints (4) ensure that enough capacity is installed on every arc. The disjunction

constraints (3) are typical for the explicit cost model, i.e., on every arc at most one module may be

installed.

Observation 2.3. Given an optimal solution (x′, f ′) of an LP relaxation of SCF, the subgraph G′ of G

obtained by taking all arcs (i, j) ∈ A such that
∑
n∈Nij

x′ij,n > 0 contains no directed cycle.
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Therefore, the subtour elimination constraints xij,n +xji,n ≤ 1, for all (i, j) ∈ A, and all n ∈ Nij , are

redundant for both, the SCF model and its LP relaxation. However, summed up over all modules, the

following inequalities can be alternatively used to replace disjunction constraints (3):∑
n∈Nij

(xij,n + xji,n) ≤ 1 ∀(i, j) ∈ A.

The SCF model contains O(|A| · |N |) variables and constraints, but due to �big-M� constraints (4),

it provides arbitrarily bad lower bounds. In case of economies of scale, the LP relaxation of the SCF

model has an optimal solution in which at most one of xij,n variables (the one with the lowest cij,n/uij,n

ratio) on every arc is non-zero (see also [36]).

2.3 Multi-Commodity Flow Formulation (MCF)

Disaggregation by commodities is commonly used for the multiple-source multiple-sink network design

problems (see, e.g., [1, 29]). In this model, fkij describes the amount of �ow of commodity k ∈ D routed

through the arc (i, j). Commodities in our case are source-sink pairs (r, k), k ∈ D, i.e., they are directly

associated to customers k ∈ D. The MCF model then reads as follows:

MCF : min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n (6)

s.t.
∑

(i,j)∈A

fkij −
∑

(j,i)∈A

fkji =


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ D (7)

∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (8)

∑
k∈D

fkij ≤
∑
n∈Nij

uij,nxij,n ∀(i, j) ∈ A (9)

0 ≤ fkij ≤ dk
∑
n∈Nij

xij,n ∀(i, j) ∈ A, ∀k ∈ D (10)

xij,n ∈ {0, 1} ∀(i, j) ∈ A, ∀n ∈ Nij . (11)

The �ow conservation constraints (7) and the capacity constraints (9) have the same meaning as for the

SCF model. The coupling constraints (10) ensure that if there is a �ow in any module n on the arc (i, j),

then the corresponding design variable need to be set up. Obviously, these constraints are redundant for

the MIP formulation, but they improve the lower bound of the LP relaxation.

The MCF model contains O(|A| · |N | + |A| · |D|) variables and O(|V | · |D| + |A| · |N | + |A| · |D|)

constraints. The LP relaxations of the SCF model and MCF model without coupling constraints (10)

produce the same lower bound.
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2.4 Disaggregated Multi-Commodity Flow Formulation (DMCF)

For the multi-commodity capacitated network design problem, Croxton et al. [16] and Frangioni and

Gendron [20] proposed a disaggregation by integer values in a MIP based on the multi-commodity �ow

formulation. Similarly, in this new MIP model for SSNLP, we disaggregate �ow variables with respect

to modules. Beside the binary design variables, xij,n ∈ {0, 1}, we use the disaggregated �ow variables

fkij,n that de�ne the amount of �ow of commodity k ∈ D, routed through the arc (i, j) using the module

n ∈ Nij . The DMCF model reads then as follows:

DMCF : min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n (12)

s.t.
∑

(i,j)∈A

∑
n∈Nij

fkij,n −
∑

(j,i)∈A

∑
n∈Nji

fkji,n =


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ D (13)

∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (14)

∑
k∈D

fkij,n ≤ uij,nxij,n ∀(i, j) ∈ A,∀n ∈ Nij (15)

0 ≤ fkij,n ≤ dkxij,n ∀(i, j) ∈ A,∀k ∈ D,∀n ∈ Nij (16)

xij,n ∈ {0, 1} ∀(i, j) ∈ A,∀n ∈ Nij . (17)

The capacity constraints (15) ensure that the total �ow in module n on arc (i, j) must not exceed the

capacity of the given module n. Constraints (16) are redundant for the MIP formulation, but they

improve the optimal value of the LP relaxation.

The DMCF model contains O(|A| · |N | · |D|) constraints and O(|A| · |N | · |D|) variables, and it is

very unlikely that even the most sophisticated MIP solvers may solve instances of moderate size using

the DMCF formulation. Our computational experiments with the DMCF model con�rmed this claim

(see Section 5). To use the advantage of this strong model, we propose to project out the �ow variables

and to introduce Benders inequalities instead, keeping the quality of lower bounds, and even improving

them by rounding techniques.

Denote by

PSCF := {(x, f) ∈ [0, 1]|A| × R|A|≥0 | (x, f) satisfy (2)− (4)}

P−MCF := {(x, f) ∈ [0, 1]|A| × R|A||D|≥0 | (x, f) satisfy (7)− (9)}

PMCF := {(x, f) ∈ [0, 1]|A| × R|A||D|≥0 | (x, f) satisfy (7)− (10)}

P−DMCF := {(x, f) ∈ [0, 1]|A| × R|A||D||N |≥0 | (x, f) satisfy (13)− (15)}

PDMCF := {(x, f) ∈ [0, 1]|A| × R|A||D||N |≥0 | (x, f) satisfy (13)− (16)}

the polytopes of the LP relaxations of the above MIP models for SSNLP. Denote by projx(P) = {x ∈
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[0, 1]|A| | (x, f) ∈ P} the natural projection on the space of x variables, for any of the polyhedra P

de�ned above. It is not di�cult to see that the following result holds:

Lemma 2.4.

projx(PDMCF) ⊂ projx(PMCF) ⊂ projx(PSCF).

Section 5 provides computational evidence of this theoretical result. Furthermore, we can also show

the following equivalence.

Lemma 2.5.

projx(P−DMCF) = projx(P−MCF) = projx(PSCF).

Proof. Obviously, both disaggregated formulations MCF− and DMCF− can be simply aggregated into

the SCF model by setting fij :=
∑
k∈D f

k
ij and fij :=

∑
k∈D

∑
n∈Nij

fkij,n, respectively. Furthermore, it

is easy to see that projx(PSCF) ⊆ projx(P−MCF).

Let us now show that every feasible solution (x′, f ′) ∈ PSCF can be projected into a feasible solution

(x, f) ∈ P−DMCF. For that purpose, we de�ne another module-based disaggregated formulation, equivalent

to the SCF model, using variables fij,n such that fij =
∑
n∈Nij

fij,n, for all (i, j) ∈ A. The corresponding

�ow-conservation constraints and the capacity constraints are given as:

∑
(i,j)∈A

∑
n∈Nij

fij,n −
∑

(j,i)∈A

∑
n∈Nji

fji,n =


−dk, i = k∑
k∈D dk, i = r

0, otherwise

∀i ∈ V, (18)

fij,n ≤ xij,nuij,n ∀(i, j) ∈ A, ∀n ∈ Nij . (19)

Given (x′, f ′) ∈ PSCF, we simply set fij,n := f ′ij
uij,nx

′
ij,n∑

n∈Nij
uij,nx′ij,n

and xij,n = x′ij,n, for all (i, j) ∈ A, for

all n ∈ Nij . It is easy to see that the obtained �ow fij,n and xij,n satisfy both (18) and (19). We now

disaggregate this �ow by every single commodity fk, for all k ∈ D. What we get is a �ow fkij,n, such

that (x, f) ∈ P−DMCF. Hence, projx(PSCF) ⊆ projx(P−DMCF).

2.5 Directed Cut-Set Formulation (DCut)

We now recall the cut-set formulation for SSNLP on directed graphs. For each subset S ⊂ V , we will

denote by δ+(S) := {(i, j) ∈ A : i ∈ S, j ∈ V \ S} and δ−(S) := {(i, j) ∈ A : i ∈ V \ S, j ∈ S}, outgoing

and ingoing cuts, respectively. For any S ⊆ V , A(S) denotes the induced arc set, i.e., A(S) := {(i, j) ∈

A : i ∈ S, j ∈ S}.

Projecting out aggregated �ow variables fij =
∑
k∈D

∑
n∈Nij

fkij,n for all (i, j) ∈ A leads to the

following cut-set inequalities:

∑
(i,j)∈δ+(S)

∑
n∈Nij

uij,nxij,n ≥
∑

k∈D\S

dk ∀S ⊂ V : r ∈ S, S ∩D 6= D. (20)

8



The separation problem of cut-set inequalities in general multiple-source multiple-sink case is NP-

hard and can be reduced to the max-cut problem [4]. However, inequalities (20) for SSNLP can be

separated in polynomial time as follows. For a given fractional solution x′, we de�ne the directed

support graph G′ = (V ′, A′) where V ′ := V ∪ {t} with an additional sink t, and A′ := A1 ∪ A2 being

A1 := {(i, j) ∈ A :
∑
n∈Nij

uij,nx
′
ij,n > 0} and A2 := {(k, t) : k ∈ D}. The cost associated to each arc

a = (i, j) ∈ A1 is set to
∑
n∈N uij,nx

′
ij,n, and the cost of each arc a = (k, t) ∈ A2 is set to dk. If the

minimum cut between r and t in G′ is less than
∑
k∈D dk, there is a violated inequality (20).

Since xij,n variables are binary, the cut-set inequalities can also be strengthened as follows:∑
(i,j)∈δ+(S)

∑
n∈Nij

min(uij,n,
∑

k∈D\S

dk)xij,n ≥
∑

k∈D\S

dk.

Observe that, due to �big-M� constants referring to capacities, the LP relaxation obtained by solving the

DCut formulation can be arbitrarily bad. In fact, constraints (20) correspond to Benders inequalities

obtained by projecting out �ow variables from the SCF model and therefore the DCut model is equivalent

to the SCF model with respect to the quality of lower bounds of their LP relaxations.

The DCut model can be improved with additional connectivity constraints, i.e.:∑
(i,j)∈δ+(S)

∑
n∈N

xij,n ≥ 1 ∀S ⊂ V : r ∈ S, S ∩D 6= D, (21)

leading to a new model DCut+. Constraints (21) can be derived from the MCF model by dualizing

�ow-constraints (7) and (10).

Denote by

PDCut := {x ∈ [0, 1]|A| | x satisfy (20), (3)},

PDCut+ := {x ∈ PDCut | x satisfy (21) }.

Model DCut+ is weaker than the MCF model because the �ow variables in the MCF model simultaneously

need to satisfy the capacity constraints (9) and (10), while the cut-set inequalities (20) and (21) ensure

the existence of two independent �ows. Thus, we have:

Lemma 2.6.

projx(PMCF) ⊂ PDCut+ ⊂ PDCut = projx(PSCF).

2.6 Further Strengthening Inequalities

We now address two families of valid inequalities that improve the lower bound obtained by solving the

LP relaxations of the above MIP models for SSNLP.

9



2.6.1 Degree-Balance Constraints

Non-customer nodes V \ (D ∪{r}) cannot have incoming (or outgoing) arcs only. Therefore, we can add

the following degree-balance constraints that only work for single source case:∑
(l,i)∈A,l 6=j

∑
n∈Nli

xli,n ≥
∑
n∈Nij

xij,n ∀(i, j) ∈ A, i 6∈ D, i 6= r (22)

∑
(j,l)∈A,l 6=i

∑
n∈Njl

xjl,n ≥
∑
n∈Nij

xij,n ∀(i, j) ∈ A, j 6∈ D, j 6= r. (23)

Inequality (22) states that if an arc (i, j) emanating from a non-customer node i is being used in the

solution, there must be at least one arc entering i. Thanks to Lemma 2.1 the opposite arc (j, i) can be

excluded from the summation on the left hand side. Inequality (23) states the opposite case for an arc

(i, j) entering a non-customer node j.

Observe that capacitated versions of these cuts, i.e.:∑
(l,i)∈A,l 6=j

∑
n∈Nli

uli,nxli,n ≥
∑
n∈Nij

uij,nxij,n ∀(i, j) ∈ A, i 6∈ D, i 6= r

∑
(j,l)∈A,l 6=i

∑
n∈Njl

ujl,nxjl,n ≥
∑
n∈Nij

uij,nxij,n ∀(i, j) ∈ A, j 6∈ D, j 6= r.

are not valid in general, but only if there is a uniform capacity/cost structure on edges.

2.6.2 Cover Inequalities

Given a cut-set inequality (20) de�ned by S ⊂ V, r ∈ S, de�ne the index set I(S) := {(i, j, n) |

(i, j) ∈ δ+(S), n ∈ Nij} and B :=
∑
k∈D\S dk. Set M ⊂ I(S) is called a cover with respect to I(S)

if
∑

(i,j,n)∈M uij,n < B and a maximal cover if, in addition, for all M ′, such that I(S) ⊇ M ′ ⊃ M :∑
(i,j,n)∈S′ uij,n ≥ B. If M is a maximal cover with respect to I(S), then the following cover inequalities

are valid: ∑
(i,j,n)∈I(S)\M

xij,n ≥ 1. (24)

In general, the separation problem of cover inequalities is NP-hard. We show that the problem

of �nding the most violated cover inequality (24) is equivalent to solving the precedence constrained

knapsack problem. Assume that indices n ∈ Nij are sorted according to increasing arc capacities. To

model any cover M with respect to I(S), we introduce the binary variables zij,n that are equal to one if

and only if (i, j, n) ∈M . For every arc (i, j) ∈ δ+(S), we de�ne uij,0 = 0.

For given fractional solution x′ and an index set I(S) induced by a cut-set inequality, the most violated

cover inequality can be found by solving the following model:

KNAP : max
∑

(i,j,n)∈I(S)

x′ij,nzij,n∑
(i,j,n)∈I(S)

(uij,n − uij,n−1)zij,n < B (25)

zij,n ≥ zij,n+1, ∀(i, j, n) ∈ I(S), n < |Nij |

zij,n ∈ {0, 1}, ∀(i, j, n) ∈ I(S).
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Let z′ be an optimal solution of model KNAP. The corresponding cover inequality reads then as follows:∑
(i,j,n)∈I(S)

(1− z′ij,n)xij,n ≥ 1.

If all capacities and demands are integers, (25) can be replaced by
∑

(i,j,n)∈I(S)(uij,n − uij,n−1)zij,n ≤

B − 1. The cover inequalities are similar to the band inequalities for the incremental cost model in [17].

2.7 Hierarchy of Formulations

The hierarchical scheme given in Figure 1 summarizes the relationships between the LP relaxations of

the MIP models considered throughout this paper for SSNLP. A �lled arrow speci�es that the target

formulation is strictly stronger than the tail formulation. An empty arrow speci�es that the target

formulation is at least as strong as the tail formulation. Thereby, DMCF+ denotes the DMCF formulation

extended by degree balance and cover inequalities, and DCut (DCut+) denotes the cut-set formulation

(i.e., DCut model extended by connectivity inequalities). Benders+ denotes the model with rounded

Benders cuts (see next section) extended by degree balance and cover inequalities.

DCut+

DMCF+

Benders+

MCF

DMCF Benders

DCut SCF DMCF-MCF-

Figure 1: Hierarchy of LP relaxations.

3 Benders Decomposition for DMCF

Magnanti and Wong [31] emphasize that for any MIP, the tighter the LP relaxation of a model, the

better Benders cuts can be produced. Therefore, we propose to solve the disaggregated model DMCF by

projecting out �ow variables by dynamically generating the corresponding violated Benders inequalities.

Similar ideas has been applied to the weaker MCF model for several related problems, see e.g. [13, 14, 21].
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3.1 The Benders Subproblem

Let the master problem be the one given by the objective function (12) subject to constraints (14)

and (17). A solution x′ = [0 ≤ x′ij,n ≤ 1 : (i, j) ∈ A,n ∈ Nij ] of the master problem de�nes a

feasible solution for the LP relaxation of the DMCF model if and only if there exist �ow variables

[fkij,n : (i, j) ∈ A, k ∈ D,n ∈ N ] satisfying the linear system of inequalities given by (13), (15) and (16),

where x = x′.

Farkas' lemma states that a linear system of equations {Ax ≤ b : x ≥ 0} has a solution if and only

if uT b ≥ 0 for all u ≥ 0 such that uTA ≥ 0. To apply Farkas' lemma to the system (13), (15), (16),

we de�ne a dual variable αki associated to each equation (13), a dual variable βkij,n associated with each

inequality (16), and a dual variable γij,n associated with each equation in (15). Then, the polyhedron

de�ned by this system is non-empty if and only if the following Benders decomposition subproblem SUB

is bounded (i.e., its optimal value is equal to zero):

SUB : min z(α, β, γ, x′) =
∑
k∈D

dk(αkr − αkk) +
∑

(i,j)∈A

∑
n∈Nij

(∑
k∈D

dkβ
k
ij,n + uij,nγij,n

)
x′ij,n (26)

s.t. αki − αkj + βkij,n + γij,n ≥ 0 ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij (27)

(α, β, γ) ≥ 0. (28)

Violated Benders inequalities can be found and used within a branch-and-cut framework as follows.

We �rst solve the linear relaxation of the master problem, obtaining a fractional solution x′ = [x′ij,n :

(i, j) ∈ A,n ∈ Nij ]. With these values x′ we de�ne the corresponding subproblem SUB. Note that this

subproblem can be either bounded or unbounded. In the latter case, there is an unboundedness direction

(α′, β′, γ′) for which z(α′, β′, γ′, x′) < 0. To avoid this situation the Benders cut

∑
(i,j)∈A

∑
n∈Nij

(∑
k∈D

dkβ
′k
ij,n + uij,nγ

′
ij,n

)
xij,n ≥

∑
k∈D

(α′kk − α′kr )dk (29)

must be added to the master problem. Observe that we can round down the coe�cients multiplying

xij,n by setting them to min(
∑
k∈D dkβ

′k
ij,n + uij,nγ

′
ij,n,

∑
k∈D dk(α′kk − α′kr )).

The process is iterated until the linear relaxation of the master problem has been solved to optimality,

that is, until the subproblem SUB is unable to �nd more violated Benders cuts. If xij,n variables are all

integer, the SSNLP is solved. Otherwise, we resort to branching.

We refer to this implementation of the separation of violated Benders inequalities as the textbook

implementation. In Section 5, we compare this basic implementation with more elaborated variants

proposed in Section 4.

3.2 Strengthening Benders Inequalities with Metric Inequalities

Let us describe two procedures for generating metric inequalities (see, e.g., [23]) as proposed in [3, 14]:
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Procedure 1. First consider the following optimization problem for a vector µ ≥ 0:

min{
∑

(i,j)∈A

∑
n∈Nij

µij,nxij,n | (x, f) ∈ [0, 1]|A||N | × R|A||D|≥0 , (x, f) satisfy (7), (9)}.

Assigning dual variables αki to (7), and γij,n to (9), by LP-duality, we have that the subproblem de�ned

by (7) and (9) is feasible if and only if for any µ ≥ 0∑
(i,j)∈A

∑
n∈Nij

µij,nxij,n ≥ max{
∑
k∈D

(αkk − αkr )dk | αkj − αki ≤
µij,n
uij,n

, (i, j) ∈ A,n ∈ Nij , k ∈ D, α ≥ 0}.

The problem we get on the right hand side is decomposable into k dual versions of shortest path problems

on an auxiliary graph Ĝ whose arc lengths are de�ned as ŵij = minn∈Nij µij,n/uij,n for all (i, j) ∈ A.

This property can be used to strengthen any valid inequality of the form:
∑

(i,j)∈A
∑
n∈Nij

µij,nxij,n ≥

M . In particular, for cut-set inequalities (20) and (21) de�ned by a subset S ⊂ V, r ∈ S, the arc lengths

for the shortest path problem are given as

ŵij =

1, if (i, j) ∈ δ+(S),

0, otherwise

and ŵij =

minn∈Nij

1
uij,n

, if (i, j) ∈ δ+(S),

0, otherwise,

respectively. Denote by SP (k, ŵ) the length of the shortest path between r and k in G, with arc lengths

de�ned by ŵ. If
∑
k∈D SP (k, ŵ)dk > M , we obtain a metric inequality that dominates the original valid

inequality.

Procedure 2. Consider now the following network �ow problem with two kinds of capacity constraints:

min
{ ∑

(i,j)∈A

∑
n∈Nij

µij,nuij,nxij,n +
∑

(i,j)∈A

∑
k∈D

dkν
k
ij,n

∑
n∈Nij

xij,n |

(x, f) ∈ [0, 1]|A||N | × R|A||D||N |≥0 , (x, f) satisfy (13), (15), (16)
}

After assigning dual variables αki to (13), βkij,n to (16) and γij,n to (15), again by LP-duality, we have

that the network �ow problem (13), (15), (16) is feasible if and only if for any µ ≥ 0 and ν ≥ 0 we have:∑
(i,j)∈A

∑
n∈Nij

µij,nuij,nxij,n +
∑

(i,j)∈A

∑
k∈D

dkν
k
ij,n

∑
n∈Nij

xij,n ≥

max
{∑
k∈D

(αkk − αkr )dk | αkj − αki ≤ νkij,n + µij,n, (i, j) ∈ A,n ∈ Nij , k ∈ D, α ≥ 0
}
.

The problem on the right hand side is again decomposable into k dual versions of shortest path problems

on auxiliary graphs Gk whose arc lengths are de�ned as wkij = minn∈Nij
{νkij,n + µij,n} for all (i, j) ∈ A.

Therefore, any Benders inequality associated to a non-extreme ray can be strengthened to a metric

inequality as follows. For any �xed Benders cut given by (α′, β′, γ′) satisfying (27)-(28), one can look for

(α(β′, γ′), β′, γ′) that might improve the right-hand side of (29) by solving:

SPDUAL : max
∑
k∈D

(αkk − αkr )dk

s.t. αkj − αki ≤ β′kij,n + γ′ij,n ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij

αki ≥ 0 ∀i ∈ V, ∀k ∈ D.
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If
∑
k∈D(αkk − αkr )dk >

∑
k∈D(α′kk − α′kr )dk, we obtain a metric inequality that dominates the original

Benders cut.

4 Branch-and-Cut Algorithm

The overall approach is a branch-and-cut algorithm in which the LP relaxation of the compact model

SCF is solved �rst, followed by the separation of further strengthening inequalities:

1. Initialization:

(a) The initial LP master consists only of the design variables x and �ow variables f .

(b) The LP relaxation of the model SCF extended by some inequalities (see Section 4.1) is solved.

2. In every node of the branch-and-bound tree:

(a) As long as there are violated connectivity inequalities (21), add them to the master LP and

resolve it.

(b) Based on the current fractional solution x′, create the Benders subproblem.

(c) Solve the subproblem. If this results in a violated Benders cut, add it to the master LP and

resolve it.

As an alternative approach to the initialization of lower bounds by the SCF model, we also tried the

branch-and-cut with cut-set inequalities (20). These cut-sets can be separated very fast. However,

our preliminary results have shown that using SCF directly, results in a clearly preferable approach in

practice.

4.1 Initialization of Lower Bounds

In order to obtain good, yet easily computable, lower bounds that will avoid expensive computation of

�trivial� Benders cuts, we extend the SCF model by constraints (22), (23) and the following in-degree

inequalities and root-out-degree inequalities:∑
(i,j)∈A

∑
n∈Nij

xij,n ≥ 1 ∀j ∈ D

∑
(r,j)∈A

∑
n∈Nrj

xrj,n ≥ 1.

Obviously, these inequalities are special cases of connectivity cut-set inequalities (21) for S = V \ {j}

and S = {r}, respectively.

4.2 Branch-and-Cut Parameters

To improve the overall performance and to avoid numerical di�culties we consider the following two

standard ingredients:
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Start Improved(It,Eps) Exists Cut-Set?
yes

Add Cut-Set Return

Improved(It',Eps')

yes

no

no

Return

Exists Benders Cut?
yes yes

no

Benders Cut Violated?
yes

Add B. Cut Return

Return

no

Return Return

no

Figure 2: Separation of cuts in the branch-and-cut framework.

• Tailing O�: If the relative improvement of the lower bound is less than Eps% in the last It iterations

of the separation procedure, we stop the separation and resort to branching. The general setting

of (It,Eps) is (20, 10−3). However, if only the computationally more expensive Benders cuts were

separated in recent iterations, a stricter setting of (It',Eps') = (10, 10−3) is applied.

• Degree of Violation: Assume that after solving the Benders subproblem for a given fractional value

x′, we obtain a violated cut de�ned by a vector (α′, β′, γ′). Before inserting the corresponding cut

into the master LP, we normalize it by dividing it with its right-hand side (which is always positive)

and calculate its violation by the current fractional solution x′ as follows:

violation(α′, β′, γ′, x′) = 1−
∑

(i,j)∈A

∑
n∈Nij

∑
k∈D dkβ

′k
ij,n + uij,nγ

′
ij,n∑

k∈D dk(α′kk − α′kr )
x′ij,n (30)

If violation(α′, β′, γ′, x′) < 10−4, the cut will not be considered as violated and will not be inserted

into the system.

The �owchart in Figure 2 explains how we implemented our cut separation procedure.

4.3 Separation of Benders Cuts

Any implementation of Benders cut's separation heavily a�ects the overall performance of a MIP ap-

proach. In our work, we considered the straight-forward implementation of solving the dual subproblem

SUB as de�ned in Section 3, and three other normalization approaches obtained by closing the dual

unbounded cone (see Table 1 for an illustration). For each of these models, we explicitly solved the dual

or the primal version of the subproblem.

4.3.1 Separation Models

SUB Model: In order to get a violated Benders inequality, we search for an extreme ray of the un-

bounded subproblem SUB. As already observed in [5, 18], this approach has a signi�cant drawback:

it returns a randomly chosen extreme ray without having any positive in�uence on the quality of the
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Dual Primal Explanation

SUB - see Section 3

SUBc PSUBc SUB extended by (α, β, γ)t · 1 = 1

SUBn PSUBn SUB extended by
∑
k∈D dk(αkk − αkr ) = 1

SUBf PSUBf SUB extended by αt · 1 = 1

Table 1: Di�erent normalization approaches for separating Benders cuts.

violated cut found. An advantage of this method is that it returns a violated constraint much faster

than the corresponding more sophisticated methods described below.

SUBc and PSUBc Models: Instead of solving the subproblem on the pointed unbounded cone, one

can close it by adding the following hyperplane:∑
(i,j)∈A

∑
n∈Nij

∑
k∈D

βkij,n +
∑

(i,j)∈A

∑
n∈Nij

γij,n +
∑
i∈V

∑
k∈D

αki = 1. (31)

Obviously, the Benders cut generated by solving SUB extended by (31) is violated if and only if the

objective value is strictly less than zero. Furthermore, each vertex of such obtained polyhedron (except

the origin) corresponds to an extreme ray of the unbounded subproblem.

One easily observes that the model SUBc is equivalent to the similar problem of maximizing the value

of Θ ≤ 0 subject to constraints (13), (15) and (16) in which Θ is added to the left-hand side of each of

them. This primal model is denoted by PSUBc.

SUBn and PSUBn Models: Recall that before inserting a cut into the master problem we check its

violation according to (30). Since we are interested in looking for a maximally violated Benders cut, one

can normalize the subproblem by �xing the right-hand side to one. The SUB model is therefore extended

by the following constraint: ∑
k∈D

dk(αkk − αkr ) = 1.

The resulting subproblem SUBn is bounded and its solution (if negative) always corresponds to the most

violated Benders cut according to (30). Again, the master solution x′ is infeasible if and only if the

solution of SUBn is strictly less than zero. The primal of SUBn, denoted by PSUBn, is known as the

maximum concurrent �ow model (see, e.g., [8]), and it has been used by Avella et al. [3] for separation

of metric inequalities.
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SUBf and PSUBf Models: One can also consider the following �ow feasibility subproblem:

PSUBf : max Θ

∑
(i,j)∈A

∑
n∈Nij

fkij,n −
∑

(j,i)∈A

∑
n∈Nji

fkji,n + Θ =


dk, i = r

−dk, i = k

0, otherwise

∀i ∈ V, ∀k ∈ D

∑
k∈D

fkij,n ≤ uij,nx′ij,n ∀(ij) ∈ A, ∀n ∈ Nij

0 ≤ fkij,n ≤ dkx′ij,n ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij

Θ ≤ 0.

This problem has a nice �ow structure that can easily be recognized by an LP solver (like Cplex),

therefore we consider it as another alternative normalization approach for �nding a violated Benders

inequality. In the corresponding dual variant of the model, denoted by SUBf, we extend SUB with∑
k∈D

∑
i∈V α

k
i = 1.

SUBcap and PSUBcap Models: In our preliminary computational experiments we also tried the

variant in which Θ is added only to capacity and coupling constraints (15) and (16), respectively. The

latter model is a generalization of the capacity reduction problem, used by Avella et al. [3] to generate the

so-called strong metric inequalities for the MCF model of NLP. However, in our preliminary results, both

SUBcap and PSUBcap were signi�cantly outperformed by other models mentioned above. In particular,

these submodels could not be solved to optimality within our default time limit for solving Benders

subproblems. Therefore, we do not report results for these models in Section 5.

4.3.2 Further Potential Enhancements

We implemented the following additional techniques that are known to signi�cantly improve the perfor-

mance of (Benders) separation algorithms, in general.

Connectivity Cuts: We separate nested, backward and minimum cardinality connectivity cuts (21),

that are used as a standard procedure for accelerating cutting plane methods (see, e.g. [27]). The idea

of separating nested cuts is to look for violated inequalities whose coe�cient vector is orthogonal to

an already detected cut. Using backward cuts one can generate two violated inequalities per a single

max-�ow computation. Minimum cardinality cuts search for a cut set with the smallest number of arcs

having the same max-�ow value. We separate up to 100 connectivity cuts per iteration. For �nding the

maximum �ow in a directed graph, we used an adaptation of Cherkassky and Goldberg's maximum �ow

algorithm [9].

Nested Benders Cuts: We also tried to apply the separation of nested cuts for adding several disjoint

Benders cuts per iteration. Assume that (α′, β′, γ′) is a solution to the current Benders subproblem.
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Before solving the LP relaxation of the master, we �x to zero the variables β and γ with positive value in

the current dual solution. In contrast to the separation of connectivity inequalities, there is a drawback

of separating nested Benders cuts: For the instances we tested, solving a single LP relaxation of Benders

subproblem is computationally more expensive than resolving the primal master LP.

Magnanti-Wong Implementation: The ideas of Magnanti and Wong [31] has been widely used for

accelerating separation of Benders cuts (see, e.g., [28, 34]). The authors proposed to accelerate the

convergence of the basic Benders algorithm by adding Pareto-optimal Benders cuts. A Pareto-optimal

Benders cut is given by the following de�nition: a cut z(α′′, β′′, γ′′, x) ≥ 0 dominates another cut

z(α′, β′, γ′, x) ≥ 0 if and only if z(α′, β′, γ′, x) ≥ z(α′′, β′′, γ′′, x) for all x ∈ {0, 1}|A||N | satisfying (3),

and the strict inequality holds for at least one x. A Benders cut is said to be Pareto-optimal if no other cut

dominates it. In case that there are multiple optimal solutions to the Benders subproblem, Magnanti and

Wong have proposed an approach to search for a Pareto-optimal cut by solving an additional subproblem

in the separation phase:

1. Given a fractional solution x′, solve the Benders subproblem SUBx to get a violated cut de�ned

by (α′, β′, γ′). If z(α′, β′, γ′, x′) = 0, no violated cut exists. Stop.

2. Set z′ := z(α′, β′, γ′, x′).

3. Solve the new subproblem de�ned as:

min{z(α, β, γ, x0) | (α, β, γ) satisfy the constrains in SUBx and z(α, β, γ, x′) = z′}.

4. Denote by (α′′, β′′, γ′′) the solution to this subproblem. Then, the cut z(α′′, β′′, γ′′, x) ≥ 0 is

inserted into the master problem.

In this procedure, SUBx denotes any of the normalized variants (bounded subproblems) described above

and x0 is a given fractional solution called core point, i.e., a point that belongs to the relative interior

of the convex hull of all binary vectors x satisfying (3). As already observed by Papadakos [32], for

the above procedure to work e�cient, one needs to start it with a di�erent core point every time the

procedure is applied. For that purpose, we start with a randomly chosen point from the interior, and

later we generate a random convex combination of two incumbent solutions.

The obvious drawback of this procedure is, that we have to solve two time-consuming subproblems

within each separation. Furthermore, solving the Magnanti-Wong subproblem is computationally more

expensive that solving the master problem.

4.4 Primal Heuristic

We employ the following rounding heuristic based on min-cost-�ow. Denote the total installed capacity

on an arc by Xij =
∑
n∈Nij

uij,nxij,n. The cheapest �tting module to support a certain capacity U
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is denoted by n(U) = arg min{n∈Nij |uij,n≥U} cij,n. Starting from a fractional solution x, we create a

binary solution x′ and subsequently a cheaper binary solution x′′. Initialize x′ := 0. Now for every

arc (i, j) install the cheapest �tting module, i.e. x′ij,n(U) := 1. The resulting x′ is integer feasible,

but also typically overly generous and can be improved. To this end we use an augmented graph with

an additional sink t, similar to the one from Section 2.5: Let G′ = (V ′, A′) where V ′ = V ∪ {t} and

A′ = A ∪ {(k, t) : k ∈ D}). The arc capacities are set to X ′ij for all (i, j) ∈ A and dk for all (k, t). Arc

costs are de�ned as Cij :=
∑
n∈Nij

cij,nx
′
ij,n. Initialize x′′ := 0. We now compute the min-cost-�ow

f ∈ R|A| in G′. This induces our new incumbent candidate x′′ : x′′ij,n(fij)
:= 1.

We use the min-cost-�ow implementation based on capacity scaling and successive shortest path

computation found in the commercial library LEDA, 5.2 (see [1, 2]). This algorithm only works for

integer capacity and cost. Therefore we round these values to the nearest integer prior to the min-cost-

�ow computation. A result of this rounding is that x′′ will, on rare occasions, be infeasible. This is easily

detected by a subsequent computation of max-�ow/min-cut and an infeasible x′′ is discarded.

5 Computational Results

This section reports on our computational experience with the proposed branch-and-cut framework. We

implemented our algorithms using C++ and CPLEX 11.1 [25]. An Intel Core 2 personal computer with

1.8 GHz and 3.25 GB of RAM was used for testing purposes. If not mentioned otherwise, the default

Cplex settings are used.

We set a time limit of 1000 seconds for solving benchmark instances. For all instances that cannot be

solved to optimality because that limit was reached, we report the gap between the best known upper

bound (UB) and the lower bound (LB) obtained, calculated as UB−LB
UB · 100%. The time limit for each

single separation of Benders cuts was set to 45 seconds. In our preliminary computational experiments

we did not see any advantage of the procedure for strengthening Benders by metric inequalities (as long

as the SCF model and undirected cut-sets are used for initialization), so the technique described in

Section 3.2 is not used in the results presented below.

5.1 Preprocessing

All reported instances are preprocessed according to the following rules:

(i) Each customer node k ∈ D with degree one is joined with his neighbor using the cheapest module

that allows the �ow of dk to be routed.

(ii) Each non-customer node with degree one is simply deleted.

(iii) Each non-customer-node with degree two and with the same modules on both sides is replaced by

a single edge, with the same modules.
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(iv) Each non-customer-node with degree two and di�erent modules on both size is replaced by an edge

with all possible module combinations.

(v) Rules (iii) and (iv) may result in parallel edges. Parallel edges are replaced by a single one with all

possible module combinations.

(vi) Rules (iv) and (v) may lead to dispensable modules. A module n ∈ Ne is dispensable if there exists

another module n′ ∈ Ne with ue,n′ ≥ ue,n and ce,n′ ≤ ce,n. Dispensable modules are deleted.

(vii) Sets of excess modules N ′e = {n ∈ Ne | ue,n ≥
∑
k∈D dk} are replaced by a single module n′ with

ce,n′ = minn∈N ′ece,n and ue,n′ =
∑
k∈D dk.

Observe that rules (iv) and (v) may generate instances with non-uniform modules, even if the modules

of the original instance were uniform.

5.2 Benchmark Instances

Instances from Salman [37]: Salman instances include four problems originally de�ned in [22] (prob-

lems ARPA, OCT, USA, and RING) and 60 problems randomly generated by Salman [37], also

used in [36]. For the latter ones, there are 12 groups with 20, 30 and 40 nodes. There are 9

cable types obeying economies of scale. The cheapest cable type has capacity of 6 � see [6, 36] for

a detailed description. The convex combinations of these generate up to d
∑

k dk

6 e modules. The

notation e(n)(s)(d) provides summary information on the instances: n denotes the number of

nodes, s explains the location of the root node (c stands for central, r stands for random position),

d explains the level of demand (l stands for low demand, which is randomly generated between 0

and 30; h stands for high demand, randomly generated between 0 and 60). In [33, 36] two kinds of

experiments were performed: using all 9 cable types and using only 4 of them. Since our method

does not depend on the number of cable types, but on the number of modules, we only performed

the more challenging variant involving all 9 cable types. Table 3 provides input information on

Salman instances: each of twelve e(n)(s)(d) groups contains 5 instances, and the average values

per group are reported. The number of nodes (|V |), the number of edges (|E|), the number of

customers (|D|), and the number of modules (|N |) represent the averaged values obtained after

preprocessing.

Real-World Instances (Bregenz): We used the street map of the Austrian city Bregenz with 1014

nodes and 1191 edges as underlying network. As customers we considered 4 di�erent sets of nodes

with cardinalities |D| ∈ {29, 36, 45, 67}. We classi�ed the instances into two groups: Group H

contains graphs with higher demands, i.e., each customer has a demand randomly chosen from

{4, 8, 12, 16, 20}; Group L, in contrast, contains graphs with lower demand, i.e., each customer is

assigned a demand of 4 units.
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We employed up to four di�erent modules as displayed in Table 2. These modules imitate real-

world data we obtained from an Austrian telecommunication company. In particular, not all of

these modules obey economies of scale: it is possible that there are empty conduits with limited

modular capacity available at low costs, but if higher capacities need to be installed, new trenches

need to be pre-paired, which involves very high investment costs.

Type |N | (capacity uij,n, cost cij,n) . . .

A 2 (120, 7.0), (1020, 146.0)

B 2 (30, 2.2), (1020, 146.0)

C 3 (30, 2.2), (60, 4.0), (1020, 146.0)

D 4 (30, 2.2), (60, 4.0), (120, 7.0), (1020, 146.0)

Table 2: The four di�erent sets of modules used for Bregenz instances.

The preprocessing greatly reduces the size of the graph and the number of customers goes down

to 28, 33, 41 and 61. Furthermore, although we start with uniform modules, we end up with

non-uniform ones. Table 5 illustrates that: the number of minimal, maximal and average number

of modules per arc is given in columns |Nmin|, |Nmax| and |Navg|, respectively.

5.3 Solving Salman Instances

We �rst report on the results with the three compact MIP models presented in Section 2: DMCF,

MCF and SCF. We also compared the branch-and-cut approaches based on di�erent separation models

as explained in Section 4.3.1. The main goal of this study was: a) to compare the qualities of lower

bounds obtained by solving compact models versus branch-and-cut approaches, and b) to determine

whether there is a di�erence in the performance of the branch-and-cut approach when the textbook

implementation is compared against normalized separation approaches. For that purpose, we wanted

to ensure that the obtained results are not biased by the quality of incumbent solutions found by the

MIP solver. Therefore, we initialized all the models with the best known upper bounds (BKUB) found

during previous extensive computations and we turned all heuristics o�. For the same reason, for this

particular test, we turned Cplex cuts and the presolver o�. Benders cuts are separated at the root and

in each 10th node of the branch-and-bound tree.

Table 3 provides values averaged over 5 instances per group, for e(n)(s)(d) instances, and the values

for additional four instances from [22].

Gap at the root node: In Table 3 we �rst report on the quality of LP relaxations of three compact

models and the corresponding value of the LP relaxation at the root node of the branch-and-bound

tree for the SUBc approach. The gaps between obtained lower bounds and the best known upper

bound (provided in column UB) are shown. The SUBc approach was the one among all branch-and-

cut approaches to provide the tightest lower bounds at the root node. The average (median) gap over
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all 64 instances of the SUBc approach is 6.0% (5.9%). The worst LP relaxation gap among Benders

approaches is obtained by solving the SUB model: the average (median) gap is 7.5% (7.5%). These

results are coherent with our theoretical discussion provided in Section 4.

Comparing compact formulations, we observe that the average (median) gap of the SCF model of

21.3% (20.4%) can be improved to 9.4% (9.4%) by solving the MCF model, which can further be improved

to 6.3% (5.8%) by solving the DMCF formulation. Looking at gaps of the SUBc approach and the DMCF

model, we can observe two di�erent e�ects. In some cases SUBc produces better gaps. This results from

tightening Benders cuts by rounding down the coe�cients (see groups e20_c_l, e40_c_h and e40_r_h

in Table 3). In other cases the gap of SUBc is slightly worse than the one of DMCF. This is explained

by tailing-o� and violation checks. Particularly, if at some point the current Benders cut does not satisfy

the violation test (30) and we decide not to add this particular cut and instead resort to branching, the

lower bound at the root node will be slightly smaller than the value of the LP relaxation of DMCF.

Gap after the time limit: For the SCF model and for Benders separation approaches Table 3 also

reports the lower-bound gap after the time limit was reached. Every single variant of our branch-and-cut

approach beats the compact SCF model. The best results are obtained by solving the SUBf approach:

the average (median) gap after 1000 seconds is 2.5% (2.5%), while SCF terminates at 5.5% (5.6%).

SUBf solves 14 out of 20 instances of group e20 to optimality, while SCF �nds optimum only in 7 out

of 20 cases. Despite the bad quality of gaps of the LP relaxation, the model SCF succeeds to improve the

�nal gap by drawing the advantage of branching. The average number of branch-and-bound nodes when

solving SCF is close to 750 000, while the number of nodes processed by our Benders implementations

varies between 212 (SUBn) and 6043 (SUBf). Due to the huge number of branch-and-bound nodes, in

12 out of 64 cases SCF terminates abnormally, due to the terminates abnormally, due to the memory

overload.

The rightmost column in Table 3 shows the average gaps reported by Salman et al. [36] obtained

by solving SORb2 approach. The average gaps obtained by Raghavan and Stanojevi¢ [33] were always

worse than those obtained in [36], therefore we report only on the latter ones. However, we stress that

these gaps are not directly comparable with ours, because of di�erent software and hardware settings.

Table 4 reports on the correlations between the average time needed to solve the subproblem, the

number of branch-and-bound nodes and the tightness of the bounds at the root node of the branch-and-

bound tree. The average values over all 64 Salman instances for the following parameters are provided:

Time0 and Gap0 denote the running time and the gap at the root node of the branch-and-bound tree,

respectively; Benders0 denotes the number of Benders cuts separated at the root node; Time0/Benders0

provides the ratio between the total time spent and the number of Benders cuts. The values Gaptotal

and Timetotal/Benderstotal are the corresponding values provided for the total running time Timetotal of

1000 seconds. The last row shows how many branch-and-bound nodes have been processed within the

time limit. For the results after 1000 seconds, the two best performing approaches are shown in bold
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face.

The normalized Benders subproblems have a complicated �ow structure with two kinds of capacity

constraints. Therefore, the problem of solving a normalized subproblem by closing the unbounded cone

with an additional constraint may become a di�cult task. Row Time0/Benders0 of Table 4 provides

an estimate of an average time (in seconds) needed to solve each Benders subproblem. The fastest

subproblems are SUBf and PSUBn (followed by the separation of extreme rays with the SUB approach).

Correspondingly, these two variants are �rst to be �nished at the root node of the branch-and-bound

tree. Therefore, they are also separating the most Benders cuts and traversing the most nodes of the

branch-and-bound tree. However, the SUBf bounds obtained at the root node are tighter than the

corresponding bounds of the PSUBn model, which makes the SUBf approach the winner, when solving

this data set.

This study shows that:

• Strong Benders cuts derived from the DMCF formulation beat the compact SCF model.

• Two important aspects decide on the quality of our Benders approach: a) the running time needed

to solve the Benders subproblem, and b) the quality of the derived Benders cuts. The model that

succeeds to balance the trade-o� between these two aspects is the most desirable one.

Average DMCF MCF SCF SUB SUBc SUBn SUBf PSUBc PSUBn PSUBf

Time0 211.6 1.2 0.1 68.3 422.5 603.5 22.0 247.0 35.3 170.0

Benders0 - - - 40.9 38.3 67.8 57.2 36.0 115.5 52.9

Time0/Benders0 - - - 1.7 11.0 8.9 0.4 6.9 0.3 3.2

Gap0 6.3 9.4 21.3 7.5 6.0 6.9 6.4 6.1 6.9 6.2

Benderstotal - - - 740.8 164.7 159.2 1281.5 303.4 1498.6 556.0

Timetotal/Benderstotal - - - 1.3 6.1 6.3 0.8 3.3 0.7 1.8

Gaptotal - - 5.5 3.6 3.9 5.4 2.5 3.5 3.0 3.1

Nodes - - 748 245 2152 492 212 6043 1326 3655 2501

Table 4: Average values over all 64 Salman's instances.

5.4 Solving Real-World Instances

We now show the comparison of results obtained for the set of real-world instances derived from Bregenz,

a city in Austria.

LP relaxations: We �rst compare the gap of LP relaxations for three compact models, SCF, MCF

and DMCF, whose values are given in Table 5. We turned Cplex cuts and the presolver o�, to be able

to compare the gaps achieved with the proposed models and to avoid distortion due to �cleverness� of
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the MIP/LP solver. Therefore, the reported results should be solver independent. For all 32 instances,

the LP relaxation of the SCF model was solved within 1 or 2 seconds, but the average (median) gap

over all Bregenz instances is 46.6% (42.0%). As expected, lower bounds obtained by solving the MCF

model are signi�cantly better: 19.1% (7.1%), but the LP relaxation of only 13 out of 32 instances was

solved to optimality in less than 1000 seconds (within 383.8 seconds, on average). Finally, the average

(median) gap obtained by solving the DMCF model is 13.9% (7.8%), but only in 3 out of 32 cases the

LP relaxation was solved to optimality within the given time limit (in 55 seconds, on average). This also

explains why some of the presented gaps of the MCF model are better than the corresponding DMCF

ones (LP relaxations are solved by dual simplex method).

Therefore, the only compact model that can be practically incorporated into a general branch-and-

bound framework is the SCF model.

Solving MIPs: For the SCF model and for the seven branch-and-cut variants described above, we ran

the code for 1000 seconds, with default Cplex settings. Only when solving the SUB model, the Cplex

presolver needs to be turned o�. Since the separation of Benders cuts may become a time-consuming

task for instances of that size, we separate them only at the root node of the branch-and-bound tree.

The results given in Table 5 show that even on this challenging set of instances we are able to beat the

compact model. For 8 out of 32 instances, our branch-and-cut approach (PSUBf) is able to �nd the

optimal solution within the given time limit, while the SCF model did not solve a single instance to

optimality. Furthermore, for 18 out of the remaining 24 instances we found better gaps than SCF.

Box-plots in Figure 3 provide an overview of the obtained gaps at the root node of the branch-and-

bound tree. We observe that the huge gaps of the SCF model (46.6% average and 42.0% median value),

Figure 3(b)) can be reduced down to an average (median) value of 4.2% (3.4%), by involving Cplex cuts

and the presolver. From Figure 3(a), we see that the lower bounds obtained by our Benders approaches

are even better, although it is not a trivial task to improve the general purpose cuts produced by Cplex.

Figure 4 shows the gaps after the time limit was reached. Looking at the overall gaps after the given

time limit, we observe that is is di�cult to point out the di�erences between particular normalization

approaches when default Cplex settings are used (see Figure 4(a)). Therefore, we cannot say that there

is a clear winner among di�erent Benders approaches.

Although the Benders cuts obtained by solving the SUBc model are among the tightest ones (see,

e.g., Figure 3), the separation was not �nished at the root node of the branch-and-bound tree in 24 out

of 32 cases. Figure 6 illustrates a typical situation in which SUBc gets stuck in the separation phase,

while the SUB approach, for example, can draw an advantage out of branching.

5.5 Testing Potential Enhancements

We report on negative results when trying to enhance the Benders decomposition with nested cuts and

by using Magnanti-Wong (MW) approach. In particular, solving the LP subproblem related to nested
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Figure 3: Box-plots over 32 Bregenz-instances: the gaps of lower bounds at the root node of the branch-

and-bound tree obtained a) with Cplex default settings; b) by turning o� Cplex cuts and the presolver.

In the latter case, gaps for MCF and DMCF models are also given.
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Figure 4: Box-plots over 32 Bregenz-instances: the overall gaps obtained after 1000 seconds a) with

Cplex default settings; b) by turning o� Cplex cuts and the presolver.
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Figure 6: Lower bound growth vs. time (CPU seconds) with models SUB and SUBc for instance

Bregenz29_B_H. (a) The �rst huge increase of lower bound is due to two subsequently found Benders

cuts, the second increase is due to branching. (b) The separation at the root node is not �nished when

solving SUBc.

cuts is a time-consuming task which takes longer than resolving the primal problem. Since the only

purpose of nested cuts is to speed up the separation without resolving the master problem, we did not

obtain better results by using them.

As already observed above, if Cplex general purpose cuts are turned on, it is di�cult to point out

the di�erences between di�erent variants of Benders separation models. Therefore, to test the e�ects of

applying the Magnanti-Wong approach, we turned the Cplex cuts o�. The MW approach generates most

improving cuts when applied to the SUBn approach, for which we report the gaps obtained within the

time limit of 1000 seconds (see Figure 7). We observe that the MW approach slows down the performance:

the overall number of included Benders cuts is reduced while there is no signi�cant improvement in the

quality of lower bound obtained per iteration.

6 Conclusions

We have presented a new disaggregated �ow formulation DMCF that produces tighter gaps than the

MCF model which is typically used for network loading problems. Using Benders decomposition, we

solve 8 of our 32 new single-source instances to optimality within a reasonable time limit. For 18 out of

the remaining 24 instances, we report better gaps than the best performing compact formulation.

Comparing normalization strategies for the Benders decomposition, we see that depending on the

structure of the inputs, di�erent normalizations are preferable. However, in contrast to a common belief,
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Figure 7: Comparing the gaps obtained within the time limit of 1000 seconds (Cplex cuts turned o�):

SUBn and SUBn extended by Magnanti-Wong cuts.
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the separation of extreme rays, which is also called the textbook implementation, provides relatively good

results across all instances.

There are several arguments explaining this observation:

1. We solve the problem starting from a compact formulation (the SCF model) and we use Benders

cuts only in order to improve the quality of lower bounds, i.e., they are not necessary for SSNLP to

have a complete MIP formulation. This is a �rst di�erence with respect to known approaches for

solving the multiple-source multiple-sink network loading, where metric inequalities are separated

in a similar way.

2. In opposite to our objective function, many related problems consider settings with �ow-dependent

objective values. In such cases, Benders cuts are used to separate both, feasibility and optimal-

ity cuts. The quality of optimality cuts is essential for such problems and therefore enhancing

approaches (like those given in e.g. [18, 30, 31, 34]) play a crucial role to make Benders decompo-

sition work.

3. We con�rm the claim of Magnanti and Wong [30], that the crucial role in the generation of e�cient

Benders separation approaches is played by the size (see our Lemma 2.4) of the convex hull of

the relaxed master problem. We show that the textbook implementation of Benders separation

is not the worst possible choice, if a �good� LP-model is used to generate the corresponding cuts.

Typically there is a trade-o� problem in Benders decomposition approaches between the strength of

the subproblem and the running time needed to solve it. To overcome this problem, the separation

of extreme rays turns out to be a good compromise: an extreme ray is usually found much faster

than an extreme point of a bounded subproblem.
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