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Abstract

This article considers the network design problem that searches for a minimum-cost way of in-

stalling capacities on the edges of a network in order to simultaneously route a flow from a given

access point to a subset of nodes representing customers with positive demands. We first consider

compact and exponential-sized MIP formulations of the problem and provide their theoretical and

computational comparison. We also consider a stronger disaggregated flow formulation. To solve the

problem in practice, we project out the flow variables and generate Benders cuts within a branch-

and-cut framework. To the best of our knowledge the combination of Benders approach and this

specific disaggregation has not been considered so far.

In an extensive computational study we compare the performance of compact MIP models against

a textbook implementation and several normalization variants of Benders decomposition. We intro-

duce a set of 32 real-world instances and use these, together with 64 other instances from the

literature, to test our approaches. The results show that our branch-and-cut approach outperforms

the best-performing compact formulation leading to the best exact algorithm today for solving the

considered data set.

Keywords: Local Access Network Design, Network Loading, Capacitated Network Design,

Benders Decomposition.

1 Introduction

We consider the problem of deploying a broadband telecommunication system that lays optical fiber cable

from a central office to a number of end-customers. In case of the fiber to the home technology (FTTH)

the end-customers represent houses, whereas when deploying fiber to the curb technology (FTTC) the

end-customers are usually multiplexor devices. In both cases, we are dealing with a capacitated network

design problem that requires an installation of optical fiber cables with sufficient capacity to carry the
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traffic from the central office to the end-customers. We start with a network without capacities, or

with some pre-installed capacities, and search for the installation of cable types on links that enables

simultaneous routing of traffic so that the whole demand in the network is satisfied at minimum cost.

This problem is known in the literature as the Single-Source Network Loading Problem (SSNLP) or local

access network design problem.

Our Contribution This article provides a branch-and-cut approach based on Benders decomposition

for solving SSNLP. By adapting known disaggregation techniques for piecewise linear multi-commodity

flow problems [16], we use a MIP formulation that has not been considered so far for solving the SSNLP.

From a theoretical point of view, the new formulation provides stronger lower bounds when compared to

existing MIP models. To make the new model computationally tractable, we project out the flow variables

by using strengthening, rounded Benders inequalities incorporated into a branch-and-cut framework.

The problem we consider is closely related to the network loading problem, which has been intensively

studied in the literature. However, to the best of our knowledge the combination of Benders approach and

this specific disaggregation has not been investigated so far. When comparing this approach to the best-

performing compact formulation, we show that the average gap on a set of benchmark instances from the

literature can be improved from 5.5% to 2.5%. Furthermore, when testing a new set of instances derived

from a real-world telecommunication example, we report 8 optimal solutions, whereas the compact

formulation does not solve a single one to optimality.

Problem Definition Let us consider an undirected and connected graph Gu(V,E) with a designated

root node r ∈ V (representing the central office or access point to the backbone network) and a set of

customers D ⊆ V \{r}. Each customer k ∈ D is associated with a positive demand dk ∈ R>0. Each edge

e ∈ E is associated with a length le ∈ R≥0. It is allowed to install combinations of different cable types

with positive costs and capacities on every edge. Salman et al. [38], among others, have observed that,

by using dynamic programming, one can precompute the optimal combination of cable types for each

level of flow and for every edge. This provides an increasing non-linear step costs function of flow for

every edge of the network. We consider the optimization problem after this transformation, i.e., instead

of searching for optimal combination of cable types, we are looking for the optimal module of the step

cost function to be installed on every edge. Thereby, we assume that modules Ne = {n1, n2, . . . , n|Ne|}

are given for each edge e ∈ E, with capacities ue,n ∈ R>0 and costs ce,n ∈ R≥0 for each 1 ≤ n ≤ |Ne|.

Without loss of generality we assume that the module cost per edge are increasing with indices n. We

denote |N | := maxe∈E |Ne|. Then SSNLP looks for a single-source multiple-sink routing and a link

capacity assignment, with an installation of at most one module on every edge, to satisfy all customer

demands. Figure 1 illustrates an instance of the SSNLP and the corresponding optimal solution.

Since we allow the flow between the access point and a customer to be split apart, we are speaking

about a bifurcated routing formulation. The optimal solution of SSNLP is not necessarily a tree. Obvi-

ously, if there is only one module per edge providing sufficient capacity to route the total flow through
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it, then the optimal solution will be a tree, and the problem is equivalent to the Steiner tree problem on

the graph by considering all customers with positive demand as terminals while minimizing the sum of

edge lengths (le · ce,1) taken into the solution.

Our definition of SSNLP works for the general setting: Economies of scale may not be given over all

modules. We allow the number of modules and their costs and capacities to differ from edge to edge,

in contrast to the previous approaches where the modules were considered to be uniform. In addition,

capacities on an edge may be limited.

Root

A:10

B

C

D:20

E

F:25

G:10

H:10

I

J:10

K

L:10

M:10

(a) Instance of the SSNLP.

65

40
55

20

5
25

10

55

20

10

Root

A:10

B

C

D:20

E

F:25

G:10

H:10

I

J:10

K

L:10

M:10

(b) Optimal solution with arcs labeled by flow values.

Figure 1: Graph G = (V,E) with |V | = 14, euclidean edge lengths and |Ne| = 1, for all e ∈ E. Solid

lines are edges that allow the cable type: (ue,1, ce,1) = (100, 120) (e.g., street-connections). Dashed edges

allow the cable type: (ue,1, ce,1) = (40, 10) (e.g., existing infrastructure). Rectangle nodes are customers

with their demands written at the coresponding labels.

Previous Work Due to its importance in telecommunications, transportation, computer and energy

supply networks, network loading problems have been widely studied in the literature. Many authors

consider a more general variant in which a routing from multiple sources to multiple sinks is required.

Polyhedral structures of the general network design problem with multiple sources and multiple sinks are

studied in [4, 7, 12, 17, 25, 29, 40]. Benders decomposition approaches have been studied as well: for the

multiple-source multiple-sink case, an exact algorithm based on the expansion step cost model from [17]

was given in [22]; the latter approach has been improved recently in [19]. In [14] the authors study the

relationship between metric and Benders inequalities for the general capacitated network design problem.

In [35] the authors look into speeding up Benders decomposition by combining it with local branching.

Metric inequalities for the network loading problem have been studied in [3]. The authors work on the

multi-commodity flow problem and propose several variants for separating metric inequalities. We build
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some of our normalization models by extending their ideas, see Section 3. We refer to the extensive survey

given by Costa [13] for further references on network design models (including those with module-induced

variables) and Benders approaches.

SSNLP has been studied only under the assumption that costs and capacities satisfy the concept of

economies of scale, i.e., that the cost per unit capacity of a thick (high capacity) cable is cheaper than that

of a thin (low capacity) cable, thus buying capacities in bulks becomes more economical when the traffic

increases. For that reason, in the computer science literature, SSNLP is also known as the single-sink

buy-at-bulk network design problem (see, e.g., [37]). In terms of approximation algorithms, currently the

best provable worst-case approximation ratio of 24.92 has been obtained by Grandoni and Italiano [24].

Chopra et al. [10] have shown that the network loading problem with only two cable types and with a

single-source and a single-sink node remains NP-hard. Berger et al. [6] handle the non-bifurcated case

and have proposed a tabu-search heuristic that relies on the computation of k shortest paths, in order

to find alternative paths from the root to each customer node.

Salman et al. [38] proposed the search by objective relaxation (SOR) approach for solving SSNLP.

The authors solve SSNLP by considering the flow problem with a non-linear step cost function. The

step cost function is first approximated by its lower convex envelope. The obtained relaxed problem is

solved by a combinatorial algorithm in polynomial time. The process is repeated in every node of the

branch-and-bound tree in which branching is done by dividing the interval of possible flow values on an

edge into subintervals. In Section 5 we refer to their results where we also use their benchmark instances

to test our approach.

Raghavan and Stanojević [34] pointed out that the linear programming (LP) relaxation of a single-

commodity flow model for SSNLP (see Section 2.2) also approximates the step cost function by its

lower convex envelope. Therefore the SOR approach can also be seen as a stylized branch-and-bound

on a single-commodity flow model. The authors compared their stylized branch-and-bound approach

against two MIP models based on the aggregated single-flow formulation. While the authors were

able to outperform the explicit cost model, their results were always worse than those obtained by the

incremental cost MIP model.

The rest of the paper is organized as follows. In Section 2 we recall existing MIP formulations and

propose a disaggregated compact model. A hierarchy of MIP formulations is also given. Section 2.5 ex-

plains how to project out flow variables of the new compact model and how to generate stronger cutting

planes. In Section 3 we propose several different ways for normalizing the Benders subproblem. Algo-

rithmic aspects of our approach are discussed in Section 4. We implemented several different approaches

for solving the Benders subproblem. An extensive computational comparison of compact vs. Benders

approaches is provided in Section 5.
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2 MIP Formulations

Network loading problems are often modeled using compact flow-based MIP formulations (see, e.g., [14,

25, 34, 38]) involving integer design variables and continuous flow variables. When disaggregating flow

variables, we face the trade-off problem between the increasing quality of lower bounds and the growing

size of the underlying linear program. In this section, we first recall two “natural” compact formulations

for SSNLP. We then propose a disaggregated flow-based formulation and a row-generation approach

based on Benders decomposition for this model. We also recall a weak cut-set based model for the

SSNLP. We finally provide a hierarchy of different MIP formulations with respect to the quality of lower

bounds of their LP relaxations.

2.1 Transformation into Directed Problem

It is well known that, in general, the MIP formulations of uncapacitated network design problems on

directed graphs provide better lower bounds than their undirected counterparts (see e.g., [11]). However,

the MIP approaches to SSNLP up to now, considered in [34, 38], involve undirected graphs. We propose

to work with directed graphs and for that purpose we transform our input graph Gu = (V,E) into a

directed graph G = (V,A) where A := {(i, j), (j, i) | {i, j} ∈ E; i, j 6= r} ∪ {(r, j) | {r, j} ∈ E}. The

available modules on the arcs remain symmetric, i.e., cij,n = cji,n = c{i,j},n, uij,n = uji,n = u{i,j},n for

all n ∈ N{i,j}. To solve SSNLP, we now search for the directed solution, i.e., for the installation of at

most one module on every arc so that there is enough capacity to route the flow from r to every k ∈ D.

Note that this transformation from an undirected into a directed graph is not valid for general multi-

commodity network design problems, but one can easily prove that it is valid under our single-source

assumption. More formally:

Observation 2.1. Let G be the graph as described above. Then, there always exists an optimal solution

of the directed SSNLP, which is a directed acyclic subgraph of G.

Observation 2.2. Given the graph Gu, demands dk, for all k ∈ D and the cost and capacity functions

c and u as described above, any optimal solution of SSNLP on Gu can be transformed into an equivalent

directed solution on G with the same objective value, and vice versa.

2.2 Single-Commodity Flow Formulation (SCF)

The single-commodity flow formulation, SCF, models the flow on every arc as the total amount of flow

routed from the root toward the customers. To model a non-decreasing step cost function on every arc,

binary variables need to be used. There is a possibility to model the problem using the incremental cost

model or the explicit cost (also called the multiple choice) model [15].

The incremental cost model for the general multi-source multi-sink network design problem was in-

troduced by Dahl and Stoer [17], while for SSNLP it was tested in [34, 38]. Raghavan and Stanojević [34]
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proved that for SSNLP both models are equivalent in terms of quality of lower bounds, and their LP

relaxations both approximate the monotonically increasing step cost function by its lower convex enve-

lope. A more general equivalence result for generic minimization problems with separable non-convex

piecewise linear costs is given by Croxton et al. [15], see also Keha et al. [27].

The multiple choice modeling approach leads to the following single-commodity flow formulation:

Binary variables xij,n ∈ {0, 1} decide whether the module n shall be installed on the arc (i, j), whereas

flow variables fij ≥ 0 describe the amount of flow on arc (i, j) ∈ A. Then the SCF model is:

SCF : min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n

s.t.
∑

(i,j)∈A

fij −
∑

(j,i)∈A

fji =


−di, i ∈ D∑
k∈D dk, i = r

0, otherwise

∀i ∈ V (1)

∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (2)

0 ≤ fij ≤
∑
n∈N

uij,nxij,n ∀(i, j) ∈ A (3)

xij,n ∈ {0, 1} ∀(i, j) ∈ A, ∀n ∈ Nij . (4)

The flow conservation constraints (1) ensure that every customer receives the desired amount of flow,

while the capacity constraints (3) ensure that enough capacity is installed on every arc. The disjunction

constraints (2) are typical for the explicit cost model, i.e., on every arc at most one module may be

installed.

Observation 2.3. Given an optimal solution (x′, f ′) of an LP relaxation of SCF, the subgraph G′ of G

obtained by taking all arcs (i, j) ∈ A such that
∑
n∈Nij

x′ij,n > 0 contains no directed cycle.

Therefore, the subtour elimination constraints xij,n +xji,n ≤ 1, for all (i, j) ∈ A, and all n ∈ Nij , are

redundant for both the SCF model and its LP relaxation. However, the LP relaxation is stronger when

the disjunction constraints (2) are replaced by:∑
n∈Nij

(xij,n + xji,n) ≤ 1 ∀(i, j) ∈ A.

The SCF model contains O(|A| · |N |) variables and constraints, but due to the aggregated con-

straints (3), it provides arbitrarily bad lower bounds. In case of economies of scale, the LP relaxation of

the SCF model has an optimal solution in which at most one of xij,n variables (the one with the lowest

cij,n/uij,n ratio) on every arc is non-zero (see also [38]).

2.3 Multi-Commodity Flow Formulation (MCF)

This formulation is commonly used for the multiple-source multiple-sink network design problems (see,

e.g., [29]). In this model, fkij describes the amount of flow of commodity k ∈ D routed through the arc
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(i, j). Commodities in our case are source-sink pairs (r, k), k ∈ D, i.e., they are directly associated to

customers k ∈ D. The MCF model reads as follows:

MCF : min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n

s.t.
∑

(i,j)∈A

fkij −
∑

(j,i)∈A

fkji =


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ D (5)

∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (6)

∑
k∈D

fkij ≤
∑
n∈Nij

uij,nxij,n ∀(i, j) ∈ A (7)

0 ≤ fkij ≤ dk
∑
n∈Nij

xij,n ∀(i, j) ∈ A, ∀k ∈ D (8)

xij,n ∈ {0, 1} ∀(i, j) ∈ A, ∀n ∈ Nij . (9)

The flow conservation constraints (5) and the capacity constraints (7) have the same meaning as for the

SCF model. The coupling constraints (8) ensure that if there is a flow in any module n on the arc (i, j),

then the corresponding design variable need to be set up. Obviously, these constraints are redundant for

the MIP formulation, but they improve the lower bound of the LP relaxation.

The MCF model contains O(|A| · |N | + |A| · |D|) variables and O(|V | · |D| + |A| · |N | + |A| · |D|)

constraints. The LP relaxations of the SCF model and MCF model without coupling constraints (8)

produce the same lower bound.

2.4 Disaggregated Multi-Commodity Flow Formulation (DMCF)

For the multi-commodity capacitated network design problem, Croxton et al. [16] and Frangioni and

Gendron [20] propose a disaggregation by integer values in a MIP based on the multi-commodity flow

formulation. By adapting this disaggregation technique to SSNLP, we disaggregate flow variables with

respect to modules. Beside the binary design variables, xij,n ∈ {0, 1}, we use the disaggregated flow

variables fkij,n that define the amount of flow of commodity k ∈ D, routed through the arc (i, j) using

the module n ∈ Nij . The DMCF model reads then as follows:

DMCF : min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n (10)
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s.t.
∑

(i,j)∈A

∑
n∈Nij

fkij,n −
∑

(j,i)∈A

∑
n∈Nji

fkji,n =


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ D (11)

∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (12)

∑
k∈D

fkij,n ≤ uij,nxij,n ∀(i, j) ∈ A,∀n ∈ Nij (13)

0 ≤ fkij,n ≤ dkxij,n ∀(i, j) ∈ A,∀k ∈ D,∀n ∈ Nij (14)

xij,n ∈ {0, 1} ∀(i, j) ∈ A,∀n ∈ Nij . (15)

The capacity constraints (13) ensure that the total flow in module n on arc (i, j) must not exceed the

capacity of the given module n. Constraints (14) are redundant for the MIP formulation, but they

improve the optimal value of the LP relaxation.

The DMCF model contains O(|A| · |N | · |D|) constraints and O(|A| · |N | · |D|) variables, and it is

very unlikely that even the most sophisticated MIP solvers may solve instances of moderate size using

the DMCF formulation as a single MIP including all variables and constraints. Our computational

experiments with the DMCF model confirmed this claim (see Section 5). To use the advantage of this

strong model, we propose to project out the flow variables and to introduce Benders inequalities instead,

keeping the quality of lower bounds, and even improving them by rounding techniques. An alternative

is a column-and-row generation algorithm proposed by Frangioni and Gendron [20, 21] for solving a

generalization of DMCF with flow costs.

Denote by

PSCF := {(x, f) ∈ [0, 1]|A| × R|A|≥0 | (x, f) satisfy (1)− (3)}

P−MCF := {(x, f) ∈ [0, 1]|A| × R|A||D|≥0 | (x, f) satisfy (5)− (7)}

PMCF := {(x, f) ∈ [0, 1]|A| × R|A||D|≥0 | (x, f) satisfy (5)− (8)}

P−DMCF := {(x, f) ∈ [0, 1]|A| × R|A||D||N |≥0 | (x, f) satisfy (11)− (13)}

PDMCF := {(x, f) ∈ [0, 1]|A| × R|A||D||N |≥0 | (x, f) satisfy (11)− (14)}

the polytopes of the LP relaxations of the above MIP models for SSNLP. Denote by projx(P) = {x ∈

[0, 1]|A| | ∃(x, f) ∈ P} the natural projection on the space of x variables, for any of the polyhedra P

defined above. It is not difficult to see that the following result holds:

Lemma 2.4.

projx(PDMCF) ⊆ projx(PMCF) ⊆ projx(PSCF).

In addition, there exist instances of the SSNLP for which projx(PDMCF) ⊂ projx(PMCF) ⊂ projx(PSCF).

Section 5 provides computational evidence of this theoretical result. Furthermore, one can also show

the following equivalence.
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Lemma 2.5.

projx(P−DMCF) = projx(P−MCF) = projx(PSCF).

2.5 Benders Decomposition for DMCF (Benders)

Magnanti and Wong [31] emphasize that for any MIP, the tighter the LP relaxation of a model, the

better Benders cuts can be produced. Therefore, we propose to solve the disaggregated model DMCF by

projecting out flow variables by dynamically generating the corresponding violated Benders inequalities.

Similar ideas have been applied to the weaker MCF model for several related problems, see e.g. [13, 14, 22].

Let the master problem be the one given by the objective function (10) subject to constraints (12) and

(15). A solution x′ ∈ [0, 1]|A||N | of the master problem defines a feasible solution for the LP relaxation

of the DMCF model if and only if there exist flow variables fkij,n, (i, j) ∈ A, k ∈ D,n ∈ N satisfying the

linear system of inequalities given by (11), (13) and (14), where x = x′.

Farkas’ lemma states that a linear system of equations {Ax ≤ b, x ≥ 0} has a solution if and only

if uT b ≥ 0 for all u ≥ 0 such that uTA ≥ 0. To apply Farkas’ lemma to the system (11), (13), (14),

we define a dual variable αki associated to each equation (11), a dual variable βkij,n associated to each

inequality (14), and a dual variable γij,n associated to each equation in (13). Then, the polyhedron

defined by this system is non-empty if and only if the following Benders decomposition subproblem SUB

is bounded (i.e., its optimal value is equal to zero):

SUB : min z(α, β, γ, x′) =
∑
k∈D

dk(αkr − αkk) +
∑

(i,j)∈A

∑
n∈Nij

(∑
k∈D

dkβ
k
ij,n + uij,nγij,n

)
x′ij,n (16)

s.t. αki − αkj + βkij,n + γij,n ≥ 0 ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij (17)

(α, β, γ) ≥ 0. (18)

Violated Benders inequalities can be found and used within a branch-and-cut framework as follows.

We first solve the linear relaxation of the master problem, obtaining a fractional solution x′ = [x′ij,n :

(i, j) ∈ A,n ∈ Nij ]. With these values x′ we define the corresponding subproblem SUB. Note that this

subproblem can be either bounded or unbounded. In the latter case, there is an unboundedness direction

(α′, β′, γ′) for which z(α′, β′, γ′, x′) < 0. To avoid this situation the Benders cut

∑
(i,j)∈A

∑
n∈Nij

(∑
k∈D

dkβ
′k
ij,n + uij,nγ

′
ij,n

)
xij,n ≥

∑
k∈D

(α′kk − α′kr )dk (19)

must be added to the master problem.

Let M =
∑
k∈D(α′kk − α′kr )dk. Observe that we can round down the coefficients multiplying xij,n by

setting them to µij,n = min(M,
∑
k∈D dkβ

′k
ij,n + uij,nγ

′
ij,n). The resulting inequality,∑

(i,j)∈A

∑
n∈Nij

µij,nxij,n ≥M (20)
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is valid and it is called rounded Benders inequality.

The process is iterated until the linear relaxation of the master problem has been solved to optimality,

that is, until the subproblem SUB is unable to find more violated Benders cuts. If xij,n variables are all

integer, the SSNLP is solved. Otherwise, we resort to branching.

We refer to this implementation of the separation of violated Benders inequalities as the textbook

implementation. In Section 5, we compare this basic implementation with more elaborated variants

proposed in Section 3.

2.6 Directed Cut-Set Formulation (DCut)

We now recall the cut-set formulation for SSNLP on directed graphs. For each subset S ⊂ V , we will

denote by δ+(S) := {(i, j) ∈ A : i ∈ S, j ∈ V \ S} and δ−(S) := {(i, j) ∈ A : i ∈ V \ S, j ∈ S}, outgoing

and ingoing cuts, respectively.

Projecting out aggregated flow variables fij =
∑
k∈D

∑
n∈Nij

fkij,n for all (i, j) ∈ A leads to the

following cut-set inequalities:

∑
(i,j)∈δ+(S)

∑
n∈Nij

uij,nxij,n ≥
∑

k∈D\S

dk ∀S ⊂ V : r ∈ S, S ∩D 6= D. (21)

The separation problem of cut-set inequalities in general multiple-source multiple-sink case is NP-

hard and can be reduced to the max-cut problem [4]. However, inequalities (21) for SSNLP can be

separated in polynomial time as follows. For a given fractional solution x′, we define the directed

support graph G′ = (V ′, A′) where V ′ := V ∪ {t} with an additional sink t, and A′ := A1 ∪ A2 being

A1 := {(i, j) ∈ A :
∑
n∈Nij

uij,nx
′
ij,n > 0} and A2 := {(k, t) : k ∈ D}. The capacity associated to each

arc a = (i, j) ∈ A1 is set to
∑
n∈N uij,nx

′
ij,n, and the capacity of each arc a = (k, t) ∈ A2 is set to dk. If

the minimum cut between r and t in G′ is less than
∑
k∈D dk, there is a violated inequality (21).

Since xij,n variables are binary, the cut-set inequalities can also be strengthened as follows:∑
(i,j)∈δ+(S)

∑
n∈Nij

min(uij,n,
∑

k∈D\S

dk)xij,n ≥
∑

k∈D\S

dk.

Observe that, due to “big-M” constants referring to capacities, the LP relaxation obtained by solving the

DCut formulation can be arbitrarily bad. In fact, constraints (21) correspond to Benders inequalities

obtained by projecting out flow variables from the SCF model and therefore the DCut model is equivalent

to the SCF model with respect to the quality of lower bounds of their LP relaxations.

The DCut model can be improved with additional connectivity constraints, i.e.:∑
(i,j)∈δ+(S)

∑
n∈N

xij,n ≥ 1 ∀S ⊂ V : r ∈ S, S ∩D 6= D, (22)

leading to a new model DCut+. Constraints (22) can be derived from the MCF model by dualizing

flow-constraints (5) and (8).
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Denote by

PDCut := {x ∈ [0, 1]|A| | x satisfy (21), (2)},

PDCut+ := {x ∈ PDCut | x satisfy (22) }.

Model DCut+ is weaker than the MCF model because the flow variables in the MCF model simultaneously

the need to satisfy the capacity constraints (7) and (8), while the cut-set inequalities (21) and (22) ensure

the existence of two independent flows only. Thus, we have:

Lemma 2.6.

projx(PMCF) ⊆ PDCut+ ⊆ PDCut = projx(PSCF).

In addition, there exist instances of the SSNLP for which projx(PMCF) ⊂ PDCut+ ⊂ PDCut holds.

2.7 Further Strengthening Inequalities

We now address two families of valid inequalities that may improve the lower bound obtained by solving

the LP relaxations of the above MIP models for SSNLP.

2.7.1 Degree-Balance Constraints

Non-customer nodes V \ (D ∪{r}) cannot have incoming (or outgoing) arcs only. Therefore, we can add

the following degree-balance constraints that only work for the single source case:∑
(l,i)∈A,l 6=j

∑
n∈Nli

xli,n ≥
∑
n∈Nij

xij,n ∀(i, j) ∈ A, i 6∈ D, i 6= r (23)

∑
(j,l)∈A,l 6=i

∑
n∈Njl

xjl,n ≥
∑
n∈Nij

xij,n ∀(i, j) ∈ A, j 6∈ D, j 6= r. (24)

Inequality (23) states that if an arc (i, j) emanating from a non-customer node i is being used in the

solution, there must be at least one arc entering i. Thanks to Lemma 2.1 the opposite arc (j, i) can be

excluded from the summation on the left hand side. Inequality (24) states the opposite case for an arc

(i, j) entering a non-customer node j.

Observe that capacitated versions of these cuts, i.e.:∑
(l,i)∈A,l 6=j

∑
n∈Nli

uli,nxli,n ≥
∑
n∈Nij

uij,nxij,n ∀(i, j) ∈ A, i 6∈ D, i 6= r

∑
(j,l)∈A,l 6=i

∑
n∈Njl

ujl,nxjl,n ≥
∑
n∈Nij

uij,nxij,n ∀(i, j) ∈ A, j 6∈ D, j 6= r.

are not valid in general, but only if there is a uniform capacity/cost structure on edges.

2.7.2 Cover Inequalities

The following inequalities are of particular interest for the DCut model. Given a cut-set inequality

(21) defined by S ⊂ V, r ∈ S, define the index set I(S) := {(i, j, n) | (i, j) ∈ δ+(S), n ∈ Nij} and
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B :=
∑
k∈D\S dk. Set M ⊂ I(S) is called a cover with respect to I(S) if

∑
(i,j,n)∈M uij,n < B and a

maximal cover if, in addition, for all M ′ such that I(S) ⊇ M ′ ⊃ M :
∑

(i,j,n)∈M ′ uij,n ≥ B. If M is a

maximal cover with respect to I(S), then the following cover inequalities are valid:∑
(i,j,n)∈I(S)\M

xij,n ≥ 1. (25)

In general, the separation problem of cover inequalities is NP-hard. We show that the problem

of finding the most violated cover inequality (25) is equivalent to solving the precedence constrained

knapsack problem. Recall that indices n ∈ Nij are sorted according to increasing arc capacities. To

model any cover M with respect to I(S), we introduce the binary variables zij,n that are equal to one if

and only if (i, j, n) ∈M . For every arc (i, j) ∈ δ+(S), we define uij,0 = 0.

For a given fractional solution x′ and an index set I(S) induced by a cut-set inequality, the most

violated cover inequality can be found by solving the following model:

KNAP : max
∑

(i,j,n)∈I(S)

x′ij,nzij,n

∑
(i,j,n)∈I(S)

(uij,n − uij,n−1)zij,n < B (26)

zij,n ≥ zij,n+1, ∀(i, j, n) ∈ I(S), n < |Nij |

zij,n ∈ {0, 1}, ∀(i, j, n) ∈ I(S).

Let z′ be an optimal solution of model KNAP. The corresponding cover inequality reads then as follows:∑
(i,j,n)∈I(S)

(1− z′ij,n)xij,n ≥ 1.

If all capacities and demands are integers, (26) can be replaced by
∑

(i,j,n)∈I(S)(uij,n − uij,n−1)zij,n ≤

B − 1. The cover inequalities are similar to the band inequalities for the incremental cost model given

in [17].

2.8 Hierarchy of Formulations

The hierarchical scheme given in Figure 2 summarizes the relationships between the LP relaxations of

the MIP models considered throughout this paper for SSNLP. A filled arrow specifies that the target

formulation is strictly stronger than the tail formulation. An empty arrow specifies that the target

formulation is at least as strong as the tail formulation. DMCF+ denotes the DMCF formulation extended

by degree balance and cover inequalities, and DCut (DCut+) denotes the cut-set formulation (i.e., DCut

model extended by connectivity inequalities). Benders+ denotes the model with rounded Benders cuts

extended by degree balance and cover inequalities.
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DCut+

DMCF+

Benders+

MCF

DMCF Benders

DCut SCF DMCF-MCF-

Figure 2: Hierarchy of LP relaxations.

3 Separation of Benders Cuts

In this section we propose several ways of generating Benders cuts associated to extreme rays. We show

different normalization techniques to make the primal subproblem feasible. An extreme point that solves

the normalized subproblem induces a Benders cut associated to an extreme ray. Costa et al. [14] have

proposed an approach for strengthening Benders cuts associated to non-extreme rays for a general multi-

commodity network design problem. It should be noted that their ideas could similarly be extended to

our Benders cuts in case non-extreme rays were generated.

3.1 Separation Models

Any implementation of Benders cuts separation heavily affects the overall performance of a MIP ap-

proach. In our work, we considered the straightforward implementation of solving the dual subproblem

SUB as defined in Section 2.5, and three normalization approaches obtained by closing the dual un-

bounded cone (see Table 1 for an illustration). For each of these models, we explicitly solved the dual

or the primal version of the subproblem.

Dual Primal Explanation

SUB - see Section 2.5

SUBc PSUBc SUB extended by (α, β, γ)t · 1 = 1

SUBn PSUBn SUB extended by
∑
k∈D dk(αkk − αkr ) = 1

SUBf PSUBf SUB extended by αt · 1 = 1

Table 1: Different normalization approaches for separating Benders cuts.
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SUB Model: In order to get a violated Benders inequality, we search for an extreme ray of the un-

bounded subproblem SUB. As already observed in [5, 18], this approach has a significant drawback: it

returns an arbitrarily chosen extreme ray without having any positive influence on the quality of the

violated cut found. An advantage of this method is that it returns a violated constraint much faster

than the corresponding more sophisticated methods described below.

SUBc and PSUBc Models: Instead of solving the subproblem on the pointed unbounded cone, one

can close it by adding the following hyperplane:∑
(i,j)∈A

∑
n∈Nij

∑
k∈D

βkij,n +
∑

(i,j)∈A

∑
n∈Nij

γij,n +
∑
i∈V

∑
k∈D

αki = 1. (27)

Obviously, the Benders cut generated by solving SUB extended by (27) is violated if and only if the

objective value is strictly less than zero. Furthermore, each vertex of such obtained polyhedron (except

the origin) corresponds to an extreme ray of the unbounded subproblem.

One easily observes that the model SUBc is equivalent to the similar problem of maximizing the value

of Θ ≤ 0 subject to constraints (11), (13) and (14) in which Θ is added to the left-hand side of each of

them. This primal model is denoted by PSUBc.

SUBn and PSUBn Models: Recall that before inserting a cut into the master problem we check its

violation according to (28). Since we are interested in looking for a maximally violated Benders cut, one

can normalize the subproblem by fixing the right-hand side to one. The SUB model is therefore extended

by the following constraint: ∑
k∈D

dk(αkk − αkr ) = 1.

The resulting subproblem SUBn is bounded and its solution (if negative) always corresponds to the most

violated Benders cut according to (28). Again, the master solution x′ is infeasible if and only if the

solution of SUBn is strictly less than zero. The primal of SUBn, denoted by PSUBn, is known as the

maximum concurrent flow model (see, e.g., [8]), and it has been used by Avella et al. [3] for separation

of metric inequalities.
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SUBf and PSUBf Models: One can also consider the following flow feasibility subproblem:

PSUBf : max Θ

∑
(i,j)∈A

∑
n∈Nij

fkij,n −
∑

(j,i)∈A

∑
n∈Nji

fkji,n + Θ =


dk, i = r

−dk, i = k

0, otherwise

∀i ∈ V, ∀k ∈ D

∑
k∈D

fkij,n ≤ uij,nx′ij,n ∀(i, j) ∈ A, ∀n ∈ Nij

0 ≤ fkij,n ≤ dkx′ij,n ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij

Θ ≤ 0.

This problem has a nice flow structure that can easily be recognized by an LP solver (like Cplex),

therefore we consider it as another alternative normalization approach for finding a violated Benders

inequality. In the corresponding dual variant of the model, denoted by SUBf, we extend SUB with∑
k∈D

∑
i∈V α

k
i = 1.

SUBcap and PSUBcap Models: In our preliminary computational experiments we also tried the

variant in which Θ is added only to capacity and coupling constraints (13) and (14), respectively. The

latter model is a generalization of the capacity reduction problem, used by Avella et al. [3] to generate the

so-called strong metric inequalities for the MCF model of NLP. However, in our preliminary results, both

SUBcap and PSUBcap were significantly outperformed by other models mentioned above. In particular,

these submodels could not be solved to optimality within our default time limit for solving Benders

subproblems. Therefore, we do not report results for these models in Section 5.

3.2 Further Potential Enhancements

We implemented the following additional techniques that are known to significantly improve the perfor-

mance of (Benders) separation algorithms, in general.

Connectivity Cuts: We separate nested, backward and minimum cardinality connectivity cuts (22),

that are used as a standard procedure for accelerating cutting plane methods (see, e.g. [28]). The idea

of separating nested cuts is to look for violated inequalities whose coefficient vector is orthogonal to

an already detected cut. Using backward cuts one can generate two violated inequalities per a single

max-flow computation. Minimum cardinality cuts search for a cut set with the smallest number of arcs

having the same max-flow value. We separate up to 100 connectivity cuts per iteration. For finding the

maximum flow in a directed graph, we used an adaptation of Cherkassky and Goldberg’s maximum flow

algorithm [9]. This procedure was turned on for producing the results reported in Section 5.
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Disjoint Benders Cuts: We also developed a separation procedure that produces several disjoint

Benders cuts from the same solution of the master problem. It works as follows: assume that (α′, β′, γ′)

corresponds to an unbounded direction in the current Benders subproblem. We fix to zero the variables

β and γ with positive value in this solution. Now, we again solve the Benders subproblem with the

fixed variables. This may give us another unbounded direction. By repeating this procedure, one may

generate a set of disjoint Benders cuts.

This separation procedure is very similar to the one used to separate disjoint (nested) connectivity

inequalities mentioned above. However, whereas nested connectivity cuts drastically improve the per-

formance, there is a drawback of separating disjoint Benders cuts: solving a single Benders subproblem

is computationally more expensive than resolving the primal master LP. Therefore, this procedure was

turned off for producing the results reported in Section 5.

Magnanti-Wong Implementation: The ideas of Magnanti and Wong [31] have been widely used

for accelerating separation of Benders cuts (see, e.g., [30, 35]). The authors proposed to accelerate the

convergence of the basic Benders algorithm by adding Pareto-optimal Benders cuts. A Pareto-optimal

Benders cut is given by the following definition: a cut z(α′′, β′′, γ′′, x) ≥ 0 dominates another cut

z(α′, β′, γ′, x) ≥ 0 if and only if z(α′, β′, γ′, x) ≥ z(α′′, β′′, γ′′, x) for all x ∈ {0, 1}|A||N | satisfying (2),

and the strict inequality holds for at least one x. A Benders cut is said to be Pareto-optimal if no other cut

dominates it. In case that there are multiple optimal solutions to the Benders subproblem, Magnanti and

Wong have proposed an approach to search for a Pareto-optimal cut by solving an additional subproblem

in the separation phase:

1. Given a fractional solution x′, solve the Benders subproblem SUBx to get a violated cut defined

by (α′, β′, γ′). If z(α′, β′, γ′, x′) = 0, no violated cut exists. Stop.

2. Set z′ := z(α′, β′, γ′, x′).

3. Solve the new subproblem defined as:

min{z(α, β, γ, x0) | (α, β, γ) satisfy the constrains in SUBx and z(α, β, γ, x′) = z′}.

4. Denote by (α′′, β′′, γ′′) the solution to this subproblem. Then, the cut z(α′′, β′′, γ′′, x) ≥ 0 is

inserted into the master problem.

In this procedure, SUBx denotes any of the normalized variants (bounded subproblems) described above

and x0 is a given fractional solution called core point, i.e., a point that belongs to the relative interior

of the convex hull of all binary vectors x satisfying (2). As already observed by Papadakos [33], for

the above procedure to work efficiently, one needs to start it with a different core point every time the

procedure is applied. For that purpose, we start with a randomly chosen point from the interior, and

later we generate a random convex combination of two incumbent solutions.
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The obvious drawback of this procedure is that we have to solve two time-consuming subproblems

within each separation. Furthermore, solving the Magnanti-Wong subproblem is computationally more

expensive than solving the master problem. In our default implementation, the separation of Pareto-

optimal cuts is turned off. In Section 5, we report on the effects obtained by turning on this procedure.

4 Branch-and-Cut Algorithm

The overall approach is a branch-and-cut algorithm in which the LP relaxation of the compact model

SCF is solved first, followed by the separation of further strengthening inequalities. More precisely the

approach works as follows:

1. Initialization:

(a) Initialize the master problem with the variables and constraints of the SCF model extended

by additional inequalities (see Section 4.1).

(b) Solve the LP relaxation of the master.

2. In every k-th node of the branch-and-bound tree:

(a) As long as there are violated connectivity inequalities (22), add them to the master LP and

resolve it.

(b) Based on the current fractional solution x′, create the Benders subproblem.

(c) Solve the subproblem. If this results in a violated Benders cut, add it to the master LP and

resolve it.

Since in Step 1(a) the master is initialized with the SCF model, Benders cuts generated in Step 2(b) are

only used to strengthen the LP bounds. In other words, Benders cuts are not needed to guarantee the

feasibility of a solution. This inspires another strategy in which Benders cuts are added only at the root

node of the branch-and-bound tree.

In the context of a multiple-source multiple-sink variant of the problem, the above strategies are not

valid. Either the master must be initialized with a much larger (multi-commodity flow) model or k must

be equal to 1.

As an alternative approach to the initialization of lower bounds by the SCF model, we also imple-

mented a branch-and-cut algorithm for solving the DCut formulation. The cut-set inequalities (21) can

be separated very fast. However, our preliminary results have shown that using SCF directly results in

a clearly preferable approach in practice. For that reason, we do not report DCut results in Section 5.

Furthermore, since cover inequalities (25) are derived from cut-set inequalities (21), their separation is

not implemented in our computational framework.
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4.1 Initialization of Lower Bounds

In order to obtain good, yet easily computable, lower bounds that will avoid expensive computation of

“trivial” Benders cuts, we extend the SCF model by constraints (23), (24) and the following in-degree

inequalities and root-out-degree inequalities:∑
(i,j)∈A

∑
n∈Nij

xij,n ≥ 1 ∀j ∈ D

∑
(r,j)∈A

∑
n∈Nrj

xrj,n ≥ 1.

Obviously, these inequalities are special cases of connectivity cut-set inequalities (22) for S = V \ {j}

and S = {r}, respectively.

4.2 Branch-and-Cut Parameters

To improve the overall performance and to avoid numerical difficulties we consider the following two

standard ingredients:

• Tailing Off: If the relative improvement of the lower bound is less than Eps% in the last It iterations

of the separation procedure, we stop the separation and resort to branching. The general setting

of (It,Eps) is (20, 10−3). However, if only the computationally more expensive Benders cuts were

separated in recent iterations, a stricter setting of (It’,Eps’) = (10, 10−3) is applied.

• Degree of Violation: Assume that after solving the Benders subproblem for a given fractional value

x′, we obtain a violated cut defined by a vector (α′, β′, γ′). Before inserting the corresponding cut

into the master LP, we normalize it by dividing it with its right-hand side (which is always positive)

and calculate its violation by the current fractional solution x′ as follows:

violation(α′, β′, γ′, x′) = 1−
∑

(i,j)∈A

∑
n∈Nij

∑
k∈D dkβ

′k
ij,n + uij,nγ

′
ij,n∑

k∈D dk(α′kk − α′kr )
x′ij,n (28)

If violation(α′, β′, γ′, x′) < 10−4, the cut will not be considered as violated and will not be inserted

into the system.

The flowchart in Figure 3 explains how we implemented our cut separation procedure.

4.3 Primal Heuristic

We employ the following rounding heuristic based on min-cost-flow. Denote the total installed capacity

on an arc by Xij(x) =
∑
n∈Nij

uij,nxij,n. The cheapest fitting module to support a certain capacity

U is denoted by n(U) = arg min{n∈Nij |uij,n≥U} cij,n. Starting from a fractional solution x, we create a

binary solution x′ and subsequently a cheaper binary solution x′′. Initialize x′ := 0. Now for every arc

(i, j) install the cheapest fitting module, i.e. x′ij,n(U) := 1, with U := Xij(x). The resulting x′ is integer

feasible, but also typically overly generous and can be improved. To this end we use an augmented graph
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Figure 3: Separation of cuts in the branch-and-cut framework.

with an additional sink t, similar to the one from Section 2.6: Let G′ = (V ′, A′) where V ′ = V ∪{t} and

A′ = A ∪ {(k, t) : k ∈ D}. The arc capacities are set to Xij(x
′) for all (i, j) ∈ A and dk for all (k, t),

k ∈ D. Arc costs are defined as
∑
n∈Nij

cij,nx
′
ij,n. Initialize x′′ := 0. We now compute the min-cost-flow

f ∈ R|A| in G′. This induces our new incumbent candidate x′′ : x′′ij,n(fij) := 1.

We use the min-cost-flow implementation based on capacity scaling and successive shortest path

computation found in the commercial library LEDA, 5.2 (see [1, 2]). This algorithm only works for

integer capacity and cost values. Therefore we round these values to the nearest integer prior to the

min-cost-flow computation. A result of this rounding is that x′′ will, on rare occasions, be infeasible.

This is easily detected by a subsequent computation of a max-flow and an infeasible x′′ is discarded.

5 Computational Results

This section reports on our computational experience with the proposed branch-and-cut framework. We

implemented our algorithms using C++ and Cplex 11.1 [26]. An Intel Core 2 personal computer with

1.8 GHz and 3.25 GB of RAM was used for testing purposes. If not mentioned otherwise, the default

Cplex settings are used.

We set a time limit of 1000 seconds for solving benchmark instances. For all instances that cannot be

solved to optimality because that limit was reached, we report the gap between the best known upper

bound (UB) and the lower bound (LB) obtained, calculated as UB−LB
UB · 100%. The time limit for each

single separation of Benders cuts was set to 45 seconds.

5.1 Preprocessing

All reported instances are preprocessed according to the following rules:

(i) Each customer node k ∈ D with degree one is joined with his neighbor using the cheapest module

that allows the flow of dk to be routed.
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(ii) Each non-customer node with degree one is simply deleted.

(iii) Each non-customer-node with degree two and with the same modules on both sides is replaced by

a single edge, with the same modules.

(iv) Each non-customer-node with degree two and different modules on both sides is replaced by an

edge with all possible module combinations.

(v) Rules (iii) and (iv) may result in parallel edges. Parallel edges are replaced by a single one with all

possible module combinations.

(vi) Rules (iv) and (v) may lead to dispensable modules. A module n ∈ Ne is dispensable if there exists

another module n′ ∈ Ne with ue,n′ ≥ ue,n and ce,n′ ≤ ce,n. Dispensable modules are deleted.

(vii) Sets of excess modules N ′e = {n ∈ Ne | ue,n ≥
∑
k∈D dk} are replaced by a single module n′ with

ce,n′ = minn∈N ′
e
ce,n and ue,n′ =

∑
k∈D dk.

Observe that rules (iv) and (v) may generate instances with non-uniform modules, even if the modules

of the original instance were uniform.

5.2 Benchmark Instances

Instances from Salman [36]: Salman instances include four problems originally defined in [23] (prob-

lems ARPA, OCT, USA, and RING) and 60 problems randomly generated by Salman [36], also

used in [38]. For the latter ones, there are 12 groups with 20, 30 and 40 nodes. There are 9

cable types obeying economies of scale. The cheapest cable type has capacity of 6 – see [6, 38] for

a detailed description. The convex combinations of these generate up to d
∑

k dk
6 e modules. The

notation e(n)(s)(d) provides summary information on the instances: n denotes the number of

nodes, s explains the location of the root node (c stands for central, r stands for random position),

d explains the level of demand (l stands for low demand, which is randomly generated between 0

and 30; h stands for high demand, randomly generated between 0 and 60). In [34, 38] two kinds of

experiments were performed: using all 9 cable types and using only 4 of them. Since our method

does not depend on the number of cable types, but on the number of modules, we only performed

the more challenging variant involving all 9 cable types. Table 3 provides input information on

Salman instances: each of twelve e(n)(s)(d) groups contains 5 instances, and the average values

per group are reported. The number of nodes (|V |), the number of edges (|E|), the number of

customers (|D|), and the number of modules (|N |) represent the averaged values obtained after

preprocessing.

Real-World Instances (Bregenz): We used the street map of the Austrian city Bregenz with 1014

nodes and 1191 edges as underlying network. As customers we considered 4 different sets of nodes

with cardinalities |D| ∈ {29, 36, 45, 67}. We classified the instances into two groups: Group H
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contains graphs with higher demands, i.e., each customer has a demand randomly chosen from

{4, 8, 12, 16, 20}; Group L, in contrast, contains graphs with lower demand, i.e., each customer is

assigned a demand of 4 units.

We employed up to four different modules as displayed in Table 2. These modules imitate real-

world data we obtained from an Austrian telecommunication company. In particular, not all of

these modules obey economies of scale: it is possible that there are empty conduits with limited

modular capacity available at low costs, but if higher capacities need to be installed, new trenches

need to be prepared, which involves very high investment costs.

Type |N | (capacity uij,n, cost cij,n) . . .

A 2 (120, 7.0), (1020, 146.0)

B 2 (30, 2.2), (1020, 146.0)

C 3 (30, 2.2), (60, 4.0), (1020, 146.0)

D 4 (30, 2.2), (60, 4.0), (120, 7.0), (1020, 146.0)

Table 2: The four different sets of modules used for Bregenz instances.

The preprocessing greatly reduces the size of the graph and the number of customers goes down

to 28, 33, 41 and 61. Furthermore, although we start with uniform modules, we end up with

non-uniform ones. Table 5 illustrates that: the number of minimal, maximal and average number

of modules per arc is given in columns |Nmin|, |Nmax| and |Navg|, respectively.

5.3 Solving Salman Instances

We first report on the results with the three compact MIP models presented in Section 2: DMCF,

MCF and SCF. We also compared the branch-and-cut approaches based on different separation models

as explained in Section 3.1. The main goal of this study was: a) to compare the qualities of lower

bounds obtained by solving compact models versus branch-and-cut approaches, and b) to determine

whether there is a difference in the performance of the branch-and-cut approach when the textbook

implementation is compared against normalized separation approaches. For that purpose, we wanted to

ensure that the obtained results are not biased by the quality of incumbent solutions found by the MIP

solver. In previous computations we determined best known upper bounds (BKUB) for all instances

using the heuristic described in Section 4.3. For the reported results we initialized all the models with

BKUB and turned off the heuristic calls. For this particular test, we also turned Cplex cuts and the

presolver off. Benders cuts are separated at the root and in each 10th node of the branch-and-bound

tree. Table 3 provides values averaged over 5 instances per group, for e(n)(s)(d) instances, and the

values for additional four instances from [23].

Gap at the root node: In Table 3 we first report on the quality of LP relaxations of three compact

models and the corresponding value of the LP relaxation at the root node of the branch-and-bound
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tree for the SUBc approach. The gaps between obtained lower bounds and the best known upper bound

(provided in column UB) are shown. These results are consistent with our theoretical discussion provided

in Section 2.8. The SUBc approach was the one among all branch-and-cut approaches to provide the

tightest lower bounds at the root node. The average (median) gap over all 64 instances of the SUBc

approach is 6.0% (5.9%). The worst LP relaxation gap among Benders approaches is obtained by solving

the SUB model: the average (median) gap is 7.5% (7.5%).

Comparing compact formulations, we observe that the average (median) gap of the SCF model of

19.6% (18.0%) can be improved to 9.1% (9.1%) by solving the MCF model, which can further be improved

to 5.9% (6.0%) by solving the DMCF formulation. However, the LP relaxation of the DMCF model was

not solved for 4 out of 20 instances of the group e40 within the time limit.

Looking at gaps of the SUBc approach and the DMCF model, we can observe two different effects.

In some cases SUBc produces better gaps. This results from tightening Benders cuts by rounding down

the coefficients (see groups e20_c_l, e40_c_h in Table 3). In other cases the gap of SUBc is slightly

worse than the one of DMCF. This is explained by tailing-off and violation checks. Particularly, if at

some point the current Benders cut does not satisfy the violation test (28) and we decide not to add this

particular cut and instead resort to branching, the lower bound at the root node will be slightly worse

than the value of the LP relaxation of DMCF.

Gap after the time limit: For the SCF model and for Benders separation approaches Table 3 also

reports the lower-bound gap after the time limit was reached. Every single variant of our branch-and-

cut approach outperforms the compact SCF model. The best results are obtained by solving the SUBf

approach: the average (median) gap after 1000 seconds is 2.5% (2.5%), while SCF terminates at 8.0%

(7.3%).

SUBf solves 14 out of 20 instances of group e20 to optimality, while SCF finds optima only in 7 out

of 20 cases. Despite the bad quality of gaps of the LP relaxation, the model SCF succeeds to improve the

final gap by drawing the advantage of branching. The average number of branch-and-bound nodes when

solving SCF is close to 680 000, while the number of nodes processed by our Benders implementations

varies between 212 (SUBn) and 6043 (SUBf).

The rightmost column in Table 3 shows the average gaps reported by Salman et al. [38] obtained

by solving SORb2 approach. The average gaps obtained by Raghavan and Stanojević [34] were always

worse than those obtained in [38], therefore we report only on the latter ones. In [38], the authors set

the time-limit to 5400 seconds and used Cplex 9.1 with default settings. We used the time-limit of

1000 seconds and Cplex 11.2 with Cplex cuts and presolver turned off. According to the performance

evaluation tests provided in [39], our computer is approximately 1.2 times faster. Comparing the values

in the column SUBf and the last column in Table 3, we may conclude that in most cases our approach

outperforms the approach of Salman et al. [38].

Table 4 reports on the correlations between the average time needed to solve the subproblem, the

22



P
ro

b
le

m
G

ap
at

th
e

R
oo

t
N

od
e

G
ap

af
te

r
10

00
s

G
ap

C
pl
ex

pr
es
ol
ve
r
off

C
pl
ex

cu
ts

an
d
pr
es
ol
ve
r
off

s
d

|V
|

|E
|

|D
|

|N
|

U
B

D
M
C
F

M
C
F

S
C
F

S
U
B
c

S
C
F

S
U
B

S
U
B
c

S
U
B
n

S
U
B
f

P
S
U
B
c

P
S
U
B
n

P
S
U
B
f

[S
al
m
an

et
al
.]

e2
0

c
l

18
.2

37
.8

8.
6

12
.6

11
1.
9

5.
5

11
.2

32
.3

5.
4

0.
3

0.
0

0.
0

0.
4

0.
0

0.
0

0.
0

0.
0

0.
0

e2
0

r
l

17
.4

35
.4

10
.0

13
.0

14
3.
3

6.
6

10
.9

33
.2

6.
8

4.
7

1.
6

2.
0

2.
5

1.
2

1.
7

1.
5

1.
5

1.
9

e2
0

c
h

18
.2

38
.0

8.
6

27
.6

19
4.
2

6.
0

9.
8

22
.1

6.
0

1.
8

2.
4

2.
6

4.
3

[1
]

1.
3

2.
0

2.
0

1.
2

0.
7

e2
0

r
h

17
.6

36
.2

9.
2

23
.2

23
9.
8

5.
8

9.
4

19
.7

5.
8

2.
8

1.
6

1.
7

3.
8

[2
]

0.
4

0.
9

1.
1

0.
9

1.
0

e3
0

c
l

26
.6

54
.4

14
.6

24
.2

32
3.
5

6.
6

10
.8

23
.9

7.
1

[1
]

9.
1

4.
0

4.
3

[1
]

6.
1

[2
]

2.
7

3.
5

3.
2

3.
4

7.
1

e3
0

r
l

26
.8

55
.2

13
.8

22
.2

29
0.
1

5.
9

9.
1

22
.9

5.
9

7.
8

4.
0

4.
4

6.
0

[2
]

2.
8

4.
0

3.
3

3.
5

7.
6

e3
0

c
h

26
.2

53
.6

14
.2

47
.4

52
9.
1

5.
1

8.
8

15
.2

5.
1

[1
]

6.
3

4.
4

4.
4

[1
]

7.
5

[5
]

3.
0

3.
7

3.
5

3.
5

6.
2

e3
0

r
h

26
.6

54
.8

12
.2

33
.4

46
9.
0

4.
9

6.
9

13
.7

4.
9

5.
5

3.
7

4.
1

5.
5

[3
]

2.
8

3.
6

3.
1

3.
3

4.
5

e4
0

c
l

36
.6

75
.2

19
.0

27
.4

40
9.
1

6.
8

11
.0

28
.1

7.
1

[2
]

15
.4

6.
5

6.
5

[2
]

8.
6

[1
]

4.
5

6.
4

[2
]

5.
2

5.
6

14
.7

e4
0

r
l

35
.6

74
.6

19
.4

31
.4

57
2.
4

5.
8

9.
0

22
.2

6.
1

[2
]

12
.3

5.
2

5.
7

[2
]

6.
8

[2
]

3.
9

5.
2

4.
4

5.
0

10
.4

e4
0

c
h

35
.8

73
.8

19
.0

49
.4

67
4.
8

6.
1

[2
]

8.
2

16
.0

5.
8

[4
]

9.
4

5.
1

5.
8

[4
]

6.
6

[2
]

3.
7

5.
3

[1
]

4.
2

4.
7

[1
]

7.
9

e4
0

r
h

33
.8

71
.8

16
.8

46
.2

74
5.
6

5.
1

[2
]

7.
2

14
.1

5.
2

[4
]

8.
0

4.
8

[1
]

5.
0

[4
]

6.
3

[5
]

3.
4

4.
5

4.
0

4.
4

6.
3

oc
t

16
20

14
39

24
32
.3

6.
1

8.
8

17
.5

6.
3

3.
9

2.
8

4.
0

5.
2

1.
4

3.
0

1.
2

2.
5

0.
0

ri
ng

26
54

17
47

13
91
.3

7.
2

11
.5

25
.6

7.
3

11
.1

5.
6

5.
9

7.
9

3.
8

5.
4

4.
4

4.
6

6.
5

us
a

26
39

16
44

22
33
.2

7.
4

10
.4

19
.5

7.
4

8.
3

6.
2

6.
2

8.
2

[1
]

4.
6

5.
6

5.
1

5.
4

4.
8

ar
pa

16
21

12
35

25
71
.4

5.
0

9.
4

15
.0

5.
1

1.
6

1.
5

2.
2

4.
5

0.
5

1.
7

1.
7

1.
3

0.
0

T
ab

le
3:

R
es
ul
ts

fo
r
Sa

lm
an

’s
in
st
an

ce
s.

T
he

up
pe

r
pa

rt
of

th
e
ta
bl
e
sh
ow

s
av
er
ag
e
va
lu
es

ov
er

5
in
st
an

ce
s
in

ea
ch

cl
as
s
e(

n)
(s

)(
d)

.
T
he

lo
w
er

pa
rt

sh
ow

s
re
su
lt
s
fo
r
th
e
fo
ur

in
st
an

ce
s
fr
om

G
av
is
h
an

d
A
lt
in
ke
m
er

[2
3]
.
W
e
re
po

rt
th
e
ga
ps

to
th
e
be

st
kn

ow
n
up

pe
r
bo

un
d
ob

ta
in
ed

at
th
e
ro
ot

no
de

an
d

af
te
r
th
e
ti
m
e
lim

it
.
T
he

nu
m
be

rs
in

sq
ua

re
d
br
ac
ke
ts

de
no

te
in

ho
w

m
an

y
(o
ut

of
5)

ca
se
s
th
e
LP

so
lu
ti
on

at
th
e
ro
ot

no
de

w
as

no
t
fo
un

d
w
it
hi
n
th
e

ti
m
e
lim

it
.

23



number of branch-and-bound nodes and the tightness of the bounds at the root node of the branch-and-

bound tree. The average values over all 64 Salman instances for the following parameters are provided:

Time0 and Gap0 denote the running time and the gap at the root node of the branch-and-bound tree,

respectively; Benders0 denotes the number of Benders cuts separated at the root node; Time0/Benders0

provides the ratio between the total time spent and the number of Benders cuts. The values Gaptotal

and Timetotal/Benderstotal are the corresponding values provided for the total running time Timetotal of

1000 seconds. The last row shows how many branch-and-bound nodes have been processed within the

time limit. For the results after 1000 seconds, the two best performing approaches are shown in bold

face.

The normalized Benders subproblems have a complicated flow structure with two kinds of capacity

constraints. Therefore, the problem of solving a normalized subproblem by closing the unbounded cone

with an additional constraint may become a difficult task. Row Time0/Benders0 of Table 4 provides

an estimate of an average time (in seconds) needed to solve each Benders subproblem. The fastest

subproblems are SUBf and PSUBn (followed by the separation of extreme rays with the SUB approach).

Correspondingly, these two variants are first to be finished at the root node of the branch-and-bound

tree. Therefore, they are also separating the most Benders cuts and traversing the most nodes of the

branch-and-bound tree. However, the SUBf bounds obtained at the root node are tighter than the

corresponding bounds of the PSUBn model, which makes the SUBf approach the winner, when solving

this data set.

This study shows that:

• Using rounded Benders cuts derived from the DMCF formulation outperforms the compact SCF

model.

• Two important aspects decide on the quality of our Benders approach: a) the running time needed

to solve the Benders subproblem, and b) the quality of the derived Benders cuts. The model that

succeeds to balance the trade-off between these two aspects is the most desirable one.

Average DMCF MCF SCF SUB SUBc SUBn SUBf PSUBc PSUBn PSUBf

Time0 503.2 3.2 0.1 68.3 422.5 603.5 22.0 247.0 35.3 170.0

Benders0 - - - 40.9 38.3 67.8 57.2 36.0 115.5 52.9

Time0/Benders0 - - - 1.7 11.0 8.9 0.4 6.9 0.3 3.2

Gap0 5.9 9.1 19.6 7.5 6.0 6.9 6.4 6.1 6.9 6.2

Benderstotal - - - 740.8 164.7 159.2 1281.5 303.4 1498.6 556.0

Timetotal/Benderstotal - - - 1.3 6.1 6.3 0.8 3.3 0.7 1.8

Gaptotal 4.5 4.5 8.0 3.6 3.9 5.4 2.5 3.5 3.0 3.1

Nodes 1031 100264 680981 2152 492 212 6043 1326 3655 2501

Table 4: Average values over all 64 Salman’s instances.
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5.4 Solving Real-World Instances

We now show the comparison of results obtained for the set of real-world instances derived from Bregenz,

a city in Austria.

LP relaxations: We first compare the gap of LP relaxations for three compact models, SCF, MCF

and DMCF, whose values are given in Table 5. We turned Cplex cuts and the presolver off, to be able to

compare the gaps achieved with the proposed LP models. For all 32 instances, the LP relaxation of the

SCF model was solved within 1 or 2 seconds, but the average (median) gap over all Bregenz instances is

46.6% (42.0%). As expected, lower bounds obtained by solving the MCF model are significantly better:

19.1% (7.1%), but the LP relaxations of only 13 out of 32 instances were solved to optimality in less

than 1000 seconds (within 383.8 seconds, on average). Finally, the average (median) gap obtained by

solving the DMCF model is 13.9% (7.8%), but only in 3 out of 32 cases the LP relaxations were solved

to optimality within the given time limit (in 55 seconds, on average). This also explains why some of

the presented gaps of the MCF model are better than the corresponding DMCF ones (LP relaxations

are solved by dual simplex method).

According to these experiments we concluded that the only compact model that can be directly solved

without a row and/or column generation technique is the SCF model. In order to use the strength of the

DMCF model, we apply a row-generation technique to it. A column-generation technique for a similar

problem has been presented in [20, 21].

Solving MIPs: For the SCF model and for the seven branch-and-cut variants described above, we ran

the code for 1000 seconds, with default Cplex settings and the primal heuristic described in Section 4.3.

Only when solving the SUB model, the Cplex presolver needs to be turned off. Since the separation of

Benders cuts may become a time-consuming task for instances of that size, we separate them only at the

root node of the branch-and-bound tree.

Box-plots in Figure 4 provide an overview of the obtained gaps at the root node of the branch-and-

bound tree. We observe that the huge gaps of the SCF model (46.6% average and 42.0% median value)

can be reduced down to an average (median) value of 4.2% (3.4%), by turning on Cplex cuts and the

presolver. By applying Benders cuts, all proposed methods return better results: the average gap varies

between 3.1% (PSUBf) and 3.6% (PSUBc), and the corresponding median values vary between 2.6%

(PSUBf) and 2.8% (SUBc).

Figure 5 shows the gaps after the time limit was reached. Looking at the overall gaps after the given

time limit, we observe that it is difficult to point out the differences between particular normalization

approaches when default Cplex settings are used (see Figure 5(a)). Therefore, we cannot say that there

is a clear winner among different Benders approaches. Although the Benders cuts obtained by solving

the SUBc model are among the tightest ones (see, e.g., Figure 4), the separation was not finished at the

root node of the branch-and-bound tree in 24 out of 32 cases. Figure 6 illustrates a typical situation
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Figure 4: Box-plots over 32 Bregenz-instances: the gaps (in %) of lower bounds at the root node of the

branch-and-bound tree.

in which SUBc gets stuck in the separation phase, while the SUB approach, for example, can draw an

advantage out of branching.
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Figure 5: Box-plots over 32 Bregenz-instances: the overall gaps (in %) obtained after 1000 seconds.

Looking at Figures 4(a) and 5(a) one could get the impression that the simple SCF model (solved

with the default Cplex settings) is competitive with the much more complex Benders approach. However,

Table 5 presents detailed results obtained with default Cplex settings and shows that this is a wrong
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Figure 6: Lower bound growth vs. time (CPU seconds) with models SUB and SUBc for instance

Bregenz29_B_H. (a) The first huge increase of lower bound is due to two subsequently found Benders

cuts, the second increase is due to branching. (b) The separation at the root node is not finished when

solving SUBc.

impression. Indeed, even on the set of real-world instances, the Benders decomposition approach is able

to outperform the SCF model. For 8 out of 32 instances, the branch-and-cut approach (PSUBf) is able

to find the optimal solution within the given time limit, while the SCF model did not solve a single

instance to optimality. Furthermore, for 18 out of the remaining 24 instances, better gaps were produced

using the branch-and-cut approach rather than solving the SCF model.

5.5 Testing Potential Enhancements

We report on negative results when trying to enhance the Benders decomposition with disjoint Benders

cuts and by using Magnanti-Wong (MW) approach. In particular, solving the LP subproblem related to

disjoint cuts is a time-consuming task which takes longer than resolving the primal problem. Since the

only purpose of disjoint cuts is to speed up the separation without resolving the master problem, we did

not obtain better results by using them.

As already observed above, if Cplex general purpose cuts are turned on, it is difficult to point out

the differences between different variants of Benders separation models. Therefore, to test the effects of

applying the MW approach, we turned the Cplex cuts off. The MW approach generates most improving

cuts when applied to the SUBn approach, for which we report the gaps obtained within the time limit of

1000 seconds (see Figure 7). We observe that the MW approach slows down the performance: the overall

number of included Benders cuts is reduced while there is no significant improvement in the quality of

lower bounds obtained per iteration.
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6 Conclusions

We have presented a new disaggregated flow formulation DMCF which is a byproduct of the model

introduced in [16]. It induces tighter gaps than the MCF model which is typically used for network

loading problems. Using Benders decomposition, we solve 8 of our 32 new single-source instances to

optimality within a reasonable time limit. For 18 out of the remaining 24 instances, we report better

gaps than the best performing compact formulation.

Comparing normalization strategies for the Benders decomposition, we see that depending on the

structure of the inputs, different normalizations are preferable. However, in contrast to a common belief,

the separation of extreme rays, which is also called the textbook implementation, provides relatively good

results across all instances.

There are several arguments explaining this observation:

1. We solve the problem starting from a compact formulation (the SCF model) and we use Benders

cuts only in order to improve the quality of lower bounds, i.e., they are not necessary for SSNLP to

have a complete MIP formulation. This is a first difference with respect to known approaches for

solving the multiple-source multiple-sink network loading, where Benders inequalities are separated

in a similar way.

2. In opposite to our objective function, many related problems consider settings with flow-dependent

objective values. In such cases, Benders cuts are used to separate both, feasibility and optimal-

ity cuts. The quality of optimality cuts is essential for such problems and therefore enhancing

approaches (like those given in e.g. [18, 31, 32, 35]) play a crucial role to make Benders decompo-

sition work.

3. We confirm the claim of Magnanti and Wong [31], that the crucial role in the generation of efficient

Benders separation approaches is played by the size (see our Lemma 2.4) of the convex hull of

the relaxed master problem. We show that the textbook implementation of Benders separation

is not the worst possible choice, if a “good” LP-model is used to generate the corresponding cuts.

Typically there is a trade-off problem in Benders decomposition approaches between the strength of

the subproblem and the running time needed to solve it. To overcome this problem, the separation

of extreme rays turns out to be a good compromise: an extreme ray is usually found much faster

than an optimal extreme point of a bounded subproblem.

The algorithmic framework has been developed to solve large single-source instances arising in the

design of telecommunication networks. Some ingredients in our approach exploit the single-source as-

sumption. For example, degree-balance constraints or primal heuristic guarantee that the final solution

is a directed acyclic graph. Also, based on the single-source assumption, Benders cuts are being added

to strengthen the LP-relaxation, but they are not necessary for the feasibility of a solution of the SCF

master model. However, the presented approaches for separating Benders cuts derived from the disag-

30



gregated formulation could also be applied to more general multi-commodity versions of the capacitated

network design problem.

It would be interesting to compare the developed branch-and-cut algorithm with a stabilized column-

and-row generation technique as the one proposed in [21]. Furthermore, one could even consider a

branch-and-cut-and-price approach that combines Benders’ and Dantzig-Wolfe decompositions, thereby

exploiting the best of both methods. As observed in [21] on a similar problem, a competitive implemen-

tation is far from simple and we let it open for a future work.
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