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Abstract We study survivable network design problems with edge-connectivity re-
quirements under a two-stage stochastic model with recourse and finitely many sce-
narios. For the formulation in the natural space of edge variables we show that facet
defining inequalities of the underlying polytope can be derived from the deterministic
counterparts. Moreover, by using graph orientation properties we introduce stronger
cut-based formulations. For solving the proposed MIP models, we suggest a two-
stage branch&cut algorithm based on a decomposed model. In order to accelerate
the computations, we suggest a new technique for strengthening the decomposed L-
shaped optimality cuts which is computationally fast and easy to implement. Compu-
tational experiments show the benefit of the decomposition and the cut strengthening
which significantly reduces the number of master iterations and the computational
running time.

Keywords stochastic network design problems, stochastic integer programming,
branch-and-cut, Benders decomposition
1 Introduction

Motivation. Survivable network design problems with edge-connectivity requirements
(SNDPs) are among the most fundamental problems in the field of network optimiza-
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tion. Many classical network design problems including the shortest path problem,
the minimum spanning tree problem, the Steiner tree problem, the minimum-weight
edge-connected subgraph problem, and edge-connectivity augmentation problems
are special cases of the survivable network design problem. Applications of the SNDP
can be found in many different fields, e.g., in the design of supply chain and distri-
bution networks, in the chip layout design, or in the reconstruction of phylogenetic
trees. The field of telecommunications belongs to the most important applications
that request building cost-effective networks with higher connectivity requirements.

In a typical telecommunication network [9,10], an edge weighted graph is given
with three types of nodes: “special” offices (nodes of type 2), “ordinary” offices
(nodes of type 1), and “optional” offices (nodes of type 0). The goal is to find a cost-
minimal subnetwork which ensures that all special offices belong to a two-connected
component, all ordinary offices are at least simply connected, and optional offices can
be used to establish connections, if that would lead to a cheaper solution. The latter
problem is known as the {0, 1,2}-SNDP. Here, we consider the general SNDP with
arbitrary connectivity requirements between each pair of nodes.

In practice, however, from the moment that the information is gathered until the
moment in which the solution has to be implemented, some of the data might change
with respect to the initial setting. So, for example, even if some (rough) idea about
node types is known, changes in demographic, socio-economic, or political factors
can lead to changes in the demand requirement of a certain region, or availability
of a given location to host an office. Furthermore, the costs of establishing links
(installing new pipes, cables, etc.) may be subject to inflations and price deviations.
This means that the solution obtained using a classical deterministic method might
become suboptimal or even infeasible such that a new solution might have to be
redefined from scratch.

Despite the great importance of the SNDP and the relevance of the uncertainty for
practical applications, to our knowledge, nothing is known about building survivable
networks under data uncertainty. In this article we attempt to close this gap by consid-
ering two-stage stochastic versions of survivable network design problems with edge-
and node-connectivity requirements (for an introduction to stochastic programming
see, e.g., [2]). Thereby, the uncertain data is modeled using random variables with a
set of scenarios defining their possible outcomes. Typically, a solution is comprised
by first- and second-stage decisions such that a partial subnetwork is built in the first
stage which is then completed once the uncertain data becomes available (in the sec-
ond stage).

More precisely, in the two-stage stochastic survivable network design problem
(SSNDP), network planners want to establish profitable connections now (in the first
stage, on Monday) while taking all possible outcomes—the scenarios—into account.
In the future (in the second stage, on Tuesday) the actual scenario is revealed, re-
quirements and connection costs are now known, and additional connections can be
purchased (through so-called recourse actions) to satisfy the now known require-
ments. The objective is to minimize the expected costs of the solution, i.e., the sum
of the first stage costs plus the expected costs of the second stage. Thereby, all con-
nectivity requirements for all scenarios have to be satisfied. The formal definition of
the SSNDP is given in Section 3.
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Previous work. There exists a large body of work on different variants of the deter-
ministic survivable network design problem. We refer to [17, 18] for a comprehensive
literature overview on the SNDP. Many polyhedral studies were done in the 90’s, see,
e.g., [11,18]. A decade later the question of deriving stronger MIP formulations by
orienting the k-connected subgraphs has been considered by e.g. [1,21]. Among the
approximation algorithms for the SNDP, we point to the work of Jain [15] whose
approximation factor of two remains the best one up to date.

Regarding the stochastic variants of some simplest variants of the SNDP, there
are significantly less results published so far. One of the studied related problems is
the two-stage stochastic Steiner tree problem which is a special case in which node
types are either zero or one. For this problem both approximation algorithms (see,
e.g., [14,29]) and MIP approaches (see [3]) were developed. For the more general
case in which node types are arbitrary natural numbers, up to our knowledge, there
only exists an O(1) approximation algorithm (see [13]) for the following special case
of the {0, k}-SSNDP: For each pair of distinct nodes ¢ and j a single scenario, whose
probability is p;;, is given in which nodes 7 and j need to be k-edge-connected. But
in general, however, it follows by [26] that the SSNDP is as hard to approximate as
label cover—which is £2(log?~n) hard. In fact, the hardness-proof already works
for the stochastic shortest path problem.

Our contribution. Our contribution is twofold, it concerns theoretical models as well
as practical algorithms.

Theory: In the past, the seminal result of Nash and Williams [23] has been used
to develop stronger mixed integer programming (MIP) models for the determinis-
tic SNDP by exploiting graph orientations [5,6,21]. Here, we show that graph ori-
entation properties cannot be used in a straight-forward fashion to develop similar
models for the SSNDP. As an alternative, we propose two general ways to develop
semi-directed MIP models in which only the second-stage solutions are oriented. We
develop two novel cut-based MIP models of the deterministic equivalent for solving
the SSNDP on undirected graphs based on these orientation properties. We prove that
the new models are stronger than the original one based on standard undirected cuts.
Moreover, when considering the undirected formulation of the SSNDP we show that
facet defining inequalities can be easily derived from their deterministic counterparts.

Practice: The SSNDP belongs to a broader class of two-stage integer stochas-
tic programs with binary first stage solutions and binary recourse. These NP-hard
problems are known to be notoriously difficult to solve [27]. In this paper, we use a
recently introduced decomposition approach called two-stage branch&cut [3]. This
approach uses a Benders decomposition and two nested branch&cut algorithms. In
the subproblems, violated directed cuts are separated, while the master problem is
expanded by L-shaped and integer optimality cuts. To enhance the algorithmic per-
formance, we propose a new computationally inexpensive dual lifting procedure that
strengthens the inserted L-shaped optimality cuts by simple modifications of the dual
solutions of the subproblems. To illustrate the effectiveness of the dual lifting pro-
cedure, we compare our approach with the classical method by Magnanti and Wong
[22] for generating Pareto-optimal L-shaped cuts. Using a large set of realistic in-
stances, we analyze in detail the characteristics of the proposed models and the ob-
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tained solutions as well as the performance, behavior, and limitations of the designed
algorithmic approach.

Organization of the paper. We start by recalling the basic ILP formulation for the
deterministic SNDP in Section 2. Moreover, we summarize the ideas of Magnanti
and Raghavan [21] for strengthening the undirected formulation by orienting the so-
lution and describe the corresponding MIP model. This model is the starting point
for our models concerning the stochastic SNDP in Section 3. Here, the undirected
formulation (Section 3.1) and two stronger semi-directed formulations (Sections 3.2
and 3.3, respectively) are described. Furthermore, structural results for the associ-
ated polyhedron with the undirected formulation are provided. Section 4 is dedicated
to the two-stage branch&cut algorithm with descriptions of the algorithm and the
decomposition. Afterwards, in Section 5, we describe the dual lifting procedure for
strengthening the generated L-shaped optimality cuts. The benefit of these cuts—
and the decomposition itself—is presented in the results of the experimental study in
Section 6.

2 The deterministic survivable network design problem

Definition. Formally, the deterministic version of the SNDP is defined as follows:
We are given a simple undirected graph G = (V, E') with edge costs ¢, > 0, Ve € E,
and a symmetric |V| X |V| connectivity requirement matrix r = [ry,]. Thereby,
run € NU{0} represents the minimal required number of edge-disjoint paths between
two distinct nodes u,v € V. The goal consists of finding a subset of edges £’ C E
satisfying the connectivity requirements and minimizing the overall solution costs
being defined as ) 5 ce.

While the given definition of the SNDP is as general as possible, one additional
assumption is made in this paper which is commonly considered in the literature:
it is assumed that the connectivity requirements r = [r,,] imply that each optimal
solution comprises a single connected component. In this case the problem is called
the unitary SNDP. One example for a non-unitary SNDP is the Steiner forest problem
where optimal solutions might be disconnected.

A closely related problem to the SNDP is the node-connectivity SNDP where re-
quirements have to be satisfied by node-disjoint paths. A small example depicting
optimal solutions for both problems is illustrated in Figure 1. For the ease of pre-
sentation, this article focusses on edge-connectivity but the ideas and algorithms are
transferable to the related node-connectivity problem as well.

We note that in some applications (including our example mentioned in the intro-
duction), edge- or node-connectivity requirements can be specified using node types
pu € NU {0}, for all u € V. In that case, the required connectivity between a pair
of distinct nodes u,v € V is defined as r,, = min{p,, p, }. In presenting the main
results of this paper we will stick to the more general definition of connectivity re-
quirements using the connectivity matrix r. For illustrating examples, however, we
will use the more intuitive concept of node types.
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(a)

Fig. 1 (a) An example network with gray nodes having connectivity requirement two w.r.t. each other and
all other requirements being zero. Default edge costs are one. The bold edges depict the optimal solution
for (b) edge-connectivity with costs 6 and (c) node-connectivity with costs 7, respectively.

(M)ILP models. The classical cut-based ILP formulation for the deterministic SNDP
(see, e.g., [11,12]) uses binary decision variables x. for each edge e € E. We use
notations z(E') := > cp xe, VE' C E,and 6(W) := {e = {i,j} € E | {i,j} N
W| = 1}, for W C V. Moreover, let us denote by

FW) :==max{ry, |lue Wio g W}, VW CV,

the connectivity function on G. The SNDP based on undirected cuts then reads as
follows:
(SNDP,yt) min Z CeTe

eck
st. x(6(W)) > f(W) VO AW CV (ucut:1)
x € {0,1}/7

This model is one of the most famous models in the literature and has been used
in polyhedral studies (see, e.g., [11]) or to estimate the quality of approximative so-
lutions (see, e.g., [15]). Magnanti and Raghavan [21] showed how to strengthen this
formulation by using a famous theorem by Nash-Williams [23] about graph orienta-
tions that we restate here:

Theorem 1 (Nash-Williams [23]) Let G = (V, E) be an undirected graph and let
Ky be the maximum number of edge-disjoint paths from u to v, where u,v € V,
u # v. Then G has an orientation such that for every pair of nodes u and v in G, the
number of pairwise edge-disjoint directed paths from u to v in the resulting directed

Ruy

graph is at least | "3> |.

If connectivity requirements are in {0,1} U {2k | £ € N} then it is possible
to orient any optimal SNDP solution as follows: Since we are dealing with the uni-
tary SNDP, any optimal SNDP solution consists of edge-biconnected components
connected with each other by cut nodes or bridges. Using the result of Theorem 1,
each of those edge-biconnected components can be oriented such that for each pair
of distinct nodes u and v from the same component there exist r,,, /2 edge-disjoint
directed paths from u to v and r,, /2 edge-disjoint directed paths from v to u. To
orient possible bridges, a node v, is chosen for which we know that it is a part of an
edge-biconnected component and each bridge is oriented away from this component.
To this end, the edge-biconnected components are oriented, shrunk into single nodes,
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and the obtained tree is oriented away from the “root” v,.. These orientation proper-
ties can be used to derive a MIP model that uses binary arc variables d;; associated
to the orientation. By projecting the arc variables into the space of undirected edges
as . = d;; +dj;, forall e = {7, j} € E, it is not difficult to see that the obtained
directed model is stronger than the undirected one given above. In fact, the directed
model is strictly stronger if and only if there exists a pair of distinct nodes u,v € V,
such that r,,,, = 1 [21].

To model the general SNDP—i.e., the SNDP with arbitrary connectivity require-
ments 7, € N U {0}—Magnanti and Raghavan [21] present an extended MIP for-
mulation which is similar to the one described above with the only difference that the
binary arc variables d;; are relaxed to be continuous. This small change makes the
model valid for arbitrary values of r,,,, and provably stronger than its undirected coun-
terpart. For describing this model, we will need the following notation: let A be the
arc set of the bidirection of G containing two directed arcs for each undirected edge,
ie,Y{i,j} € E:(i,7),(4,i) € A. Foravertex set W C Vlet 5~ (W) = {(4,]) €
A|i¢gW,j € W)} and analogously 6+ (W) = {(i,j) € A|i € W,j5 € W)} be
the set of ingoing and outgoing arcs, respectively. By using fractional arc variables
dij,V(i,7) € A, the resulting model by [21] reads as follows:

(SNDP4eyt) min Z CeZe

c€E
st. d6~(W)>fW)/2 YOA£W CV,f(W)>2 (deut:1)
(s~ (W)) >1 VOAW CV,fW)=1,0, ¢ W  (dcut:2)
dij +dji < e Ve={i,j} € E (dcut:3)
dij >0 V(i,j) € A (dcut:4)
x € {0,1}F!

Constraints (dcut:2) are classical directed Steiner cuts implying connectivity of the
solution. The directed cuts (dcut:1) ensure that for each two distinct nodes u,v € V'
such that uw € W, v & W, ry,, /2 directed paths are selected from « to v and from v to
u, respectively. The capacity constraints (dcut:3) enforce that each selected directed
arc is payed for in the objective function.

The main results concerning the (strength of the) two presented formulations are
summarized in the following theorem. Let Psypp,,..; Psnpp,,,, denote the polyhe-
drons defined by the linear relaxation of (SNDP,.y:) and (SNDP ., ), respectively.
Moreover, let Proj,(Psnpp,,,,) denote the linear projection of Psnpp,.,, onto the
space of undirected x-variables.

Theorem 2 (Magnanti-Raghavan [21]) (SNDP...:) is a valid formulation for the
SNDP. Furthermore, (SNDP j.y+) is strictly stronger than (SNDP eyt ), i.e.,

Proj, (Psnppy.,) S Psnpp,,, and there exist instances for which the strict inequal-
ity holds.
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(@ (b)

Fig. 2 An example SSNDP instance with 20 nodes, 40 edges, and 2 scenarios. Nodes depicted as blue
rectangles imply connectivity requirement 2 and green circles imply connectivity 1. (a) and (b) show the
optimal solution for the first and second scenario, respectively, with bold edges being first- and dashed
edges being selected second-stage edges.

3 The stochastic survivable network design problem

Definition. Let G = (V, E) denote the undirected input graph with known first-stage
edge costs ¢! > 0 for all ¢ € E. The actual connectivity requirements as well as
the future edge costs are only known in the second stage. These values together form
a random variable ¢ for which we assume that it has finite support. It can therefore
be modeled using a finite set of scenarios K = {1,..., K}, K > 1. The realization
probability of each scenario is given by p* > 0, k € K, with D okek p* = 1. Edge
costs in the second stage under scenario k € K are denoted by c¥ > 0 forall e € E.
Furthermore, let r* be the matrix of unitary connectivity requirements in the k-th
scenario.

The two-stage stochastic survivable network design problem (SSNDP) is de-
fined as follows: Determine the subset of edges E° C E to be purchased in the
first stage and the sets £ C E of additional (recourse) edges to be purchased in
each scenario k € K, such that the overall expected costs defined as >, o ¢ +
> pex PP cpr ¢k are minimized. Thereby, E° U E* has to satisfy all connectivity
requirements between each pair of nodes defined by r* for all k € K. W.lLo.g. we
assume that > kex pk c’eC > cg, for all e € E; Otherwise, one would never install such
an edge in the first stage. We also assume that the connectivity requirements are uni-
tary, as in the deterministic setting, i.e., for each k € /C, the connectivity requirements
r® imply that any optimal solution E° U E* is a connected subgraph. Figure 2 shows
an example of an SSNDP instance with & = 2 scenarios, and its optimal solution.

Solution Topology: Observe that, despite the fact the connectivity requirements are
unitary, the optimal first-stage solution E° of the SSNDP is not necessarily con-
nected. This holds even if the connectivity requirements are from the set {0, 1} only.
The optimal first-stage solution may contain several disjoint components depending
on the values ¥, throughout different scenarios—or depending on the second-stage



8 I. Ljubi¢, P. Mutzel, and B. Zey

1 (10, 10)

() (b) (©

Fig. 3 (a) An instance for the SSNDP with a highlighted optimal first-stage solution being a forest, cf.
text. Figures (b) and (c) depict the optimal solution for scenarios 1 and 2, respectively, with selected first
stage edges being drawn as solid lines and second stage edges as dashed lines. For the orientations in the
semi-directed models we assume vertex A being the root node.

cost structure. A small example is shown in Figure 3: This instance consists of K = 2
scenarios with equal probability and with the set of nodes { A, C, D} being of “type
one” in both scenarios; Node B is of “type zero”in both scenarios. The costs are given
next to the edges in Figure 3(a) by “c%(cl, ¢2)”, for all edges e. The optimal solution
consists of the two edges {A, B} and {C, D} purchased in the first stage expanded
by one edge in scenario 1 (edge { B, C'}, Figure 3(b)) and in scenario 2 (edge { B, D},
Figure 3(c)). Hence, the overall expected costs are 3.

3.1 Undirected model

We first present the deterministic equivalent—in extensive form—of the SSNDP in
the natural space of edge variables. Later on we show how to derive stronger, ex-
tended formulations using the orientation properties presented in Section 2 by as-
signing a unique direction to each edge of a feasible second stage solution.

Let binary variables 20 indicate whether an edge e € E belongs to E°, and binary
second-stage variables ¥ indicate whether e belongs to E¥, for all scenarios k € K.
For E' C E let (z° 4+ z*)(E') = Y cp (a2 + xF). Moreover, we expand the
connectivity function to f k for each scenario k € K and W C V:

fEW) == max{r¥ | u g W,v € W}.

A deterministic equivalent of the SSNDP can then be modeled easily using undirected

cuts as follows:
(UD) min Z 2z + Z p" Z ckak

ecFE ke ecE
st (2% + 2P (S(W)) > fEw) Y0 #AW CV,Vke K (UD:1)
242k <1 Ve € E,\Vk € K (UD:2)
(20,2, ... 2¥) e {0, 1}/ PIK+D

This model is a direct extension of the model from Section 2. Constraints (UD:1)
ensure edge-connectivity between each pair of nodes in each scenario realization
while first- and second-stage edges can be used. The additional constraints (UD:2)
simply forbid the installation of the same edge in the first-stage and in any scenario.
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Polyhedral properties. Let S* be the convex hull of all integer points that define
feasible SNDP solutions w.r.t. connectivity requirements r*, i.e.,

S* = conv{z® € {0, 1}1F! | 2*(5(W)) > fF (W), Y0 £ W c V).

Similarly, let S be the convex hull of all integer points that define feasible SSNDP
solutions, i.e.,

S = conv{z = (z°,2,...,2%) € {0, MPIEFD | g satisfies (UD:1),(UD:2)}.
In the following, we will study some properties of the polytope S.

Lemma 1 If the polytopes S* for all k € K are full-dimensional, then the polytope
S is full-dimensional as well.

Proof Let m := |E|. We need to show that dim(S) = m(K + 1). To this end, we
now construct a matrix that contains m K +m linearly independent feasible solutions
to SSNDP. In the last step we extend it by one more solution with the whole collection
of solutions being affinely independent.

The matrix is constructed in (K +1) - (K + 1) blocks of size m x m and each row
of the matrix represents one feasible solution in S. Each block column corresponds to
a binary variable of the vector (2, z*, ..., x¥); the first m rows represent feasible
independent solutions involving the «® variables, the next K'm solutions are linearly
independent with respect to the «* variables, for all k € K.

We first observe that for each scenario k € IC, the collection of m solutions
E = {E\ {e} | e € E} represents a set of m linearly independent points of the
polytope S¥. Let Ag denote the m x m matrix obtained by row-wise concatenation
of the characteristic vectors of these solutions.

1. Initialize the first m x m block with Ag. Fill out the remaining K blocks at
position [0, k], k € K, with the m x m identity matrix I,,.

2. For k € K: set up the block at the position [k, 0] to 0, and the block at the
position [k, k] to Ag. The remaining blocks at positions [¢, k] are set to 1, for
alll € K, 0 # k.

It is not difficult to see that the obtained matrix has full rank mK + m. In the last
step, we add the vector that is obtained by concatenating the 0 vector solution for a°
and 1’s for the remaining coordinates 2! to =*. Subtracting all solutions contained
in the matrix from the latter solution gives a new matrix—with full rank, too. Hence,
all solutions are affinely independent. O

Theorem 3 Ifforall k € K, the polytopes S* are full-dimensional and the inequality
wxt > o, with m. € NU{0},Ve € E, and 9 > 1, defines a facet of the polytope
St for some ¢ € K, then the inequality wx® + wat > 7 is facet defining for the
SSNDP polytope S.

Proof We denote the affine independent solutions of the polytope S¢ that satisfy
wxt = 7o by Tf,...,TY . Since my > 1, these points are also linearly independent
(the origin does not belong to the set of feasible points). Let A¢ be the matrix obtained
by the row-wise insertion of these solutions, and let 1 — A? be the complementary
matrix of A%. Construction is done by a row-wise insertion of blocks, similarly as
above.
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1. Initialize the first m x m block with A¢ (meaning, set first stage solutions to be
equal to the solutions of S*). Fill out the remaining blocks at the position [0, k]
with 1 — A¥#, forall k € K, k # (. The block at the position [0, ] is set to 0.

2. For k € K, k # £: set up the block at the position [k, 0] to 0, at the position [k, /]
to A? and the block at the position [k, k] to Ag (defined above). The remaining
blocks at [k, i] are set to 1, for all ¢ € K, i # k, L.

3. Set up the block at the position [¢,0] to 0, and the block at [, /] to Af. The
remaining blocks at [¢, ] are set to 1, for all i € K, i # £.

It is not difficult to see that the obtained matrix has full rank, i.e., (K + 1)m, and
each row satisfies 7x® + wx* = 7y which concludes the proof. O

Many facet-defining inequalities (see, e.g., [31]), known for the deterministic
case, can therefore be easily translated into the facets of the SSNDP. There is a large
body of work on polyhedral studies for many variants of the SNDP (see, e.g., surveys
in [17,18]). As an illustration of the obtained result, we will provide here two exam-
ples. Facets of the SNDP are usually shown for connectivity requirements given as
node types (described above). In the SSNDP context, node types are then defined as
o for each scenario k € K and each node u € V, and the connectivity requirements
would be r¥ = min{pk, pF}.

For example, for a given SSNDP instance with the node types p* € {0,...,x}
and a given k£ € KC, under some special conditions (given in [31]), the undirected
cut-set inequalities (0 + %) (§(W)) > f¥(W) are facet defining.

Similarly, let W1, ..., W, C V,p > 1 be a proper partition of V', [W1, ..., W,]
denoting the edges having their nodes in two different sets, and I := {i | f*(W;) =
1} and Iy := {i | f*(W;) > 1}. The partition inequalities

o b1 it I, =0
(z7 + 2")([Wy, ..., Wp]) > {[1/2 Sier, [E(Wi) +|L[]  otherwise

are facet-defining for S (see [31] for the necessary and sufficient conditions).

Let F' be an extended MIP formulation for the SSNDP. We will denote the poly-
hedron defined by the LP-relaxation of ' by Pr and the natural projection of Pr
onto the space of undirected (2%, 2, ..., %) variables by Proj o ) (Pr). Fur-
thermore, for two (extended) formulations F} and F5, we will say that F is strictly
stronger than F if and only if Proj o ,x)(Pr) € Proj,o  ,x)(Pr,) and there
exists an SSNDP instance for which the strict inequality holds and for which the
bound of the LP-relaxation of F} is tighter than the one of the LP-relaxation of F5.

3.2 Semi-directed model

It is known that MIP models on bidirected graphs provide better LP-based lower
bounds for many types of network design problems, cf. Section 2. Therefore we are
looking for a possibility to strengthen the model ( UD) by bi-directing the given graph
G and replacing edge- by arc-variables in the same model. The main difficulty with
the SSNDP arises from the fact that the first-stage solution may be disconnected (cf.
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Figure 3), and as such it cannot be oriented, even though the deterministic counterpart
admits an orientation. In the following, we will introduce two extended formulations
(semi-directed models) to overcome these obstacles and provide two MIP models that
are strictly stronger than the model (UD).

The example given in Figure 3 illustrates an instance in which it is impossible
to uniquely orient the edges from E° since there exists an edge from E° that cannot
be used in exactly the same direction over all scenarios. More precisely, the edge
{C, D} is selected in the first stage and during the orientation process it is used in the
direction (C, D) in scenario 1 and in the direction (D, C) in scenario 2, respectively.
Therefore, requiring a fixed orientation for an edge in the first stage would conflict
with optimal scenario solutions and would in total lead to more expensive, suboptimal
solutions.

Hence, the first stage decision variables need to remain associated with undirected
edges. However, one can provide a directed formulation once the solution gets com-
pleted in the second stage, i.e., one can orient the edges of E° U E* independently
for each scenario, as depicted in Figures 3(b) and 3(c). We set the root vff for each
scenario k € K to be one of the nodes with the highest connectivity requirement and
search for individual orientations of the scenario solutions E° U E¥, for each k € K.

By borrowing the notation from [1], let

WE =W | W C V,max{rF |ug W,v e W} =1,0F ¢ W}
W§2 ={W |W C V,max{r¥ |ug W,ve W} >2}

be the set of regular cutsets and critical cutsets, respectively.

Given the installation of undirected edges from the first stage, the following model
constructs oriented second stage solutions. As above, we use variables °, ..., ¥ to
model the solution edges. In addition, we introduce continuous variables d*, . . ., d¥
associated to directed arcs to “orient” the second stage solutions. The first semi-
directed model is called (SD; ):

(SD;) min Z a9 + Z Pk Z ckak

ecE kel ecll
st (204 2R (W) > fFRW) YW e W, Vk e K (SD;:1)
(W) + d* (6~ (W)) > 1 VIV e WEVE € K (8D;:2)
df; +db; < af Ve ={i,j} € E,Nk € K (SD;:3)
2l 4+ 2k <1 Ve € BE,Vk € K (SD;:4)
df; >0 Y(i,j) € A,Vk e K (SD;:5)
(@, zt,... x¥) e {0, 1}IEIE+D)

Constraints (SD; :1) ensure that in each scenario k there are at least 7% edge-disjoint
paths between v and v, u € W, v ¢ W, consisting of first- and second-stage edges.
Due to constraints (SD;:2) there is at least one path from the root node vf to each
vertex u whenever 7,x, = 1. If an edge is purchased in the second stage, then con-
straints (SD;:2) associated to bridges will force the orientation of those bridges away
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from the root node v¥. Furthermore, since variables dfj are fractional, by using the
same arguments as in Theorem 2 the model is valid for any 7*, € N U {0}. Hence,
we have the following lemma.

Lemma 2 Formulation (SD;) models the deterministic equivalent of the two-stage
stochastic survivable network design problem correctly.

Proof Consider an optimal solution to an SSNDP instance with its characteristic bi-
nary vectors being described by  := (2%, &',...,%¥). Using & as solution to
(SDy), all undirected cuts (constraints (SD;:1)) are obviously satisfied. Moreover,
due to the results of [23] and [21], it is possible to find an orientation in each scenario
such that constraints (SD;:2) are satisfied. Following this orientation the values for
the directed variables d* can be set accordingly. Non-negativity and all other con-
straints follow directly. Hence, there is a feasible solution to (SD;) with the same
objective value.

On the other hand, each optimal solution to (SD;) obviously satisfies all connec-
tivity requirements and induces a solution to the SSNDP with the same costs. O

Note that constraints (SD;:1) can also be expressed as z°(§(W)) + d*(§=(W)) +
d* (5 (W)) > f*(W) (which better explains the original intention of this model).
However, one easily observes that this is just an equivalent way of rewriting (SD;:1),
without any influence on the lower bounds of the given model.

Theorem 4 The semi-directed formulation (SDy) is strictly stronger than the undi-
rected formulation (UD).

Proof Tt follows from the proof of Lemma 2 that any solution (£°, &', ...,&¥) ¢
Proji,o .« (Psp,) is a valid solution to (UD) with the same objective value.

The strict inequality concerning the strength of the formulations is shown by the
example given in Figure 4(a). Assume there are 2 scenarios with equal probability
and non-zero connectivity requirements 78, = 78, = 71y, = 1,72, = 1, and ¢ =
10,c¥ = 12,Ve € E, k € {1,2}. In the optimal solution of (UD), only edges in the
second stage are purchased with a total objective value of 15: z}; = x{, = 2, = 0.5
and z3; = 1. On the other hand, this solution is infeasible for the relaxed model of
(8Dy), i.e., there is no solution to (SD; ) with the same objective value. O

3.3 Stronger semi-directed formulation

In the following model, which represents an alternative model to (SD; ), binary edge
variables y* are used to model the second-stage solution. These variables additionally
include the edges that are already bought in the first stage, i.e., we have y* = 1 if
e € EOUE*, and y’g = 0, otherwise. Moreover, continuous variables z*. are used to

ij
orient the edges from E° U E*. The model will be called (SDy):

(SDp) min Y cfal + Y p* Y el(ys —a?)

eck kel eck
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() (b) (©

Fig. 4 Two counterexamples that prove the strength of the new formulations. (a) Instance with
LP(SD;) > LP(UD), (b) instance with LP(SDg) > LP(SDy), and (c) the optimal LP-solution
of (SDy): A solid line represents an LP value of 1, a dashed line a value of 0.5. Gray nodes have connec-
tivity requirement two, all other nodes connectivity requirement one.

st. 2F(E(W)) > fFw)/2 YW e WE, Wk e K (SD5:1)
(W) > 1 VW € WP, Vk € K (SD5:2)
25+ 25 > al Ve ={i,j} € E,Yk e K (SDy:3)
zzk]—i—zflgyf Ve={i,j} € E\VNke K (SDgz:4)

28 >0 Y(i,j) € A,Vk € K (SDy:5)

e {o, 1}\E|(K+1)

~— .

(w07y17-'~7yK

The directed cuts (SDs:1) and (SD5:2) model the orientation of the solution and
ensure the required connectivities independently for each scenario. Notice that due
to the symmetry, if W € W§2 it follows that V' \ W € W§2, too. Hence, for
each W € WZ, the ingoing and outgoing cut, i.e., 2¥(§=(W)) > f*(W)/2 and
2F(§T(W)) > f*¥(W)/2, are contained in (SDy).

Constraints (SD2:3) and (SDs:4) ensure that variables zfj can be used only along
the edges that are either purchased in the first stage or added in the second stage. In
particular, (SDs:3) forces the orientation of selected first stage edges in each scenario.
Therefore, it holds y* > 20 which explains the corrective term in the objective func-
tion. Since the variables zfj are fractional, the model is valid for any 7% € N U {0}:

Lemma 3 Formulation (SDg) models the deterministic equivalent of the two-stage
stochastic survivable network design problem correctly.

Proof Again, let (£°, &, ..., &%) describe an optimal solution to an SSNDP in-
stance. Following the ideas of the proof of Lemma 2 it is possible to find an orienta-
tion for the directed variables 2* using only edges {e € E | £ + & = 1} for each
scenario and hence create a valid solution to (SDy) with the same objective value.
Conversely, an optimal solution (Z2°,g%,..., 5%, 21, ..., 2K) to (SD,) satis-
fies all edge connectivity requirements in each scenario due to the correctness of the
directed formulation (SNDP.,.). Thereby, capacity constraints (SDg:3) imply—
analogously to the deterministic case—that (2%, (z* := 2° — g*),—1 k) is a
feasible solution to the SSNDP. O

Theorem 5 The semi-directed formulation (SDy) is strictly stronger than the semi-
directed formulation (SDy).
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Proof Let (£°,9%,...,9%,2%,...,2K) € Pgp,. For k € K and (i,j) € A set
Al = 0if 25 + 25 = 0and A} == 2J5/(2f; + 2J;), otherwise. Hence, A}; + A}, =
1,¥{i,j} € E and k¥ € K with 2{‘; + 2% > 0. Moreover, set Z° := &0, z* =

i
g* — &%, and V(i,j) € Awithe = {i, 5} : dfy := 25, — A5, 20, forall k € K.
Obviously, interpreting (2%, 2% ..., 25 d*, ... d¥) as (SD;)-solution gives

the same objective value. This solution is also feasible due to the following argu-
ments.

The connectivity constraints (SD;:1) are satisfied since for each W € Wiz,
k € K, we have: B

vV
—
R[>
S
+

< >
Il
N>
Ea
—
7
=
SN~—"
+
>
Ea
—
[«
+
=
Y
~
Ea
=

e={i,j}€6(W)

The 1-connectivity constraints (SD;:2) are also fulfilled since for each W € Wf,
k € K, we have:

W) +d* (6~ (W) = (W) + DD GO
(4,5)€0~ (W),e={i,5}
> (W) =1

The remaining constraints are also satisfied: (SD;:3): df; 4+ df; = 25 + 28, — 20 <
g8 — 22 = zk, (SD1:4): 20 + 2k = &0 + gF — 20 < 1. Moreover, d;-variables are
non-negative: d; = 255 — (255 /(25 4+ 25,))20 > 255 — (25 / (25 +25:)) (25 + 25;) = 0.

Last but not least, it trivially holds ° € [0, 1]/¥l and Z* € [0,1)/"! vk € K,
since ¥ = ¢ — 29 and 9% > 20. Hence, (2°, 21 ..., 2K d',... d¥) is afeasible
solution for (SD; ) with the same objective value.

To show that there exists an instance for which the strict inequality holds, consider
the graph shown in Figure 4(b). We assume that the input consists of a single scenario
in which the gray nodes require two-connectivity and the remaining ones only one-
connectivity. Furthermore, all edge costs are 1 in the first stage and 10 in the second
stage. The LP solution shown in Figure 4(c) shows the first-stage solution—nothing
needs to be purchased in the second stage—with a total objective value of 5. This
solution is valid for the model (SD;) but it is impossible to “orient” this solution
such that it becomes feasible for the model (SDy). O

Intuitively, formulation (SD2) gives stronger lower bounds than (SD;) for in-
stances where the (fractional) undirected first stage edges allow no valid orientation.
Here, the first stage covers cuts in (SD;) but (SDy) has to purchase additional arcs
in the second stage to ensure feasibility.

4 Decomposition

Notice that, even for a constant number of scenarios, our models contain an expo-
nential number of constraints associated with directed cuts. Although these cuts can
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be separated in a cutting-plane fashion leading to a branch&cut approach, the main
drawback of such a single-stage branch&cut approach is that we still have to deal
with a large set of variables; e.g., formulation (SD3) contains | E|(3K + 1) variables.

Alternatively, one may consider a traditional implementation of Benders decom-
position for two-stage stochastic integer problems. A drawback of the latter approach
is the need for solving several MIP problems (master problem and subproblems) at
each iteration in order to obtain a single Benders cut. Nonetheless, nowadays most of
MIP solvers provide branch&cut frameworks such that Benders decomposition can
be implemented as a pure branch&cut approach by the use of callbacks. In the sto-
chastic programming context, Benders cuts are added to the master problem to model
valid lower-bounds on the expected second stage costs. This idea has been also ex-
ploited in various other applications (including some deterministic problems) where
“complicated variables” are projected out and replaced by Benders cuts [4,20]. Typ-
ically, finding a single violated Benders cut requires solving several compact MIP or
LP models.

When applying the Benders decomposition concept to the proposed MIP models
for the SSNDP, the main difficulty arises with the fact that the associated subproblems
contain an exponential number of constraints, and can therefore be solved only by
means of a cutting plane approach (for finding optimal LP solutions), or branch&cut
(for finding optimal integer solution). Therefore, in order to apply a Benders-like
decomposition, one needs to nest branch&cut algorithms: a branch&cut is employed
for solving the master problem and violated Benders cuts are detected by solving K
other branch&cuts associated to the K subproblems. In [3], this approach has been
coined two-stage branch&cut algorithm (2-stage b&c).

More precisely, in the 2-stage b&c, the variables of the first stage are kept in the
master problem, and the second stage variables are projected out and replaced by
a single variable per scenario, i.e., ek ,Vk € K. The objective function of the de-
composed model becomes min ) . 5 2% + O with the expected second stage costs
O =Y cx P*O and with OF representing a lower bound on the value of the second
stage subproblem in scenario k € K. For a fixed first stage decision Z°, the problem
decomposes into K smaller subproblems, each of which can be independently solved
using a branch&cut approach. Dual variables of the LP-relaxations of these subprob-
lems impose L-shaped cuts that are added to the master while the exact solutions of
the subproblems impose integer optimality cuts [19,32]. Computational results of [3],
applied to the stochastic Steiner tree problem, have shown that the 2-stage b&c sig-
nificantly outperforms the branch&cut applied directly to the deterministic equivalent
in the extended formulation.

The key results that allow us to apply the 2-stage b&c to the SSNDP and detect
violated L-shaped cuts in polynomial time are: 1) the fact that all considered cut in-
equalities can be separated in polynomial time (see, e.g., [31]), and 2) the famous
result by Grotschel, Lovasz, and Schrijver (cf., e.g, [24]) that shows the equivalence
of optimization and separation—if one can solve the separation problem in polyno-
mial time, then the underlying LP-problem can also be solved in polynomial time.
Consequently, in each of the subproblems, the number of tight inequalities of an ar-
bitrary LP optimal solution is polynomial, and therefore, only a polynomial number
of dual multipliers will be non-zero in the associated L-shaped constraint. Therefore,
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we are able to apply the 2-stage b&c to any of the three formulations considered in
this paper. For the ease of presentation, we will demonstrate how to solve the SSNDP
using the 2-stage b&c applied to the strongest of the three models, namely (SDy).
The main details of this algorithm are provided below in Section 4.2.

4.1 Decomposition of the (SD2) model

For each fixed—and possibly fractional—first-stage solution £°, the second-stage
problem decomposes into K independent subproblems, which we will refer to as
restricted deterministic SNDP’s. They are special cases of the deterministic SNDP
due to the capacity constraints (P:2). To simplify the notation, we define W* :=
Wf U W§2 and merge the constraints (SDs:1) and (SD5:2) by using functions &* :
2V s N U {0}, for all k& € K, that give the correct right-hand side of the directed
cuts:

Tmax{rk, [u g W,v e W}, WGV\J;Q

SF(W) ==
(W) {1, W e Wk

For a given first stage solution Z°, and for each k € K, these subproblems—already
transformed into standard form—are given as follows:

(P:SDg) min Z iyt -9

ecE
st. K- (W)) > k(W) VYW e Wk (P:1)
2+ 28 >l Ve={i,j} € F (P:2)
yb =zl =2 >0 Ve={i,jl € F (P:3)
—yk > Ve e F (P:4)
2y >0 Y(i,j) € A (P:5)
y* € {0,1}1"

By relaxing the integrality constraints and using dual variables ay, Be, Ve, and T,
associated to constraints (P:1), (P:2), (P:3), and (P:4), respectively, we obtain the
following dual problem, for each scenario k € K and fixed first stage solution Z°:

(D:SD2) max Z PF(W)aw + Z(sﬁgﬁe — 7. — ck70)

Wewk ecE
%—Teéc’; Vee E (D:1)
Y aw+B—<0 VijeA (D:2)
wWewk:
(i,5)€6™ (W)

a?ﬁ?V)TZO
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Let (&, 3,4, ) describe an optimal solution to (D:SDy). A (decomposed) L-shaped
optimality cut is then defined as follows:

OF + 3 (h - Bl > > S (Waw - D 7 (LS)
e€l Wewk e€E
Notice that the right hand side of (LS) is a constant. Depending on its value, the
obtained cut can be strengthened by rounding: the coefficients next to each 0 can
be replaced by min{c — B¢, >y cppx P¥*(W)aw — > o 7e ), foreach e € E and
kek.

4.2 Two-stage branch&cut algorithm

To describe the algorithm we use a slightly more general and compact notation: Let
x0 and x* be variable vectors for the first stage and scenario k € K, respectively.
Moreover, let ¢” be the objective coefficient vector in the first stage. With X being
the first stage polyhedron in iteration v defined by the separated L-shaped and integer
optimality cuts let RMP denote the relaxed master problem, i.e.,

min{c’z® + 0 |2® € X),0 = > p*e* 2% >0,(0',...,0%) > 0}. (RMP)
ke

Furthermore, let (R)SPk denote the (relaxed) subproblem, i.e., the restricted deter-
ministic SNDP of scenario k£ € K. A brief description of the algorithm is given as
follows.

Step 0: Initialization. UB := +o0 (global upper bound, corresponding to a feasible
solution), v := 0. Create the first pendant node. In the initial RMP the set of
(integer) L-shaped cuts is empty.

Step 1: Selection. Select a pendant node from the branch&bound tree, if such a node
exists. Otherwise STOP.

Step 2: Separation. Solve the RMP at the current node. v := v+1. Let (9,60, 0},
..., 0X) be the current optimal solution.
2.0)If coig + él, > UB fathom the current node and goto Step 1.

(2.2) Search for violated L-shaped cuts:

Forall k € K, compute the LP-relaxation value R(9, k) of RSP*.1f R(£2, k) >
@l’f : insert the rounded L-shaped cut (LS) into RMP.

If at least one L-shaped cut was inserted goto Step 2.

(2.3) If 9 is binary, search for violated integer optimality cuts:

(23.1) For all k € K s.t. 5:’3 was not binary in the previously computed LP-
relaxation, solve SP¥ to integer optimality: Let Q(22, k) be the optimal solution
value.

If Y e PFQ(E0, k) > O, insert integer optimality cut (int-LS) into RMP.
Goto Step 2.

(2.3.2) UB := min(UB, c°%% + O,). Fathom the current node. Goto Step 1.

Step 3: Branching. Using a branching criterion create two nodes and append them
to the list of pendant nodes. Goto Step 1.
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The two types of generated cuts are L-shaped optimality cuts (LS) and inte-
ger optimality cuts (int-LS), as described in the next paragraph. Notice that we do
not need to add any feasibility cuts since we are dealing with a problem with com-
plete recourse, i.e., every first stage solution is feasible and can be augmented—and
oriented—to a feasible scenario solution.

Integer optimality cuts. Let (£2,0,,0), ... ,0K) be a first stage solution with %9
being binary and with the second stage value Q(&2) = Y, . p*Q(Z0, k). Let
7, :={e € E | Z),, = 1} be the index set of the edge variables chosen in the first
stage, and the constant L be a known lower bound of the recourse function—for the
SSNDP a feasible value is L = 0.

To explicitly cut off the solution (5:2, 6., (:)11,, ceey éf ) the general integer opti-
mality cuts of the L-shaped scheme [19] are inserted:

0> Q@) L)Y a2 > al-|n[+1]|+L (int-LS)

ecT, e€EE\TL,

These cuts are quite weak since they almost only cut off the current first stage solu-
tion. However, these cuts are necessary for closing the integrality gap, cf. [19] (recall
that we are dealing with an NP-hard second-stage problem with binary variables).

A second (even simpler) type of optimality cuts looks like follows:

ng— Z <7, -1 (i-LS)

e€l, e€FE\Z,

These cuts (coined combinatorial Benders cuts in [7]) are even weaker because they
do not contain the explicit bound on the © variable. But since the coefficients of these
cuts are all binary they are numerically more stable. In our experiments, these cuts
turn out being very important for avoiding numerical problems and tailing off effects,
cf. Section 6.

5 Dual Lifting: Deriving strengthened L-shaped cuts

Since the relaxed master problem mainly consists of L-shaped optimality cuts, the
number of master iterations of the 2-stage b&c approach—and hence, the overall run-
ning time—is highly influenced by the strength of the generated L-shaped cuts. In this
paper we propose a new and fast way of strengthening the generated L-shaped cuts.
Most of the previously proposed strengthening approaches (cf. [8,22,25,28,33]), re-
quire solving an auxiliary LP in order to generate a stronger L-shaped cut. With our
new dual lifting approach, this is not the case—the procedure is very efficient and we
are able to find a strenghtened L-shaped cut in linear time (with respect to the number
of variables). Instead of optimizing an additional problem, the L-shaped cuts for the
formulation (SDy) of the SSNDP can be strengthened as follows: Notice that if for
an edge e € F the current first stage solution satisfies 70 = 0, then the correspond-
ing dual variable /3. does not appear in the objective function of the dual (D:SDy).
Furthermore, the variables 7, do not appear in the objective function neither. Hence,
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it is not difficult to see that we deal with a highly degenerated LP and one can expect
that the optimal solutions to the dual subproblem (D:SD;) usually produce positive
slacks in the constraints (D:2) (typically, if possible, dual variables with zero coeffi-
cients in the objective function will be fixed to zero by an LP solver). The idea is now
to produce another LP optimal solution of the dual subproblem such that the corre-
sponding slacks are reduced to zero. Therefore, the values of the dual multipliers (3.)
in the associated L-shaped cut will be increased as follows:

Let (&, 3,7, %) be an optimal solution to (D:SDy) as before. For all edges e =
{i,j} € E set

X Y. —  max a ifz0 =0
ﬁe = 7 a€{(i,5),(4,9)} {WGW’C%(S(W) W} 4

Be otherwise.

If Be > £, holds for at least one edge e € F the lifted L-shaped cut is given as:

OF +> (b= Bal> Y SFW)aw — Y 7. (I-LS)

e€E Wewk ecE

Theorem 6 The lifted L-shaped cuts (1-LS) are valid and strictly stronger than the
standard L-shaped cuts (LS).

Proof Consider two L-shaped cuts: the standard one implied by the dual solution
(& 8,7, 7 7) and the strengthened one (& 3,7, 7 7) with B being set as described
above. Obviously, (&, 83,7, 7) is a feasible (and LP-optimal) solution to the dual
subproblem (D:SDy) since ,8 is set without violating any dual constraints.
Furthermore, notice that 56 > ﬁe, for all ¢ € F, and that the rlght -hand-side of
both cuts is identical. Since there exists e; € F such that Bel > Bel, the coefficient
of chl is strictly smaller for the strengthened L-shaped cut than for the standard one

which concludes the proof. a

It is well known that there is a trade-off between the invested running time for
finding a Pareto-optimal L-shaped cut and its strength. One can easily construct an
example where the lifted L-shaped cuts are not Pareto-optimal, i.e., they can be dom-
inated by other L-shaped cuts with the same LP-value for Z°. Nonetheless, as it is
demonstrated in the next section, our dual lifting procedure is a good heuristic alter-
native for strengthening L-shaped cuts without sacrificing the overall running time.

6 Computational results

Benchmark instances. To evaluate the performance of the 2-stage b&c in practice
we focus on the restricted version of the SSNDP where connectivity requirements
in each scenario k € KC are defined by nodes of type two (subset R C V), type
one (subset R¥ C V) and type zero (V' \ (RS U RY)). The main motivation for this
choice is the application in the design of telecommunication networks where nodes
of type two are important infrastructure nodes, or business customers, nodes of type
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one are single households, and nodes of type zero are, e.g., street intersections. For
two distinct nodes u and v and each scenario k € IC, the connectivity requirements
are therefore: r*, = 2 if both u and v are in R, 7* = 1 if one of them is in R¥ and
the other in R¥ URS, and %, = 0, otherwise.

Deterministic instances were generated by adopting the idea of Johnson, Minkoff,
and Phillips [16], which is frequently used as benchmark in the network design com-
munity. After randomly distributing n € {30, 50,75} points in the unit square, a
minimum spanning tree is computed using the points as nodes and the Euclidean dis-
tances between all vertex pairs as edge costs. To generate only feasible instances we
augmented this tree by inserting edges between leaves which are adjacent in the pla-
nar embedding. The resulting biconnected graph is extended by adding all edges for
which the Euclidean distance is less than or equal to 1.6c«¢/+/n. We have introduced
« in order to control the density of the graph'. In our experiments we use o = 0.9
which led to graphs with average density 2.07. The edge-connectivity requirements
are set as follows. We have randomly drawn p% of the nodes as base sets of R; and
Ro customers. Here, we use p = 40 and we additionally introduce a random root
node that is contained in Ry. An example is given in Figure 2.

To transform these instances into stochastic ones we randomly and independently
generate k scenarios. The probabilities are set by randomly distributing 10, 000 points
over the scenarios, where each point corresponds to a probability of 0.01%. Edge
costs c? in the first stage are Euclidean distances and in the second stage for each
edge e and scenario k € K randomly drawn from [1.1c?, 1.3¢?]. Edge-connectivity
requirements are generated by randomly drawing p*% from the vertex sets R; and
‘R4 each as R’f and R’§ customers, respectively, for scenario k. Here, we use pk =30
for all scenarios k. The special root node was set to be an R% node in each scenario
k.

For each deterministic instance we generated a stochastic instance with k = 1000
scenarios and took the first & to obtain an SSNDP instance with &k scenarios?. Prob-
abilities for the scenarios of the instances with £ < 1000 are scaled appropriately.
Overall, we generated 20 graphs for each n € {30,50,75} and k leading to 840
instances®. Due to the high computational effort we used 580 instances in the exper-
iments: for n = 30 all 280 instances are used, for n = 50 instances with at most
250 scenarios (180 instances), and for n = 75 we used instances with at most 100
scenarios (120 instances).

Computational settings. We implemented the (single-stage) b&c and the 2-stage b&c
for the strongest of the three presented models, namely (SDg), considering the fol-
lowing settings:

— EF: (single-stage) direct b&c applied to the extended formulation without decom-
position. Flow-based separation procedures known for the deterministic SNDP,
cf., e.g., [31], are applied over all k € K.

! The original parameter used by [16] was 1.6 and corresponds to o = 1 in our setting
2 We use 14 values for k: k € {5, 10, 20, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000}.
3 These instances can be downloaded from our SSNDP webpage, see [30]
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Fig. 5 Average running time for graphs with 30 nodes grouped by the number of scenarios. EF: direct
approach (extended formulation), 2bc-n: 2-stage branch&cut without dual lifting, 2bc: 2-stage branch&cut
with dual lifting.

— 2bc: 2-stage b&c with the separation of lifted L-shaped cuts and integer L-
shaped cuts. Each subproblem is solved with the flow-based separation proce-
dures known for the deterministic SNDP.

— 2bc—n: the same as 2-stage b&c, but without lifting the L-shaped cuts.

We used Abacus 3.0 as a generic branch&cut framework with IBM CPLEX (version
12.1) as LP solver via the interface COIN-Osi 0.102. All experiments were performed
on an Intel Xeon 2.5 GHz machine with six cores and 64 GB RAM under Ubuntu
12.04. Each run was performed on a single core and the timelimit was set to 2 hours.
All reported values are averages over 5 independent runs. For 2bc and 2bc—-n, in-
teger optimality cuts (i-LS) were included by default. Although theoretically weaker,
these cuts are numerically more stable and turned out to be necessary in practice, in
order to avoid numerical difficulties with some of the instances.

Computational benefits of the decomposition approach. Figures 5 and 6 show the
comparison of the running times of the three considered settings. The average running
times of EF, 2bc and 2bc—n for the instances with 30 nodes are given in Figure 5.
We observe that for up to 50 scenarios, EF is faster, but for instances with 100 or
more scenarios, both decomposition approaches clearly outperform EF. For example,
on the instances with 1000 scenarios, 2bc is on average about 22 times faster than
EF. These results are consistent with the ones reported for the stochastic Steiner tree
problem in [3]: For a lower number of scenarios, EF is superior due to the set-up
overhead needed for the decomposition. With an increasing number of scenarios, the
2-stage b&c pays off and significantly outperforms the EF approach.

A similar behavior can also be observed on the sets of larger instances: the box
plots in Figure 6 show the distribution of the running times for the instances with 50
and 75 nodes. For a fixed number of scenarios, the bottom and top of each box rep-
resent the first and third quartiles of the corresponding running times of 20 instances
per group. Median running times are indicated by an horizontal line. We observe
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Fig. 6 Boxplots showing the running time for graphs with 50 nodes (top) and 75 nodes (below), respec-
tively, grouped by number of scenarios.

that the number of scenarios from which on 2bc outperforms EF decreases with an
increasing size of the input graphs.

While the performance of 2bc remains relatively stable, high dispersion and
skewness of the running times for EF can be observed. More precisely, out of 20
instances with 50 nodes and 250 scenarios, 18 of them are solved after the timelimit
of 2 hours using 2bc (the average running time of 2bc is 13 min.), whereas 15 of
them remain unsolved with the EF approach (with an average running time of 101
min.). Similarly, for instances with 75 nodes and 100 scenarios, 2bc solves 15 out of
20 to optimality, and within the same time limit EF solves only 3. Outlier points of
the decomposition are due to numerical issues; for all of these instances the optimum
solution is known early but needs to be verified and many b&b nodes are generated.
Dual lifting vs. Pareto-optimal approach. Figures 5—6 also highlight the benefits of
the dual lifting procedure. The running times of 2bc are always faster and less dis-
persed when compared with the running times of 2bc—n. Over all instances, the
average speedup obtained trough dual lifting is about four, and the most significant
speedup is about 16 when solving graphs with 75 nodes—again, the benefit increases
with an increasing graph size.
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Fig. 7 Average running time (solid lines) and median number of master iterations (dashed lines) of the
2-stage b&c with cut strengthening (2bc, red lines), without cut strengthening (2bc-n, blue lines), and with
the Magnanti-Wong method (2bc-MW, green lines) for graphs with 50 nodes.

A well-known and frequently used approach for strengthening L-shaped cuts is
the method for finding Pareto-optimal cuts by Magnanti and Wong [22]. Figure 7
shows the average running times (solid lines) and the average number of master iter-
ations (dashed lines) for graphs with 50 nodes and three approaches: 2bc—MW (this
is 2-stage b&c with Pareto-optimal L-shaped cuts added at each iteration), 2bc and
2bc-n. Comparing the number of master iterations, we note that the dual lifting
reduces the number of master iterations of 2bc—n by an average factor of 9 (for in-
stances with 50 nodes). The number of master iterations is even better for 2bc—Mw,
however, due to the overhead of solving additional LPs for finding Pareto-optimal
cuts, the overall running time of 2bc—-MW is worse compared to the running time of
2bc. We also notice that 2bc—-MW outperforms 2bc—n in terms of the running time,
which underlines the importance of the strengthening procedures in the generation of
L-shaped cuts. Finally, we also tried to hybridize 2bc—-MW with 2bc, but it turned
out that this method does not improve the running time of 2bc.

More detailed results regarding our computational experiments (including opti-
mal solution values, running times, etc.) can be found at [30].

7 Discussion, conclusions and future work

In this paper we introduced the two-stage stochastic version of the survivable network
design problem with a finite number of discrete scenarios and complete recourse. We
presented three ways to model this problem: an undirected and two semi-directed
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formulations. For the undirected model we showed that facet defining inequalities of
the deterministic counterparts can be lifted and yield facet defining inequalities of
the stochastic model. This is the first result concerning the polyhedra of stochastic
network design problems. The semi-directed formulations rely on orientation proper-
ties of edge-rx-connected graphs, and we prove that they are strictly stronger than the
undirected formulation. We also discussed a 2-stage branch&cut algorithm using a
decomposition approach. Moreover, a dual lifting procedure is introduced, represent-
ing an easy way for strengthening the L-shaped optimality cuts. Our computational
study showed the benefits of using the decomposition for stochastic network design
problems. Furthermore, the dual lifting technique highly reduces the number of mas-
ter iterations and the computational running time. Compared to the generation of
Pareto-optimal L-shaped cuts with the Magnanti-Wong method, our new dual lifting
procedure requires slightly more master iterations, but outperforms the Magnanti-
Wong method with respect to running time (due to the overhead of solving additional
LPs for the latter approach).

Our computational experiments show that our two-stage branch-and-cut approach
is more than an order of magnitude faster than the direct single-stage b&c approach.
For the SSNDP, we are able to solve instances with up to 75 nodes, or 1000 scenarios,
respectively, to provable optimality. We are convinced that our simple and fast dual
lifting technique will be useful for general network optimization problems in the two-
stage (stochastic optimization) setting.

An open problem remains how to generate Pareto-optimal L-shaped cuts by a
combinatorial algorithm. Our dual lifting does not ensure the Pareto optimality—
counter examples can be derived easily.

We remark that similar results can be obtained for the stochastic version of the
node-connectivity {0, 1,2}-SNDP, cf. Section 2. Only recently, in [5], new graph
orientation properties have been given that allow to derive stronger directed MIP for-
mulations for the deterministic {0, 1, 2}-SNDP with node-connectivity requirements.
Using this result and analogously to formulation (SDy), it is possible to formulate a
stronger semi-directed model for the stochastic counterpart. L-shaped cuts and dual
lifting can be derived from this model in a similar way, to be used within the 2-stage
b&ec.

Last but not least, we like to mention that several interesting problems are still
open for the deterministic SNDP. For example, stronger directed formulations for
higher node-connectivity requirements, i.e., > 2, or orienting solutions where both
node- and edge-connectivity is required are still open problems. However, by using
the same techniques presented in this article, any improvements in the deterministic
context should be transferable to the related stochastic problems, formulations, and
algorithms.
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