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The Steiner tree problem in graphs is one of the most stud-
ied problems in combinatorial optimization. Since its incep-
tion in 1970, numerous articles published in the journalNet-
works have stimulated new theoretical and computational
studies on Steiner trees: from approximation algorithms,
heuristics, meta-heuristics, all the way to exact algorithms
based on (mixed) integer linear programming, fixed param-
eter tractability or combinatorial branch-and-bounds. The
pervasive applicability and relevance of Steiner trees has
been reinforced by the recent 11th DIMACS Implementa-
tion Challenge in 2014 and the PACE 2018 Challenge. This
article provides an overview of the rich developments from
the last three decades for the Steiner tree problem in graphs
and highlights the most recent computational studies for
some of its closely related variants.
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1 | INTRODUCTION

The Steiner tree problem in graphs (STP) is among the most prominent problems in the history of combinatorial opti-
mization. It plays a central role in network design problems, design of integrated circuits, location problems [47, 52,
134, 156, 200], and more recently even in machine learning, systems biology and bioinformatics [9, 136, 207, 221].

Together with the traveling salesman problem and other classical NP-hard problems, the STP also serves as a
driver for discovering new generic algorithmic and methodological tools that can be easily adapted to other difficult
optimization problems. In a general setting, the STP asks for designing a network that interconnects a given set of
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points (referred to as terminals) at minimum cost. The origins of this problem can be traced back to the 17th century.
In a private letter of Pierre de Fermat sent to Evangelista Toricelli he raised the question of finding a point in a triangle
with theminimum total distance to the three corner points. In the 19th century, JosephDiez Gergonne generalized the
Fermat-Toricelli problem into the problem of finding a set of line segments of minimum total length that interconnects
a set of given points in a plane. This was the birth of the problem which is today known as the Euclidean Steiner
Tree Problem [86, 237]. In an optimal solution such line segments will form a tree, and may intersect at additional
intermediary points that are referred to as Steiner points. This attribution to Jakob Steiner can be traced back to the
book by Courant and Robbins [62]. Many other interesting and controversial historical details related to the Euclidean
Steiner tree problem can be found in [35]. In general, inGeometric Steiner problems, the problem consists of connecting
a set of points at minimum cost according to some geometric distance metric [36].

When the choice of Steiner points is limited to a finite set of points, the problem is formulated on an edge-
weighted graph (with terminal points representing a subset of nodes) with the goal of finding a subtree that intercon-
nects all the terminals at minimum cost. The present article is devoted to the latter problem, which is known as the
Steiner Tree Problem in Graphs. The STP is an indispensable modeling tool for a wide range of applications and has
gained a lot of attention in the last 50 years. The STP was explicitly formulated for the first time in 1971 by Hakimi
[121] in his seminal Networks article. The same year Levin independently introduced the STP in his article written in
Russian [157]. In 1972 Karp [141] showed that the decision version of the STP is NP-complete. A plethora of articles
on the STP published since then in the journal Networks paved the way and stimulated the newest methodological
and computational advances not only for the STP, but also for numerous network design problems containing the STP
as a special case.

Several reviews on the STP have been given in the past. Literature reviews up to 1987 can be found in Maculan
[167] and Winter [235]. Maculan reviewed integer linear programming formulations, whereas Winter’s Networks
article gave an overview of exact algorithms, heuristics and polynomially solvable special cases. Voß [231] focused
on literature related to heuristic methods up to 1992. A comprehensive survey by Hwang et al. [135] which also
included Euclidean, rectilinear and phylogenetic STP variants was published in Networks in 1992. Additional, more
recent topics on the STP up to 2000 can be found in Du et al. [71]. Extensive contributions to the STP literature
have been made by Polzin [180] and Vahdati Daneshmand [228], and an overview of these results can be found in
[187]. Many node-weighted variants of the STP have been introduced in the last decades. However, to the best of our
knowledge the only available survey is by Costa et al. [61], who reviewed the prize-collecting STP problem.

This article aims at providing a comprehensive literature overview focusing mainly on the results for the STP
achieved in the last three decades. Some important older contributions are mentioned as well, in order to highlight
the origin of recent developments. The STP has been the target problem of the 11th DIMACS (the Center for Discrete
Mathematics and Theoretical Computer Science) Implementation Challenge held in collaboration with ICERM (the
Institute for Computational and Experimental Research in Mathematics) in 2014. Besides the STP, the challenge
has spurred algorithmic advances for several other popular problem variants (like the prize-collecting STP, the node-
weighted STP and themaximum connected subgraph problem). It has alsomotivated the creation of new generic state-
of-the-art computational methods, that can simultaneously address STP and these variants [95, 102, 153]. Hence, this
article also covers some of the most recent and most relevant computational studies initiated and stimulated by the
DIMACS Challenge. Finally, the practical applicability of parametrized algorithms for the STP has been investigated
at the recent PACE 2018 Parameterized Algorithms and Computational Experiments Challenge [33].
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Outline
The remainder of this article is organized as follows. Section 2 contains problem definitions and introduces the basic
notation. Mixed Integer Programming (MIP) formulations and theoretical comparisons between them are discussed in
Section 3. An overview of recent reduction tests, Lagrangian relaxations, dual ascent methods, heuristics, exact meth-
ods and approximation algorithms is given in Sections 4 to 9, respectively. The most challenging and most relevant
(recent) applications of the STP are reviewed in Section 10. Section 11 identifies some important combinatorial opti-
mization problems for which the STP has been used as a powerful modeling tool. In Section 12, concluding remarks
are drawn and venues for future research are identified.

2 | PROBLEM DEFINITIONS AND NOTATION

The Steiner tree problem in graphs, STP Given an undirected edge-weighted graph G = (V , E ), with edge weights
c : E 7→ Ò≥0, and terminal nodes R ⊆ V , find a subgraph TS = (VS , ES ) ⊆ G such that TS connects R and c(TS ) :=∑
e∈ES

ce is minimized.

The nodes S := V \ R are called potential Steiner nodes. An example of a Steiner tree solution is given in Figure 1.
Without loss of generality, the STP can be restricted to positive edge weights, since edges of non-positive weight
can be preprocessed [235]. If edge weights are restricted to positive values, any optimal subgraph TS corresponds
to a tree. The nodes from VS \ R are referred to as Steiner nodes. The STP is NP-hard in general [141], and the
two-well known polynomially solvable special cases are the shortest path problem ( |R | = 2) and the minimum spanning
tree (MST) problem (R = V ). Similarly, if |V | − |R | is bounded by a (small) constant, it is sufficient to enumerate all
possible combinations of Steiner nodes, calculate the resulting minimum spanning trees and choose the best among
them [121]. However, the STP remains NP-hard even on bipartite graphs with unit weights [103]. The problem can
be approximated within a constant ratio, and the best known polynomial-time algorithm guarantees an approximation
ratio of 1.39 [38, 110]. However, Bern and Plassmann [23] show that on complete graphs with edge weights 1 and
2 the STP is MAX-SNP-hard, and hence the STP on general graphs does not admit a polynomial-time approximation
scheme, unless P=NP.

The STP can also be stated on a directed graph, in which case the problem is known as the Steiner arborescence
problem on graphs (SAP). An arborescence S = (VS ,AS ) rooted at r ∈ VS is a subgraph of a digraph G = (V ,A), such
that for each node i ∈ VS \ {r } there exists a unique directed path from r to i . One of the first articles addressing the
SAP is [240] by Wong. The problem is formally defined as follows.

The Steiner arborescence problem, SAP Given a directed graph G = (V ,A) with arc weights c : A 7→ Ò, terminal set
R ⊆ V , and root node r ∈ R , find an arborescence TS = (VS ,AS ) rooted at r spanning all terminals from R r = R \ {r }

and such that ∑(i ,j )∈A ci j is minimized.

An instance of the STP can be easily transformed into an instance of the SAP: Given an undirected graph G =

(V , E ), it is sufficient to replace it by its bidirected equivalent GD = (V ,A) in which arc weights are set so that ci j =
cj i = ce for each e = {i , j } ∈ E . Due to the symmetry of the arc weights, an arbitrary terminal can be chosen as root
r . Like the STP, the SAP is NP-hard [44], but in contrast to the STP, no algorithm with constant approximation ratio
can exist unless widely accepted assumptions from complexity theory are wrong [122]. The SAP has not received
nearly as much attention as the STP in the existing literature, however the SAP plays a prominent role in solution
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F IGURE 1 Instance GEO-107 of the STP representing a street network of a small city in Austria, with household
locations representing terminal nodes [150, 151]. Depicted is an optimal Steiner tree that connects all terminals at
minimum cost.
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methods for the STP (see, e.g., the exact methods from [95, 102, 145, 153, 162]). This can be attributed to the fact
that MIP formulations for the SAP are in many cases stronger than their undirected counterparts [109]. In this article
we follow the definition of the SAP as used in Networks in 1993 by Goemans andMyung [109] (see also [93]) in which
arc weights can also be non-positive and the terminal set R may be a singleton (i.e., R = {r }). We notice however
that some authors consider a more restricted definition of the SAP in which |R | > 2 and arc weights are required to
be strictly positive (see, e.g., [197]).

Natural extensions of the STP involve problemswith nodeweights and tree topology. In his 1987Networks article,
Segev [213] introduced the node-weighted STP (NWSTP), in which the set of terminals is a singleton, all node weights
are negative and the goal is to find a subtree that minimizes the sum of edge- and node-weights of that tree. This
problem corresponds to the rooted prize-collecting STP (PCSTP) and if the required root node is omitted, i.e., R = ∅,
one obtains the unrooted prize-collecting STP (PCSTP), whose formal definition is provided below.

The Prize-Collecting Steiner Tree Problem, PCSTP
Given an undirected graph G = (V , E ), edge weights c : E 7→ Ò≥0 and node prizes p :V 7→ Ò≥0, find a connected
subtreeTS = (VS , ES ) ⊆ G such that ∑e∈ES

ce +
∑
i<VS

pi is minimized.

This definition implies that the PCSTP can be seen as a generalization of the STP (i.e., the STP is the PCSTP with
sufficiently large prizes set at the terminal nodes). The first reference to a prize-collecting combinatorial optimization
problem goes back to 1989, to another Networks article by Balas [13], who introduced the Prize-Collecting Traveling
Salesman Problem. In a follow-up article by Bienstock et al. [28], the PCSTP was formulated in its minimization form
as stated in the above definition. However, the PCSTP has also been studied in its maximization form, in which the
objective function∑i ∈VS pi−∑e∈ES

ce ismaximized [138]. ConcerningMIP formulations, the two variants are known to
be equivalent [138, 159]. However from the approximation algorithms point of view, there is an important difference
between them. The PCSTP in its minimization form can be approximated within a constant factor (see, e.g., [7, 106]),
whereas it is NP-hard to approximate the PCSTP in its maximization formwithin any constant factor (see e.g., Theorem
4.1 in [88]). Problem transformations into the SAP are known for both rooted and unrooted PCSTP [153, 159, 162,
197]. The quota-constrained PCSTP, budget-constrained PCSTP, and fractional PCSTP problems have been also studied
in the literature. A survey on these and other PCSTP variants up to 2006 can be found in Costa et al. [61]. For the
sake of brevity, in this article we will highlight only the most recent computational advances for solving the PCSTP and
its closely related counterpart, the MWCS, introduced below.

The Maximum-Weight Connected Subgraph Problem, MWCS
Given an undirected graph G = (V , E ) with node weights p̃ : V 7→ Ò, find a connected subgraph TS = (VS , ES ) ⊆ G
such that ∑i ∈VS p̃i is maximized.

Without loss of generality, one can impose that the optimal MWCS solution is a tree. Dittrich et al. [66] exploit this
fact to show that any MWCS instance can be transformed into an equivalent PCSTP instance (in its maximization
form) by setting ce = −p̃min for all e ∈ E , and pv = p̃v − p̃min for all v ∈ V , where p̃min = minv∈V p̃v is the smallest node
weight.

Notation
ForW ⊂ V , let δ+(W ) = {(i , j ) ∈ A : i ∈W , j ∈ V \W } be the outgoing arc set, δ−(W ) = {(i , j ) ∈ A : i ∈ V \W , j ∈W }
the incoming arc set, and δ(W ) = {{i , j } ∈ E : i ∈ V \W , j ∈W } the undirected cut set. For conciseness, ifW = {i },
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we write δ+(i ), δ−(i ), and δ(i ), respectively. Given s, t ∈ V , a node set N ⊆ V \ {s, t } is an (s, t )-node separator if no
(s, t )-path exists after removing the nodes from N . N is minimal if for all i ∈ N , N \ {i } is not a (s, t )-node separator.
Given a variable vector v and an index set I, let v (I) = ∑

i ∈I vi .

A Full Steiner Component (FSC) is a subtree in G whose internal nodes are Steiner nodes and all of whose leaves
are terminals. A Full Steiner Arborescence (FSA) is an oriented FSC whose root is one of the terminals. The metric
closure of an edge weighted graph is a complete weighted graph on the same node set, with weights given by shortest
path distances with respect to original weights. A hypergraph H = (V , E) consists of a finite set of nodes V and
hyperedges E, where each edge e ∈ E corresponds to a subset of nodes fromV . We will consider simple hypergraphs
(i.e., with no edges that correspond to the same subset of nodes).

For a minimization problem with non-negative coefficients in the objective function, the integrality gap of a given
MIP formulation is defined as the worst-case ratio between the optimal solution value and the LP-relaxation value
for any given instance. For the same minimization setting, we compare MIP formulations by the quality of their
LP-relaxations as follows: a formulation F1 is said to be stronger than a formulation F2 if the optimal value of the
LP-relaxation of F1, denoted by LP (F1) ≥ LP (F2) for all instances of the problem. If the converse is also true, the two
formulations are equivalent; otherwise we say that F1 is strictly stronger than F2. If neither is stronger than the other,
they are incomparable.

3 | MIP FORMULATIONS AND RELAXATIONS

For many NP-hard optimization problems most successful exact methods are based on strong MIP formulations. The
STP is not an exception, and many MIP models have been studied in the past. A hierarchy of MIP formulations
developed before 2001 can be found in Polzin and Vahdati Daneshmand [182]. In what follows, we summarize the
results related to polyhedral studies and highlight the most relevant and promising formulations whose full potential
is still to be exploited in some future (computational) studies.

Polyhedral studies.
We associate binary variables Xe to each edge e ∈ E to indicate whether or not the edge belongs to a Steiner tree.
The STP polytope, denoted by PSTP, is the convex hull of incidence vectors X representing a feasible Steiner tree.
For positive edge weights, an optimal STP solution will correspond to a vertex from the dominant of the STP polytope
defined as DSTP = PSTP + Ò

|E |
+ .

In 1980 Aneja [6] proposed a canonical formulation for the STP. The model is a set-covering-type formulation that
contains an exponential number of constraints, so-called cut-set inequalities, ensuring that for each subset of nodes
W ⊂ V such thatW ∩ R , ∅,W * R , at least one edge of the Steiner tree belongs to δ(W ):

X (δ(W )) ≥ 1, [W :W ∩ R , ∅,W * R .

Various polyhedral studies of the STP polytope and its dominant can be found in [29, 54, 55, 56, 109]. Chopra and
Rao [54, 55] introduced Steiner partition and odd hole inequalities (and their lifted variants) and showed that, together
with cut inequalities, they define facets of PSTP. The authors also showed that solving the SAP on a bidirected graph
leads to better LP-relaxations and that by projecting bidirected cut inequalities (see Section 3.1 for the definition) onto
the space of X variables, all above mentioned facets can be obtained. Furthermore, they also identified additional
classes of facet defining inequalities that arise on grid graphs and bipartite graphs.
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Goemans and Myung [109] introduced two extended undirected MIP formulations which are as tight as the bidi-
rected cut formulation. In the first formulation, auxiliary variables are introduced to indicate which nodes from S are
spanned by the Steiner tree. This formulation is based on generalized subtour elimination constraints (GSECs), which
are motivated by Edmonds’ [78] characterization of the spanning tree polytope. The GSEC formulation was also intro-
duced independently by Margot et al. [169] and Lucena [163]. In the second formulation proposed by Goemans and
Myung [109], the auxiliary variables keep track of the degrees of the nodes from S . In a follow-up article, Goemans
[108] used projections to describe a more general class of facets for the STP polytope, coined combinatorial design
inequalities. The latter inequalities can also be obtained by projecting the bidirected cut formulation onto the space
of X variables. Moreover, Goemans [108] showed that Steiner partition and lifted odd hole facets introduced in [54]
can be obtained by projecting GSECs. Biha et al. [29] provided a new class of generalized Steiner partition inequalities
and showed that they generalize facet-defining inequalities from Chopra and Rao [54].

Motivated by the fact that the STP is solvable in polynomial time on series-parallel graphs,1 several authors dealt
with the question of obtaining a simple explicit description of PSTP and DSTP by linear inequalities. For the node-
weighted STP polytope (involving edge and node variables), complete description is given by the GSEC formulation of
Goemans andMyung [109] andMargot et al. [169] whenG is a series-parallel graph [108]. Goemans [107] provided a
complete description of the SAP polytope for series-parallel graphs. Chopra and Rao [55] conjectured that a complete
description of the dominant of the STP polytope on 2-trees (which are maximal series-parallel graphs with respect to
edge-inclusion) is given by Steiner partition and odd hole facets. A few years later, this conjecture was disproved by
Biha et al. [29].

While there is a rich literature dealing with polyhedral studies for the STP, to our knowledge, there are very few
articles focusing on the SAP polytope [56, 93, 107]. Fischetti [93] studied the SAP polytope and its dominant, and
provided a new family of facet defining inequalities with arbitrarily large coefficients. Chopra and Tsai [56] used the
bidirected counterpart of facet-defining odd-wheel and bipartite inequalities to strengthen the LP-relaxation in their
branch-and-cut (B&C) scheme for the STP.

Besides understanding polyhedral properties ofMIP formulations, another important feature is the quality of their
LP-relaxations. High quality LP-relaxation bounds can be used in combination with preprocessing and reduction tech-
niques to derive efficient branch-and-bound/branch-and-cut schemes. When it comes to successful implementations,
another crucial feature of MIP formulations is the running time required to solve their LP-relaxations.

In the past, several authors proposed extendedMIP formulations for the STP. Besides utilizing X variables, these
formulations typically model the underlying tree structure by using auxiliary flow-, path- or tree-variables on G , or by
stating the problem as a degree-constrained spanning tree on a larger graph (see, e.g., [22]). Beasley [22], for example,
constructed an enlarged graph in which a new node v0 is connected through zero weight edges to all nodes from S

and to an arbitrary terminal from R . The STP is then stated as the minimum spanning tree problem with the additional
constraint that each node from S adjacent to v0 must have degree one. Beasley’s MST formulation demonstrates a
frequently seen trade-off between the computational efficiency and the theoretical effectiveness ofMIP formulations:
Even though the model appears attractive from the algorithmic perspective (solving the LPs could be avoided by
e.g., relaxing the degree constraints in Lagrangian fashion), Polzin and Vahdati Daneshmand [182] showed that the
gap between its LP/Lagrangian-relaxation and the optimal solution can be arbitrarily large. A compendium of MIP
formulations (until 2001) can be found in [182].

In the remainder of this section we review four MIP formulations for the STP: (1) the bidirected cut formulation
(DCUT), which is part of the most successful exact algorithmic frameworks; (2) hypergraphic formulations (HYP), which
are used to derive the state-of-the-art approximation algorithms; and the two strong compact MIP formulations that

1A graph is series-parallel if it does not contain any subgraph homeomorphic to the complete graph K4 on 4 vertices.
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are known to dominate DCUT or HYP: (3) the common flow formulation (CF) of Polzin and Vahdati Daneshmand [182]
and (4) the brand new path-based formulation (MCF-λ)) of Filipecki and Van Vyve [92] published in a recent Networks
2020 issue.

3.1 | Bidirected Cut Formulation

This is one of the most frequently employed formulations when it comes to practically successful or state-of-the-art
algorithmic frameworks. The model is valid for the SAP as well, and can be easily adapted to the prize-collecting and
other STP variants (see, e.g. [95, 102, 153, 162]). The formulation has been proposed by Wong [240], whereas its
undirected counterpart was previously given by Aneja [6].

For a given root node r ∈ R , we search for the minimum-cost Steiner arborescence rooted at r and spanning all
terminals t ∈ R r = R \ {r }. A Steiner cut (V \W ,W ) is a bipartition of the graph’s node set such that r < W and
R ∩W , ∅. The bidirected cut inequalities (1) impose that at least one arc from each Steiner cut must belong to a
feasible solution. That way, connectivity between a chosen root r and any other terminal t ∈ R r is guaranteed.

(DCUT) min
X∈{0,1} |E |

∑
{i ,j }∈E

ceXe

s.t. x (δ−(W )) ≥ 1 r <W ,W ∩ R , ∅ (1)

xi j + xj i = Xe e = {i , j } ∈ E (2)

xi j ∈ {0, 1} (i , j ) ∈ A (3)

Binary arc variables xi j indicate whether or not an arc (i , j ) is chosen as part of the Steiner arborescence rooted at
r , and linking constraints (2) ensure that each edge of the Steiner tree can be oriented in exactly one direction. Despite
the fact that there is an exponential number of constraints (1), they can be separated efficiently using amin-cut or max-
flow implementation [53, 145, 162]. Hence, by the equivalence of optimization and separation (see, e.g., [238]), the
LP-relaxation of DCUT can be calculated in polynomial time. The latter is also true for the undirected cut formulation,
however there is an important fact which explains why the DCUT formulation gained so much popularity in the exact
algorithmic frameworks (as opposed to the undirected one): Most of the facet-defining inequalities discovered in the
polyhedral studies of the STP polytope can be obtained by projecting the bidirected cut inequalities (1) (see [54, 108]).
This also explains why the aforementioned facet-defining inequalities for the STP have never been tested in practical
implementations.

An equivalent model that can be obtained by the min-cut/max-flow theorem (or, by applying Benders decompo-
sition, see Maculan [167]), is the compact multi-commodity flow (MCF) formulation [240]. The MCF model exploits
the fact that every Steiner tree can be obtained as a union of r -t paths, for all t ∈ R r . In the MCF model, constraints
(1) are replaced by:

∑
(j ,i )∈A

f tj i −
∑
(i ,j )∈A

f ti j =


−1, i = r ,

1, i = t ,

0, otherwise

i ∈ V , t ∈ R r

0 ≤ f ti j ≤ xi j (i , j ) ∈ A, t ∈ R r
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Due to its large number of variables and constraints, MCF is not tractable even for medium-sized instances. This is
why MCF has been frequently approached by Lagrangian relaxation [10, 21, 228]. By aggregating multi-commodity
flows over all terminals r ∈ R r we obtain another compact model, known as the single-commodity flow (SCF) formula-
tion [167]. However, the worst-case ratio between the LP-bounds of MCF and SCF is known to be |R | − 1 [72, 167].

The choice of the root node is known to not affect the quality of the LP-relaxation [109] for DCUT and MCF,
respectively. This result also holds even when the models are strengthened by adding the flow-balance constraints
from [72] (see [187]):

x (δ+(i )) ≥ x (δ−(i )) i ∈ V \ R (4)

Other tree-based formulations for the STP are known, they are however outperformed by the flow and cut for-
mulations (see [182] for details).

Interestingly, formulations other than DCUT are seldom applied in recent algorithmic frameworks. Empirical stud-
ies showed that on the majority of real-world instances, LP-relaxation bounds of DCUT are already quite tight, such
that little branching is required [95, 102, 145, 153]. Unfortunately, these empirical observations are not supported
by the theoretical results, as the integrality gap of DCUT is known to lie between 36/31 (see [38]) and 2. The up-
per bound of 2 is the same as for the undirected cut formulation (it is obtained by taking a metric closure of G and
connecting the terminals via an MST). Whereas this bound is tight for the undirected cut formulation, it is strongly
believed that the gap of DCUT is much smaller. However finding a better-than-2 upper bound on its integrality gap
is a well-known open problem.

3.2 | Hypergraphic Formulations

A prominent class of MIP formulations which are known to dominate DCUT are the hypergraphic formulations. They
are based on the observation that the edge set of any Steiner tree can be uniquely partitioned into full Steiner com-
ponents by splitting the tree at inner terminal nodes (see, e.g., [147]). In the context of the geometric Steiner tree
problem, Warme [234] showed that an optimal STP can be equivalently represented as a minimum-cost spanning tree
in a specially constructed hypergraph, whose nodes are terminals, and whose hyperedges correspond to full Steiner
components. The weight of each hyperedge corresponds to the sum of edge weights of the underlying FSC. Find-
ing an MST in hypergraphs is NP-hard, nevertheless, one can derive “hypergraphic MIP formulations” starting from
classic MIP models for spanning trees (see, e.g., [168] for MIP models of trees in graphs). So, for example, it is not
surprising that the model based on subtour elimination constraints (SECs) on undirected hypergraphs is equivalent to
the model using directed cuts on its directed counterpart (see, e.g., [42, 185]). The latter model, denoted by (HYP)CUT
is illustrated below. In the following, when we refer to equivalent hypergraphic formulations, we will simply denote
them by HYP.

By splitting the terminal nodes, a rooted Steiner arborescence can also be uniquely decomposed in a partition of
rooted full Steiner arborescences (FSAs) and represented as a spanning arborescence on a specially designed directed
hypergraph. This hypergraph H = (R , E) is created as follows: for each full Steiner component F = (VF , EF ), a
collection of |VF ∩ R | arborescences, one for each leaf of F being selected as a root, is added to E. The weight of
the FSA K = (VK ,AK ) is the sum of its arc weights. By root(K ) we denote the unique root node of a full Steiner
arborescence K .

Let r ∈ R be a given root node of the input graph. The directed-cut hypergraphic formulation asks for a collection
of full Steiner arborescences, the union of which corresponds to an SA in the bidirected counterpart of G . In the
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following, forW ⊂ R , we denote by ∆−(W ) the set of all FSAs K = (VK ,AK ) such thatW does not contain root(K ), but
it contains at least one node fromVK , i.e., root(K ) <W andW ∩VK , ∅. The hypergraphic cut formulation is given as
follows:

(HYP)CUT min
X∈{0,1} |E |

∑
{i ,j }∈E

ceXe

s.t. z (∆−(W )) ≥ 1 W ⊂ R , r <W (5)∑
K ∈E:(i ,j )∈AK

zK +
∑

K ∈E:(j ,i )∈AK
zK = X{i ,j } e = {i , j } ∈ E (6)

zK ∈ {0, 1} K ∈ E (7)

In this model, the binary variable zK associated to an FSA K ∈ E is set to one if and only if K belongs to an optimal
Steiner arborescence. Connectivity in the hypergraph between the root r and the remaining terminals is ensured by
constraints (5). Finally, equations (6) provide a projection of variables z onto the space of X variables.

There are exponentially many subsets of R , and potentially superexponentially many FSAs contained in the bidi-
rected counterpart of G . Solving even the LP-relaxation of these hypergraphic formulations is an NP-hard problem
[110]. However, Warme [234] showed that if the size of the maximum FSC is bounded by a constant, then the LP-
relaxation of HYP can be obtained in polynomial time. This fact has been extensively exploited in a series of articles
that provide LP-based approximation algorithms for the STP [24, 26, 38, 110, 147] (cf. Section 9).

Each LP-solution of HYP is also feasible for DCUT, which follows from the transformation xi j =
∑
K ∈E:(i ,j )∈AK xK ,

however the opposite is not necessarily true. This means that HYP is strictly stronger than DCUT, and an illustrating
example is given in Figure 2a (cf. [185]). The optimal LP-solution of DCUT is depicted in Figure 2b (its value is 5.5), and
is infeasible for HYP (whose optimal LP-solution yields 6). Moreover, Polzin and Vahdati Daneshmand [185] showed
that HYP is even stronger than DCUT enhanced by the flow-balance constraints (4). This is illustrated in the same
example in Figure 2b, in which adding the flow-balance constraints does not change the optimal LP-solution of DCUT.

Warme [234] showed that not all possible FSCs have to be considered in the underlying hypergraph - it is sufficient
to find their subset that guarantees to contain an optimal solution. On the other hand, the choice of the hyperedges
in H influences the quality of the LP-relaxation of HYP (see [185] for an example).

Könemann et al. [147] proposed an alternative model, called the partition-based formulation on the undirected
version of the hypergraph H. Unsurprisingly, solving the LP-relaxation of this model is NP-hard as well. In a follow-up
article by Chakrabarty et al. [42], the partition-based formulation has been shown to be equivalent to HYP.

The lower bound on the integrality gap of HYP (and its equivalent formulations based on SECs or partitions)
is 8/7 (see, e.g., [147]). Byrka et al. [38] showed that the integrality gap is upper bounded by 1.55. Hence, the
hypergraphic formulations were the first (and currently the only) MIP models for which it was possible to break a long
standing integrality gap barrier of 2. On certain families of graphs, HYP and DCUT are equally strong. So, for example,
Chakrabarty et al. [42] showed that the two formulations are equivalent on quasi-biparite graphs (i.e., graphs where
S forms an independent set). Later, Feldmann et al. [90] improved this result by showing that DCUT and HYP are
equivalent on graphs that do not contain a Steiner claw, i.e., a potential Steiner node which is adjacent to three other
nodes from S . However, they also showed that in general, for a given STP instance, it is NP-hard to decide whether
the LP-relaxation of HYP has the same value as the LP-relaxation of DCUT.

Approximation algorithms based on hypergraphic LP-relaxations have been implemented and empirically tested
by Beyer et al. [24, 26], see also Section 9. However, to our knowledge, there are no empirical studies on exact
methods for the Steiner tree problem in graphs derived from HYP. On the contrary, GeoSteiner, the state-of-the art
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F IGURE 2 a) Input graph with all edge weights equal to one and with the set of terminals R = {1, 2, 3, 4}
(depicted as squares); b) LP-solution of DCUT/MCF. Dashed and solid edges correspond to Xe = 1/2, and Xe = 1,
respectively; c) Multi-commodity flows for the LP-solution of DCUT with r = 1. Solid lines route the flow from r to 4,
whereas dashed and dotted lines route the flow from r to 2 and 3, respectively; d) Multi-commodity flows for the
LP-solution of DCUT with r = 4. Solid lines route the flow from r to 3, whereas dashed and dotted lines route the
flow from r to 2 and 1, respectively.

algorithm for the Euclidean Steiner Tree problem in the plane, is based on HYP (see [139]). The algorithm consists of
two phases: in the first phase, the hypergraphH is built from a subset of FSCs (while ensuring that the optimal solution
is contained in this set). In the second phase, an MST on H is obtained. We therefore believe that implementing a
competitive exact method for the STP based on HYP is an interesting open direction for future research.

3.3 | Common Flow Formulations

Several authors observed that certain graphminors are responsible for integrality gaps ofMCF/DCUT formulations [158,
182]. Such structures lead to LP-solutions in which, informally speaking, two or more commodity flows join after sep-
arating. Let us consider an example given in Figure 2a, and let 1 ∈ R be a chosen root node r in the MCF formulation.
Figure 2b shows the optimalMCF solution in the space ofX variables. Commodity flows are depicted in Figure 2c. We
notice that the three arcs which are used to simultaneously route flows for commodity 2 and 3 create a disconnected
subgraph. However, this property does not hold for binary solutions. More precisely, given a subset of commodities
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B ⊆ R r , the common flow routed from r to B always follows a single path in the tree. This means that in any feasible
solution the amount of the common flow entering a node must be greater or equal the amount of the common flow
leaving the same node. The latter property was used by Polzin and Vahdati Daneshmand [182] to introduce a stronger
flow-based formulation that we will refer to as CF2. In their model, for each pair of terminals k , l ∈ R r , additional
flow variables hk l

i j
were introduced to capture the amount of their common flow sent through an arc (i , j ) ∈ A. That

way, the authors managed to forbid rejoining of the flow for tuples of commodities.

Several years later, Polzin and Vahdati Daneshmand [187] proposed a slightly different and more general formula-
tion. Let us for a moment assume that the root r is fixed and let B be a collection of subsets of R r such that {t } ∈ B,
for all t ∈ R r , and R r ∈ B (B may contain many other subsets of R r in general). We then introduce for each subset
B ∈ B and each arc (i , j ) ∈ A, the variables 0 ≤ gB

i j
≤ 1 to capture the amount of flow going from r to any terminal

t ∈ B through arc (i , j ), i.e., we have gB
i j
≥ g t

i j
for all t ∈ B , (i , j ) ∈ A. For simplicity we write g t instead of g {t } below.

The rooted common flow formulation, denoted by CFr , reads as follows:

(CFr ) min
X∈{0,1} |E |

∑
e∈E

ceXe

s.t. g t (δ−(r )) = g t (δ+(r )) − 1 t ∈ R r (8)

gB (δ−(i )) ≤ gB (δ+(i )) B ∈ B, i ∈ V \ (B ∪ {r }) (9)

0 ≤ gBi j ≤ g
C
i j B ⊂ C ,B ,C ∈ B, (i , j ) ∈ A (10)

gR
r

i j + gR
r

j i = Xe e = {i , j } ∈ E (11)

Constraints (8) ensure that one unit of flow is sent out from the root to each commodity t ∈ R r . Inequalities
(10) ensure that gB

i j
≥ maxt∈B g ti j , for all B ∈ B, (i , j ) ∈ A. For B = {t }, t ∈ R r , constraints (9) guarantee that one

unit of flow reaches every terminal t ∈ R t . Moreover, for B of size larger than one, these constraints guarantee the
continuity of the common flow, i.e., they impose

∑
j i ∈δ−(i )

max
t∈B

g tj i ≤
∑

i j ∈δ+(i )

max
t∈B

g ti j B ∈ B, i ∈ V \ (B ∪ {r }) (12)

Finally, equations (11) link the flow and edge variables.

If B := B2 = {B ⊆ R r : |B | ∈ {1, 2, |R r | } } the model CFr is equivalent to the aforementioned CF2 formulation.
By considering tuples {k , l } of distinct commodities from R r , the LP-relaxation of the resulting model already depends
on the choice of the root node. An example is given in Figures 2c and 2d. The LP-solution of DCUT is infeasible for
the model CFr , when r = 1 and all pairs of commodities from {2, 3, 4} are added to B. However, by changing the root
to r = 4, the solution of DCUT remains valid (for the respective collection B2), i.e., the choice of the root makes a
difference for the quality of the LP-relaxation. Therefore, Polzin and Vahdati Daneshmand [187] used the “intersection
of rooted arborescences” technique (see also [115, 118]) to derive a stronger formulation by intersecting |R | rooted
Steiner arborescences, one for each root r ∈ R . That way, and by considering different sizes of subsets of R r , a
hierarchy of common flow formulations was provided [187]. The strongest among these formulations, denoted by CF,
is given as follows:
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(CF) min
X∈{0,1} |E |

∑
e∈E

ceXe

s.t. f r ,t (δ−(r )) = f r ,t (δ+(r )) − 1 r ∈ R , t ∈ R r (13)

f r ,t
i j
≤ f r ,s

i j
+ f s,t

i j
{r , s, t } ⊆ R , (i , j ) ∈ A (14)

f r ,s
j i
≤ f r ,t

j i
+ f s,t

i j
{r , s, t } ⊆ R , (i , j ) ∈ A (15)

f r ,B (δ−(i )) ≤ f r ,B (δ+(i )) r ∈ R ,B ⊆ R r , i ∈ V \ (B ∪ {r }) (16)

0 ≤ f r ,B ≤ f r ,C r ∈ R ,B ⊂ C ⊆ R r (17)

f r ,R
r

i j
+ f r ,R

r

j i
≤ Xe r ∈ R , e = {i , j } ∈ E (18)

f r ,r = 0 r ∈ R (19)

In this formulation, an additional index r is added to the definition of flow variables, to indicate the source of the
flow. As before, equations (13), (19) ensure that one unit of flow is sent from r to t ∈ R r , and together with inequalities
(16)-(17) the continuity of the common flow is ensured. Constraints (14)-(15), (19) indicate that by changing the root
node from r to s , the flow of commodity t ∈ R \ {s, r } will change orientation along some edges of the tree.

From the empirical perspective, the practical applicability of the CF model in the given form is quite prohibitive.
For each r ∈ R , all possible commodity combinations from R r are considered for imposing the common flow con-
straints (16)-(17). Thus, the model exhibits an exponential number of constraints and variables. Even by restricting
the formulation to subsets of R whose size is upper bounded by a constant, the model has little chance of being
competitive with the state-of-the-art. Nevertheless, there are alternative ways in which the strength of CF can be
exploited in computational frameworks. Polzin and Vahdati Daneshmand [180], for example, described a restricted
version of the common flow formulation that can be solved by branch-cut-and-price. Besides restricting the size
of B, advanced implementations and possible hybridizations of decomposition techniques (Lagrangian, Benders, or
Dantzig-Wolfe decomposition) might be promising directions for future research.

3.4 | Path-Based Extended Formulations

Very recently, in their Networks article, Filipecki and Van Vyve [92] proposed new MCF-based formulations with
aggregated-path variables. The authors generalized the MCF formulation by considering flows over paths, instead of
just flows over edges. For a given parameter 1 ≤ λ ≤ |V | − 1, the formulation denoted by MCF-λ, considers multi-
commodity flows from r to t ∈ R r by looking at the simple paths connecting r to t whose length is at most λ. To ensure
feasibility of the solution, the flow preservation constraints need to be imposed at paths of length λ − 1, instead of
being imposed at nodes. Finally, to make the model independent on the choice of the root node, similarly as for the
common flow formulation, an additional root index is introduced. In the following we simplify the original notation
and only introduce the formulation MCF-2, whereas the more general model can be found in [92].

Let Ar t denote the set of directed paths of length one or two that can be used to connect r with t ∈ R r . Each
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path can start at r , or end at t , though r and t are not necessarily included in the path. More precisely

Ar t ={(l , i , j ) : (l , i ), (i , j ) ∈ A, l , i , j are distinct, r < {i , j }, t < {l , i }}∪

∪ {(r , t ) : (r , t ) ∈ A} r ∈ R , t ∈ R r ,

We use the notation p ∈ Ar t to indicate either a triple (l , i , j ) or arc (r , t ). Let Ar = ⋃
t∈R r A

r t be the union of all
paths that can be used to send flow from r to any of commodities from R r . We define the following set of additional
variables:

• w r tp indicates the amount of flow sent from r to commodity t , over the path p , r ∈ R , t ∈ R r , p ∈ Ar t ;
• u rp , (i , j ) ∈ A, r ∈ R indicates the upper bound of the flow sent from r ∈ R to any commodity t ∈ R r over the path

p ∈ Ar t , i.e., u rp ≥ maxt∈R r w r tp .

(MCF-2) min
X∈{0,1} |E |

∑
e∈E

ceXe

s.t.
∑

(l ,i ,j )∈Ar t

w r tl i j −
∑

(i ,j ,l )∈Ar t

w r ti j l = 0 (i , j ) ∈ A, r ∈ R , t ∈ R r (20)∑
p∈Ar t :r ∈p

w r tp = 1 r ∈ R , t ∈ R r (21)

0 ≤ w r tp ≤ u
r
p r ∈ R , t ∈ R r , p ∈ Ar t (22)∑

p∈Ar :(i ,j )∈p
u rp +

∑
p∈Ar :(j ,i )∈p

u rp ≤ Xe e = {i , j } ∈ E , r ∈ R (23)

The flow preservation constraints (20)-(21) guarantee that one unit of flow is sent out from the root r to each t ∈ R r .
Constraints (22) guarantee that u rp provides enough capacity to route the flow for all commodities, and constraints
(23) ensure that for each root node, the flow can be routed in exactly one direction. With non-negative costs on the
edges, this implies that no cycles will be contained in an optimal solution.

In the generalization of this model given by Filipecki and Van Vyve [92], paths of length up to λ (where λ ≥ 2 is a
given input parameter) are used to route the flow and flow-preservation constraints are imposed for all subpaths of
length λ − 1. The sets Ar t are comprised of paths of length λ along with all paths of length 1 to λ − 1 that start at
r . For the latter paths, no flow preservation constraints are imposed, they are considered as “shortcuts” from r to t ,
but thanks to capacity and linking constraints (22)-(23), it is ensured that the corresponding edges will be set to one
in the underlying binary solution. A hierarchy of models was derived, showing that by increasing the values of λ, the
strength of the underlying MIP formulations can be strictly improved.

On some of the instances that are typically used to demonstrate the worst-case lower bounds of DCUT and HYP,
the authors showed that the LP-relaxation gaps can be improved. By using the new compact model, several difficult
STP instances could even be solved without branching. However, the authors provided examples of STP instances
on which, for arbitrary value of λ, MCF-λ does not dominate HYP, which means that the two formulations are not
comparable.

Finally, Filipecki and Van Vyve [92] did not compare their new hierarchy of formulations with the hierarchy of
common flow models studied in [187], see Section 3.3. This comparison remains to be done in order to better under-
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stand the relationship between these flow-based models, as well as their strengths and weaknesses. With respect to
the practical viability of the MCF-λ models, the same arguments as for CF apply - without advanced decomposition
techniques, MCF-λ remains computationally intractable, even for λ = 2.

4 | REDUCTION TESTS

Reduction tests are algorithms that are used to transform the input graph into a smaller and simplified graph with
fewer nodes and/or edges. These tests are arguably one of the most effective features for both exact and heuristic
methods in solving the STP [95, 102, 143, 145, 178]. They are typically applied in a pre-processing phase and a
mapping is created so that solutions obtained on the reduced graph can be uniquely mapped back into the original
problem instance. In Polzin and Vahdati Daneshmand [183], the authors went beyond using the reduction tests for
pre-processing purposes only, and implemented a tailor-made branch-and-bound approach in which reduction tests
are applied at every node of the branching tree.

The PhD thesis by Duin [72] was the first to introduce generalizations of several earlier and relatively simple
reduction tests. According to Duin [72], reduction tests take the form of exclusions or inclusions. Exclusions remove
edges or nodes from the input graph. In case a node is removed, some tests may also require the addition of new
edges. Inclusions modify the input graph so that a given edge or node becomes part of any feasible solution.

Moreover, according to the underlying criteria used for reduction tests, a distinction is made between Alternative-
Based and Bound-Based tests [183]. The former category consists of tests which decide upon inclusion/exclusion
based on the existence of alternative solutions. For example, the exclusion of edge e is valid if for any solution TS
that contains e , there exists a solutionTS′ that does not contain e and c(TS ) ≥ c(TS′ ). Similar arguments apply for the
case of inclusion. The latter category, bound-based tests, exploits lower and upper bounds and follows a reasoning
similar to the reduced cost-based variable fixing in integer programming. For example, to test for the exclusion of a
potential Steiner node i , a lower bound is computed subject to the constraint that i is part of an optimal solution. If
this lower bound exceeds a known upper bound (i.e., the objective value of the best incumbent solution), node i and
all its incident edges can be removed [228]. Following these concepts, subsequent contributions to reduction tests
are made for deterministic [102, 180, 228], stochastic [152], node-weighted variants of the STP [153, 199], or special
instances stemming from VLSI design [225]. A recent comprehensive collection of reduction tests for node-weighted
variants of the STP is given in [199].

More sophisticated contributions to reduction tests are due to Polzin and Vahdati Daneshmand [180, 228]. While
most of the previous reduction tests rely on the inspection of simple patterns, their extended reduction tests introduced
in [184] examinemore complex patterns by exploiting the tools of conflict analysis. Given an initial assumption (e.g., an
edge is contained in an optimal Steiner tree), the aim is to search for a contradiction using an enumeration procedure.
Similar ideas were seen in Winter [236], Uchoa et al. [225] and Duin [73] with the major difference that the new
extended tests combine both alternative-based and bound-based reductions. That way, additional reductions could
be achieved. However, the authors pointed out that a careful implementation of these tests is needed, as otherwise
the time invested for performing additional reductions may outweigh the achieved speedups. As a consequence, the
authors exploited heuristic rules in order to truncate the search in case the effort is unlikely to pay off.

Graph connectivity and graph partitioning can also be utilized for performing reduction tests. In a trivial inclusion
test, for example, one searches for a potential Steiner node i such that at least two terminals are separated by removing
i from G (i.e, i is an articulation point of G ). Although such nodes are rarely present in an unpreprocessed instance,
node separators of small size tend to appear after a successive application of reduction tests. Polzin and Vahdati
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Daneshmand [186] introduced new reduction tests in which more general cases involving terminal node separators
N ⊂ R such that |N | > 1 are addressed. By removing an articulation point from G , the graph can be decomposed
into several independent subinstances, each defined on a subgraph of G . In the non-trivial case in which a separator
containsmore than one node ( |N | > 1), multiple cases need to be distinguished, which iswhy the proposed partitioning
approach is only suitable for small |N |. Instead of using an exact max-flow-based approach to find terminal separators,
the authors employed a fast heuristic that yields a set of separators of relatively small size in time O(|R | |E |). If one of
the resulting subinstances is too large, the computational effort of solving all cases may exceed the effort of solving
the original instance. The authors applied inclusion and exclusion tests only on small subinstances instead: if an edge
is present in optimal subtrees for all possible cases, it must be included, and conversely, if it is part of none of these
solutions, it can be removed. In the same article, an alternative approach is suggested that does not depend on solving
subinstances to optimality.

In contrast to the STP, relatively little work is devoted to studying reduction tests for node-weighted (or directed)
problem variants [63, 153, 198, 199]. For a detailed overview of reduction tests for node-weighted versions of the STP
until 2006, we refer to the survey by Costa et al. [61]. da Cunha et al. [63] proposed reduction tests for the PCSTP
that are efficiently employed within a Lagrangian relaxation framework. Leitner et al. [153] developed alternative-
based and bound-based tests for the (prize-collecting) SAP with asymmetric arc weights. Motivated by the work
of [180, 228], a recent Networks contribution by Rehfeldt et al. [199] introduced many new reduction tests for the
PCSTP and MWCS on undirected graphs. In a follow-up article, Rehfeldt and Koch [198] introduced additional NP-
hard reduction tests for the MWCS and exploited them in an exact solution framework.

5 | LAGRANGIAN RELAXATIONS

The Lagrangian relaxation technique has been used in the 1980’s as a useful method to derive primal and dual bounds
for the STP [21, 22, 167]. Typically, easy to solve relaxed subproblem(s) are obtained after dropping a set of “com-
plicating” constraints from the formulation at hand and transferring them to the objective function, multiplied by the
assigned Lagrangian multipliers. In the past three decades however, Lagrangian relaxations were less popular for
solving the STP [10, 164], but they gained more attention for approaching some of the STP variants.

In 2003, starting from the compact MCF formulation for the STP, Bahiense et al. [10] proposed to relax the
flow-conservation constraints in Lagrangian fashion. The relaxed subproblems were then solved by inspection (see
also [21]). Instead of using a standard subgradient procedure to solve the Lagrangian dual problem, the authors pro-
posed a volume algorithm, which is an extension of the subgradient method that simultaneously calculates both dual
and primal bounds. The results were compared with a standard subgradient procedure and with the B&C framework
by Koch and Martin [145]. The authors noted that their approach performed poorly in the presence of many termi-
nals, but performed reasonably well on instances with few terminal nodes. The same year, in their computational
studies, Vahdati Daneshmand [228] and Polzin [180] confirmed that the scalability of Lagrangian approaches with
respect to the number of terminals is an issue and refrained from using Lagrangian relaxations in their exact solution
framework [183]. Soon after, in 2005, Lucena [164] proposed an alternative non delayed relax-and-cut Lagrangian ap-
proach for the STP. His method is a modification of the subgradient method that can handle MIP formulations with an
exponential number of constraints. It can be seen as a traditional Lagrangian approach in which exponentially many
constraints are dualized. To make it computationally tractable, only the polynomial number of Lagrangian multipliers
are updated. Lucena tested his approach on the aforementionedGSEC formulation and on a spanning tree formulation
(a stronger version of a model proposed earlier by Beasley [22]). His computational study revealed that non delayed



Ivana Ljubić 17

relax-and-cut outperforms the delayed relax-and-cut approach (in which the exponential-size family of constraints is
separated only after the Lagrangian dual problems are solved).

Lagrangian relaxations gained more popularity in solving the STP variants. Rosenwein and Wong [205] used
Lagrangian relaxations for an STP variant with an additional knapsack constraint. Two Lagrangian approaches were
derived starting from the MCF formulation. In the first one, the knapsack constraint is relaxed, whereas in the second
one arc variables are doubled so that the Lagrangian subproblem is decomposed into a STP and the knapsack problem.
The authors proved that the latter approach provides stronger dual bounds, however the computational study revealed
that these bounds did not outweigh the computational burden of solving two NP-hard problems.

Engevall et al. [82] published a Lagrangian approach for solving the NWSTP in Networks in 1997. The authors
used Beasley’s MST-based formulation for the STP [22], adapted it as suggested by Duin and Volgenant [74], and
employed a subgradient algorithm enhanced by the separation of subtour elimination constraints. For the same prob-
lem, Cordone and Trubian [60] extended the approach of Engevall et al. [82], modified the subgradient method and
integrated it into a branch-and-bound procedure.

For the quota-constrained PCSTP problem, Haouari and Siala [124] combined a volume algorithm with a genetic
algorithm. In a subsequent work, Haouari et al. [123] considered a generalized version of the PCSTP, formulated it as
a spanning tree problem with side constraints, and compared the strength of four Lagrangian relaxations. They also
provided a computational comparison of nine different implementations of the subgradient method with the volume
algorithm and two variants of the variable target value method. For the PCSTP, da Cunha et al. [63] proposed a non-
delayed relax-and-cut approach derived from the MIP formulation based on GSECs. Recently Álvarez-Miranda and
Sinnl [5] applied a similar methodology for the MWCS and its budget-constrained version.

For two-stage stochastic STP, Leitner et al. [152] combined two types of decomposition techniques which can be
seen as dual to each other, namely Benders decomposition and Lagrangian relaxation. The authors demonstrated
that using these two powerful decompositions in a combined framework creates synergetic effects and allows one to
attack the stochastic STP from multiple angles so as to exploit different types of problem-structures.

6 | DUAL-ASCENT METHODS

Dual-ascent algorithms are effective combinatorial procedures for computing heuristic solutions to the LP dual of a
given MIP formulation. They can also be seen as a combinatorial alternative to Lagrangian dual approaches (see,
e.g., the PhD thesis of Raghavan [194]). The history of dual-ascent methods for the STP begins in 1984 with the
method of Wong [240] published in Mathematical Programming which is by far the most prominent and the most
frequently cited dual-ascent approach to the STP. Wong’s algorithm works on the dualization of the MCF problem
formulation for the SAP. Dual ascent was also formulated in terms of the equally strong DCUT formulation [68, 72].
Duin [72] proposed an efficient implementation whose running time is O(|A |min{ |V | |R |, |A | }). Raghavan [194] also
studied and computationally compared four efficient implementations of Wong’s dual-ascent algorithm for solving
the SAP. Even though the dual-ascent algorithm applied to the strong MCF/DCUT formulation generally performs
well in practice, its lower bounds depend on the choice of the root node (see [181] for an example). Moreover, the
solution of Wong’s dual-ascent algorithm can be arbitrarily far from the optimum (Vahdati Daneshmand [228] shows
this result for undirected graphs and Candia-Véjar and Bravo-Azlán [39] prove this result for directed graphs).

Dual-ascent algorithms typically construct a dual feasible solution in an iterative fashion – in each iteration some
dual variables are increased while dual feasibility is preserved. A similar idea is employed in many primal-dual approxi-
mation algorithms, in which primal solutions are additionally constructed on the fly, and the approximation guarantee
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is derived from the gap between the primal and dual solution. Goemans andWilliamson [111] proposed a primal-dual
heuristic for the (PC)STP with a performance guarantee of 2 − 2/ |R |. Lower bounds in [111] are de facto obtained by
a dual-ascent procedure applied to the undirected cut formulation. One of implementations proposed by Raghavan
[194] simultaneously increases the values of dual variables associated to cut-sets, and when applied to undirected
graphs, it resembles the primal-dual heuristic of Goemans andWilliamson [111]. On directed graphs, however, Ragha-
van’s implementation effectively changes the rate at which the dual variables are increased on different arcs, as an arc
can be in multiple cut-sets. Several years later, Polzin and Vahdati Daneshmand [181] independently provided an im-
plementation very similar to the one given by Raghavan [194] proving that it guarantees the worst case approximation
ratio of 2 − 2/ |R |, while providing empirically high quality bounds.

Poggi de Aragão et al. [178] used heuristics and reduced cost fixing to improve the performance of dual ascent.
The authors also considered two techniques tomake an efficient use of dual ascentwithin an exact solution framework:
1) branch-and-ascent, i.e., a branch-and-bound in which dual ascent replaces the usual LP solver; and 2) initialization
of a branch-and-cut scheme (derived on top of the DCUT formulation) using cuts derived from the basis of the dual
ascent solution.

Raghavan [194] extended the dual-ascent method to the network design problemwith connectivity requirements
(the STP/SAP is a special case of this more general problem). He also emphasized the choice of cut-sets (also known
as root components) and the importance of determining the order in which dual variables associated to these root
components are updated. These arguments have been reinforced by Pajor et al. [177] who proposed a new and
efficient implementation based on a specific scoring function which can be evaluated in a lazy fashion.

The SAP/STP finds important applications in the multicast routing in telecommunication networks (see, e.g., [173,
174]). In such a context, complete information about the topology and the state the network is not available at every
single node, and hence distributed algorithms for Steiner trees need to be considered. Drummond et al. [69] gave
a distributed implementation of Wong’s algorithm and demonstrated its advantages over the existing construction
heuristics in the distributed environment.

When it comes to the PCSTP, a first implementation of Goemans and Williamson’s primal-dual method was com-
putationally tested by Johnson et al. [138]. Fifteen years later, at the DIMACS Challenge, Hegde et al. [126] presented
a new highly efficient implementation of the same method whose running time is O(d |E | log |V |) (where d bits of pre-
cision are used to specify edge weights and node prizes, c and p , respectively). The impressive computing times were
reported, along with very large duality gaps. The latter can be explained by the the fact that dual ascent from Goe-
mans and Williamson [106] is built on top of the undirected cut formulation for the PCSTP, which is known to be
much weaker than its directed counterpart (see, e.g., Ljubić et al. [162]). The first dual-ascent approach derived from
the DCUT-like formulation for the PCSTP is the algorithm of Leitner et al. [153]. Unlike the primal-dual method of
Goemans and Williamson [106], the algorithm of Leitner et al. [153] is also valid for the asymmetric PCSTP, and can
also be used for the MWCS and the NWSTP. In a recent Networks article, Rehfeldt et al. [199] transformed the PCSTP
and the MWCS into the SAP and used dual ascent as a tool for reducing the input size. For two STP generalizations,
namely the stochastic STP and the Steiner tree-star problem, dual-ascent techniques have been successfully applied
by Leitner et al. [152] and Bardossy and Raghavan [16], Leitner et al. [154], respectively.

7 | HEURISTICS

Comprehensive surveys on heuristics for the STP up to 2000 can be found in [27, 71, 228, 231]. In the following
paragraphs we focus on more recent contributions.
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Construction heuristics for STP typically build a feasible solution bymimicking aminimum spanning tree algorithm.
One of the widely used MST-based construction heuristics is a generalization of Prim’s MST algorithm, also known
as the shortest path heuristic of Takahashi and Matsuyama [218] (TM). Starting with a single terminal node, the TM
algorithm generates a feasible solution by iteratively adding the shortest path from the closest terminal to the current
tree. Efficient implementations of TM and other MST-based construction heurisitics were given by Poggi de Aragão
et al. [179]. Even though the proposed implementations did not improve the worst-case running time, the authors
managed to significantly improve their empirical performance, pointing out that in terms of the solution quality, TM
outperformed alternative MST-based heuristics. The quality of TM solutions heavily depends on the starting terminal,
and hence, a multi-start approach may yield a better solution. An efficient two-phase implementation which allows to
run the TM heuristic in a multi-start fashion without sacrificing the worst-case time complexity was given by Vahdati
Daneshmand [228].

In a subsequent work, Ribeiro et al. [203] implemented a hybrid GRASP multi-start heuristic in which solutions
are generated using the MST-based heuristics from [179]. They also employed neighborhood search heuristics, and
reduction tests from [74, 225] as a preprocessing, and path-relinking [201] as a postprocessing procedure.

When it comes to local search heuristics, four basic move operators, namely node-insertion, node-elimination,
keypath-exchange and keynode-elimination are frequently used in the literature [77, 203]. A keynode is a Steiner node
whose degree is at least three in a given feasible solution. A keypath is a subpath of a feasible solution whose end
nodes are terminals or keynodes, and such that all intermediate nodes are Steiner nodes with degree two [229]. Evalu-
ation procedures and specific data structures that enable a fast enumeration of these neighborhoods were introduced
by Uchoa and Werneck [227]. The authors showed that the enumeration of each neighborhood can be performed
in O(|E | log |V |). In the same study, the neighborhood search procedures (all but the node-elimination) were em-
bedded in a variable neighborhood descent (VND). The authors stated that the keynode-elimination dominates the
node-elimination neighborhood. However in a later study by Pajor et al. [177], the authors explained that this is not
the case in general.

Several heuristic methods based on reduction tests were described in Vahdati Daneshmand [228] and Polzin
and Vahdati Daneshmand [183]. Iterative applications of reduction tests usually reach a point at which no further
reductions are possible. In that case, a few nodes or edges may be excluded in a heuristic fashion, thus enabling
further bound-based reductions.

Metaheuristics have been developed for the STP as well: genetic algorithms [84, 133, 140, 189], tabu search [19,
104, 202], or more recently, hybrid ant colony optimization [34], or particle swarm optimization [193]. Most of these
algorithms have been empirically evaluated on a set of instances from the OR-library [20]. However, already in 2001,
all instances from the the OR-library were solved to optimality by the method of Pozin and Vahdati Daneshmand
[183] in less than a second of CPU time on a Pentium II machine. Hence, competitiveness of the above-mentioned
metaheuristics with respect to state-of-the-art exact methods remains questionable. Even more so, after taking into
account that none of these methods participated at the DIMACS Challenge in 2014. In the remainder of this section,
we review the heuristic developments initiated by this challenge.

Gamrath et al. [102] exploited a variable neighborhood descent procedure as a primal heuristic in their exact
method. The authors integrated some of the most successful STP heuristics from the literature (TM, the dual ascent
heuristic, and the improvements from [179, 183, 228]) into their SCIPJack framework. In addition, they proposed
a new recombination heuristic that creates a subgraph from a collection of promising solutions, applies reduction
techniques, modifies the edge weights and solves the resulting instance heuristically.

A battery of heuristics [151, 179, 183, 228] was also used in the computational framework of Fischetti et al. [95],
which was the winner of the DIMACS 2014 Challenge in most of the categories, including the best found heuristic
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solutions (see [65]). The framework was particularly effective for the very challenging family of PUC instances which
were originally developed for the STP in [206], and were later adapted for the PCSTP [159, 162]. For these and other
instances with uniform (or almost uniform) edge weights, a local branching heuristic [96] was applied to the node-
based counterpart of the DCUT formulation. To create a starting feasible solution for the local branching, the authors
employed a Benders-like set covering heuristic. The latter interprets a partially generated set of cut-set inequalities
as a set covering problem, in which the terminal nodes are elements, and the adjacent potential Steiner nodes are
interpreted as sets. The set covering instance was solved heuristically using the method from Caprara et al. [40]. If
the resulting solution was infeasible, the chosen Steiner nodes (i.e., sets of the set-covering instance) were fixed to
one, and the resulting significantly reduced (uniform) STP instance was solved using the branch-and-cut scheme.

Fu and Hao [99] introduced a swap-vertexmove operator which can be applied within a local search heuristic not
only for STP, but also for its node-weighted variants (PCSTP/MWCS). The operator exchanges a node from a given
feasible solution with another node out of it, and then repairs the solution by constructing a spanning tree over the
selected nodes. Fu and Hao [99] introduced a series of dynamic data structures to enable an efficient evaluation of
the swap-vertex moves. Their heuristic was particularly effective for the aforementioned difficult PUC dataset. In a
subsequent article by Fu and Hao [98], the authors embedded the local search procedures into a knowledge-guided
framework, thus improving upon their previous computational results published in [99].

Pajor et al. [177] introduced a multi-start heuristic which employs the aforementioned four neighborhoods and
improves upon several aspects originally studied by Ribeiro et al. [203]. As an additional intensification strategy, the
authors proposed a cascaded combination procedure in which newly constructed solutions are iteratively combined
with the members of a solution pool, i.e., a subset of all previously constructed solutions. The combination is per-
formed heuristically in a manner similar to one of the path-relinking strategies proposed in [203].

Finally, there is a parallel stream of research whose major focus is on efficiently utilizing the constantly increasing
computational power in developing parallel or distributed algorithms for solving the STP. Bezenšek and Robič [27]
reviewed parallel and distributed algorithms for solving the STP up to 2014.

8 | EXACT METHODS

An overview of exact algorithms up to 1990 can be found in Hwang et al. [134]. Common ingredients for the ma-
jority of the exact methods developed in the last three decades are: preprocessing tools based on reduction tests
(cf. Section 4), the use of Lagrangian or dual ascent relaxations for calculating strong lower bounds (cf. Section 5 and
6, respectively), sophisticated local-search-based heuristics for calculating primal bounds (cf. Section 7) and finally
branch-and-cut methods based on the MIP formulations described in Section 3.

In their 1998 Networks article, Lucena and Beasley [165] designed a branch-and-cut scheme based on Beasley’s
MST formulation [22]. They augmented this undirected formulation with additional valid inequalities, including sub-
tour elimination constraints and Steiner connectivity cuts. In addition, preprocessing in the formof reduction tests [75]
was applied. The authors gave a side-by-side comparison with Beasley’s original branch-and-bound based on the La-
grangian relaxation [22], a branch-and-cut of Chopra et al. [53] based on theDCUT formulation, and an exact algorithm
by Duin [72] based on reduction tests and dual ascent. Their results demonstrated that the approach by Duin outper-
formed the others by approximately three orders of magnitude. The authors attributed this to Duin’s more advanced
reduction tests, and an efficient overall implementation. Most notably, Duin’s approach did not rely on branch-and-cut,
but focused solely on reduction tests and dual ascent bounds.

The same year, another exact method for the STP was published in Networks: Koch and Martin [145] proposed
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a branch-and-cut scheme built on top of the original methodology of Chopra et al. [53]. The most important en-
hancements were the inclusions of reduction tests [75], flow-balance inequalities, and the development of an efficient
separation procedure that combined back cuts (introduced by Chopra et al. [53]), nested cuts and arc-minimal cuts. Al-
though no updated comparison with Duin’s results was provided, the authors managed to solve almost all benchmark
instances from the OR-Library to optimality. Based on these results, two years later, a new collection of difficult STP
instances at the time, SteinLib [146], was born.

Poggi de Aragão et al. [178] developed a dual-ascent-based branch-and-bound procedure. The results indicated
that their approach is particularly effective on the incidence instances from the SteinLib (e.g., dataset I320). Moreover,
the authors also showed how to improve the performance of a branch-and-cut based on the DCUT formulation by
warm-starting it using the active cuts obtained from the dual-ascent solution. Starting from a sequential branch-and-
bound developed by Poggi de Aragão et al. [178] and in the PhD thesis of Uchoa [223], Drummond et al. [70] proposed
a fully distributed branch-and-bound for STP.

The efforts of Duin [72] were further improved by Polzin and Vahdati Daneshmand [183] whose exact solution
framework for the STP remained state-of-the-art for many SteinLib instances until today. An overview of the algo-
rithmic ideas used in their framework can be found in [187]. With a careful implementation, the authors managed to
speed up the execution of known reduction tests. Moreover, they introduced expanded reduction tests, reduction
by partitioning and a dynamic programming algorithm [186], a polynomial variant of the common flow formulation
(cf. Section 3), and the ascend-and-prune heuristic. Thanks to the integration of all these techniques, the majority
of SteinLib instances were solved to optimality in very short computing times. However, it is worth mentioning that
their framework is extremely well-tuned for undirected STP instances, which makes it less flexible when it comes to
minor modifications in the problem definition. So for example, node weighted, budget-, quota- or degree-constrained
problem variants cannot be addressed by their method. Moreover, the PUC instances, which were specially designed
to defy the majority of standard reduction tests, along with some of the largest VLSI instances (dataset LIN), remained
out of reach of their method. A recently updated computational study on the results achieved by their framework can
be found in [188].

The next milestone in the development of exact methods for the STP was the 11th DIMACS Challenge, during
which ten teams competed in solving the STP and five other problem variants. A large number of difficult and real-
world benchmark instances was made available by many contributors [1]. These instances constitute the current
battlefield for development of new methods, even though a structured overview of state-of-the-art results per each
instance (like it is given for the SteinLib, for example) is missing. Among the exact methods, thewinner of the challenge
for the STP, PCSTP, MWCS and the degree-constrained STP (DCSTP) was the code mozartballs from Fischetti et
al. [95]. The only exception was the rooted PCSTP variant, for which the SCIPJack code of Gamrath et al. [102] was
slightly faster.

The codes mozartballs and staynerd from Fischetti et al. [95] refer to a general-purpose branch-and-cut ap-
proach (for solving the STP/SAP/PCSTP/NWSTP/DCSTP) based on an earlier exact solution framework for the PCSTP
and MWCS introduced by Ljubić et al. [162] and Álvarez-Miranda et al. [2, 3], respectively. Starting from a rule-based
parameter selection procedure, the framework chooses between the DCUT model (after transforming the instance
into the SAP) and the node-based connectivity model. Next, the framework chooses between the set-covering-based
heuristic (cf. Section 7), a variable neighborhood descent close to the one developed by Uchoa and Werneck [226]
and a partition-based heuristic of Leitner et al. [151]. Once the pool of feasible solutions is generated, a local branch-
ing procedure [96] is applied. Connectivity cuts separated during the local branching phase are subsequently used to
initialize the LP before the final branch-and-cut phase is entered. The commercial MIP solver CPLEX is used for the
branch-and-cut scheme, and separation procedures for DCUT rely on implementations developed in Ljubić et al. [162].
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The package is publicly available. 2

An improved version of the SCIPJack solver was published in Gamrath et al. [102]. SCIPJack is a general-purpose
exact framework for the STP, its variants mentioned above, and for the hop-constrained STP and the group STP prob-
lem. The solver is based on an earlier version of the branch-and-cut scheme by Koch and Martin [145]. It is imple-
mented on top of the academic MIP solver SCIP. Notable algorithmic improvements with respect to Koch and Martin
[145] include additional reduction tests [180, 196, 224, 228], VND [226], the Ascend-and-Prune heuristic [180, 228]
and the dual-ascent procedure from Pajor et al. [177]. Most importantly, the framework exploits transformations
from various variants of the STP to the SAP, to which reduction tests for the SAP [75, 196] are applied. However,
the SAP appears to be more difficult to preprocess than the STP, which is why the authors also included several
problem-specific reduction tests in their framework. The code is available open source and can benefit from a mas-
sively parallel MIP-framework enabled by the SCIP solver. Recent implementation details and computational results
of using SCIPJack in a distributed environment with 43000 cores are given in Shinano et al. [214].

Leitner et al. [153] provided the most recent exact solution framework for the asymmetric PCSTP (which can
also solve the STP/SAP, MWCS and NWSTP, thanks to a specific transformation into the SAP with both positive
and negative arc weights). The authors provided a generalization of the Wong’s dual ascent algorithm that shares
similarities with the primal-dual 2-approximation algorithm for the PCSTP from Goemans andWilliamson [106]. New
bound-based and alternative-based reduction tests for the asymmetric PCSTP are introduced as well. This is the first
exact framework which is capable of handling Steiner tree problems that include asymmetric arc costs. On most of
the available benchmark instances the code is several orders of magnitude faster than the code of Fischetti et al. [95],
and it is even faster than state-of-the-art heuristics from Fu and Hao [98, 99]. The code is available as open source. 3

Rehfeldt and Koch [198] studied the MWCS and provided a combination of (NP-hard) reduction tests, primal
heuristics, a problem transformation into the SAP and the integration of these techniques into a branch-and-cut
framework. They further improved the computational times from Leitner et al. [153] and solved one more difficult
problem instance to optimality.

Finally, in a very recent Networks issue, Siebert et al. [215] presented a novel MIP-based approach for solving
the SAP. Each feasible rooted SA can be represented using a laminar family of subsets of terminals. The authors
exploited this fact to derive an LP model which finds a least-expensive SA for a given admissible laminar family. They
also proved that it is sufficient to consider laminar families whose tree representation corresponds to a full binary
tree, thus showing that at most O(( 2|R |e )|R |) LPs need to be solved to find the optimal solution value. Hence, their
approach results in a poly-time algorithm when the number of terminals |R | is bounded by a constant. Nevertheless,
computational performance of this model remains fairly limited.

Dynamic programming methods and parametrized algorithms.
We now briefly summarize the most relevant fixed-parameter tractable (FPT) methods for the STP. FPT methods
are exact algorithms which are computable in a time that is polynomial in the input size and exponential in a given
parameter, so that they become tractable after the value of the parameter is fixed. For example, the STP is fixed-
parameter tractable with respect to |R |: the Dreyfus-Wagner algorithm [67] (see also [157]) is a classical exact method
based on dynamic programming (DP) which runs in O(3|R | |V |). Subsequent improvements are given in [100] and
in [30, 172] – the latter two approaches reduce the worst-case time complexity to O(2|R | |V |2cmax + |V | |E |cmax)

for the special case that all edge weights are from the set {1, 2, . . . , cmax }. Vygen [233] provides an improved DP
approach which currently has the best running time bound for a wide range of |R |/ |V | values. The first polynomial-

2See homepage.univie.ac.at/ivana.ljubic/research/staynerd/StayNerd.html
3See github.com/mluipersbeck/dapcstp

homepage.univie.ac.at/ivana.ljubic/research/staynerd/StayNerd.html
github.com/mluipersbeck/dapcstp
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time algorithm for the SAP (when |R | is a fixed constant) is given by Feldman and Ruhl [89]. The only FPT algorithms for
the MWCS that we are aware of are given by Buchanan et al. [37]: the one solves the MWCS in time O(2q ( |E |+ |V |)),
where q is the number of nodes with a negative weight, and the other runs in time O(4ρ |V |3) where ρ is the number
of nodes with a positive weight. Finally, for graphs whose independence number α is bounded, the authors showed
that the optimal solution can be found in O(4α |V |3) time.

Similarly, DP algorithms applied to tree decompositions to solve the STP use time polynomial in |V | and exponen-
tial in the treewidth, resulting in polynomial-time algorithms on graphs with a bounded treewidth (see [32, 49, 129]
and further references therein). Roughly speaking, the treewidth of a graph G measures how “similar” is G to a tree.
Experimental evaluation of the several variants of the DP algorithm of Bodlaender et al. [32] (enhanced by weighted
bit string representation) is given by Fafianie et al. [85] and their software is publicly available.4

While the majority of the aforementioned DP algorithms is of limited practical viability, the work of Hougardy et
al. [129] stands out as an exception. The authors provided a more efficient implementation of the Dreyfus-Wagner
algorithm in which shortest path computations are enhanced by the concepts of label-pruning and future costs. The
proposed algorithm is shown to be practically efficient, especially for large-scale instances with very few terminals.

The recent PACE2018Challenge on Steiner trees [33] attracted a lot of researchers from the FPT community. One
of the goals of the challenge was to test the computational performance and practical applicability of parametrized
and heuristic algorithms for the STP. Three competition tracks were created, derived from the instances: with a small
number of terminals (track A) , with a low treewidth and a high number of terminals (track B), and with a large number
of terminals and a high treewidth (track C). The most successful implementation for the track A, given by Iwata and
Shigemura [137], is based on the separator-based improvement of the DP method of Erickson et al. [83]. This im-
plementation, which is also available as an open-source,5 is competitive against the aforementioned state-of-the-art
branch-and-cut approaches for the instances with a small number of terminals. The track B was dominated by the
results obtained by the SCIPJack solver (whose team was the only one to participate in both, DIMACS and PACE
challenge), and the best results for the track C are obtained using a memetic algorithm whose implementation is also
publicly available. 6 Further details about the competition and the obtained results can be found in Bonnet and Sikora
[33].

9 | APPROXIMATION ALGORITHMS

Approximation algorithms are polynomial-time heuristics that provide a provable guarantee on the quality of the
obtained solution with respect to the optimal one. Numerous results are available concerning the STP and its variants,
many of thembeing derived on restricted graph topologies. An online compendiumbyHauptmann andKarpiński [125]
provides an up-to-date overview of the best known approximation results, and addresses, besides the STP and SAP,
38 additional problem variants! Detailed reviews of approximation algorithms for the STP can be found in [119, 192].

Chlebík and Chlebíková [51] showed that it is NP-hard to approximate the STP within a factor of 96/95. The
majority of approximation algorithms developed before 2010 were of a combinatorial nature [142, 191, 245, 246].
The strongest known combinatorial approximation algorithm by Robins and Zelikovsky [204] yields an approximation
ratio of 1.55 + ε. Construction heuristics which are much easier to implement and are therefore frequently used in
computational frameworks (cf. Sections 7 and 8) like the TM heuristic [218], the distance network heuristic [170],
the primal-dual algorithm [111], the dual-ascent approach from [181], or the local search from [226] yield (2 − 2/ |R |)-

4See http://www.staff.science.uu.nl/~bodla101/java/steiner.zip
5https://github.com/wata-orz/steiner_tree
6https://github.com/HeathcliffAC/SteinerTreeProblem

http://www.staff.science.uu.nl/~bodla101/java/steiner.zip
https://github.com/wata-orz/steiner_tree
https://github.com/HeathcliffAC/SteinerTreeProblem
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approximations. Despite the fact that the DCUT model is known to be stronger than its undirected counterpart [109],
no better LP-based approximation algorithm based on this formulation is known.

While theMIP community is concerned with the relative strength ofMIP formulations for the STP, the approxima-
tion community studies the worst possible gap between the LP-relaxation of an MIP model and the optimal solution.
Until the work of Byrka et al. [38], the question whether there exist an MIP formulation for the STP whose (efficiently
solvable) LP relaxation is bounded away from 2, remained open. The authors proved that the integrality gap of the
HYP formulation (cf. Section 3) is 1.55 (a simpler proof is given in [42]). In the same article, Byrka et al. provided the
currently best known constant approximation ratio of 1.39 + ε for the STP. The solution was obtained by using the
HYPCUT formulation (over a subset of FSAs of a restricted size) in combination with an iterative randomized rounding
technique and it required to repeatedly solve the LP-relaxation of HYPCUT. Goemans et al. [110] gave an alternative,
deterministic and much faster method in which the solution of a single LP-relaxation of the undirectedHYP relaxation
is sufficient to guarantee the same approximation ratio.

The major idea behind combinatorial [142, 204, 245, 246] as well as LP-based [38, 42, 110] approximation algo-
rithms with the ratio better than 2 is based on a decomposition of a Steiner tree into k -restricted full Steiner compo-
nents (for a given parameter k ≥ 3). Among a set of k -restricted components, the algorithms search for a cost efficient
way of putting them together to obtain a feasible Steiner tree. For the majority of the algorithms, the strongest ap-
proximation ratios are only obtained for k 7→ ∞. However, the running time (which is exponential in k ) heavily affects
the potential practical applicability of these algorithms. There are very few computational studies that address these
issues. In a first study provided by Chimani and Woste [50], the authors provided a side-by-side comparison (with
respect to the CPU time and the solution quality) of two construction heuristics [170, 218], with the combinatorial
approaches by Zelikovsky [246] and the algorithm of Robins and Zelikovsky [204]. The study showed that on a set
of benchmark instances from the SteinLib, the older and simpler approach by Zelikovsky [246] was comparable with
heuristics from [170, 218], and that all three methods computationally outperformed the 1.55 approximation algo-
rithm from Robins and Zelikovsky [204]. They also showed that the exact method by Polzin and Vahdati Daneshmand
[183] was faster and applicable to larger graphs than the combinatorial approximation algorithms. In a subsequent
study, Beyer and Chimani [24] implemented the (1.39 + ε)-approximation algorithm following the recipe of Goemans
et al. [110]. They concluded that a practical implementation can be achieved for k = 3, however the algorithm was
still not competitive against the TM heuristic or a simple branch-and-cut derived from the DCUT formulation (see also
[57] for similar conclusions). In a follow-up article, Beyer and Chimani [25] showed that even after applying reduc-
tion tests as a preprocessing step, no implementation of these strong approximation algorithms could compete with
state-of-the-art exact and heuristic algorithms. Finally, Beyer and Chimani [26] gave a comprehensive and detailed
overview of different implementation aspects and parameter choices for combinatorial and LP-based strong approxi-
mation algorithms for the STP. They concluded that one of the major bottlenecks for the computational efficiency of
the method by Goemans et al. [110] seems to be the generation and storage of k -restricted FSCs and the computation
of the LP-relaxation of HYP.

10 | OLD AND NEW APPLICATIONS OF THE STP

The book by Cheng and Du [47] from 2001 was devoted to applications of Steiner trees in industry. In the following,
we briefly overview some of the traditional applications, and highlight the more recent and challenging ones from the
fields of bioinformatics, systems biology and machine learning.
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Multicast routing.
Multicasting (also known as selective broadcasting) is a technology that is used to efficiently distribute large amount
of data among a group of nodes in a telecommunicaton network. Typical applications include video on demand,
distance learning, or teleconferencing. The minimum-cost routing of multicast connections in which there is a central
(root) node from which the information has to be distributed to a selected subset of destination nodes (terminals) is
frequently modeled as a STP. Surveys on multicast routing (that also addressed additional practical side constraints)
were given by Novak et al. [173] and Oliveira and Pardalos [174], see also [69, 195, 210].

Physical design of circuits.
Integrated circuits are created by combining millions of transistors onto a single (micro)chip. Herein, a set of given
points (representing components) need to be connected through wires with a Steiner tree of minimum length, using
only horizontal and vertical line segments (see [156, 244] for a detailed electrical background on constructing the
layouts). The problem is known as the rectilinear Steiner tree problem, and can be modeled as a STP on the underlying
Hanan grid induced by the given points. Instead of approaching the problem on such induced large graphs, many
specialized, better performing algorithms have been developed in the past (see [139] for a detailed overview). Cur-
rently, state-of-the-art results are obtained by Juhl et al. [139] and their GeoSteiner 5.0 implementation. Their code
is publicly available. 7 Many problem variants involving more realistic side constraints (such as avoiding obstacles, or
additionally minimizing flow-costs) were also addressed in the literature (see [36, 52, 244]).

Design of service networks.
Design of access networks in telecommunications is frequently modeled as a STP. An access network connects sub-
scribers (terminal nodes) to a central office of their service provider (root node) through copper or fiber optic cables
(or a combination of the two). The street junctions (potential Steiner nodes) along with aforementioned nodes make
up the network. The nodes are connected with links corresponding to street segments and the weight of each link
represents the cost for digging the cable ducts. In contrast to core networks (that need to ensure network connectivity
in case of potential link failures), the access networks typically have a tree topology, hence the optimization problem
that minimizes the infrastructure cost becomes a (rooted) STP (see, e.g., [31] for a more detailed description and fur-
ther practical constraints/costs that might be included in the network planning). A survey on optimization problems
for the deployment of last-mile optical access networks can be found in Grötschel et al. [120], and some older exam-
ples of using the STP for telecommunicaton networks were given by Voß [232] (see also the book by Resende and
Pardalos [200]).

Sometimes, service providers may be given a choice to decide (based on expected customers’ revenues) to which
customers they want to offer the service. In this case the problem becomes the PCSTP. The design of district heating
networks was addressed in Ljubić et al. [162] and a prize-collecting version of the local access network design was
studied in Ljubić et al. [161].

Frequently, network design and location decisions are combined. So, for example Prodon et al. [190] used the
PCSTP to locate sensors for leak detection in water distribution networks. In the design of local access networks, the
facility location problem and the STP are combined and the underlying optimization problem is known as the Connected
Facility Location Problem (ConFLP). The most recent theoretical and computational studies for the ConFL are given
in Bardossy and Raghavan [16], Gollowitzer and Ljubić [114] and Leitner et al. [149, 154]. In Gollowitzer et al. [112]
the authors additionally took the cable capacities into account, and Arulselvan et al. [8] considered the problem in a
multi-period planning context. A bi-objective problem variant of the ConFLP was studied by Leitner et al. [155]. The

7See geosteiner.com

geosteiner.com
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ConFLP under uncertainty was addressed in Bardossy and Raghavan [17] and in a 2017 Networks article by Bardossy
and Raghavan [18]. Ljubić and Gollowitzer [160] studied the ConFLP with hop constraints.

Bioinformatics and Systems Biology.
A sequence of articles in bioinformatics and systems biology, initiated with the work of Ideker et al. [136] used
Steiner trees in networks (and in particular, the PCSTP and MWCS) as a successful modeling tool for analysis of
high-throughput data. New metabolic pathways (series of interactions among molecules in a cell) are detected by
looking at a collective interaction between differentially expressed genes, proteins or other biological factors. Node
weights correspond to a statistical score associated to the gene expression and (possible) edge weights express the
level of confidence for the interaction between pairs of nodes. The subnetwork extraction algorithms are used to favor
subgraphs containing genes with higher scores over the others, and precisely this is achieved by modeling the un-
derlying optimization problem as the MWCS (in case of node-weighted networks) or the PCSTP (in the more general
case). Using this model, Ideker et al. [136] implemented an algorithm based on simulated annealing to find suboptimal
solutions. A few years later, Scott et al. [212] provided the first study that explicitly used the STP as a modeling tool
for investigating gene interaction networks. Contrary to Ideker et al. [136], who performed a global search based
on node scores only, Scott et al. [212] allowed the users to specify the set of terminals (calling them “distinguished”
nodes, which are typically genes/elements that are most likely to be involved in regulatory interactions).

A plethora of follow-up articles in bioinformatics and systems biology based on the STP/MWCS modeling strate-
gies repeatedly reported that the obtained subnetworks (i.e., pathways) are often unexpected but for the biologists
the most interesting ones. The discovered pathways can provide new insights into biological processes and po-
tentially lead towards new drug discoveries and, more generally speaking, new therapeutic approaches (see, e.g.,
[9, 11, 12, 81, 87, 208, 242, 243], and the PhD theses of El-Kebir [79], Huang [130] and Hume [132]).

Dittrich et al. [66] proposed a transformation from the MWCS into the rooted PCSTP problem. The authors
used the exact algorithm of Ljubić et al. [162] in their software package to determine (sub)optimal solutions. Likewise,
Huang and Fraenkel [131] (see also [222]) integrated the exact PCSTP algorithm from Ljubić et al. [162] into their soft-
ware to detect novel pathways in integrated protein–protein and protein–DNA networks. El-Kebir and Klau [80] (see
also [79]) developed a branch-and-cut code combined with graph decomposition techniques for the MWCS/PCSTP,
called Heinz8 specifically targeted for bioinformatics applications. Tuncbag et al. [220] (see also [221]) used the prize-
collecting Steiner forest to effectively reconstruct multiple pathways. Practically speaking, the authors modeled the
problem as the PCSTP with a degree constraint at the root node. Their problemwas solved using the code from Bailly-
Bechet et al. [12]. Most recently, Klimm et al. [144] combined single-cell RNA-sequencing data with protein-protein
interaction networks to detect active modules in cells of different transcriptional states. The open-source code by
Leitner et al. [153] was employed to solve their underlying MWCS model.

The PhD thesis of Won [239] (see also [43]) dealt with the prevention of a delayed detection of dementia, by
analyzing the strength and structure of brain connectivity within certain functional regions which are associated with
cognitive decline. The authors modeled the problem as the k -cardinality tree problem, which can also be seen (and
efficiently solved) as a cardinality-constrained SAP (see next section, and also [48, 216]).

Wildlife Conservation, Forestry Planning.
The MWCS and PCSTP, sometimes extended by cardinality or budget constraints, are common models for address-
ing network design questions in wildlife conservation. The underlying problems typically ask to select a subset of
contiguous land parcels for conservation to ensure the mobility of threatened species between existing reserves (see

8https://github.com/ls-cwi/heinz

https://github.com/ls-cwi/heinz
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[58, 59, 64]) or to connect known habitats of a given set of different species (see [175, 176]). The problems are also
known as the reserve network design or the corridor design problem. The input graph is made up by nodes repre-
senting land parcels, which are connected by an edge if and only if the two land parcels are adjacent. Connections
to the SAP are emphasized by Dilkina and Gomes [64] and Álvarez-Miranda et al. [2, 3]. Similar applications of the
connected subgraph problem arise in forestry planning [41], or off-shore oil-drilling [128].

Machine Learning and Robotics.
Applications of the SAP in machine learning can be found in image recognition and feature extraction [45, 207, 211,
230]. Russakovsky and Ng [207] proposed a reduction of a feature selection problem to the SAP, to efficiently se-
lect parameters for image segmentation. The SAP was solved heuristically, using the approximation algorithm of
Charikar et al.[44]. Feature extraction on 2D seismic images was modeled as the PCSTP over a specially designed
graph described in Schmidt et al. [211]. A more general modeling approach for extracting sparse features using graph
transformations into the PCSTP was discussed in Hegde et al. [127]. The authors employed their own efficient imple-
mentation of the 2-approximation algorithm of Goemans and Williamson [106] (see also [126]). In Vijayanarasimhan
and Grauman [230], the MWCS was used for detecting the contours of objects in a given image. In a follow-up article,
Chen and Grauman [45] extended this approach, and applied it to the detection of moving objects in video streams.
In both cases, problem instances were transformed to the PCSTP and solved using the exact solver from Ljubić et
al. [162].

Banfi et al. [15] used the PCSTP and MWCS to model deployment of robots for search and rescue operations in
communication-restricted environments (i.e., where communication between robots and the base station is enabled
through an ad hoc network). More details can be found in the PhD thesis of Banfi [14].

11 | THE STP/SAP AS A POWERFUL MODELING TOOL

The STP and the SAP were frequently exploited as a powerful tool to model other difficult combinatorial optimization
problems. We highlight some of the recent successful examples, in which the original problems were transformed into
a (constrained) SAP/STP or PCSTP, allowing one to exploit structural properties of these better understood problems
within computational frameworks.

The Connected Facility Location Problem.
The goal of the ConFLP is to install a set of facilities on a network and assign customers to the installed facilities. In
addition, the set of installed facilities has to be connected by a Steiner tree. Bardossy and Raghavan [16] transformed
the problem into the SAP with a unit-degree constraint at the root node and then applied a dual-ascent heuristic
combined with local search to obtain strong lower and upper bounds. A simpler transformation into the SAP, using a
much smaller directed graph was given in Tomazic and Ljubić [219] and Leitner et al. [154]. More general problems
with a tree-star topology and their transformation into a constrained SAP were addressed by Leitner et al. [154]. Even
more general setting with a tree-tree topology (and a set of facilities being installed to provide transition from the
primary subtree into the secondary subtrees) was considered by Gollowitzer et al. [113]. The authors showed how
to transform the problem into the SAP with additional node-degree constraints. A survey by Fortz [97] covers the
ConFLP and other more recent applications that combine network design and facility location decisions in the context
of telecommunication networks. Another problem closely related to the ConFLP is the p-arborescence star problem
for which Morais et al. [171] exploited a connection to the SAP to derive a strong cut-set based MIP formulation.
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Hop-constrained and diameter-constrained trees.

The goal in these settings is to find a minimum-cost spanning/Steiner tree such that the number of edges between
the root and any terminal (between any two terminals, respectively) is bounded by a given constant. These problems
can be transformed into the SAP on specially constructed layered graphs (see [69, 117]).

Gouveia et al. [115] solved a hop-constrained problem variant in which multiple root nodes are given. They
modeled the problem as an intersection of Steiner arborescences – one Steiner arborescence on a layered graph is
used to connect each root with its given set of terminals. Ljubić and Gollowitzer [160] used two different SAP models
(extended by node-degree constraints) to model the hop-constrained ConFLP. A node-based SAP modeling approach
to the hop- and budget-constrained PCSTP problem was proposed by Sinnl and Ljubić [217]. A recent survey on
layered graph transformations for combinatorial optimization problems can be found in Gouveia et al. [116].

The k -cardinality tree problem.

The problem asks for a minimum-cost subtree in an edge-weighted graph with exactly k edges. Fischetti et al. [94]
introduced a first exact approach for the problem in 1994 in Networks, and Chimani et al. [48] used a transformation
into the SAP with an additional arc-cardinality constraint to derive an exact approach which even outperformed state-
of-the-art metaheuristics at the time. The authors also showed how to exploit this SAP transformation for node-
weighted graphs and for the prize-collecting variant as well. Simonetti et al. [216] later extended the SAP model with
several families of facet-defining inequalities and improved the results of Chimani et al. [48].

The Regenerator Location Problem.

The problem deals with transmission of signals in optical networks: a signal can only travel a limited distance before
it has to be re-amplified by installing regenerators at nodes of the network. The goal is to deploy the minimal number
of regenerators, while ensuring all nodes can communicate with each other. The problem was introduced in Networks
by Chen et al. [46]. The authors developed a branch-and-cut based on a problem transformation into the SAP with a
unit-degree constraint at the root node. The authors also pointed out the connection to the Maximum Leaf Spanning
Tree (MLST) and a similar transformation of the latter to the SAP. The MLST problem asks for a spanning tree that
maximizes the number of leaves. A polyhedral study published in Networks by Fujie [101], together with the work of
Fernandes and Gouveia [91] led the way to the work of Lucena et al. [166] who exploited the connection to the SAP to
derive two strongmodels for theMLST problem on directed graphs. Both problems are closely related to theMinimum
Connected Dominating Problem (MCDP) which asks for a dominating set of a graph of minimum cardinality. In another
Networks article, Wu et al. [241] proposed a tabu search approach and highlighted the importance of the MCDP in
the design of mobile ad hoc networks and sensor grids. Finally, Gendron et al. [105] exploited the connection to the
STP to derive an efficient Benders decomposition approach.

The Group Steiner Tree Problem (GSP).

In this problemwe are given a family of node subsets and the goal is to find aminimum-cost tree spanning (at least) one
node from each subset. The problem can be easily transformed into a STP on an enlarged graph (see [135, 209]). Duin
et al. [76] investigated the computational performance of this transformation and showed that it compares favorably
with specialized GSP heuristics at the time. Leitner [148] introduced the GSP with hop constraints and exploited the
connection to the SAP to derive strong MIP formulations on a specially designed layered graph for which he also
implemented a branch-and-cut approach.
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12 | CONCLUSIONS

The STP continues to fascinate researchers frommany disciplines, including Applied Mathematics, Computer Science,
Operations Research andManagement Science. New and challenging applications are regularly being discovered, with
recent examples stemming from bioinformatics, systems biology or machine learning.

Historically speaking, the 1990s were marked by polyhedral studies, in the early 2000s we saw a rise of exact
solution methods and a sequence of combinatorial approximation algorithms. In the 2010s, a breakthrough has been
achieved by developing new LP-based approximation algorithms and finally the DIMACS Challenge in 2014 and the
2018 PACE Challenge brought to light some new sophisticated generic or FPT-based exact solution frameworks.
However, there is no unique answer to the question: what is the state-of-the-art exact solver for the STP? Several
generic computational frameworks (Fischetti et al. [95], Gamrath et al. [102], Leitner et al. [153]) emerged in the past
few years, but none of them dominate the others. Some are stand-alone open-source implementations ([153]), the
others rely onMIP solvers, like CPLEX ([95]) or SCIP ([102]), or can be applied only to specific problem variants, like the
MWCS (Rehfeldt and Koch [198]). It is worth mentioning that the implementation of Polzin and Vahdati Daneshmand
[187] from 2009 remains competitive or even state-of-the-art for many instances from the SteinLib, but their code is
unfortunately not publicly available.

It is hard to predictwhat the next breakthrough developmentswill be, however, there are certainly some promising
directions for future research that we will highlight below.

• Despite the fact that the bidirected cut formulation (DCUT) has an exceptional empirical performance, finding a
better-than-2 upper bound on its integrality gap remains a well-known open problem.

• In this article we gave an overview of recentMIP formulations that are strictly stronger than DCUT. Unfortunately,
the size of these models is prohibitive and makes it impossible to simply plug them into an off-the-shelf solver.
Hence, the development of advanced implementations and decomposition techniques tomake thesemodels com-
petitive with the state-of-the-art is an interesting venue for future research. Moreover, the relationship between
the two flow-based hierarchies, the one based on common-flows of Polzin and Vahdati Daneshmand [187] and
the other based on paths of Filipecki and Van Vyve [92] remains to be studied.

• Further understanding of the structural properties of LP-relaxations of the aforementioned models, and potential
combination of hypegraphic formulations with flow-based ones can lead to new theoretical insights and possibly
better approximation ratios.

• Recent computational studies have shown that the strongest approximation algorithms currently existing are not
competitive with the state-of-the-art exact methods. Addressing these issues either through some advanced
algorithm engineering techniques or by developing faster approximation algorithms is another interesting open
direction for future research.

• This article showcases numerous examples in which the SAP was used as a powerful modeling tool for solving
other network design problems. While there exists a plethora of very advanced reduction techniques for the
STP, the same cannot be said of the SAP, and in particular not of the setting in which negative arc weights are
allowed. Given that the reduction techniques are an indispensable tool for modern exact and heuristic methods,
it is expected that the development of more advanced reduction techniques could further boost the performance
of SAP-based approaches.

• In the future wemay expect to see more advanced STP algorithms developed for parallel computing. An excellent
pioneering example is a very recent PARASCIP implementation of Shinano et al. [214] with which new STP results
are obtained in a distributed environment with 43000 cores.
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• Wemight also see a revival of “sleeping beauties”, like Lagrangian, Benders or Dantzig-Wolfe decompositions (and
combinations thereof), in the context of distributed/parallel computing. With data veracity in big-data applica-
tions, there is a diminishing demand in producing STP solutions with zero gap. Instead, practitioners desire stable
solutions, robust with respect to minor data modifications (see, e.g., [4]), and with small duality gaps. Decompo-
sition approaches might be promising candidates to meet these demands stemming from more computationally
demanding real-world applications.
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