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Abstract

We consider a family of competitive facility location problems in which a “newcomer” company enters the

market and has to decide where to open a set of new facilities so as to maximize its market share. The

multinomial logit model is used to estimate the captured customer demand. We propose a first branch-

and-cut method for this family of difficult mixed-integer non-linear problems. Our algorithm combines two

types of cutting planes that exploit particular properties of the objective function: the first one are the

outer-approximation cuts and the second one are the submodular cuts.

The algorithm is computationally evaluated on three datasets from the recent literature. The obtained

results show that our new exact approach drastically outperforms state-of-the-art methods, both in terms of

the computing times, and in terms of the number of instances solved to optimality.

Keywords: Facility Location, Branch and Cut, Maximum Capture, Random Utility Model, Competitive

Facility Location

1. Introduction

We propose a methodological and algorithmic framework for a family of facility location problems in which

customer behavior is integrated into the optimization model. Facility location problems play a fundamental

role in modeling important managerial decisions concerning infrastructure planning, such as placement of

new retail or service facilities, placement of new products on the market, or development of optimal customer

segmentation policies. Integration of random choice models into optimization models allows companies to

make optimal decisions while taking the preferences of their customers into account. One of the frequently

used choice models in practice is the multinomial logit model (MNL) which is studied in this paper.

In this article we focus on Maximum Capture Facility Location Problems with Random Utilities (MCFLRU).

In these problems, we are given a company that is entering the market in which a set of incumbent competi-

tors already operates. The company has to decide where to open a set of new facilities, so as to maximize
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the captured demand. Facilities in our setting may correspond to bank offices, warehouses, shopping malls,

park-and-ride car parks, and many more. Both, the decision maker and the competitor(s) offer the same

product, so that the major decision concerns the location of the new facilities, after which the customers

choose the facilities to be served from. Customers act as independent decision makers and it is assumed

that their choices are modeled according to the multinomial logit model. One of the first problems of this

type studied in the competitive facility location literature, which was also the motivating application for this

article, was proposed by Benati & Hansen (2002). In this problem, called the Maximum Capture Problem

with Random Utilities (MCRU), the goal is to open exactly r new facilities so as to maximize the market

share. The MCRU generalizes well-known and well-studied Maximum Capture Facility Location Problem on

a network (see, e.g. ReVelle (1986)) in which customers deterministically choose the closest facility. Since the

early work of Benati & Hansen (2002), the MCRU and its variants became an important topic of research,

both from the methodological and application perspective. In the existing literature many exact approaches

can be found (cf. Section 2.2) along with case studies on real-world instances (Müller et al., 2009; Haase

& Müller, 2012, 2015; Aros-Vera et al., 2013; Freire et al., 2016b). These studies successfully demonstrate

that random-choice models can be computationally efficient as far as small and medium size instances are

concerned. However, large-scale instances of practical relevance, like those from the case study on placing

new park-and-ride facilities in the New York City proposed in Freire et al. (2016a,b) with more than 80K

customer locations, remain out of reach of the existing exact approaches.

Our Contribution. In an attempt to linearize the objective function, various mixed integer linear program-

ming (MILP) models were studied in the literature, see Haase & Müller (2014) for an overview. Unfortunately,

the proposed linearized counterparts come at the cost of a drastic increase of the number of decision vari-

ables, which makes these models prohibitive for large-scale instances. In this article, we consider two sparse

MILP models with an exponential number of constraints. The first model relies on the outer-approximation

of the continuous relaxation of the objective function, and the second one exploits the submodularity of the

objective function. We also investigate a third viable option of combining the two families of cuts in a single

MILP model. The latter turns out to be the most promising option from the computational perspective.

We implement and computationally evaluate these branch-and-cut (B&C) approaches against the state-

of-the-art methods. Results are compared using three large datasets for the MCRU, recently evaluated in

Freire et al. (2016a). Our results show that the proposed methodology outperforms all previously studied

approaches from the literature by a large margin. Speed-ups of up to two to three orders of magnitude are

reported for small and medium size instances. Furthermore, for all previously unsolved instances from the

literature, optimal solutions are found.

The paper is organized as follows: in Section 2, we provide a formal problem definition and a basic

mixed-integer non-linear (MINLP) formulation along with an overview of the recent literature. In Section 3
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we describe a mixed integer linear programming (MILP) formulation that is based on outer approximation

cuts and provide details of our branch-and-cut implementation. In Section 4 we propose an alternative

MILP model that exploits the submodularity of the objective function. Extensive computational results are

presented in Section 5, and final conclusions are drawn in Section 6.

2. Problem description

In classical (deterministic) facility location problems, see, e.g., Fischetti et al. (2017), decision makers

search for optimal locations to open new facilities while assuming that the customers always patronize the

closest among the open facilities. In many applications, however, customers prefer to be served by facilities

according to their own personal preferences, which are not always known to decision makers. Consequently,

for decision makers it may be very difficult (if not impossible) to control customer decisions. This is why

random utility models are frequently used to forecast the customer behavior and to predict the market share

that can be achieved by attracting them. In the underlying optimization models, utility maximization theory

(keeping the hypothesis that customers behave rationally) is combined with a random choice model (allowing

to model uncertainty in customer behavior).

Multinomial logit model. In the following, we first explain the major idea of the multinomial logit (MNL)

model that is used to forecast the captured demand for a given company, given its set of open/available

facilities. Let us assume that we are given a set of customers S = {1, . . . , |S|} with demands ds > 0 .

Without loss of generality, each s ∈ S can also be seen as a group of individuals with a homogeneous

behavior. Let the set of available facilities be denoted by L̄. Each customer s ∈ S choses the facilities from

Ls ⊆ L̄, which are the facilities offered/available to s. One may assume that Ls 6= ∅ for all s ∈ S, since,

otherwise, customers leaving the market will be assigned to an artificial “opt-out” facility that captures their

demand.

The customer s splits the demand ds based on the utilities usl perceived by s for choosing each location

l ∈ Ls. Unobservable variables modeling customer behavior are treated as random variables so that the

utility usl consists of two parts: a measurable utility value vsl (e.g., distance, costs, availability of parking

space) and its non-observable part εsl: usl = vsl + εsl. In the multinomial logit model, it is assumed that

the values of εsl are identically independently distributed with the log-Weibull (also known as Gumbell)

distribution, which allows to express the probabilities of customer s to chose location l as:

psl =


evsl∑

l′∈Ls
evsl′

, l ∈ Ls

0, l 6∈ Ls

s ∈ S, l ∈ L̄

The value psl practically corresponds to the expected fraction of the customer’s demand ds to be served by

facility l.
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2.1. Maximum Capture Facility Location Problems with Random Utilities (MCFLRU)

In competitive facility location problems we consider an environment in which the customers are already

served by existing competitors. A “newcomer” company wants to enter the market and searches for the

subset of facility locations to open, so as to maximize the forecasted market share achieved by attracting

the new customers. Without loss of generality one can assume that there is a single incumbent competitor,

and that all competing locations are aggregated into a super-location a (a can also include the “opt-out”

facility). Let L = L̄\{a} denote the set of potential facility locations where new facilities can be opened. For

a given set of newly open locations L∗ ⊆ L, the customer demand is split based on the utilities usl perceived

by customer s for choosing each location l ∈ L∗, and the utility usa perceived for choosing the incumbent

competitor. So, according to the MNL model (see Freire et al. (2016a)), the probability that customer s will

choose location l ∈ L is now given as:

psl =


asl

1 +
∑

l′∈L∗ asl′
, l ∈ L∗

0, l 6∈ L∗
s ∈ S, l ∈ L

where asl = exp(vsl − vsa), and vsl are measurable utility values described above.

An MINLP formulation. Let xl be a binary variable which is set to one if and only if the company decides

to open a facility at location l ∈ L. The fraction of demand ds for s ∈ S, assigned to location l ∈ L can then

be calculated as:

p̂sl(x) =
aslxl

1 +
∑

l′∈L asl′xl′
. (1)

Consequently, the fraction of demand the company can capture from the customer s can be described as a

function of x:

ŵs(x) =
∑
l∈L

p̂sl(x) =

∑
l∈L aslxl

1 +
∑

l∈L aslxl
, (2)

and the total market share is given as:∑
s∈S

dsŵs(x) =
∑
s∈S

ds

∑
l∈L aslxl

1 +
∑

l∈L aslxl
. (3)

For the continuous relaxation of variables x, function ŵs(x) is continuously differentiable and concave. In

fact, ŵs(x) is the composition of the unidimensional concave increasing function g(z) = z
1+z (for z > −1)

with the linear function
∑

l∈L aslxl.

The family of MCFLRU problems can now be modeled using the following simple MINLP:

max
x∈X

∑
s∈S

ds

∑
l∈L aslxl

1 +
∑

l∈L aslxl

. (4)
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The objective function in (4) maximizes the market share, whereas the set X ⊆ {0, 1}|L| describes all feasible

facility configurations. In case of the MCRU introduced in Benati & Hansen (2002), the company is opening

a fixed number of r facilities, so as to maximize the overall captured customer demand. Consequently, the

set X is given as:

X = {x ∈ {0, 1}|L| :
∑
l∈L

xl = r}.

The methodology proposed in this paper can be applied to many other competitive facility location

problems, in which additional constraints on the feasible facility configurations are imposed. These con-

straints may be related to the investment budget and/or the resulting infrastructure. So, for example, one

can simultaneously optimize location and design decisions for the set of newly opened facilities, considering

various design characteristics of each facility (e.g., size, appearance, accessibility, layout, etc). Imagine that

for each facility l ∈ L, design decisions are encoded from a set of options t ∈ T (for simplicity, assume there

is a single design characteristic to be optimized), and that a fixed opening cost f̃l ≥ 0 is associated to each

l ∈ L. Additional cost c̃lt ≥ 0 are to be paid for the design characteristic t ∈ T of a facility l. Given the

total available budget B̃ > 0, the set X of all feasible facility configurations is encoded by the following

constraints:

{x ∈ {0, 1}|L||T | :
∑
l∈L

∑
t∈T

(f̃l + c̃lt)xlt ≤ B̃

∑
t∈T

xlt ≤ 1 l ∈ L}

Customer utilities are then defined for each facility l ∈ L and each design decision t ∈ T as uslt, and the

objective function turns into
∑

s∈S ds

∑
l∈L

∑
t∈T asltxlt

1 +
∑

l∈L
∑

t∈T asltxlt
.

Furthermore, the set X could encode even more complicated network-design decisions. The relevant

deterministic counterparts are the connected facility location (Gollowitzer & Ljubić, 2011), in which the

set of open facilities has to be connected through a tree, or the traveling purchaser problem in which open

facilities are connected in a tour (Laporte et al., 2003). So, in a general setting one could have

X = {x ∈ {0, 1}|L| : Ax+By ≤ b, y ∈ Y },

where variables y are used to model additional constraints imposed on the set of open facilities (e.g., connec-

tivity). The set Y is assumed to be a polyhedral set, which, together with linking constraints Ax+By ≤ b

guarantees feasibility of the solution x.

2.2. Previous work

Among the problems from the MCFLRU literature, the most prominent and the most studied one is the

MCRU problem, introduced in (Benati & Hansen, 2002). In their article, the authors propose the first exact
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approach based on a branch-and-bound (B&B) procedure in which the concave NLP relaxation is solved at

every node of the B&B tree. In addition, the authors use fractional programming techniques to linearize

the model by introducing an additional set of decision variables, and they discuss submodularity of the

objective function. Since then, many methods are proposed in the literature to solve this difficult problem.

Most of them focus on developing MILP models that linearize the objective function (Haase, 2009; Zhang

et al., 2012; Aros-Vera et al., 2013). Haase & Müller (2014) benchmark these different MILP reformulations

over a set of randomly generated instances. In Freire et al. (2016a), the authors extend this comparison by

including the concave relaxation proposed by Benati & Hansen (2002) and a new relaxation of the problem

that can be solved using a greedy algorithm, both embedded in a branch-and-bound algorithm. In this very

extensive computational study, two additional datasets are considered: one set is derived from ORLIB, and

the other corresponds to the real-world instances from a park-and-ride application of the city of New York

(see Aros-Vera et al. (2013); Freire et al. (2016b)). The results obtained in the are inconclusive, showing

that different algorithms perform dissimilarly depending on the dataset utilized. Furthermore, none of the

existing approaches was capable of solving the largest instances from the ORLIB and New York dataset to

provable optimality.

3. A B&C approach based on outer-approximation

The main idea behind our first approach is to exploit the fact that for the continuous relaxation of the

problem, the (maximization) objective function given in (4) is concave and differentiable. Hence, one can

replace the non-linear function by its first-order approximation at any given point. This linear approximation

is applied within a cutting plane procedure and repeated at every node of the branch-and-bound tree. The

proposed approach is a branch-and-cut algorithm that relies on the outer-approximation decomposition

algorithm. The Outer Approximation (OA) decomposition approach was introduced by Duran & Grossmann

(1986) and it was later improved by Fletcher & Leyffer (1994). A branch-and-cut framework in which outer

approximation cuts are separated at every node of the branch-and-bound tree was proposed by Quesada

& Grossmann (1992). In general, the outer approximation algorithm does not necessarily produce a good

performance for generic non-linear problems (Bonami et al., 2008), but it can provide good results for

some families of convex MINLP problems (Mittelmann, 2014; Vielma et al., 2016). Outer approximation

resembles the generalized Benders decomposition approach originally proposed by Geoffrion (1972). The

latter algorithm, which was successfully applied to other (convex) facility location problems in a deterministic

setting (see Fischetti et al. (2016, 2017)) was our main motivation to analyze the efficacy of an OA-based

branch-and-cut algorithm applied to this difficult MINLP.

To derive an appropriate OA-based MILP formulation, we first consider the following equivalent (ex-

6



tended) MINLP formulation for the problem

max
∑
s∈S

dsws (5a)

ws ≤ ŵs(x) s ∈ S (5b)

x ∈ X (5c)

where new continuous variables ws represent the fraction of the total demand of customers captured by the

locations given by x and where the function ŵs(x) is defined according to (2). Due to the maximization

nature of the problem, at optimum we will have ws = ŵs(x), for all s ∈ S.

Given a vector x∗ ∈ [0, 1]L, since ŵs(x) is a concave function, we can bound the value of ŵs(x) from

above by its first-order approximation on x∗, obtaining the valid constraint

ŵs(x) ≤ ŵs(x
∗) +

∑
l∈L

∂ŵs

∂xl
(x∗) · (xl − x∗l ). (6)

Note that
∂ŵs

∂xl
(x∗) =

asl
(1 +

∑
l∈L x

∗
l asl)

2
,

so inequality (6) can be rewritten as

ŵs(x) ≤ ŵs(x
∗)2 +

∑
l∈L

xl ·
asl

(1 +
∑

l∈L x
∗
l asl)

2
. (7)

Hence, we have:

Proposition 1. The MCFLRU can be modeled using the following (sparse) MILP formulation with |S|+ |L|

variables only, and with an exponential number of constraints:

max
∑
s∈S

dsws (8a)

ws ≤ ŵs(x
∗)2 +

∑
l∈L

xl ·
asl

(1 +
∑

l∈L x
∗
l asl)

2
s ∈ S, x∗ ∈ X (8b)

x ∈ X. (8c)

The validity of the latter model follows from the fact that it is sufficient to outer-approximate the functions

ŵs(x) only in a finite number of discrete points x∗ ∈ X (in which we observe that the approximation is tight).

In the following, we will refer to constraints (8b) as outer-approximation cuts or OA-based cuts. Even

though these cuts do not always lead to particularly strong LP-relaxation bounds, in combination with a

branch-and-bound machinery of modern MILP solvers, we will demonstrate that this model can lead to a

quite effective branch-and-cut procedure.
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Branch-and-cut implementation. In order to solve model (8), we rely on usual branching rules and general-

purpose cutting planes embedded in modern MILP solvers. Only when the solution x∗ of the current

LP-relaxation turns out to be integer, we check if constraints (8b) are violated, in which case we add them

to the current LP. OA cuts are globally valid and they are implemented using the lazy-cut callback

procedure within a MILP solver. For a given integer or continuous LP-solution x∗, separation of constraints

(8b) can be performed in O(|S||L|) time, since, for each s ∈ S, calculation of ŵs(x
∗) and calculation of the

coefficients next to xl variables require O(|L|) time.

The quality of the LP-relaxation can be strengthened by inserting the violated cuts (8b) associated to (a

finite number) of fractional points x∗ ∈ X̄, where X̄ = {x ∈ [0, 1]|L| : Ax+By ≤ b, y ∈ Y }. The latter cuts

(implemented as user-cut callback) are not needed for the convergence and correctness of the model, and

therefore, they can be controlled by the user and can be applied only if they prove to be useful for improving

the LP-relaxation bound (for example, at the root node of the branch-and-bound tree).

4. A B&C approach based on submodular cuts

In previous section we proposed to tackle the non-linearity by solving an outer approximation of the

objective function, and by using branch-and-cut to force integrality constraints. A possible drawback of this

approach is that the LP-relaxation at the root node of the branch-and-cut tree can result in a relatively weak

upper bound. By exploiting submodularity properties of the objective function, one could instead obtain

upper bounds that could be tighter than the ones captured by black-box outer-approximation procedure.

Therefore, in this section, we consider an alternative B&C procedure that exploits submodularity and

separability of the objective function. In Benati & Hansen (2002), submodular cuts for the MCRU were

proposed and computationally investigated. Unfortunately, only a heuristic procedure for the separation

of these cuts was implemented and separability of the objective function was not exploited. The obtained

results were not particularly promising, which is why the submodular cuts remained forgotten in the later

MCRU literature. Our article is the first attempt to provide a more efficient implementation of submodular

cuts in the branch-and-cut frameworks of modern MILP solvers.

In the following, we first recall the basic MILP reformulation for maximizing submodular functions, before

we present details of our implementation.

4.1. Maximization of submodular functions

Given a set-valued function f : 2L 7→ R, the difference f(K+ l)− f(K) is called marginal contribution of

element l with respect to the set K. For the sake of better readability, we use the notation K + l and K − l

to denote the sets K ∪ {l} and K \ {l}, respectively. The function f is said to be non-decreasing if and only

if

ρl(K) := f(K + l)− f(K) ≥ 0, K ⊂ L, l 6∈ K
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holds, in which case marginal contributions ρl(K) are also referred to as marginal gains. We say that f is

submodular if and only if

f(K + l)− f(K) ≥ f(K̂ + l)− f(K̂), K ⊂ K̂ ⊂ L, l 6∈ K̂

holds, i.e., marginal gains of adding an element l diminish with the size of the set.

For a given set X ⊆ {0, 1}|L|, let KX = {K ⊆ L : ∃x ∈ X s.t. xl = 1 iff l ∈ K} be the superset of all sets

indexed by a vector x ∈ X. The following result allows us to formulate a MILP problem for maximizing a

submodular function.

Lemma 2 (Nemhauser & Wolsey (1981)). Given a submodular function f : 2L 7→ R, the maximization

problem of the form

max {f(K) : K ∈ KX}

can be equivalently reformulated as:

max ν (9a)

ν ≤ f(K) +
∑

l∈L\K

ρl(K)xl −
∑
l∈K

ρl(L− l)(1− xl) K ⊆ L (9b)

x ∈ X (9c)

Constraints (9b) are referred to as submodular cuts.

We show that it is sufficient to impose the submodular cuts (9b) only to the set of points x ∈ X:

Proposition 3. Given a submodular function f : 2L 7→ R, the maximization problem of the form max {f(K) : K ∈ KX}

can be equivalently reformulated as:

max ν (10a)

ν ≤ f(K) +
∑

l∈L\K

ρl(K)xl −
∑
l∈K

ρl(L− l)(1− xl) K ∈ KX (10b)

x ∈ X (10c)

Proof. To show this result, we prove that for any point x∗ ∈ X, the tightest submodular cut (9b) is obtained

for the associated set K∗ = {l ∈ L : x∗l = 1}. Observe first, that the cut (9b) imposed at the set K∗ boils

down to

ν ≤ f(K∗).

Consider now the submodular cut (9b) associated to an arbitrary set K ⊆ L, possibly K 6∈ KX and evaluated
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at the point x∗. We have:

f(K) +
∑

l∈L\K

ρl(K)x∗l −
∑
l∈K

ρl(L− l)(1− x∗l )

= f(K) +
∑

l∈K∗\K

ρl(K)−
∑

l∈K\K∗
ρl(L− l)

= f(K + l′) +
∑

l∈K∗\(K+l′)

ρl(K)−
∑

l∈K\K∗
ρl(L− l) ≥ . . .

· · · ≥ f(K +K∗)−
∑

l∈K\K∗
ρl(L− l)

≥ f(K +K∗)−
∑

l∈K\K∗
ρl(K +K∗ − l)

≥ f(K +K∗ − l′)−
∑

l∈K\(K∗+l′)

ρl(K +K∗ − l) ≥ . . .

· · · ≥ f(K∗),

where the above inequalities exploit the submodularity property of f . Hence, the tightest cut at x∗ is the

one associated to K∗, which concludes the proof.

4.2. Submodular cuts for the MCFLRU

Let us now consider the set-valued functions ν̂s : 2L 7→ R defined for each s ∈ S as follows:

ν̂s(K) =

∑
l∈K asl

1 +
∑

l∈K asl
=

Zs
K

1 + Zs
K

(11)

where

Zs
K =

∑
l∈K

asl.

For each K ⊆ L, and each s ∈ S, the function ν̂s(K) calculates the probability that customer s chooses a

facility from the subset K.

Moreover, for a customer s ∈ S, a set K ⊂ L, and a facility location l ∈ L let

ρsl(K) = ν̂s(K + l)− ν̂s(K)

denote the marginal contribution of adding l to K ⊂ L for the function ν̂s. The following Lemma was proven

in Benati (1997):

Lemma 4. For each s ∈ S, the function ν̂s(·) is submodular and non-decreasing.

The latter property can be exploited to derive an alternative MILP formulation for the MCFLRU.
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Proposition 5. The MCFLRU can be equivalently stated as the following (extended, but sparse) MILP

formulation with |L|+ |S| variables:

max
∑
s∈S

dsνs (12a)

νs ≤ ν̂s(K) +
∑

l∈L\K

aslxl
(1 + Zs

K)(1 + Zs
K+l)

− 1

1 + ZL

∑
l∈K

asl(1− xl)
1 + ZL−l

s ∈ S,K ∈ KX (12b)

x ∈ X (12c)

where the function ν̂s(·) is defined by (11).

Proof. Lemma 4, together with the separability of the objective function and Proposition 3, implies that

the objective function can be stated as
∑
dsνs where, for each s ∈ S, the value of νs is upper bounded by

submodular cuts as follows:

νs ≤ ν̂s(K) +
∑

l∈L\K

ρsl(K)xl −
∑
l∈K

ρsl(L− l)(1− xl) s ∈ S,K ⊆ KX . (13)

For each s ∈ S, l ∈ L and K ⊆ L, marginal contributions ρsl(K) are calculated as:

ρsl(K) = ν̂s(K + l)− ν̂s(K) =
asl

(1 + Zs
K+l)(1 + Zs

K)
.

After replacing the values for ρsl in (13), we obtain the submodular cuts (12b).

The intuition behind the cuts (12b) is as follows: given a set K ⊂ L, and the value ν̂s(K), if we include

an element from L \ K, the value of ν̂s(K) increases by at most ρsl(K). Alternatively, if we exclude an

element from K, the value of ν̂s(K) decreases by at least ρsl(L − l), which is the marginal contribution

assuming that all locations but l have been selected. Due to the submodularity of the function ν̂s(·), we

have ρsl(L− l) ≤ ρsl(K − l), hence the right-hand side provides a valid upper bound on the value of νs, for

all s ∈ S and all K ∈ KX .

In a similar way, one can consider an additional family of submodular cuts, namely:

νs ≤ ν̂s(K) +
∑

l∈L\K

ρsl(∅)xl −
∑
l∈K

ρsl(K − l)(1− xl) s ∈ S,K ⊆ L (14)

In these cuts, the marginal contribution of elements l ∈ K is taken as it is, but the contribution of adding

an l 6∈ K is overestimated assuming that no location has been selected (i.e., we have ρsl(∅) ≥ ρsl(K)). In

Nemhauser & Wolsey (1981), the authors show that one can equivalently replace (9b) by (14), to derive

another valid MILP reformulation of the problem. As in Proposition 3, one can easily show that also these

cuts do not need to be imposed for every K ⊆ L, and that it is sufficient to consider K ⊆ KX .
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Branch-and-cut implementation. Separation of submodular cuts (12b) and (14) imposed at integer feasible

points x ∈ X can be performed in polynomial time. Similarly to the OA cuts, separating them on the fly

and integrating them within a branch-and-cut framework leads to a viable exact procedure.

Given an integer candidate solution x∗ ∈ X and the current vector ν∗, according to the result of Propo-

sition 5, it is sufficient to check if there exists s ∈ S such that

ν∗s > ν̂s(K
∗)

where K∗ = {l ∈ L : x∗l = 1}. If such s is found, the corresponding submodular cuts (12b) and (14)

associated to the set K∗ (which are globally valid) are inserted into the model.

For the MCRU, it is sufficient to consider submodular cuts of the form νs ≤ ν̂s(K)+
∑

l∈L\K ρsl(K)xl, as

the set X contains only cardinality constraints (see, e.g., Nemhauser & Wolsey (1981)). However, cuts (12b)

and (14) may still be useful in improving the value of the LP-relaxation and cutting off fractional infeasible

points. This is why in our default implementation we always separate (12b) and (14).

We remark that separating violated cuts of the form (9b) for the MCRU is an NP-hard problem. This

is why Proposition 3 is relevant, because it allows us to separate these cuts only in the integer points of

X, which can be done efficiently. Similarly, separation of fractional points x∗ ∈ X is NP-hard. In Benati

& Hansen (2002), a heuristic procedure was considered instead. The obtained results indicate that the

heuristic generation of submodular cuts is non-efficient and time consuming. In our default implementation

we therefore refrain from the separation of fractional points.

4.3. A combined approach: OA-based and submodular cuts

Finally, a natural question arises: would it be useful to combine OA-based and submodular cuts within

the same branch-and-cut procedure? Assuming that separation oracle is applied to integer points only,

Remark 1 given below shows that the two B&C approaches, one based on OA-cuts and the other based on

submodular cuts, do not dominate each other. This is why in our computational study we also investigate

the third B&C procedure, which is a combined approach in which OA-based constraints (8b) are enhanced

by submodular cuts (12b) and (14).

Remark 1. Consider a set K̄ ∈ KX . The associated OA cut and the submodular cut do not dominate each

other.

To see this, let us denote by OA and SC the right-hand-side of the OA and the submodular cut, respec-

tively, evaluated in x̄ where x̄l = 1 if and only if l ∈ K̄. In that case, the OA and SC have the same value,

which is ν̂s(K̄) = ŵs(x̄). Consider now l′ /∈ K̄ such that asl′ > 0. By evaluating the right-hand-side of the
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two cuts in the point x∗ such that x∗l = 1 if and only if l ∈ K̄ + l′, we obtain

OA := ŵs(x̄) +
asl′

(1 + Zs
K̄

)2

SC := ν̂s(K̄) +
asl′

(1 + Zs
K̄

)(1 + Zs
K̄+l′

)

and since Zs
K̂+l′

> Zs
K̂

, we have OA > SC. Finally, let l′ ∈ K̄ such that asl′ > 0. By taking a point x∗ such

that x∗l = 1 if and only if l ∈ K̄ − l′, we obtain

OA := ŵs(x̄)− asl′

(1 + Zs
K̄

)2

SC := ν̂s(K̄)− asl′

(1 + Zs
L)(1 + Zs

L−l′)

that is, OA < SC unless K̄ = L.

5. Computational study

5.1. Description of the experiments

The purpose of this computational study is to provide a comparison of the proposed branch-and-cut

algorithms against the state-of-the-art approaches for the MCRU that have been recently computationally

investigated in Freire et al. (2016a). The best performing approaches from the literature, according to Freire

et al. (2016a), are:

CP The concave programing approach proposed by Benati & Hansen (2002), that solves the continuous

relaxation of problem (4) using a gradient algorithm and embeds this calculation into a B&B procedure.

Lin The linearization technique presented in Haase (2009), that yields a compact MILP formulation with

additional |L| × |S| continuous variables. In our experiments, we used a strengthened variant of this

formulation presented in Freire et al. (2016a).

MUG A greedy algorithm presented in Freire et al. (2016a) for computing valid upper bounds, embedded

into a B&B procedure.

These three algorithms are compared against our three branch-and-cuts:

OA The B&C procedure based on outer-approximation cuts (8b) (cf. Section 3).

SC The B&C procedure based on submodular cuts (12b) and (14) (cf. Section 4).

OA+SC The B&C procedure based on a mix between OA and SC, i.e., violated OA and SC cuts are

inserted on the fly, as long such cuts can be found.
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Implementation details. For solving MILPs, we used IBM-ILOG CPLEX 12.6 as our MILP solver (under

default settings). The cuts in OA and SC are implemented using the lazy-cut callback routine and

they are applied globally in the B&B tree each time that an integer solution is found. For all approaches,

an initial feasible solution is provided by running a greedy algorithm that adds in each step the facility

that results in the highest increment of the objective function. All computations were made on machines

running Linux 2.6.32 under x86 64 architecture, with two quad-core Intel Xeon E5-2650 processors and 146

GB of RAM. Each run was performed on a single-core. As a non-linear solver (required for solving CP), we

used NLopt (see http://ab-initio.mit.edu/wiki/index.php/NLopt) with the MMA algorithm, which

had best performance among the different local-gradient based algorithms implemented in that library.

Benchmark instances. The six approaches listed above are benchmarked using the following three datasets:

ORlib dataset, which consists of 11 problems taken from ORlib’s uncapacitated facility location bench-

mark set by introducing an incumbent competitor. Eight problems with |S| = 50, |L| ∈ {25, 50} and

three problems with |S| = 1000, |L| = 100 are considered.

HM14 dataset, which includes randomly generated instances on a plane, proposed by Haase & Müller

(2014). For this dataset we have |S| ∈ {50, 100, 200, 400} and |L| ∈ {25, 50, 100}.

P&R-NYC dataset, which comes from a large-scale park-and-ride location problem in New York City

described in Freire et al. (2016b), originating from a work of Aros-Vera et al. (2013). These are the

largest and the most challenging instances from the MCRU literature, with |S| = 82341, |L| = 59, see

Figure 1.

Each problem from the above datasets results in 81 different MCRU instances: a fixed number of selected

facilities r is varied between 2 and 10, and different scaling factors for the utility functions vsa and vsl are

considered. The total number of instances in each dataset is 891, 972 and 81, respectively. For a more

detailed description of each dataset, see Freire et al. (2016a).

5.2. Results on small and medium size instances

We first focus on small and medium size instances, namely those from datasets ORlib and HM14. For

each of the six approaches, Table 1 reports: the number of instances solved to optimality within a time limit

of one hour, the average CPU time (in seconds) among those instances solved to optimality, the number

of nodes in the B&B tree, and the initial gap at the root node. This gap is calculated between the initial

greedy solution and the upper bound reported by the MILP solver obtained at the root node after applying

all cuts and before starting the B&B procedure.

On the smallest instances from the ORlib dataset (cap101-104 and cap131-134 ), OA and OA+SC

approaches outperform CP, the best performing approach from the literature for this dataset, by more than
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Figure 1: Diagram of NYC instance. Each circle represents a trip origin to Manhattan, colored according to its demand. There

are 3184 origins outside Manhattan and 317 destinations in Manhattan, making 82 341 trips in total. Blue diamonds represent

the 59 potential Park-and-Ride facilities. Customers (represented by each trip) decide between an option of taking a direct

auto trip from the trip’s origin to its destination (the incumbent competitor) and the option of going from the trip’s origin to

one of the newly opened P&R facilities and then using public transportation to its final destination.
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Table 1: Results for ORlib (up) and HM14 (down) datasets, grouped by problem name (81 instances per row). Time limit set to one hour.

#(Solved Instances) Computing Time [s]* B&B Nodes* Root gap*

Name Lin CP MUG OA SC OA+SC Lin CP MUG OA SC OA+SC Lin CP MUG OA SC OA+SC Lin CP MUG OA SC OA+SC

cap101 81 81 81 81 75 81 13.8 0.4 0.2 0.0 100.9 0.0 4111 34 9057 6 1279 2 10.2 0.3 8.4 0.5 5.1 0.1

cap102 81 81 81 81 75 81 14.1 0.9 0.2 0.0 116.3 0.0 4840 170 11596 6 1460 2 10.3 0.4 8.6 0.7 5.1 0.1

cap103 81 81 81 81 81 81 6.6 0.7 0.1 0.0 199.7 0.0 1387 86 7559 4 1845 1 10.3 0.5 8.9 0.7 5.0 0.1

cap104 81 81 81 81 78 81 8.3 0.1 0.2 0.0 151.2 0.0 1862 7 10026 4 1495 1 10.2 0.2 8.5 0.5 5.1 0.1

cap131 78 81 81 81 61 81 253.1 1.6 7.5 0.1 94.6 0.1 39303 59 296281 7 997 2 11.9 0.5 10.5 0.9 6.5 0.2

cap132 79 81 81 81 62 81 213.2 0.5 5.9 0.1 145.0 0.1 37362 15 225039 4 855 2 12.0 0.5 11.0 0.8 6.4 0.1

cap133 78 81 81 81 62 81 199.6 0.3 14.2 0.1 219.2 0.1 34694 8 543304 2 1404 1 12.3 0.3 10.9 0.7 6.4 0.1

cap134 79 81 81 81 60 81 218.3 0.9 13.9 0.1 97.2 0.1 39494 36 525487 3 982 2 12.2 0.5 11.1 0.7 6.3 0.1

capa – 48 21 81 – 74 – 737.5 356.3 298.4 – 229.9 – 112 308778 2016 – 888 – 0.2 31.0 1.4 – 0.9

capb – 49 23 81 1 78 – 665.6 471.4 120.8 3039.9 193.4 – 110 393240 1143 1245 760 – 0.1 30.2 1.3 16.3 0.9

capc – 53 21 80 – 75 – 477.0 296.5 271.8 – 413.3 – 61 225427 1812 – 1051 – 0.1 30.1 1.4 – 1.0

#(Solved Instances) Computing Time [s]* B&B Nodes* Root gap*

|S| |L| Lin CP MUG OA SC OA+SC Lin CP MUG OA SC OA+SC Lin CP MUG OA SC OA+SC Lin CP MUG OA SC OA+SC

50 25 81 69 81 81 81 81 28.1 13.8 0.2 0.4 0.0 0.0 1 451 11070 1761 1 0 0.6 9.4 19.3 12.2 0.2 0.1

50 50 81 67 79 81 81 81 26.6 211.1 106.3 0.7 0.1 0.1 7 5375 4141023 3219 3 1 0.8 9.1 22.4 12.4 0.2 0.1

50 100 81 48 61 70 81 81 270.3 272.5 167.1 94.1 0.1 0.1 33 461 4480988 262864 8 7 0.5 5.0 27.7 15.0 0.5 0.3

100 25 81 67 81 81 81 81 19.8 55.3 1.7 3.8 0.0 0.0 0 2573 40582 12740 1 0 0.5 8.4 22.8 13.7 0.6 0.5

100 50 81 58 72 80 81 81 22.9 162.6 207.9 127.4 0.1 0.1 5 1696 4778935 208127 1 1 0.3 8.6 32.9 17.0 0.3 0.2

100 100 81 49 58 68 81 81 162.7 289.1 200.3 60.4 0.7 0.5 70 368 2959530 86653 70 18 1.1 5.3 28.6 14.0 0.7 0.5

200 25 81 74 81 81 81 81 14.3 142.7 9.4 1.4 0.1 0.1 2 2922 110327 3175 1 0 0.4 11.4 27.9 13.6 0.2 0.1

200 50 81 57 67 73 81 81 39.6 254.7 211.1 57.8 0.2 0.2 2 1316 2400039 86289 2 2 0.4 10.2 33.1 16.5 0.5 0.4

200 100 81 46 46 63 81 81 663.2 404.5 112.7 74.4 2.0 1.2 154 228 686808 35141 56 26 0.9 5.4 32.2 17.7 0.5 0.3

400 25 81 77 81 81 81 81 34.3 133.0 11.7 2.8 0.1 0.2 1 1367 49637 4808 2 1 0.4 10.9 29.3 13.4 0.2 0.2

400 50 81 52 62 72 81 81 284.4 388.3 259.9 116.9 0.5 0.6 11 970 1044952 72659 3 2 0.5 9.7 35.1 17.7 0.3 0.4

400 100 76 36 45 60 81 81 552.2 355.7 299.2 34.4 4.0 2.5 114 172 758270 6168 62 21 0.7 5.7 32.7 15.4 0.6 0.5

(*) Average among solved instances.
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an order of magnitude. These two algorithms take less than 0.1 second to prove the optimality, by visiting

less than a dozen of B&B nodes. On the contrary, SC is not able to solve all instances, and it is the slower

approach for this subset of instances. Nevertheless, the tightest root node bounds are obtained by OA+SC.

Medium size instances (capa, capb, capc) appear to be more challenging. Lin is not able to solve any

of these instances within an hour, and SC solves only a single one. MUG manages to prove optimality in

about 25% of the cases, wheres this rate for CP is about 65%. On the contrary, OA and OA+SC solve all

but one, respectively, 16 instances to optimality. Root gaps obtained by OA are very small and comparable

to those from CP, which explains its excellent performance on these instances. On the contrary, the gaps

produced by SC are considerably higher, which leads to larger B&B trees, resulting in a poor performance

of SC for this dataset. Nevertheless, combining both types of cuts (OA+SC) turns out to be beneficial,

resulting in the root gaps and the sizes of the B&B tree being even smaller than for OA.

To have a closer look at the performance of our algorithms on this dataset, we also ran the experiments

with a time limit set to eight hours. The obtained results are reported in Table 2. It can be seen that optimal

solutions for all medium size instances are obtained by OA, with average CPU times lying between two and

five minutes. Focusing on the performance of our three B&C procedures, we notice that all three approaches

enumerate a similar number of branch-and-bound nodes. However, the number of submodular cuts is two

orders of magnitude higher than the respective number of OA-cuts, which explains the poor performance of

SC, and the weaker performance of OA+SC on this dataset. Remark that the quality of the approximation

for SC is similar to Lin, and considerably worse than OA and NL. Due to this fact, OA+SC uses a larger

number of cuts than OA without an important reduction on its gaps, resulting in slower solution times but

still solving all but one instance in the eight-hours time limit.

A slightly different behavior can be observed for HM14 instances. As detailed in Freire et al. (2016a),

the linear reformulation Lin allows to obtain root gaps smaller than 1% for most of the instances, allowing

it to solve all but four instances to optimality, with average computing times ranging between 15 seconds

and 10 minutes. Approaches CP, MUG and OA suffer from the very weak root relaxation bounds and do

not manage to solve some of the smallest among these instances within one hour. The tightest root gaps are

obtained by SC. Given that each SC subproblem of the B&B tree can be solved much faster than for Lin,

the computing times of SC are two to three orders of magnitude faster than the respective CPU times for

Lin. Similarly to the ORlib dataset, OA+SC combines the best of the two families of cuts and allows to

solve all HM14 instances within fractions of a second, providing even better root gaps than SC.

The performance chart presented in Figure 2 summarizes our results over these two datasets, showing the

percentage of instances solved to optimality (given on the y-axis) within a given computing time (given on

the x-axis). Notice that computing time (which is given in seconds) on the x-axis is shown using logarithmic

scale. This chart demonstrates that two of the three B&C approaches proposed in this paper drastically
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Table 2: Results for mid-sized instances of ORlib. Time limit set to eight hours.

# Solved Computing Number

Method Instances Time [s]* Root gap* B&B Nodes* of cuts*

ca
p
a

Lin 12 10341.3 15.080 9142.9

NL 69 3400.9 0.417 680.6

MUG 30 2347.1 30.344 2487094.1

OA 81 286.8 1.393 2016.3 5673.5

SC 3 5862.4 14.227 1493.3 646488.0

OA+SC 81 980.5 1.050 2029.8 14406.9

ca
p
b

Lin 13 12330.5 15.074 7472.5

NL 65 2388.8 0.314 589.4

MUG 33 3372.3 27.310 3338846.3

OA 81 118.4 1.339 1143.1 5361.5

SC 3 4001.2 15.522 1246.7 586074.7

OA+SC 80 303.8 0.955 1002.7 12895.5

ca
p
c

Lin 12 11448.0 15.575 7361.4

NL 62 1302.3 0.284 283.4

MUG 30 1701.8 29.415 1721441.1

OA 81 316.8 1.410 1993.1 6034.7

SC 3 5014.9 16.270 1469.7 682288.7

OA+SC 81 1086.1 1.101 2001.1 15074.6

(*) Average among solved instances.

outperform the state-of-the art methods. In particular, by combining outer approximation with submodular

cuts (OA+SC) we manage to derive a robust B&C framework with a relatively stable performance over

different types of benchmark instances. OA+SC draws advantage of the strength of the two families of

cuts in different settings. It significantly outperforms all the remaining approaches, allowing to solve more

instances to optimality and in a much shorter computing time. In general, the excellent performance of

OA+SC can be explained by a good balance between the size of the model (in terms of the number of

variables) and the quality of the root node relaxation (which is similar to CP, and considerably smaller than

MUG) resulting in smaller B&B trees.

5.3. Results on large scale instances

For P&R-NYC dataset, Table 3 reports the results of CP, MUG, OA, SC and OA+SC obtained by

setting the time limit to 8 hours. Recall that Lin can not be applied to this dataset due to the prohibitive

size of the resulting MILP formulation. There are 9 instances per row, grouped by the value of r. Our three

B&C approaches are the only ones able to solve all instances to optimality, whereas MUG and CP fail to

do so in 6, respectively 29, cases. As before, the gaps at the root node are close to 1%, and only a few

nodes of the B&B tree are required to find the optimal solution. Interestingly, the performance of the B&C

approaches is not particularly affected by the number of chosen facilities r, which is a serious drawback of

MUG, the previously best known algorithm for this dataset.
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Figure 2: Performance profile of each method for HM14 and ORlib instances.

Table 3: Results for NYC dataset, grouped by r (9 instances per row)

#(Solved Instances) Computing Time [s]* B&B Nodes* Root gap*

r CP MUG OA SC OA+SC CP MUG OA SC OA+SC CP MUG OA SC OA+SC CP MUG OA SC OA+SC

2 6 9 9 9 9 3727.1 69.8 1363.5 455.9 970.6 13 111 139 1 3 6.4 14.9 11.8 0.3 0.4

3 6 9 9 9 9 2485.1 170.8 2177.5 514.3 573.0 11 271 462 4 3 2.5 9.0 6.9 0.5 0.5

4 5 9 9 9 9 2338.2 411.6 2950.7 603.1 674.1 7 725 583 16 2 1.8 6.1 3.1 0.9 0.9

5 5 9 9 9 9 1813.5 1303.0 783.5 504.4 570.6 7 2204 201 2 2 1.1 4.2 2.0 1.1 1.1

6 7 9 9 9 9 4707.5 3187.6 464.7 429.9 595.7 7 6753 80 1 1 0.4 2.8 1.1 1.3 1.1

7 6 9 9 9 9 1169.4 6562.4 417.6 422.3 509.9 5 13826 103 0 0 0.3 1.9 0.6 0.8 0.8

8 6 9 9 9 9 2441.5 10157.9 391.1 602.7 537.7 8 32078 74 1 1 0.2 1.5 0.4 0.9 0.9

9 6 6 9 9 9 4025.6 2995.2 397.0 429.0 511.7 12 6015 28 1 0 0.1 0.4 0.2 0.9 0.9

10 5 6 9 9 9 1469.8 3843.9 414.0 412.1 503.4 7 7370 21 0 1 0.1 0.3 0.1 0.0 0.9

(*) Average among solved instances.
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6. Conclusions and future work

In this article a new methodology for solving the maximum capture problem with random utilities and

related problems is presented. This methodology is based on the first-order approximation of the concave

non-linear function, which can be applied using a cutting plane framework. The approach is enhanced by

submodular cuts, which very often provide good linear approximation of the original problem. Compared to

the existing models from the literature, our approach does not considerably increase the size of the MILP

reformulation. At the same time, combination of outer-approximation and submodular cuts results in a

branch-and-cut procedure with a relatively stable and robust performance over various types of benchmark

instances. Extensive computational experiments show that our method significantly outperforms the state-

of-the-art methods, with obtained speed-ups of two to three orders of magnitude.

Our methodology does not require any particular structure on the set X of feasible facility configurations,

which also makes it suitable for more general competitive facility location problems. Possible examples

include situations in which (i) budget constraints are imposed on the set of open facilities, (ii) simultaneous

facility location and design decisions have to be made, or (iii) some infrastructure requirements (such as

connectivity) are imposed on the set of open facilities.

Furthermore, our exact approach is not restricted to competitive facility locations with multinomial logit

models only. The algorithmic framework could be useful for any other type of customer utility functions

which can be represented as fs(
∑

l∈L αslxl) where fs is strictly concave and increasing function used to

capture the effect of diminishing marginal gains by opening additional facilities, and αsl ≥ 0 are utility

values (see, e.g., Ben-Akiva & Bierlaire (1999)). Relevant examples from the literature include the Huff-type

utilities, frequently used in marketing and location theory, where the values of αsl are directly proportional

to the attractiveness and indirectly proportional to the distance of facility l to customer s (see, e.g. Aboolian

et al. (2007)).

Finally, along the lines of research proposed in Ahmed & Atamtürk (2011); Yu & Ahmed (2017), further

enhancements of submodular cuts are possible. It would be interesting to study possible lifting procedures

of submodular cuts for more general facility configurations X, and their effect on the branch-and-cut per-

formance.
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