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Abstract

This paper studies two location problems with interconnected facilities. In the first problem,
all customers need to be served by open facilities, and in the second (covering) variant a
penalty is imposed for customers that cannot receive the service. Compared to the standard
facility location setting, an additional constraint is imposed asking that all open facilities
are interconnected, i.e., all open facilities need to be within a given radius of each other.
These problems combine classical facility location aspects with network design, and we exploit
this link to derive new mixed integer programming models. The strength of these models
is investigated both theoretically and empirically. An extensive computational study is
conducted on a set of benchmark instances from the literature, in which branch-and-cut,
Benders decomposition and compact models are assessed in terms of the runtime and the
resulting gaps.

Keywords: (O) Combinatorial Optimization, Discrete Location Problems, Network Design,
Branch-and-Cut, Benders decomposition

1. Introduction

This paper investigates two discrete location problems involving interconnected facilities. In
both problems, the goal is to minimize costs for opening facilities and allocating customers
to these facilities while satisfying an additional connectivity constraint. This constraint
requires that all open facilities should be located within a certain radius of each other and
they should include a pre-specified root node. This interconnectivity property is particularly
relevant for modeling communication in e.g., sensor networks [35] or radio networks [12]. The
problems have been recently introduced by Cherkesly et al. [7], as the Median Problem with
Interconnected Facilities (MPIF) and the Covering Problem with Interconnected Facilities
(CPIF). In the MPIF, the goal is to cover all customers using the open facilities, while in the
CPIF, if it is not profitable to cover all customers, a penalty is imposed for each customer
who does not receive service.
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MPIF/CPIF are closely related to problems studied in the network optimization literature
under the common name of Generalized Steiner Tree-Star problems (GSTS), see, e.g., [24]
and further references therein. The major difference between MPIF/CPIF and GSTS lies
in the cost function. In MPIF/CPIF there is a cost associated to opening a facility, and a
cost for assigning a customer to a facility or penalty for not satisfying the demand. Contrary
to the GSTS, we do not incur costs for the edges connecting facilities. This assumption
can be explained by the nature of the connection between open facilities, which is rather
informational and not physical. We can further require facilities to serve only customers
located within a radius R. Figure 1a illustrates an input instance: triangles correspond to
potential facility locations, customers are shown as dots, the root node is shown as a square,
and circles with smaller radius (r > 0) centered around a potential facility node represent
the range of communication with the neighboring facilities. A possible solution is shown in
Figure 1b, where open facilities (black triangles) together with the given root node build a
connected network. Two open facilities can be connected by an edge if the distance between
them does not exceed r. Since there is no cost incurred for such edges, it is sufficient to build
a tree that connects the root with open facilities, and one such tree is shown in Figure 1b.

Our contribution

The article contributes to the literature of discrete location problems as follows:

• We show that MPIF/CPIF can be decomposed into two modeling components that can
be handled separately: one is related to imposing the interconnectivity between open
facilities, and the other is related to assignment, respectively, covering of customers
through open facilities. We provide both compact and non-compact ways to deal with
both modeling aspects. For each of the two problems, six different formulations are
proposed. They facilitate flow-based or node-separator-based constraints to ensure
connectivity between the facilities. At the assignment level, we show that standard
compact formulations can be replaced by respective Benders cuts.

• From the theoretical perspective, we explore the theoretical quality of LP-relaxation
bounds between two flow-based formulations to model interconnectivity, one based on
single-commodity flows (proposed earlier in [7]) and the other based on multi-commodity
flows. We provide worst-case examples, proving that the quality of the LP-bounds of the
single-commodity flow model can be arbitrarily bad (the gap between the LP-relaxation
and the optimal value grows with the size of the input graph). In addition, we derive a
surprising result showing that the multi-commodity-flow-based models can be as weak
as their single-commodity-based counterparts.

• From the empirical perspective, we implement several tailored branch-and-(Benders)-cut
algorithms and test them on benchmark instances from the literature with up to 100,000
customers. We conduct an extensive computational study in which we compare our
branch-and-(Benders)-cut approaches against a state-of-the-art MIP solver Cplex. The
results show that our tailored approaches always outperform Cplex when the latter
is used as an off-the-shelf-solver (no matter if compact formulations or their Benders
counterparts are solved – using the advanced automatic Benders decomposition of Cplex).
The obtained computational results also support our theoretical findings concerning
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Figure 1: Sample network of interconnected facilities with customers. Open facilities have to be connected to
the root node via network where the nodes are open facilities and the length of edges does not exceed the
radius r. Customers laying within radius R from an open facility are considered as covered or served.

the quality of lower bounds of the flow-based formulations. Finally, the results indicate
that the most critical modeling aspect is the interconnectivity of facilities for which the
branch-and-cut methods based on node-separator cuts exhibit the best performance.

The paper is organized as follows. In Section 1.1, the formal definition of the two problems is
given. In Section 1.2, related facility location problems are presented in a detailed literature
review. Then, in Sections 2 and 3 we introduce different ways to model the MPIF and the
CPIF, respectively. We compare the tightness of two flow-based formulations to model the
network of open facilities in Section 4. In Section 5, we elaborate on the algorithms employed
in our computational experiments. In Section 6 we assess the performance of our exact
methods and we derive final conclusions in Section 7.

1.1. Problem definitions and notation

The MPIF and CPIF are defined on a set of potential facility locations I (which also includes
a root node 0), and a set of customers J . In addition, we are given an undirected graph
GI = (I, EI) whose nodes are potential facility locations, and such that any two facilities
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i, k ∈ I, k ̸= i are connected by an edge {i, k} ∈ EI if and only if their distance is not
greater than a given radius r > 0. We also consider a directed counterpart of GI , denoted by
DI = (I, AI) in which to each edge {i, k} ∈ EI we associate two reverse arcs (i, k), (k, i) ∈ AI .

Opening a facility at node i ∈ I incurs fixed opening cost gi ≥ 0. Moreover, let cji ≥ 0 be
the transportation cost per unit of demand between facility i ∈ I and customer j ∈ J . The
demand of customer j ∈ J is denoted as dj ≥ 0. There are no capacities on facilities, and
hence, demand of each customer can be fully allocated to the closest open facility. In the
MPIF variant, allocating a customer j ∈ J to facility i ∈ I incurs allocation cost equal to djcji.
In the CPIF variant, not serving a customer j ∈ J incurs a penalty which is proportional to
its demand (dj/α, for a given parameter α > 0).

For a given j ∈ J , let I(j) be the subset of facility nodes i ∈ I such that cji ≤ R (we will
also say, j is within the covering radius R of i). For a given i ∈ I, let J(i) be the subset
of customers j ∈ J such that cji ≤ R. Similarly, for a given IF ⊆ I, let J(IF ) ⊆ J denote
all customers that are within the radius R from at least one of the facilities from IF , i.e.,
J(IF ) = ∪i∈IF J(i). Let Js be the subset of customers that can be served by a single facility
only, i.e., Js = {j ∈ J : |I(j)| = 1}. Finally, for a given subset of open facilities Ĩ ⊆ I
we define Ĩj as the number of open facilities from Ĩ that can serve customer j ∈ J , i.e.,
Ĩj = |Ĩ ∩ I(j)|.

Definition 1 (Interconnected facilities). A subset of facilities IF ⊆ I including the root node
is called interconnected if there is a path in the graph GI from the root node to each of the
facilities from IF .

Definition 2 (The Median Problem with Interconnected Facilities, MPIF). The MPIF seeks
for a subset of interconnected facilities IF such that each customer j ∈ J is assigned to a
facility i(j) ∈ IF ∩ I(j) and such that the cost required to open the facilities from IF and to
allocate the customers to them, defined as∑

i∈IF

gi +
∑
j∈J

djcji(j) (1)

is minimized.

Definition 3 (The Covering Problem with Interconnected Facilities, CPIF). The CPIF seeks
for a subset of interconnected facilities IF such that the incurred facility opening cost and the
penalty incurred by customers that lie further than R from any open facility from IF , defined
as

α
∑
i∈IF

gi +
∑

j∈J\J(IF )

dj (2)

is minimized.

The problems MPIF and CPIF are NP-hard even if all facilities are pairwise interconnected,
i.e., even if r is sufficiently large so that GI becomes a complete graph. Indeed, in this case,
the MPIF boils down to the classical facility location problem, and the CPIF becomes the
maximum covering location problem, which are known to be NP-hard [22, 23].
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1.2. Related literature

Location problems with interconnected facilities are introduced by Cherkesly et al. [7]. The
authors propose a compact formulation for MPIF/CPIF and design a metaheuristic algorithm
based on iterative local search to solve these problems. Their compact formulation is based
on a single-commodity flow formulation (SCF) whose details are provided in Section 2.1.1.
In our paper, along with the SCF model, we explore alternative ways to model network
connectivity and assignment constraints. We also compare the quality of LP-relaxations of
the SCF formulation with an alternative flow model proposed in this paper.

In the following, we review several facility location and network design problems closely
related to the MPIF and the CPIF:

• The classical Facility Location Problem (FLP), the p-median problem, and the p-center
problem: The literature on the FLP is vast, and the most recent advancements in
exact methods for the FLP can be found in [17], where two Benders reformulations
are given to project out assignment variables. For a more comprehensive literature
overview on the FLP, see also [15]. For the most recent studies on p-median, see, e.g.,
[1, 11, 14]. State-of-the-art methods for the p-center problem and the capacitated facility
location problem are based on branch-and-(Benders-)-cut strategies, see [18] and [36],
respectively. A survey of metaheuristic approaches is given in [30]. Exact methods can
be found in [14, 19, 13].

• Connected Facility Location (ConFL): This is a minimization problem requiring that
open facilities are connected via a Steiner tree. The sum of facility opening and
connectivity cost together with the customer assignment cost is minimized. Unlike the
MPIF, in the ConFL, the edge cost of the Steiner tree connecting open facilities is part
of the objective function. In addition, for ConFL, no costs are incurred for facilities that
do not serve customers, even if they are part of the interconnected network, whereas in
the MPIF opening costs need to be paid for all facilities building the interconnected
network. The ConFL problems are studied in, e.g., [4, 20, 24, 26].

• The Prize-Collecting Steiner Tree Problem (PCSTP). In the PCSTP, we are looking
for a connected subgraph that maximizes the sum of node weights minus the edge
costs needed to connect the nodes trough a tree. To model the MPIF as the PCSTP,
let us assume for simplicity that I ∩ J = ∅. We assign a big-M node-weight to every
customer, and a node-weight −gi to every facility i ∈ I. In addition, edge-costs are
set to zero for every edge connecting two facilities, and they are set to djcji to every
edge connecting i ∈ I and j ∈ J , assuming their distance is within the radius R. The
PCSTP is studied in e.g., [16, 25, 28, 32]. In [24] a general algorithmic framework is
proposed for the ConFL and the PCSTP. In particular, in [16] the PCSTP is modeled
using node variables only (assuming uniform edge-costs). Node-separator constraints
used in [16] (among others) to ensure connectivity between nodes, will also be used to
model interconnectivity between facilities when solving the MPIF/CPIF.

• The Maximum (Node-) Weight Connected Subgraph Problem (MWCS) is a maximization
problem asking to find a connected subgraph with the maximum weight of nodes. The
objective of the MWCS resembles that of the CPIF in that it has to cover as much
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demand at the nodes as possible and no edge costs are incurred. Recent studies on the
MWCS can be found in [2, 5, 25, 31, 33].

• The Set Covering Location Problem (SCLP). In the SCLP the goal is to find a subset
of facilities of minimum opening cost so that every customer is covered at least once. A
customer is said to be covered by a facility if it lies within the given coverage radius
of this facility. In [10] two types of the SCLP related to our paper are considered:
the maximal covering location problem (MCLP) and the partial set covering location
problem (PSCLP). In the MCLP, we are given a budget on the cost of open facilities
and have to cover as many customers as possible. In the PSCLP, a minimum percentage
of demand needs to be covered while minimizing the cost of open facilities. In [10],
for both problems polynomial time procedurs are proposed to derive Benders cuts and
project out customer variables. One of our models for the CPIF will also employ this
type of Benders cuts. The major difference between the CPIF and the PSCLP, besides
the interconnectivity constraints, is that we do not impose a minimum demand to be
covered, but penalize the unserved customers in the objective function instead. As
for modeling the MPIF, starting from the PSCLP, we need to add interconnectivity
constraints and require that 100% of the demand is covered.

Finally, the tree of hubs location problem is another (more distantly) related location problem
on trees, see, e.g., [9]. A more comprehensive list of references can be found in a recent survey
on Steiner trees and related network design problems [27].

2. Mathematical models for the MPIF

We start by presenting a generic model for the MPIF in the natural space of variables. In
the following, binary node variables yi are set to 1 if and only if facility at node i ∈ I is
open. We also introduce binary assignment variables wji which are defined for each j ∈ J
and i ∈ I \ {j}, to indicate whether customer j ∈ J is assigned to facility i ∈ I. For a node
i ∈ I ∩ J , it will be assumed that whenever yi = 1, the node is assigned to itself at zero cost
(and hence, it is not needed to explicitly deal with wii variables). A generic MIP model for
the MPIF can now be stated as follows:

minimize
∑
i∈I

giyi +
∑
j∈J

∑
i∈I(j)\{j}

djcjiwji (3)

s.t. y ∈ Y , y0 = 1 (4)

w ∈ W(y) (5)

where Y ⊆ {0, 1}|I| represents a set of incidence vectors of possible subsets of interconnected
facilities, and with y0 = 1 we ensure that the root facility is always open. Similarly, W(y)
refers to a set of binary incidence vectors corresponding to feasible assignments of customers to
open facilities determined by the vector y. The objective function (3) is the cost-minimization
variant of the MPIF as proposed in [7]. Moreover, we will also consider the cardinality-
constrained variant of the problem (under the same name, MPIF, as in [7]), in which the
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number of open facilities must be equal to p, i.e., in which we add to the model the following
constraint:

∑
i∈I

yi = p. (6)

In the latter case, the first term of the objective function (3) becomes a constant and can be
ignored, assuming that gi = g, for all i ∈ I.

The following constraints are determining the set W(y):

wji ≤ yi i ∈ I, j ∈ J(i) (7a)

yj +
∑

i∈I(j)\{j}

wji = 1 j ∈ J ∩ I (7b)

∑
i∈I(j)

wji = 1 j ∈ J \ I (7c)

wji ∈ {0, 1} j ∈ J, i ∈ I(j), i ̸= j (7d)

Constraints (7a)-(7c) ensure that each customer is assigned to an open facility located within
the radius R from it. The objective function (3) minimizes fixed costs of open facilities as well
as costs to connect customers to facilities. It is well-known (due to the total unimodularity
property of the constraint matrix) that we can replace (7d) by

wji ≥ 0 j ∈ J, i ∈ I(j), i ̸= j (8)

In the following, we will present several alternative ways to model interconnectivity constraints,
and in Section 2.2 we will also use a Benders reformulation to model the assignment constraints.

2.1. Modelling the set Y (the network design component)

The interconnectivity constraint requires that the set of open facilities builds a connected
subgraph with the root node as one of its nodes. To achieve this we can use flow formulations.
There are two main types of flow formulations typically used to impose connectivity: the
first one relies on a single-commodity flow (SCF) and the second one on multiple-commodity
flows (MCF). For some network design problems, the MCF-based formulations are known to
provide better LP-relaxation bounds than their SCF-based counterparts (see, e.g., [27]). We
will investigate these relationships for the MPIF and CPIF in Section 4.

2.1.1. Single-commodity flow formulation SCF

In [7], the single-commodity flow-based formulation (9) was used to describe the network
for the MPIF and the CPIF. Similar ideas have been used earlier in, e.g., [2, 3, 6]. The
formulation uses auxiliary flow variables fik, for all (i, k) ∈ AI . We assume that the flow
represented by variables f is coming from the root node to each open facility via other open
facilities. The amount of flow terminating at node i ∈ I is required to be yi.
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∑
(0,k)∈AI

f0k −
∑

(k,0)∈AI

fk0 =
∑

i∈I\{0}

yi (9a)

∑
(i,k)∈AI

fik −
∑

(k,i)∈AI

fki = yk k ∈ I \ {0} (9b)

fℓk + fkℓ ≤ (|I| − 1)yℓ ℓ ∈ I, {ℓ, k} ∈ EI (9c)

fℓk ≥ 0 (ℓ, k) ∈ AI (9d)

Constraints (9a)-(9c) ensure that there is a path in GI along which the flow can pass from the
root node to each of the open facilities, thus guaranteeing connectivity of the open facilities.
Constraint (9a) ensures that a sufficient amount of flow is sent out from the root node to
reach all open facilities. Constraints (9b) guarantee that the amount of flow terminating
at a facility is equal to yi. Constraints (9c) limit the flow along the arcs between two open
facilities. Flow can exist only on arcs of AI as stated by (9d).

Contrary to standard flow-based formulation from the literature, where the flow variables fℓk,
(ℓ, k) ∈ AI are linked to arcs of the underlying network DI (see, e.g., [29]), this model links
flows with node variables only. That way, a sparser formulation is obtained which exploits the
fact that variables associated to (i, j) ∈ AI do not appear in the objective function. Potential
disadvantage of this model is related to the big-M constraints (9c) which may render its
LP-relaxation very weak, as we will discuss it in Section 4.

2.1.2. Multi-commodity flow formulation MCF

We now propose an alternative way to use flow variables to model connectivity. In this
formulation a separate flow hi destined to facility i ∈ I \ {0} is coming from the root node
and passes through other open facilities. This time we don’t involve big-M constants as
each commodity flow can be modeled separately. As a result, we have constraints (10b) for
each commodity and each edge of EI , where we avoid using arc variables and provide a link
between the flows and facility variables directly.

∑
(ℓ,k)∈AI

hi
ℓk −

∑
(k,ℓ)∈AI

hi
kℓ =


yi if k = i

−yi if k = 0

0 otherwise

i, k ∈ I (10a)

hi
kℓ + hi

ℓk ≤ yℓ i ∈ I, ℓ ∈ I, {ℓ, k} ∈ EI (10b)

hi
ℓk ≥ 0 i ∈ I, (ℓ, k) ∈ AI (10c)

Constraints (10a) ensure that one unit of flow for commodity i ∈ I (provided that yi = 1)
departs from the root node 0 and terminates at node i. As with the SCF, the flow is limited
to arcs in the graph GI , due to constraints (10b) and (10c).

This model should give us possibly tighter LP-relaxation bounds at the cost of increasing the
number of variables and constraints. In Section 4 we compare the quality of the LP-relaxation
of models with connectivity constraints based on the SCF and the MCF.
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2.1.3. Connectivity cuts

Yet another way to impose connectivity between facilities is obtained with a non-compact
formulation in the natural space of y variables. The connectivity is ensured by an exponential
number of constraints using the notion of node separators.

Definition 4 (node separators). For any pair of distinct and non-adjacent facilities k, ℓ ∈ I,
the set N ⊂ I \ {k, ℓ} is called a (k, ℓ)-separator iff after the elimination of all nodes from N
from the graph GI there is no (k, ℓ)-path in the resulting graph.

Let N (0, i) denote the family of all (0, i)-separators for a given facility i ∈ I \ {0} (obviously,
if {0, i} ∈ EI then N (0, i) = ∅). Then in our generic model (3)-(5) we can replace the SCF or
MCF constraints (9), respectively (10), with the following exponential family of cuts:∑

j∈N

yj ≥ yi i ∈ I \ {0} : {0, i} ̸∈ EI , N ∈ N (0, i). (11)

These constraints ensure that for any open facility i ∈ I, which is not directly adjacent to
the root node 0,there exists a 0− i path in which all facilities along this path are open. We
observe that for facilities i such that {0, i} ∈ EI , no connectivity constraints need to be
imposed (as, by default, the root facility is always open).

The notion of node separators has been successfully used to develop branch-and-cut methods
for the MWCS in e.g., [2, 3, 16]. These constraints are separated in a dynamic fashion. Given
a vector y with integer coordinates, one can check in polynomial time if this vector satisfies
all constraints of type (11). For example, if there is a connected component C ⊂ I of open
facilities that does not contain the root node, then the neighboring nodes of such component
in GI provide |C| node separators N ∈ N (0, i), one for each i ∈ C. Hence, for each i ∈ C, an
associated cut (11) can be generated, in order to enforce that at least one of these neighboring
nodes has to be open in a feasible solution, in case facility at node i is open.

It is not difficult to see that tighter cuts can be obtained if minimal (with respect to node-
inclusion) node separators are used instead. We have implemented an efficient separation
procedure for finding minimal node separator cuts, based on the following proposition that
has been shown for Steiner trees in [16]:

Proposition 1 (based on [16]). Let N ∈ N (0, i) be a (0, i)-separator for some i ∈ I \ {0},
and let C0 and Ci be connected components of GI obtained after removing nodes from N , such
that 0 ∈ C0, i ∈ Ci. Then N is a minimal (0, i) node separator if and only if every node in N
is adjacent to at least one node in C0 and to at least one node in Ci.

More details on how these constraints are integrated into our branch-and-(Benders)-cut
procedure are provided in Section 5.

2.2. Benders decomposition of the assignment constraints

At the beginning of this section we proposed to explicitly model the assignment of customers
to open facilities using w variables. However, we can also project out w variables and just
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trace the cost of assignment for each customer j ∈ J instead. Thus, to calculate the cost of
assignment of customer j ∈ J we introduce new continuous variables vj ≥ 0 representing the
cost to serve customer j ∈ J given a vector y of open facilities.

The new generic model for the MPIF can be restated in the space of (y, v) variables:

minimize
∑
i∈I

giyi +
∑
j∈J

djvj (12)

s.t. vj ≥ cjk −
∑

i∈I(j):cji<cjk

(cjk − cji)yi j ∈ J, k ∈ I(j) (13a)

∑
i∈I(j)

yi ≥ 1 j ∈ J (13b)

vj ≥ 0 j ∈ J (13c)

y ∈ Y , y0 = 1

Constraints (13a) can be derived using Benders decomposition and LP-duality theory, see,
e.g., [8, 17]. We briefly sketch this idea in the following. For any given y ∈ Y, y0 = 1,
satisfying constraints (13b), the assignment subproblem is given as

min{
∑
j∈J

∑
i∈I(j)\{j}

djcjiwji : (7a)-(7c) }. (14)

Constraints (13b) guarantee that for any choice of y ∈ Y s.t. y0 = 1, the linear program (14) is
always feasible, i.e., they act as Benders feasibility cuts. Hence the LP (14) is well defined and
attains its optimum. This LP is separable per j ∈ J , and can be solved by |J | independent
LPs, one for each j. The optimal solution value of the LP associated to customer j expresses
the cost needed to serve this customer, is a function of the vector y. Starting from LP-duals
of these |J | LPs, constraints (13a), which correspond to Benders optimality cuts, are derived.
We notice that for j ∈ I ∩ J , if yj = 1, constraints (13a) impose vj ≥ 0.

Although there is a polynomial number of constraints (13a), very few of them are actually
binding in an optimal solution. Hence, it pays off to dynamically separate them in a branch-
and-cut fashion. In this case, we can initialize the lower bounds on v variables as follows:

vj ≥
(

min
i∈I(j),i ̸=j

cji

)
(1− yj) j ∈ J ∩ I (15)

vj ≥ min
i∈I(j)

cji j ∈ J \ I (16)

These constraints state that the assignment cost will be at least the cost to the closest facility
(and in the case of node j ∈ J ∩ I, if yj = 0, this facility must be different than j).
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2.3. Overview of models for the MPIF

In this section we have proposed three ways to model interconnectivity between open facilities:
two compact approaches based on SCF and MCF, respectively, and an approach that uses
an exponential number of node-separator inequalities (11). We also proposed two ways to
model assignment between customers and facilities: the first one is the standard model (7)
with w variables, and the second one uses Benders reformulation with variables v. Thus, by
combining the network design and assignment parts, we obtain six different MIP models.
They are summarized in Table 1. When referring to these models, letters S, M and N stand
for SCF, MCF and node-separator network design subformulation, respectively. Letters W
and V stand for assignment subformulation with w and v variables, respectively.

Model Objective Network Design Assignment Variables
MPIF SW (3) Single-commodity flow (9) Compact (7) y, f, w
MPIF MW (3) Multi-commodity flow (10) Compact (7) y, h, w
MPIF NW (3) Node-separator cuts (11) Compact (7) y, w
MPIF SV (12) Single-commodity flow (9) Compact (13) y, f, v
MPIF MV (12) Multi-commodity flow (10) Compact (13) y, h, v
MPIF NV (12) Node-separator cuts (11) Compact (13) y, v

Table 1: Classification of models for the MPIF with references to the equations/inequalities of the objective
functions and constraints, respectively

3. Mathematical models for the Covering Problem with Interconnected Facilities
(CPIF)

The objective function of the CPIF models a trade-off between the cost of opening facilities,
and the revenues that can be collected from offering a service to customers. This time we
do not incur costs for assigning customers, hence we do not need to know which facility the
customer is assigned to, but rather whether the customer is covered or not. Recall that we
are still limited by the radius R > 0 denoting the customer covering radius of each facility.
To model the CPIF, we introduce binary covering variables z, which are defined for each
customer j ∈ J and which are equal to 1 if and only if for customer j there exists an open
facility within radius R from j. Binary facility location variables y are the same as for the
MPIF.

We now minimize the cost of open facilities plus the penalties for the customers who remain
outside of radius R of any open facility. Hence, a generic way of modeling the problem is
given as follows:

minimize α
∑
i∈I

giyi +
∑
j∈J

dj (1− zj) (17)

s.t. y ∈ Y , y0 = 1

z ∈ Z(y) (18)

In the objective function, the second term determines the penalty (which is the sum of the
demand of uncovered customers), and the coefficient α > 0 is used to balance the facility
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opening cost and the penalty. In the definition of the objective function, it is assumed that
the revenue generated from each customer and hence its significance is proportional to the
demand of the customer. This is a customary assumption in the covering location literature
(see also related problems described in [10, 21, 37]).

As for the MPIF, with y ∈ Y , y0 = 1 we model all possible feasible configurations of
interconnected facilities. The set Z ⊆ {0, 1}|J | is a set of incidence vectors corresponding to
feasible coverage of customers by open facilities. Moreover, as for the MPIF, there exists a
cardinality-constrained variant of the problem (under the same name, CPIF as in [7]), in
which the number of open facilities is fixed to p :

minimize {
∑
j∈J

dj (1− zj) :
∑
i∈I

yi = p, y ∈ Y , y0 = 1, z ∈ Z(y)}. (19)

The feasible region Y for facilities (variables y) in the CPIF can be defined by the same set of
constraints as for the MPIF (cf. Section 2.1). The feasible region Z(y) for covering variables
z is defined by (20b) and (20a).

zj ≤
∑
i∈I(j)

yi j ∈ J (20a)

zj ∈ {0, 1} j ∈ J (20b)

Constraints (20a) ensure that zj = 1 (i.e., customer j ∈ J is covered) only if there is at least
one open facility within the radius R from j.

We can model penalty term in the objective function explicitly, using the covering variables z
in a compact way with constraints (20). Alternatively, we can use a Benders decomposition
approach to project out z variables and track the total demand of uncovered customers in a
non-compact formulation, as described below.

3.1. Benders approach to model the non-covering penalty

If we introduce variable θ =
∑

j∈J zj representing the total covered demand, the objective of
the CPIF (17) becomes:

minimize α
∑
i∈I

giyi +
∑
j∈J

dj − θ (21)

where the value of θ can be bounded as

0 ≤ θ ≤
∑
j∈J

dj. (22)

The Benders subproblem associated with a solution ỹ ∈ Y , ỹ0 = 1 corresponds to

max{
∑
j∈J

djzj : zj ≤
∑
i∈I(j)

ỹi, zj ≤ 1, j ∈ J}. (23)

This subproblem is always feasible, it is separable per each j ∈ J , and its optimal solution
is determined as zj = min{1,

∑
i∈I(j) ỹi}. Using this observation, for a given solution ỹ of
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the master problem, let Ĩj :=
∑

i∈I(j) ỹi. Then, the following Benders optimality cuts can
be derived for the CPIF, in a similar fashion as it has been done for the related partial set
covering problem in [10]:

θ ≤
∑

j∈J :Ĩj≥1

dj +
∑

j∈J :Ĩj<1

dj(
∑
i∈I(j)

yi) +
∑

j∈Js:Ĩj=1

dj(yi(j) − 1). (24)

We separate these cuts within a branch-and-Benders-cut procedure. A detailed description of
this separation procedure is given in Section 5.

3.2. Overview of models for the CPIF

Depending on how we model the network design or the assignment component of the MIP
formulation, we again obtain six different models. As with the MPIF models, we can formulate
the interconnectivity in a compact or non-compact way. As shown above, the coverage can
also be formulated in a compact way or using Benders cuts. The summary of these models
is given in Table 2 where as before, S, M and N stand for SCF, MCF and node-separator
formulations, respectively. In addition, letters Z and T denote two ways to model covering,
using z variables or θ, respectively.

Model name Objective Network Design Coverage Variables
CPIF SZ (17) Single-commodity flow (9) Compact (20) y, f, z
CPIF MZ (17) Multi-commodity flow (10) Compact (20) y, h, z
CPIF NZ (17) Node-separator cuts (11) Compact (20) y, z
CPIF ST (21) Single-commodity flow (9) Exponential #constraints (24) y, f, θ
CPIF MT (21) Multi-commodity flow (10) Exponential #constraints (24) y, h, θ
CPIF NT (21) Node-separator cuts (11) Exponential #constraints (24) y, θ

Table 2: Classification of models for the CPIF with references to the equations/inequalities of the objective
functions and constraints, respectively

4. Comparing the tightness of flow-based subformulations modeling interconnec-
tivity

In this section, we focus on two compact ways of modeling the interconnectivity. We compare
the tightness of underlying MIP models when using the SCF-based constraints, as proposed
in [7], versus MCF-based constraints proposed in Section 2.1.2. For a given formulation F
and a given input instance, we denote the value of its LP-relaxation as vLP(F ) and the value
of the optimal solution as OPT. For two MIP formulations F1 and F2, we will say that F1 is
strictly stronger than F2 if for all problem instances we have vLP(F1) ≥ vLP(F2) and there
exist instances for which the strict inequality holds. We will use the following two examples
to derive our theoretical results.

Example 1. Let us consider an example depicted in Figure 2 with the set of facility candidates
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I = {0, . . . , n} and customers J = {n+ 1, . . . , n+m} (n ≥ m). We assume:

EI = {0, 1} ∪ {{1, i} : i ∈ {2, . . . , n}}
I(j) = {2, . . . , n} j ∈ J

g1 = L, gi = K i ∈ I \ {0, 1}
dj = 1 j ∈ J

cji = ε j ∈ J, i ∈ {2, . . . , n}

where L ≫ K ≥ 0 and ε ≥ 0 is close to zero. Due to the definition of I(j), we have to
make sure that

∑
i∈{2,...,n} yi ≥ 1 so that all customers could be served. Consequently, by the

definition of EI , we have to open a facility at node 1, in order to build a feasible network.

Example 2. For the set of facility candidates I = {0, . . . , n} and single customer J = {n+1}
shown in Figure 3, we have

EI = {{i, i+ 1} : i ∈ {0, . . . , n− 1}}
I(j) = {n} j ∈ J

gi = K i ∈ I \ {0}
dj = 1 j ∈ J

cn+1 n = ε

To obtain a feasible solution we have to open all facilities so that there is a path from the root
node to facility n so that customer n+ 1 can be served.

In the following we compare the quality of LP-relaxation bounds of the formulations SW and
MW on these two examples. While we focus on the MPIF, we point out that the results
can be easily translated into related ones for the CPIF if we assume big-M demand for the
customer nodes, since we assume negligible transportation costs.

It is known in the network design literature (see, e.g., [20, 29]) that SCF-based formulations
can produce very weak lower bounds. In our case this is caused by the bigM-constraints
(9c). On the other hand, MCF-based formulations with capacities on arc variables are known
to provide much tighter lower bounds. For example, for the Steiner tree problem in graphs
and some of its variants, the value of the LP-relaxation of the MCF-based formulation is
never below 1/2 of the optimal value (see, e.g., [27, 29]). The following proposition shows
a surprising result that MCF-based formulations with capacities on node variables do not
necessarily improve the quality of lower bounds obtained by the SCF-based model. Specifically,
we show that there exist MPIF instances for which the LP-relaxation value of the MW model
can be arbitrarily bad. Since in all models summarized above, the assignment component is
modeled independently, without loss of generality we can focus on models SW and MW, and
the results remain the same when comparing SV against MV.

Proposition 2. We have:

inf
vLP(MPIF MW)

OPT
≤ 1

|I| − 2
and inf

vLP(MPIF SW)

OPT
≤ 1

|I| − 2

where the infimum is calculated over all possible MPIF instances.
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□2

□3 ⋆n+1

□4 ⋆n+2

■0 □1 ...
...

□n−2 ⋆n+m−1

□n−1 ⋆n+m

□n

■ The root node □ Facility candidate ⋆ Customer

Figure 2: Example instance 1. Squares represent candidate facility nodes, stars are customers. Node 0 is
the root node. Node 1 can be connected as a facility to both node 0 and nodes {2, ..., n}, but cannot serve
customers. Thus we force at least one of nodes {2, ..., n} to be open. The cost to build a facility at node 1 is
L, at nodes {2, ..., n} is K.

Proof. We will use the previously introduced Example 1, where |I| = n+ 1, to illustrate an
instance for which the above ratios are attained. We have:

OPT = L+K+m · ε ≈ L under our assumption L≫ K ≥ 0 and ε close to 0.

vLP(MPIF SW) =
1

n− 1
L+K+m · ε ≈ 1

n− 1
L

vLP(MPIF MW) =
1

n− 1
L+K+m · ε ≈ 1

n− 1
L.

We explain in Appendix A, how the corresponding LP-optimal solutions are obtained. Hence,
this example shows that the value of the LP-relaxation of the two models can be the same,
and moreover, the ratio to the optimal solution value is 1/(n− 1).

The following result shows that the LP-relaxation of the SW formulation can be arbitrarily
worse than the respective value of the MW formulation.

Proposition 3. It holds:

inf
vLP(MPIF SW)

vLP(MPIF MW)
≤ e

|I| − 1
,
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⋆n+1

■0 □1 □2 . . . □n−1 □n

■ The root node □ Facility candidate ⋆ Customer

Figure 3: Example instance 2.

where the infimum is calculated over all possible MPIF instances.

Proof. For Example 2, where |I| = n+ 1, we have:

OPT = nK+ε ≈ nK

vLP(MPIF MW) = nK+ε ≈ nK

vLP(MPIF SW) =

(
n

n− 1

)n−2

K+ε ≈ eK

We explain in Appendix B, how the corresponding LP-optimal solutions are obtained.

Corollary 1. Formulation MPIF MW is strictly stronger than the formulation MPIF SW.

Proof. We show how to transform an arbitrary LP-solution (ȳ, h̄, w̄) of the MPIF MW
formulation into a feasible LP-solution of the MPIF SW formulation, say (ỹ, f̃ , w̃), without
changing the value of the objective function. Indeed, we have ỹ := ȳ, w̃ := w̄ and for each
(k, ℓ) ∈ AI we set f̃kℓ =

∑
i∈I,i ̸=0 h̄

i
kℓ. Hence vLP(MPIF SW) ≤ vLP(MPIF MW). Together

with the counter example from the proof of Proposition 3, the result follows.

5. Implementation Details

In the following, we provide implementation details along with pseudo-codes for the separation
of constraints used in our branch-and-(Benders)-cut implementations. Algorithm 1 shows the
general framework applied to models MPIF NW/NV and CPIF NZ/NT, in case no cardinality
constraints are imposed by the input data. Within this framework, we precompute small
cardinality solutions by assuming that at most two facilities (the root node together with
one of its neighbors) are open, which allows us to obtain an initial feasible solution. The
value of this solution is then passed as a cutoff value to Cplex together with an additional
constraint that at least three facilities must be open. General purpose MIP solvers have very
powerful techniques for finding feasible solutions which work particularly well for compact
MIP formulations (when the full model is given to the solver). However, these techniques are
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way less effective for branch-and-cut approaches (when only a small subset of valid inequalities
is provided to the solver, and the remaining ones are dynamically generated). Hence, OPT1
technique allows us to circumvent these difficulties in two ways: we obtain an initial feasible
solution and we restrict the search space for the branching tree.

We recall that the model MPIF NW is solved using a branch-and-cut, whereas the model MPIF
NV is solved using a branch-and-Benders-cut. Algorithm 2 shows the cut separation process
for intermediate (and potentially infeasible) solution vectors for both models. Algorithm 2
is called after solving the relaxed master problem, or after finding an “incumbent” solution
(i.e., a solution that satisfies integrality conditions together with all constraints of the relaxed
master problem). For each such solution of the master problem, we generate a set Cuts of
violated constraints, that are used to discard the solution, in case it is not valid. We first
separate node-separator constraints (11), and only if there are no more of these cuts violated,
we resort to the separation of Benders cuts (13a). For the MPIF NW model, the steps 17-24
are skipped. Minimal node-separator cuts (11) are separated at binary points only. Given
a binary vector ỹ indicating a set of open facilities, we build a support graph GĨ induced
by the nodes i such that ỹi = 1. In our notation, sets Ci ⊆ I refer to the subset of facilities
reachable from node i in GĨ (directly or through other opened facilities for a given binary
solution). Similarly, C0 refers to the connected component in GĨ containing the root node.
The set A(C0) refers to the set of closed facilities which are not in the connected component
of 0, but are direct neighbors of some open facility from C0. Finally, we also consider Ri as
the set of nodes reachable from i, after removing from the original graph GI the set of edges
connecting nodes in C0 ∪A(C0). Minimal node-separators between two components, C0 and
Ci, are obtained in the intersection of sets Ri and A(C0).

Similarly, the model CPIF NZ is solved using a branch-and-cut, whereas the model CPIF NT
is solved using a branch-and-Benders-cut. Algorithm 3 shows the cut separation process for
intermediate (and potentially infeasible) solution vectors for both models. In the implementa-
tion of the CPIF NZ model, the steps 16-23 are skipped. Also for the CPIF, we resort to
separation of Benders cuts, only if no more violated cuts of type (11) can be found.

Algorithm 1: Algorithm for MPIF NV/NW, the CPIF NT/NZ models (for instances
without the cardinality constraint)

Data: Instance of the MPIF or the CPIF problem without the cardinality constraint
Result: Optimal solution, or best found solution (if timelimit is reached)

1 Find by inspection the optimal solution OPT0 when only the facility at the root node is
open

2 Find by inspection the optimal solution OPT1 when only two facilities are open: the
facility at the root node and a single additional facility reachable from the root

3 Add constraint
∑

i∈I yi ≥ 3 to the respective model
4 Set the upper cutoff tolerance of CPLEX solver to min(OPT0,OPT1)
5 Call Branch-and-(Benders)-Cut algorithm to find OPT
6 return min(OPT0,OPT1,OPT)
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Algorithm 2: Separation algorithm for the MPIF NV/NW model

Data: Solution vector (ỹ, ṽ) ∈ [0, 1]|I| × R|J |
+ (MPIF NV model), or

(ỹ, w̃) ∈ [0, 1]|I| × [0, 1]|I|×|J | (MPIF NW model)
Result: Cuts: Set of violated cuts

1 Cuts ← ∅
2 if ỹ ∈ {0, 1}|I| then
3 Let Ĩ = {i ∈ I : ỹi = 1} and let GĨ be the subgraph of GI obtained after removing

from GI all nodes i such that ỹi = 0
4 Let C0 be the nodes of the connected component in GĨ containing the root node

5 Let A(C0) ⊆ I \ Ĩ be the neighboring nodes of C0 in GI

6 Using BFS on GĨ and GI , find C0 and A(C0), respectively
7 Delete all edges connecting nodes of C0 ∪ A(C0) from GI

8 if C0 ̸= Ĩ then

9 O ← Ĩ \ C0

10 for i ∈ O do
11 Using BFS on GĨ , find Ci, the subset of nodes reachable from i
12 Using BFS on GI , find Ri, the subset of nodes reachable from i

13 Let Ñi = Ri ∩ A(C0)
14 for j ∈ Ci do
15 Add

∑
i′∈Ñi

yi′ ≥ yj to Cuts.

16 O ← O \ j
17 else if MPIF NV Model then
18 for j ∈ J, k ∈ I(j) do
19 if ṽj < cjk −

∑
i∈I(j)(cjk − cji)

+ỹi then

20 add vj ≥ cjk −
∑

i∈I(j):cji<cjk
(cjk − cji)yi to Cuts.

21 else if MPIF NV Model then
22 for j ∈ J, k ∈ I(j) do
23 if ṽj < cjk −

∑
i∈I(j)(cjk − cji)

+ỹi then

24 add vj ≥ cjk −
∑

i∈I(j):cji<cjk
(cjk − cji)yi to Cuts.

25 return Cuts

6. Computational results

In this section we assess the empirical performance of our models and the respective solution
methods for solving benchmark instances originally introduced by Cherkesly et al. [7]. To
test the scalability of the proposed approaches, we also consider an additional dataset, used
for solving the related covering location problems. This dataset, used by [10] and based on
the procedures originally proposed by [34], contains up to 100,000 customers. In what follows,
we first describe the datasets and the tested algorithmic frameworks. After that, we provide
a detailed analysis of the obtained results for both MPIF and CPIF instances.

The code was implemented in C++. Experiments were run on a computer equipped with an
Intel Core i7 (4790) 3.6 GHz CPU and 16 GB of RAM running on Linux. CPLEX 20.1.0.0
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Algorithm 3: Separation algorithm for the CPIF NT/NZ model.

Data: Solution vector (ỹ, θ̃) ∈ [0, 1]|I| × R+ (CPIF NT model), or
(ỹ, z̃) ∈ [0, 1]|I| × [0, 1]|J | (CPIF NZ model)

Result: Cuts: Set of violated cuts
1 if ỹ ∈ {0, 1}|I| then
2 Let Ĩ = {i ∈ I : ỹi = 1} and let GĨ be the subgraph of GI obtained after removing

from GI all nodes i such that ỹi = 0
3 Let C0 be the nodes of the connected component in GĨ containing the root node

4 Let A(C0) ⊆ I \ Ĩ be the neighboring nodes of C0 in GI

5 Using BFS on GĨ and GI , find C0 and A(C0), respectively
6 Delete all edges connecting nodes of C0 ∪ A(C0) from GI

7 if C0 ̸= Ĩ then

8 O ← Ĩ \ C0

9 for i ∈ O do
10 Using BFS on GĨ , find Ci, the subset of nodes reachable from i
11 Using BFS on GI , find Ri, the subset of nodes reachable from i

12 Let Ñi = Ri ∩ A(C0)
13 for j ∈ Ci do
14 Add

∑
i′∈Ñi

yi′ ≥ yj to Cuts.

15 O ← O \ j
16 else if CPIF NT model then
17 Īj ←

∑
i∈I(j) ỹi

18 if θ̃ >
∑

j∈J :Īj≥1 dj +
∑

j∈J :Īj<1 dj Īj then

19 add θ ≤
∑

j∈J :Īj≥1 dj +
∑

j∈J :Īj<1 dj(
∑

i∈I(j) yi) +
∑

j∈Js:Īj=1 dj(yi(j) − 1) to
Cuts

20 else if CPIF NT model then
21 Īj ←

∑
i∈I(j) ỹi

22 if θ̃ >
∑

j∈J :Īj≥1 dj +
∑

j∈J :Īj<1 dj Īj then

23 add θ ≤
∑

j∈J :Īj≥1 dj +
∑

j∈J :Īj<1 dj(
∑

i∈I(j) yi) +
∑

j∈Js:Īj=1 dj(yi(j) − 1) to Cuts

24 return Cuts

was used as a general-purpose MIP solver. We used callback functions and limited all runs
to a single thread. The time limit was set to 3600s. All other CPLEX parameters are kept
at their default values, except for the number of threads (which was set to one). For the
branch-and-cut methods, reduction and dual reduction techniques performed by the CPLEX
were turned off as well. The implementation and the results are also publicly available at
https://github.com/b00750186/PIF.

6.1. Benchmark set of instances

Our algorithms are applied to the following two datasets which were used in [7]:

• Euclidean instances : For 29 instances from this set (see http://www.math.nsc.ru/AP/
benchmarks/UFLP/Engl/uflp_eucl_eng.html), each customer node can be used as a
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facility as well, and we have |I| = |J | = 100. The values cji were calculated as Euclidean
distances between each pair of nodes (rounded to the nearest integer). The fixed cost
of each facility is equal to 3000 and no cardinality p on the number of open facilities
is imposed. The values for r (as used in [7]) are chosen from {500, 1500, 2500}. For
the MPIF, R = ∞, whereas for the CPIF we have R ∈ {1000, 1500, 2000}. Figure 4
illustrates optimal solutions for one of the Euclidean instances with different radii.
Overall, there are 87 MPIF and 261 CPIF instances in this group.

• p-median instances : This is a set of 40 instances with 100 to 900 nodes (|I| = |J |), with
the values cji and possible connections between facilities given as input graphs (see
http://people.brunel.ac.uk/~mastjjb/jeb/info.html). The number p of facilities
that need to be open ranges between five and 200. As proposed in [7], for instances 1 to 6
from this set, we choose r ∈ {80, 100, 150}, for instances 7 to 9, we have r ∈ {50, 80, 100}
and for instances 10 to 40, we have r ∈ {25, 50, 80}. For the MPIF, R =∞, whereas
for the CPIF the values of R are chosen from {8, 10, 12, 15, 20}. Overall, there are 75
MPIF instances and 555 CPIF instances in this group.

For both sets of instances, the demand of each single customer is set to 1 and the value of α
is set to 0.001.

While the former two datasets contain the same number of customers and facility locations,
in some applications (when facilities correspond to locations of antennas, sensors, or similar
telecommunication devices), the number of potential facility locations can be fairly limited
when compared to the number of customers that need to be covered. Hence, to test the
scalability of the proposed approaches, we also consider an additional dataset from [10], see
also [34].

• Covering dataset : Starting with 20 instances from the dataset available at https:

//github.com/fabiofurini/LocationCovering, we generate 50 MPIF and 100 CPIF
instances as follows. The coordinates of the potential facility locations (together
with their opening cost) and the set of customers (together with their demand) are
given. The number of facilities is |I| = 100, and the number of customers is |J | ∈
{1000, 5000, 10000, 50000, 100000}. The values cji were calculated as Euclidean distances
between each pair of nodes. The fixed cost of each facility is between 10 and 100 and no
cardinality p on the number of open facilities is imposed. The demand of each customer
is an integer number between 1 and 100. We choose the values for r from {3.4, 5.5} as
in the preliminary tests, we have observed that these radii are more difficult to solve.
For the MPIF, we set R =∞, and for the CPIF we set R ∈ {4, 6}. The value of α is
equal to 1.

6.2. Comparing the computational performance of proposed models

To compare the models and algorithms proposed in this paper, we consider the following two
indicators: the runtime needed to solve benchmark instances to optimality, and the final gaps
at termination (in case the time limit of 3600 seconds was reached). For the latter gap, we
use formula from CPLEX node report, namely gap[%] := (UB − LB) · 100/UB, where UB
and LB refer to the global upper, respectively, lower bound of the model at the termination.
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(a) r = 500 (b) r = 1500 (c) r = 2500

Figure 4: Optimal solutions for an instance of the CPIF for three different values of r. The black square
represents the root node. Triangles represent open facilities. Colored circles represent customers covered by
the facility of the same color. Crosses stand for uncovered customers. Lines connect open facilities that lie
within the radius r. Instance file: Euclidean 2111, R = 2000.

We use default MIP tolerance gap of 0.01%. Hence, whenever the obtained gap is < 0.01%, it
is reported as 0% in our experiments.

In case a method could not obtain any integer solution (i.e., UB =∞) we recalculate UB by
assuming that: (a) for the MPIF, all customers are assigned to the root node (which is always
possible, since R =∞ for the given benchmark set), and (b) for the CPIF, no customers are
served and no facilities are open. If a method does not solve the LP-relaxation within the
time limit, we set LB = 0 and gap = 100%.

6.2.1. MPIF

We compare five different ways to solve models from Table 1:

• SW (compact): This is the MPIF SW model solved by the default CPLEX MIP
algorithm.

• SW (auto Benders): This is the MPIF SW model solved using the automatic Benders
decomposition available in CPLEX.

• MW (compact): This is the MPIF MW model solved by the default CPLEX MIP
algorithm.

• NW Branch-and-Cut: This is the MPIF NW model solved by a branch-and-cut in
which node-separator cuts (11) are dynamically generated (using LazyCallback function
of CPLEX).

• NV Branch-and-Cut: This is the MPIF NV model solved by a branch-and-cut in
which node-separator cuts (11) are separated (using LazyCallback) and assignment cuts
(13a) are separated (using both LazyCallback and UserCallback functions).

Due to the size of the MPIF MW model, we could solve only instances with 100 nodes
on a computer with 16 GB RAM, so we did not consider other MCF-based models in this
computational study. As explained in Algorithm 1, for instances without the cardinality
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constraints on the number of open facilities (namely, the Euclidean and the Covering dataset),
we pre-calculate optimal solutions with a single open facility (apart from the root node) or
with only one open facility at the root node, and then we run the respective MIP models with
additional constraint

∑
i∈I yi ≥ 3 and with the lower cut-off value set to OPT1.

A summary of obtained results for the Euclidean and p-median datasets is provided in Table 3,
whereas Table 4 summarizes the results for the Covering dataset. We report the number
of instances solved to optimality within the time limit out of the total number of instances
of the respective dataset (column Optimal), the number of instances for which the gap at
termination remains positive (column Suboptimal), the average gap at termination over all
instances (column gap[%]), and the average runtime in seconds over all instances (column
Time (s)). The best performance is achieved by two methods: the NV Branch-and-Cut and
the NW Branch-and-Cut. In the NV Branch-and-Cut method, we use node-separator cuts
to ensure interconnectivity and use variables vj to represent the cost of serving customer
j ∈ J . In the NW Branch-and-Cut, we have the same approach to model facility network
as in NV but use explicit assignment variables w. All 162 Euclidean and p-median and all
50 Covering instances were solved within the time limit of 3600 seconds by each of the two
methods. In terms of the average runtime, on the Euclidean and p-median dataset, NV
Branch-and-Cut exhibits a slightly better performance (12 secs on average versus 19 secs for
the NW Branch-and-Cut method). Such a similar performance between these two models can
be explained by the fact that |I| = |J | in these instances. However, in terms of runtime on
the Covering dataset, NV Branch-and-Cut significantly beats NW Branch-and-Cut. Indeed,
this result confirms the fact that the real benefit of projecting out w variables can be seen on
instances for which |J | ≫ |I|. In that case, the Benders reformulation allows to reduce the
number of assignment variables by orders of magnitude, whereas when |I| = |J |, the reduction
in the number of variables is negligible, and hence the two models (with and without Benders
decomposition) perform similarly. The remaining three solution methods from this experiment
faced more difficulties with the considered benchmark sets. More precisely, the two SW-based
methods are an order of magnitude slower. Indeed, no matter if the SW model is solved
using a compact formulation, or automatic Benders decomposition, at least 7 instances out
of 162 Euclidean and p-median, and 10 out of 50 Covering instances, remained unsolved.
Covering instances seem to be particularly challenging for this single-commodity-flow-based
model where the average gaps at termination are higher than 20%. The compact model MW
exhibits the worst performance, mostly due to the fact that for instances with more than 100
nodes not even the LP-relaxation was solved within the time limit.

In the following, we report the empirical cumulative distribution functions (ECDFs) w.r.t. the
runtimes and percentage gaps at termination, respectively. The ECDFs with e.g., runtimes
can be interpreted as the number of instances (shown in y-axis) that can be solved within a
certain amount of time (depicted in the x-axis).

In Figures 5 and 6 the number of MPIF instances versus the time needed to solve them to
optimality is given. From Figures 5 and 6 we can see that both NW and NV Branch-and-Cut
methods dominate the others, but there are instances that are solved faster by one and other
instances that are solved faster by the other method. Figure 5 illustrates the performance
of our models in terms of runtime on the first dataset that we tested with Euclidean and
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p-median instances. The NV method spends less than 500 seconds on each instance, NW
spends more time on one instance but stays within 1000 seconds limit. The MW model
cannot resolve about 50% of the instances within 3600 seconds time limit due to the size of
the instances. The SW model solved by the automatic Benders method is slightly dominated
by the SW model solved by the default CPLEX MIP solver. All models except the MW show
comparable results on easier 100 instances, while the hardest 62 instances really separate
them in terms of computational performance. Similarly, Figure 6 summarizes the performance
of our models on the second dataset that we tested with Covering instances. NV and NW
models outperform other models spending less than 2000 seconds on each instance. This
dataset clearly differentiates models based on their computational performance. The MW
model and the SW with automatic Benders seem to show comparable results for some easier
instances.

Figures 7 and 8 summarize the performance of our models on the first dataset (Euclidean
and p-median instances) and the second dataset (Covering instances), respectively, in terms
of the gap at termination. NV and NW models solve all instances to optimality with 0 % gap.
The gaps obtained by the MW model and the SW model were reported as 100 % for some
instances, as for these instances these methods cannot find any feasible integer solution.

Model Method Optimal Suboptimal gap[%] Time (s)

MPIF NV NV Branch-and-Cut 162/162 0/162 0.00 12

MPIF NW NW Branch-and-Cut 162/162 0/162 0.00 19

MPIF SW
SW (compact) 155/162 7/162 0.1 345
SW (auto Benders) 148/162 14/162 8.3 427

MPIF MW MW (compact) 87/162 75/162 27.1 1796

Table 3: MPIF instances solved by different methods within 3600 s. (Euclidean and p-median instances)

Model Method Optimal Suboptimal gap[%] Time (s)

MPIF NV NV Branch-and-Cut 50/50 0/50 0.0 118

MPIF NW NW Branch-and-Cut 50/50 0/50 0.0 346

MPIF SW
SW (compact) 40/50 10/50 20.0 997
SW (auto Benders) 34/50 16/50 30.7 1483

MPIF MW MW (compact) 38/50 12/50 24.0 1316

Table 4: MPIF instances solved by different methods within 3600 s. (Covering dataset)

When it comes to the quqlity of LP-relaxations, for the Euclidean instances, on average,
solution values of the LP-relaxed MPIF MW model are 0.41% higher than that of the
LP-relaxed MPIF SW model.

6.2.2. CPIF

We compare five solution methods applied to CPIF instances:
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Figure 5: ECDF comparing runtime (in seconds) spent by different methods to solve 162 MPIF instances
(Euclidean and p-median dataset).

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

5

10

15

20

25

30

35

40

45

50

Nu
m

be
r o

f i
ns

ta
nc

es

NV Branch and Cut
NW Branch and Cut
SW (compact)
MW (compact)
SW (auto Benders)

Figure 6: ECDF comparing runtime (in seconds) spent by different methods to solve 50 MPIF instances
(Covering dataset).
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Figure 7: ECDF comparing gaps at termination (gap[%]) for 162 MPIF instances (Euclidean and p-median
dataset).
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Figure 8: ECDF comparing gaps at termination (gap[%]) for 50 MPIF instances (Covering dataset).

• SZ (compact): This is the CPIF SZ model solved by the default CPLEX MIP
algorithm.
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• SZ (auto Benders): This is the CPIF SZ model solved using automatic Benders
decomposition available in CPLEX.

• MZ (compact): This is the CPIF MZ model solved by the default CPLEX MIP
algorithm.

• NZ Branch-and-Cut: This is the CPIF NZ model solved by a branch-and-cut in
which node-separator cuts (11) are dynamically generated (using LazyCallback function
of CPLEX).

• NT Branch-and-Cut: This is the CPIF NT model solved by a branch-and-cut with
dynamically generated node-separator cuts (using LazyCallback function of CPLEX),
Benders cuts (24) (using UserCallback and LazyCallback functions of CPLEX). The
latter cuts are added if the violation threshold of 5% is exceeded.

Tables 5-6 provide a summary of obtained results, where we report the same indicators as
in Tables 3-4. The best performing method is NZ Branch-and-Cut, where we use node-
separator constraints to impose interconnectivity, and model the covering constraints in a
compact way with z variables. With this method, all 816 Euclidean and p-median and all
100 Covering instances were solved to optimality within the time limit. However, expressing
the covering constraints using Benders cuts as in the NT Branch-and-Cut method worsens
the computational performance. This can be explained by the fact that in the benchmark
set where we have |I| = |J |, potential savings in terms of the reduction of the number of z
variables are negligible, and the (computational) cost of introducing a potentially large number
of dynamically separated constraints is high. For the Covering dataset (where |I| ≪ |J |), the
performance of the NT Branch-and-Cut method is much better, but still not comparable with
the NZ Branch-and-Cut method.

Figures 9 and 10 provide ECDFs reporting the runtime for the Euclidean and p-median
instances, and Covering instances, respectively. Similarly, Figures 11 and 12 provide ECDFs
reporting the gap at termination for the Euclidean and p-median instances, and Covering
instances, respectively. From Figure 9, we observe that only NZ model stays within the
time limit, spending less than 3600 seconds on each instance from the set of Euclidean and
p-median instances. The second and third best-performing approaches are based on the SZ
model. The NT model is only the fourth best, with the corresponding ESDF line going
significantly below that of the NZ and the SZ models. The MZ model cannot solve around 60
% of the Euclidean and p-median instances. Moreover, Figure 11 indicates that for around
50% of instances of this dataset, no feasible solution could be found by the MZ model. From
Figure 10 we observe that the NZ model solves even faster the instances from the Covering
dataset. The NZ model stays within 2500 second limit for each instance, closely followed
by the SZ model with automatic Benders that has only one instance left unsolved within
3600 seconds limit. The NT model is the third best. With Covering instances, the NT shows
comparable results with the SZ model with automatic Benders. All models can solve more
than 80 % of all instances from this benchmark set. For Covering instances, unlike for the
Euclidean and p-median instances, all models can find feasible integer solutions (cf. Figure
12).
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Model Method Optimal Suboptimal gap[%] Time(s)

CPIF NZ NZ Branch-and-cut 816/816 0/816 0.0 23

CPIF SZ
SZ (auto Benders) 791/816 25/816 1.2 182
SZ (compact) 773/816 43/816 0.6 306

CPIF NT NT Branch-and-cut 584/816 232/816 5.8 1129

CPIF MZ MZ (compact) 318/816 498/816 51.1 2279

Table 5: CPIF instances solved by different methods within 3600 s. (Euclidean and p-median dataset)

Model Method Optimal Suboptimal gap[%] Time(s)

CPIF NZ NZ Branch-and-cut 100/100 0/100 0.0 55

CPIF SZ
SZ (auto Benders) 99/100 1/100 0.03 128
SZ (compact) 89/100 11/100 0.51 516

CPIF NT NT Branch-and-cut 95/100 5/100 0.15 261

CPIF MZ MZ (compact) 87/100 13/100 0.79 636

Table 6: CPIF instances solved by different methods within 3600 s. (Covering dataset)
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Figure 9: ECDF comparing runtime (in seconds) spent by different methods to solve 816 CPIF instances
(Euclidean and p-median dataset).

6.3. Sensitivity analysis

In this section we investigate sensitivity of the empirical performance of the studied methods
with respect to the value of r (the interconnectivity radius between open facilities). The
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Figure 10: ECDF comparing runtime (in seconds) spent by different methods to solve 100 CPIF instances
(Covering dataset).
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Figure 11: ECDF comparing gaps at termination for 816 CPIF instances (Euclidean and p-median dataset).

analysis is based on the fist benchmark set (Euclidean and p-median instances by Cherkesly
et al. [7]).
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Figure 12: ECDF comparing gaps at termination (gap[%]) for 100 CPIF instances (Covering dataset).

Table 7 reports the number of instances solved to optimality and suboptimality and the
respective average runtimes for 87 MPIF instances from the Euclidean dataset, divided into
two groups: those with either very small or very large radius, namely r ∈ {500, 2500} and
the remaining ones with r = 1500. We notice that for all five studied methods, the most
challenging instances are those with the interconnectivity radius equal to 1500. Indeed, a
small radius implies a limited amount of possible combinations of open facilities (and hence
a relatively simple and sparse network GI of facilities that can be reached from the root
node). On the other hand, a large radius implies a densely connected network GI , and hence
a small number of e.g., node-separator cuts that need to be imposed in order to ensure
interconnectivity. Recall that if we set r to a sufficiently large value, we obtain the classical
facility location problem.

Similarly, the (empirical) difficulty of instances of the CPIF depends primarily on the
interconnectivity radius r as we can see in Table 8. Also here, among the Euclidean instances,
the most difficult ones are those with r = 1500. On the other hand, when we disaggregate
the instances based on the value of R, we notice that there are no significant variations in the
runtime when it comes to different values of R. Hence, we conclude that the structure of the
underlying graph GI , reflecting possible connections between open facilities, highly affects the
difficulty of underlying instances.

7. Conclusions

We introduced new MIP formulations for the MPIF and the CPIF problems using non-
compact ways to model interconnectivity, assignment and/or covering constraints. We tested
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r ∈ {500, 2500}
Model Method Optimal Suboptimal Total Time (s)
MPIF NW NW Branch-and-cut 58 0 58 0.02
MPIF NV NV Branch-and-cut 58 0 58 0.08

MPIF SW
SW (auto Benders) 58 0 58 2.82
SW (compact) 58 0 58 0.12

MPIF MW MW (compact) 58 0 58 134.5

r = 1500
Model Method Optimal Suboptimal Total Time (s)
MPIF NW NW Branch-and-cut 29 0 29 49
MPIF NV NV Branch-and-cut 29 0 29 48

MPIF SW
SW (auto Benders) 29 0 29 475
SW (compact) 22 7 29 1692

MPIF MW MW (compact) 1 28 29 3594

Table 7: Sensitivity of different MPIF methods with respect to the interconnectivity radius r (Euclidean
dataset)

R 8 10 12 15 20 R 1000 1500 2000
r = 25 998 1007 1037 1064 1062 r = 500 2 2 2
r = 50 998 1030 1028 980 1053 r = 1500 1639 2106 1413
r = 80 851 860 856 824 851 r = 2500 13 175 739
r = 100 22 19 98 98 112
r = 150 10 10 13 8 10

Table 8: Average runtime (in seconds) spent by all five methods reported in Table 5 for CPIF instances with
interconnectivity radius r and covering radius R (Euclidean dataset on the right and p-median dataset on the
left)

these new models on datasets from the literature and provided some theoretical insights on
the quality of lower bounds of these formulations. We implemented multiple branch-and-
cut procedures and showed that these tailored approaches outperform off-the-shelf solution
methods provided by CPLEX. We also conducted a sensitivity analysis, showing that the
values of the interconnectivity radius r strongly affect the empirical difficulty of underlying
instances.

The obtained results show that the modeling component that affects the computations the
most is related to enforcing the interconnected facilities. To ensure interconnectivity, we
have tested two flow-based formulations and a formulation based on node-separator cuts.
Our results indicate that dynamical separation of node-separator cuts significantly reduces
the runtimes when compared to flow-based compact models. We have also tested Benders
decomposition to model the assignment/covering of customers. On the benchmark set in which
the potential facility locations coincide with customer locations, no significant computational
benefits could be drawn from Benders reformulations. This can be explained by the fact
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that in such situations no significant reduction in the number of variables could be achieved.
However, on the benchmark set in which the number of customers is order(s) of magnitude
larger than the number of potential facility locations, Benders decomposition of the assignment
component shows its advantages, in particular for the MPIF problem.

Interesting directions for future research include: 1) studying the problem variants under
uncertainty (e.g., with respect to uncertain customer demands) in combination with data-
driven approaches, 2) taking into consideration capacities on the facilities, or 3) mitigating
possible congestion at the facilities.
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[28] I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An
algorithmic framework for the exact solution of the prize-collecting Steiner tree problem.
Mathematical programming, 105(2):427–449, 2006.

[29] T. L. Magnanti and L. A. Wolsey. Optimal trees. Handbooks in operations research and
management science, 7:503–615, 1995.
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Appendix A. Calculation for Example 1

It suffices to open one facility out of {2, . . . , n} to serve all customers J , and facility 1 to keep
inter-connectivity, hence:

OPT = L+K +mε.

Solution of the LP-relaxations of models MPIF SW and MPIF MW

For Example 1, an optimal LP-solution of the MPIF SW model is

yi = 1, i ∈ {0, 2}, y1 =
1

n− 1
, wj2 = 1, j ∈ J and yi = 0, i = 3, . . . , n

which gives the objective function value equal to

vLP (MPIF SW) = K +
1

n− 1
L+mε.

On the other hand, an optimal solution of the MPIF MW model is

y0 = 1, yi =
1

n− 1
, i = 1, . . . , n, wji =

1

n− 1
, j ∈ J, i = 2, . . . , n

with gives the objective function value equal to

vLP (MPIF MW) = K +
1

n− 1
L+mε.

Hence, for this particular instance we have vLP (MPIF MW) = vLP (MPIF SW).

Appendix B. Calculation for Example 2

To obtain a feasible solution there must be a path from the root node to facility n, and hence
all facilities must be open, so we have:

OPT = nK + ϵ.

For the LP-relaxation of the MPIF MW, we have to open facility n. Due to constraints (10b),
we also have to fully open all other facilities, i.e.

vLP (MPIF MW) = nK + ε.

For the LP-relaxation of the MPIF SW, we have to open facility n. Due to constraints (9):
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yn = 1

fn−1 n = 1

yn−1 =
1

n− 1

fn−2 n−1 =
n

n− 1

. . .

y2 =
nn−3

(n− 1)n−2

∑
i∈I\{0}

yi = 1 +
1

n− 1

n−2∑
m=0

(
n

n− 1

)m

=

(
n

n− 1

)n−2

vLP (MPIF SW) =

(
n

n− 1

)n−2

K + ε.
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