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Abstract We consider the incremental connected facility location problem,
in which we are given a set of potential facilities, a set of interconnection
nodes, a set of customers with demands, and a planning horizon. For each
time period, we have to select a set of facilities to open, a set of customers
to be served, the assignment of these customers to the open facilities, and a
network that connects the open facilities. Once a customer is served, it must
also be served in subsequent periods. Furthermore, in each time period the
total demand of all customers served must be at least equal to a given mini-
mum coverage requirement for that period. The objective is to maximize the
net present value of the network, which is given by the discounted revenues
of serving the customers and by the discounted investments and maintenance
costs for the facilities and the network.
We study different MIP models for this problem, discuss some valid inequali-
ties to strengthen these formulations, and present a branch and cut algorithm
for finding its solution. Finally, we report (preliminary) computational results
of our implementation of this algorithm.
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1 Introduction

Practical Problem

The problem under consideration is an optimal design of a network topol-
ogy in the context of a multi-period planning of local access networks. In
this setting, a telecommunication company wants to increase the speed of
broadband connections by combining fiber optic technology with existing
copper connections, i.e., by means of the Fiber-to-the-Curb (FTTC) technol-
ogy. Street segments along which fiber optic cables can be installed, determine
the core network. Potential optical and existing copper cables intersect at lo-
cations where potential multiplexor devices need to be installed. Between
a multiplexor and an end-customer, the existing copper connection is used.
The existing copper paths are pre-processed building an assignment network
whose edges are assignment links between potential multiplexor locations and
end-customers. To build an FTTC network, one has to decide on which lo-
cations to install multiplexor devices so that each end-customer is assigned
to a multiplexor, and each multiplexor is connected to the central office by a
fiber optic path.

Due to the huge investment needed to build an FTTC network, the de-
ployment is done in several stages. The company takes the strategic decision
of fixing a minimal percentage of customer demands that should be served
at each of the stages. Thereby, demand of a customer is defined as the num-
ber of end-subscribers (e.g., offices and/or households) behind the customer’s
address. The coverage of customer demands need to be increased over time.

We define the incremental connected facility location problem, denoted as
incremental ConFL, as follows: We are given three disjoint sets of nodes: a
set of facilities F , a set of customers R, and a set of Steiner nodes M . We
denote S = F ∪M and V = S ∪ R. The potential connections among the
nodes in S build the core network and are given as the undirected edge set
ES . The corresponding directed arc set is AS = {(i, j), (j, i) | ij ∈ ES}. The
possible connections between the facilities F and the customers R are given
by the edges ER ⊆ F × R, which define the directed arc set AR = {(i, j) ∈
F × R | ij ∈ ER}. Note that it is sufficient to consider only arcs directed
from facilities to customers here. We let A = AS ∪ AR and E = ES ∪ ER.
The considered planning horizon is given as a discrete set of (not necessarily
equally long) time periods T = {1, . . . , T }, T > 1. In addition, we are given
fixed costs for edges c : E → R+ and facilities g : F → R+ for opening the
edge or facility for the first time, and maintenance costs for edgesm : E → R+

and facilities mf : F → R+ that arise for each period an edge or a facility
is actually used. The pre-period revenue for serving the customers is given
by p : R → R+. Finally, we are given customer demands d : R → Z+ and a
minimum coverage requirement Dt for each time period t ∈ T .



MIP modeling of Incremental Connected Facility Location 3

We seek for a schedule that, for each time period, describes which subset
of facilities to use, which set of customers to serve by these facilities, how
to assign the served customers to the open facilities, and how to build the
core network in order to connect the open facilities. In each time step, the
total demand of the served customers must satisfy the minimum coverage
requirement and the chosen edges in ES must form a network connecting the
open facilities. Furthermore, a customer must be served in all periods after
it has been served for the first time. The goal is to maximize the net present
value of the network.

Related Multi-Period Optimization Problems: Facility location prob-
lem over time is a well-studied problem. A recent survey is given in Owen and
Daskin [13]. In a recent work, Albareda-Sambola et al. [2] consider a multi-
period incremental facility location problem, where the coverage of customer
demand needs to be increased over time. The authors combine subgradient
optimization and a Lagrangian approach and generate feasible solutions with
a Lagrangian based heuristic.

There has been intense research on multi-period network design prob-
lems since publication of the seminal articles by Christofides and Brooker [6],
Doulliez and Rao [7] and Zadeh [17]. Optimization methods have been used
for designing networks for telecommunication, transportation [16], distribu-
tion of gas or water [14] and many others.

Most of the literature on applications in the telecommunications sector
consider capacitated problems. Recent contributions are, e.g., [5, 11]. Much
less literature is available on the Connected Facility Location problem.
Single-Period Connected Facility Location: Early work on ConFL
mainly includes approximation algorithms. The problem can be approxi-
mated within a constant ratio and the currently best-known approximation
ratio is provided by Eisenbrand et al. [8]. Ljubić [12] describes a hybrid heuris-
tic combining Variable Neighborhood Search with a reactive tabu search
method. The author compares it with an exact branch and cut approach.
In [15], a Greedy Randomized Adaptive Search Procedure (GRASP) for the
unrooted ConFL problem is presented. The authors also provide a trans-
formation that enables solving ConFL as the Steiner arborescence problem.
Bardossy and Raghavan [3] develop a dual-based local search (DLS) heuris-
tic for a generalization of the ConFL problem. The presented DLS heuristic
computes lower and upper bound using a dual-ascent and then improves
the solution with a local search procedure. Gollowitzer and Ljubić [9] study
MIP formulations for ConFL, both theoretically and computationally. The
authors provide a complete hierarchy of ten MIP formulations with respect
to the quality of their LP bounds.

The remainder of this paper is organized as follows. In Section 2 we present
integer programming formulations for the incremental ConFL problem and
discuss a class of valid inequalities that may be used to strengthen these
formulations. Section 3 provides a description of the separation subroutines
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that we implemented in order to solve these models. In Section 4 we describe
the benchmark data sets, details of our implementation of the branch and
cut algorithm, and (preliminary) results of our computational experiments.

2 MIP Modeling

In this section we present two alternative integer programming formulations
for the incremental connected facility location problem.

We assume that one of the facilities, denoted as root r is open and used in
all time periods. This node corresponds to the central office with an uplink to
the backbone network of the area corresponding to the respective instance.

In order to model the connectivity constraints among the open facilities, it
is sufficient to ensure that all other open facilities in F are connected to the
root r [9]. For notational simplicity, we let F denote the set of all facilities
except r throughout the remainder of this paper. Furthermore, we denote
δ−(W ) := {(i, j) ∈ A | j ∈ W, i 6∈ W} for all W ⊂ V and F (j) := {i ∈ F |
(i, j) ∈ AR} for all j ∈ R.

In order to describe which customers and facilities are served and used at
each time period, we introduce binary variables ytj ∈ {0, 1} for all j ∈ R and
t ∈ T and zti ∈ {0, 1} for all i ∈ F and for all t ∈ T . These variables are
interpreted as

ytj =

{
1 if customer j is served in time period t,
0 otherwise, and

zti =

{
1 if facility i is used in time period t,
0 otherwise.

The assignment of the served customers to the open facilities and the network
connecting the open facilities to the root node are modeled together by the
arc variables xtij ∈ {0, 1} for all directed arcs (i, j) ∈ A and for all time
periods t ∈ T , which are interpreted as

xtij =

{
1 if arc (i, j) is used in time period t,
0 otherwise.

To describe the initial opening of facilities and edges, we also introduce the
facility variables z̃ti ∈ {0, 1} for all i ∈ F and all t ∈ T and the aggregated
edge variables x̃te ∈ {0, 1} for all e ∈ E and all t ∈ T , which are interpreted
as
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z̃ti =

{
1 if facility i is opened for the first time in time period t,
0 otherwise and

x̃te =

{
1 if edge e is opened for the first time in time period t,
0 otherwise.

Observe that variables x̃te are associated to edges instead to arcs of the core
network for the following reason: In the general case, a facility i ∈ F may be
opened in period t ∈ T , and closed in period t+k ∈ T (k > 0). Consequently,
an arc that was oriented like (i, j) in period t, may be used in the opposite
direction in period t+ k. Since the edge opening costs need to be payed only
once, we have to leave the direction of set-up variables x̃ unspecified.

With these variables and notations, the objective function of the incre-
mental ConFL problem can be formulated as follows:

f(x, y, z) =

TX
t=1

(1 + α)−t

24X
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t
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For each period t ∈ T , the objective function comprises the collected profit

for customers served in period t decreased by the investment (maintenance)
costs that need to be paid for each edge and facility that are opened (used)
in this period. The following mixed integer programming formulation models
the incremental ConFL:

(CUTF ) : max f(x, y, z)

∑
i∈F (j)

xtij = ytj ∀j ∈ R, t ∈ T (1)

xtij ≤ zti , ∀(i, j) ∈ AR, t ∈ T (2)

xtij + xtji ≤
t∑

k=1

x̃ke ∀(i, j) = e ∈ E, t ∈ T (3)

zti ≤
t∑

k=1

z̃ki ∀i ∈ F, t ∈ T (4)∑
j∈R

djy
t
j ≥ Dt ∀t ∈ T (5)

ytj ≥ yt−1
j ∀j ∈ R, t ∈ T (6)∑

(u,v)∈δ−(W )

xtuv ≥ ztj ∀W ⊆ S\{r}, j ∈W ∩ F 6= ∅, t ∈ T (7)
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xtkl, y
t
j ,z

t
i ∈ {0, 1} ∀(k, l) ∈ A, j ∈ R, i ∈ F, t ∈ T (8)

x̃te,z̃
t
i ∈ {0, 1} ∀e ∈ E, i ∈ F, t ∈ T (9)

Constraints (1) model the fact that a customer is served only if there is
a facility connected to it. Constraints (2) enforce that a facility is open if
it is used to serve a customer. Inequalities (3) and (4) ensure that we open
edges and facilities as soon as they are used. Constraint set (5) expresses the
minimum demand coverage requirement for each time period. Inequalities (6)
enforce the continuance of service for each customer (i.e., if customer j was
served in period t ∈ T , it also need to remain served in all consecutive
periods). Finally, the exponentially large constraint set (7) ensures that, in
each time period, all open facilities are connected to the root node. The
inequalities in constraint set (7) enforce that for every subset W ⊆ S that
includes a facility j and does not include the root node r, at least one of
the arcs in the set of all incoming arcs in W must be used if facility j is
open. These inequalities correspond to the directed cutset inequalities in the
Steiner tree formulation [9, 12].

Instead of enforcing at least one arc in each directed cut that separates a
chosen facility from the root node, as done by constraints (7), we may model
the connectivity constraints by enforcing at least one arc in every directed
cut that separates a chosen customer from the root node. This leads to the
following alternative formulation for the incremental ConFL problem:

(CUTR) : max f(x, y, z)
(x, y, z) satisfies (1) – (6)∑
(u,v)∈δ−(W )

xtuv ≥ ytj ∀W ⊆ V \{r}, j ∈W ∩R, t ∈ T (10)

2.1 Valid Inequalities

In this section we provide two new families of valid inequalities that can
strengthen the previous two models. The third group of constraints presented
here are several degree-inequalities that were very useful throughout our com-
putations.

Cover Inequalities:

The minimum coverage constraints (5) imply a set of cover inequalities that
can be defined for each single period t ∈ T . We call a subset of facilities
It ⊂ F a cover if its complement, Īt = F \ It, cannot serve enough customers
to satisfy the minimal demand requirements for the time period t. We denote
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by COV t ⊆ 2F the family of all covers for period t. We call an inclusion-
wise minimal such facility set It a minimal cover. In other words, It is a
minimal cover if Īt cannot satisfy the minimum demand requirement of period
t even if all the facilities in Īt are open, but for any i ∈ It the facility set
J = Īt ∪ {i} would allow to serve enough customers to meet the minimum
coverage constraint. In such a case, obviously at least one facility from It

needs to be opened. Consequently, the following set of cover inequalities are
valid for all solutions of (CUTF ) and (CUTR):∑

i∈It

zti ≥ 1 ∀t ∈ T, It ∈ COV t (11)

It is easy to verify that the cover inequality for any non-minimal cover It is
dominated by the cover inequality for any minimal cover Itmin ⊆ It. Furthe-
more, any non-minimal cover It can be easily turned into a minimal cover by
iteratively removing all those facilities, whose removal still results in a cover.

It is also not difficult to construct examples where the addition of cover
inequalities (11) strengthens the LP relaxations of (CUTF ) and (CUTR).
These inequalities are similar to the cover inequalities studied for knapsack
constraints.

The separation of cover inequalities is a modification of the knapsack prob-
lem, and hence it is an NP-hard problem. Our separation algorithm for cover
inequalities is described in Section 3.2.

Cut-Set-Cover Inequalities:

The set of cover inequalities (11) also implies the following exponentially large
family of cut-set inequalities, that we will refer to as cut-set-cover inequalities:∑

uv∈δ−(W )

xtuv ≥ 1 ∀t ∈ T, It ∈ COV t, W ⊆ S \ {r}, It ⊆W (12)

These inequalities state that, in each period t ∈ T , we have to establish
a path between the root and at least one of the facilities from the set It.
Once the corresponding covers It become known, the separation of these
new inequalities can be done in polynomial time by means of a maximum
flow algorithm, see Section 3.2.

Again, it is not difficult to show that the addition of the cut-set-cover
inequalities (12) strengthens the LP relaxations of (CUTF ) and (CUTR).

In-Arc Inequalities:

The requirement that, in each time period, the root node is connected to any
open facility, implies the following in-arc inequalities:
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zti ≤
∑

(j,i)∈δ−(i)

xtji ∀i ∈ F, t ∈ T (13)

xtik ≤
∑

(j,i)∈δ−(i):j 6=k

xtji ∀(i, k) ∈ AS , i 6= r, t ∈ T (14)

Inequalities (13) imply that there is at least one arc entering any chosen
facility. Inequalities (13) ensure that there is at least one arc entering any
facility or Steiner node if there is an arc leaving that node.

Note that these inequalities are implied by the cut inequalities (7) or (10),
but not vice versa. However, there is only a polynomial number of inequalities
of type (13) and (14), which makes these inequalities very useful in practical
computations [9, 10].

Furthermore, we add the inequalities∑
(j,i)∈δ−(i)

xtji ≤ 1 ∀i 6= r, t ∈ T (15)

to the LP relaxations of (CUTF ) and (CUTR). The inequalities ensure that
the indegree of every node except the root node is at most 1. These inequal-
ities may cut off feasible solutions but as there are no capacity constraints
associated with the facilities and edges, there always exists an optimal so-
lution of incremental ConFL that satisfies these inequalities. Adding these
inequalities to the formulations substantially reduced the solution times in
our experiments.

3 Separation Algorithms

In this section we explain separation algorithms for the cover inequalities and
the three groups of cut-set inequalities described above.

3.1 Separation of Cut-Set Inequalities

We now present the separation routine to generate cut inequalities of type (7).
Let x̂t and ẑt by the values of the arc variables and of the facility variables
of the current optimal LP solution. In order to find a violated inequality
of type (7), we compute for each time period t ∈ T and each facility node
j ∈ F a minimum r-j-cut in the digraph G(S,AS) with arc capacities x̂t,
solving the corresponding maximum flow problem. Let Γ (r, j) be the set of
arcs in the minimum cut obtained from this maximum flow computation. If
the corresponding maximum flow value is less than ẑti , the corresponding cut
inequality
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(u,v)∈Γ (r,j)

xtuv ≥ ztj (16)

is violated and we add this inequality to the current formulation.
The separation of the customer based cutset inequalities (10) is carried

out analogously. We now consider the entire digraph G(V,A) with capacities
x̂t given by the LP solution’s arc variable values and solve the maximum flow
problem with the root node r as the source and the customer node j as the
sink for each customer j ∈ R and each time period. Again, let Γ (r, j) be the
arcs of the corresponding minimum cut. If the maximum flow value is less
than yti , we add the violated cut∑

(u,v)∈Γ (r,j)

xtuv ≥ yti . (17)

3.2 Separation of Cover and Cut-Set-Cover
Inequalities

Let t ∈ T and let ẑt be the values of the facility variables in the current
LP solution. In order to find a cover It for which the corresponding cover
inequality (11) is violated, we introduce variables αi ∈ {0, 1} for all i ∈ F
indicating which facilities are contained in It and βj ∈ {0, 1} for all j ∈ R
indicating which customers can be served by any of the facilities not in It.
Clearly, a cover It that maximizes the violation of inequality (11) corresponds
to an optimal solution of the following integer program:

min
∑
i∈F

ẑtiαi (18)∑
j∈R

djβj ≤ Dt − ε (19)

βj ≥ 1− αi ∀(i, j) ∈ AR (20)
αi, βj ∈ {0, 1} ∀i ∈ F, j ∈ R (21)

Inequalities (20) guarantee that all clients that have at least one neighboring
facility not in It are served, while constraint (19) ensures that the total
demand of all served clients is strictly less than the demand required to
meet the coverage constraint. Together, these constraints ensure that, for
any integer solution of (18) - (21), the set of facilities i with αi = 1 forms a
cover. Note that the objective value of a solution of (18) - (21) is equal to
the left hand side of the corresponding cover inequality for the current LP
solution. Finding a violated cover inequality thus is equivalent to finding a
time period t ∈ T and a solution of (18) - (21) with objective value strictly
less than 1. In our implementation, we solve this integer program for all t ∈ T .
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To separate the cut-set-cover inequalities for a given cover It, we create
an artificial sink node l and connect the nodes in It to l. We then compute a
maximum r-l flow in the graph G(S∪{l}, AS∪It×{l}) with capacities x̂t for
the arcs in AS and capacity 1 for the artificial arcs in It×{l}. If the maximum
flow value is less than 1, we add the violated cut-set-cover inequality∑

(u,v)∈Γ (r,l)

xtuv ≥ 1 (22)

where Γ (r, l) is the arc set of a corresponding minimum cut.

4 Experiments

Benchmark Instances

In Gollowitzer and Ljubić [9], a set of instances for connected facility location
was generated by combining a set of benchmark instances for the Uncapac-
itated Facility location (UFL) problem from the UflLib [1] with instances of
the Steiner tree problem (STP) from the OR-library [4]. The ConFL input
graphs are generated in the following way: first f nodes of the STP instance
are selected as potential facility locations (where f denotes the number of
facilities in the corresponding UFL instance), and the node with index 1 is
selected as the root. The number of facilities, the number of customers, open-
ing costs and assignment costs are provided in UFL files. STP files provide
edge-costs and additional Steiner nodes.

We consider a set of 32 instances obtained by combining four UFL in-
stances mp1,mp2 and mq1,mq2 (of the size 200 × 200 and 300 × 300, respec-
tively) with eight STP instances {c,d}n, for n ∈ {5, 10, 15, 20}. These in-
stances define the core networks with between 500 and 1000 nodes and with
up to 25,000 edges.

We extend these instances to include demands and time periods. We gener-
ate demands uniformly between 20 and 40 for each customer and we consider
a time horizon T = 5. In the test instances generated in [9], the facility set F
and customers R induce a complete bipartite graph. We desire a more sparse
setting for our demand satisfaction and the cover set inequalities. Therefore,
we only considered the connections of the first 20 closest facilities for each
customer. Such obtained instances contain up to 1300 nodes and 45,000 edges.
Finally, the minimum coverage required for time period t is defined as

Dt =

∑
j∈R dj

1.25(T − t)
for t ∈ {0, 1, 2, 3, 4} and T = 5.

The experiments were performed on an Intel Core2 Quad 2.66 Ghz systems
with 2GB RAM. Each run was carried out on a single processor.
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4.1 Branch and Cut Implementation

To test the effectiveness of the presented formulations and inequalities, we
implemented a branch and cut algorithm using CPLEX 12.2 and Python API,
a commercial integer programming solver with a branch and cut framework.

The integer linear programs initially contain all variables and the con-
straints (1) – (6). The cut inequalities (7) and (10), the cover inequalities
(11), and the cut-set-cover inequalities (12) are applied in a standard cutting
plane approach, iteratively adding those inequalities that are violated by the
current fractional solution.

We add all indegree constraints (15) to the initial LP formulation. We
generate a cut pool with all the in-arc inequalities (13) and (14), which are
added at the root node if they are violated. We then call the maximum flow
separation routine that generates the inequalities (7). This separation con-
sists of randomly selecting 50 terminals at every time period and generating
the violated cuts. We restrict the number of calls to the separation routine
at every node by 10, to enable branching and avoid multiple calls to the sep-
aration routines. In addition to the above, the separation routine is called
at node depth of multiples of 10 and at every occasion an incumbent is re-
jected. The intuition behind this scheme is that it would provide us with
a balance between the time spent in generating the cuts and branching, as
branching helps us reducing the search space (due to the priority strategies
described below). The enhanced cuts and customer cuts are combined in the
same separation routine. Each test run was limited to 2000 CPU seconds and
the optimality gap at this point of time is reported in the results.

Branching:

The assignment variables xtij , when branched (set to 0 or 1), does not affect
the search space as much as the facility variables zti . So we give them the
highest priority in the branching. This was also observed in [12], but unlike
the connected facility location problem, in our incremental version of the
problem, we also have uncertainty in determining the set of customers to
be served at each time period. So, we provide them with the next highest
priority in branching.

Separation routine:

We observed that the cuts generated by the maximum flow algorithm when
the root is treated as source tend to generate cuts that are closer to the
root node and there will be edges repeated in the various minimum cuts
generated for various terminals. In order to avoid this, we treat the root as
the sink and the facilities as the source. This was appropriately captured
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in the primal heuristic and the in-arc inequalities as well. We also perform
nested cuts, wherein we resolve maximum flow for the same facility by setting
the capacity of the edges in current minimum cutset to 1. The cover (11) and
cut-set-cover inequalities (12) rely on solving an integer program at every
call of the separation routine, which is run for every time period. The integer
program terminates if the elapsed running time is over 100 seconds or if the
objective value drops below 1. We use this exact separation to test the impact
of these inequalities on the lower bound and in the event they are useful they
will be replaced with heuristic methods similar to the techniques used to
generate cover inequalities for knapsack constraints.

Primal Heuristics:

We also implemented and tested a naive primal heuristic. After our initial
runs we decided to turn off the CPLEX heuristics as this was leading to poor
performance. The primal heuristic rounds up all the z variables that indicate
the usage of a facility as well as the y variables, which indicate the service
to a customer. We run a minimum cost flow algorithm with a linear cost
estimator with the open facilities (rounded up values) as sinks and the root
node as source to generate our Steiner tree.

4.2 Results

Our preliminary computational study has shown that CUTR formulation is
not competitive against the CUTF model, due to the size of the support
graph and the large number of cut-set inequalities that need to be separated.
This is also consistent with the results obtained by Gollowitzer and Ljubić
[9] for the single-period ConFL.

Therefore, in our computational study, we compared the performance of
the following two branch and cut settings:

• CUTF formulation,
• CUTF+ formulation extended by cover inequalities (11) and cut-set-cover

inequalities (12).

For each of the two settings, we report on the following values given in
Table 1: the overall percentage gap obtained after the time limit of 2000
seconds calculated as Gap = (UB −LB)/LB , where UB is the best obtained
upper bound, and LB is the global lower bound; the number of all constraints
separated throughout the execution of the algorithm, denoted by “Cuts”; the
number of branch and bound nodes, denoted by “B&B”.
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Comparing the number of inserted cuts by the two approaches, we observe
that the inclusion of coverage-related cuts (i.e., (11) and (12)) reduces the
overall number of cuts generated within a given time limit. This can eas-
ily be explained by the large separation times needed to solve the integer
program (18)-(21). Despite the reduced number of separated inequalities, in
27 out of 32 instances we obtained reduced duality gaps when the coverage-
related inequalities were used. This indicates the strength of the coverage-
related cuts, but also the trade-off between their strength and their separation
time.

We also observe that due to the branching and separation strategies that
we choose, there is no direct correlation between the usage of coverage-related
constraints and the number of branch and bound nodes.

5 Conclusions

In this work we introduce a new combinatorial optimization problem that
models the design of fiber-to-the-curb networks over time. The problem is a
multi-period version of the connected facility location problem that has been
intensively studied in the literature in the last decade. Besides two mixed
integer programming models, we also introduce two new families of valid in-
equalities derived from the incremental coverage constraints over time. We
provide separation algorithms needed to detect the new coverage-related in-
equalities within a cutting plane framework. The problem is then solved by
means of a branch and cut algorithm that makes use of the cut-set inequalities
and the new coverage-related constraints. In the (preliminary) computational
study we show that the new inequalities are useful for small and/or sparser
instances, where the obtained duality gaps can be significantly reduced. For
larger instances, it turns out that the there is a trade-off between the sep-
aration time of the coverage-related family of inequalities and the obtained
improvement of the quality of lower bounds.

In a future work we intend to investigate the performance of the branch
and cut algorithm on a larger set of benchmark instances. We also want to
study the influence of the minimum coverage rate Dt to the quality of lower
bounds of the proposed models. Further problem-related inequalities will be
derived as well. One of the problems addressed by our computational results is
the computational inefficiency of the integer program needed to separate the
coverage-related inequalities. To overcome this problem, one needs to develop
more efficient exact or heuristic approaches for the separation. Finally, it
will be also interesting to compare decomposition based approaches (e.g.,
Lagrangian or Benders decomposition) with the proposed branch and cut
framework.
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