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Abstract

Gouveia et al. [3] show how to model the Hop Constrained Minimum Spanning
tree problem as Steiner tree problem on a layered graph. Following their ideas, we
provide three possibilities to model the Hop Constrained (HC) Connected Facility
Location problem (ConFL) as ConFL on layered graphs. We show that on all three
layered graphs the respective LP relaxations of two cut based models are of the
same quality. In our computational study we compare a compact hop-indexed tree
model against the two cut based models on the simplest layered graph. We provide
results for instances with up to 1300 nodes and 115000 arcs.
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1 Introduction

In the field of designing the last mile of telecommunication networks the Fiber-
to-the-Curb strategy can be modeled as the Connected Facility Location prob-
lem (ConFL) [1]: Fiber optic cables run to a cabinet serving a neighborhood.
End users connect to this cabinet using the existing copper connections. Ex-
pensive switching devices are installed in these cabinets. The problem is to
minimize the costs by determining positions of cabinets, deciding which cus-
tomers to connect to them, and how to reconnect cabinets among each other
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and to the backbone.
In such simply connected graphs reliability against single arc failures is not
provided. Economic arguments do not allow the installation of 2-connected
last mile networks. Therefore, the reliability of end-user connections is main-
tained by limiting the number of nodes between them and the 2-connected
backbone network. We model these reliability constraints within the Fiber-to-
the-Curb strategy by generalizing the ConFL to the Hop Constrained ConFL
(HC ConFL).

Problem Definition

We assume that a root node (i.e., a central office) is given in advance and
needs to be included in any feasible solution. In our previous work about the
ConFL [1] we describe a transformation of undirected instances into directed
ones. Since Mixed Integer Programming models provide stronger lower bounds
when defined on bidirected graphs, we consider the rooted Hop Constrained
Connected Facility Location problem on directed graphs :

Definition 1.1 [Rooted HC ConFL on directed graphs] We are given a di-
rected graph (V,A) with edge costs cij ≥ 0, ij ∈ A, facility opening costs
fi ≥ 0, i ∈ F and a disjoint partition {S,R} of V with R ⊂ V being the set of
customers, S ⊂ V the set of possible Steiner nodes, F ⊂ S the set of facilities,
and the root node r ∈ F . Find a subset of open facilities such that

• each customer is assigned to exactly one open facility,

• a Steiner arborescence rooted in r connects all open facilities,

• the cost defined as the sum of assignment, facility opening and Steiner
arborescence cost, is minimized and

• there are at most H hops between the root and any open facility.

Note that facilities incur costs only if customers are assigned to them.
Customers will be leaves in any optimal solution, thus we do not consider arcs
emanating from customer nodes. In [1] we have shown that w.l.o.g. we can
assume that the sets of core nodes (S) and customers (R) are disjoint.
In this article we will use the following notation: AR = {ij ∈ A | i ∈ F, j ∈ R},
AS = {ij ∈ A | i, j ∈ S}. We will refer to AR as assignment arcs and to AS

as core arcs. Furthermore, for any W ⊂ V we denote by δ−(W ) = {ij ∈ A |
i 6∈ W, j ∈ W}.

The remainder of this paper is organized as follows: In the following sec-
tion we will describe a compact model for HC ConFL. In Section 3 we study
three different transformations of HC ConFL into ConFL on layered graphs.



In Section 4 we present a computational comparison of some of the models
described.

2 A Compact Model for HC ConFL

Gouveia [2] proposes a hop-indexed tree model for the Hop Constrained STP.
The LP relaxation of this disaggregated model provides better lower bounds
than the classical Miller-Tucker-Zemlin formulation and comprises only slightly
more variables and constraints for small values of H.
In our study on ConFL models in [1], we have shown that the practical usage
of compact flow based models is very limited. Not even the LP relaxations of
flow based models were solvable in reasonable time for larger instance sizes.
Therefore, we do not consider flow models in this short abstract.

Let Xp
ij indicate whether arc ij ∈ AS is used at the p-th position from the

root node. Let xjk denote, whether arc jk ∈ AR belongs to the solution (1)
or not (0). Variable zi indicates whether the possible facility i ∈ F is used as
such in the solution. Using this notation we can model HC ConFL as follows:

(HOP) min
H∑

p=1

∑
ij∈AS

cijX
p
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fizi∑
i∈S\{k}:

ij∈AS

Xp−1
ij ≥ Xp

jk ∀jk ∈ AS , j 6= r, p = 2, . . . ,H (1)

∑
ij∈AS

H∑
p=1

Xp
ij ≥ zj ∀j ∈ F\{r} (2)

Xp
ij = 0 ij ∈ AS ,

{
i = r, p = 2, . . . ,H

i 6= r, p = 1
(3)∑

jk∈AR

xjk = 1 ∀k ∈ R (4)

xjk ≤ zj ∀jk ∈ AR (5)
zr = 1 (6)

Xp
ij ∈ {0, 1} ∀ij ∈ AS , p = 1, . . . ,H (7)

xjk ∈ [0, 1] ∀jk ∈ AR (8)
zi ∈ {0, 1} ∀i ∈ F (9)

Constraints (1) are connectivity constraints. Since Xp
ij are integer variables,

they eliminate cycles as well. Inequalities (2) link opening facilities to their
in-degree. Equations (3) fix some of the Xp

ij to zero: Arcs emanating from the



root can only be 1 hop away from it. Conversely, all other arcs are at least two
hops away from the root. To ensure that each customer is assigned to exactly
one facility, we use constraints (4). If facility serves a customer, it needs to be
open (constraints (5)), and the root node is an open facility (equality (6)).

3 Layered Graph Models

Gouveia et al. [3] model the Minimum Spanning Tree problem with hop con-
straints (HCMST) as Steiner tree problem (STP) on a so-called layered graph.
This allows to apply all algorithms developed for the STP to the HCMST.
Additionally, the directed cut model on this layered graph turns out to be
stronger than the models considered before.
We extend this idea and develop three variants of a layered graph to model
the HC ConFL as ConFL on a directed graph. In the first one we transform
only the core graph into the layered graph, define nodes at the level H as
potential facilities and leave the assignment graph unchanged. We denote
the models on this graph by LGx. For the second variant we build a layered
graph in a similar fashion, but now we disaggregate the assignment graph by
allowing assignments between a customer and each potential facility at level
h, 1 ≤ h ≤ H. The models on this graph are denoted by LGx,z. Finally,
we build a layered graph by introducing facilities and customer nodes at each
level 1 ≤ h ≤ H and 1 ≤ h ≤ H + 1, respectively. The latter models we
denote by LGx,z,x.

Layered Core Graph LGx

Consider a graph LGx = (Vx, Ax) defined as an instance of directed ConFL
with the set of potential facilities Fx and the set of core nodes Sx as follows:

Vx := {r} ∪ Sx ∪R where

Fx = {(i,H) : i ∈ F \ {r}} ,
Sx = Fx ∪ {(i, p) : 1 ≤ p ≤ H − 1, i ∈ S} and

Ax :=
6⋃

i=1

Ai where

A1 = {(r, (j, 1)) : rj ∈ AS},
A2 = {((i, p), (j, p+ 1)) : 1 ≤ p ≤ H − 2, (i, j) ∈ AS},
A3 = {((i,H − 1), (j,H)) : ij ∈ AS, i ∈ S \ {r}, j ∈ F \ {r}},
A4 = {((i, p), (i,H)) : 1 ≤ p ≤ H − 1, i ∈ F \ {r}},



A5 = {((j,H), k) : jk ∈ AR, j 6= r} and

A6 = {rk : rk ∈ AR}

The facility opening and assignment costs are left unchanged. The arc costs
between (i, p) and (j, p + 1) are given as cij. Finally, arcs between (i, p) and
(i,H) are assigned costs of 0 for all p = 1, . . . , H − 1 and i in F .

Lemma 3.1 (Ljubić and Gollowitzer [4]) Any HC ConFL instance can
be transformed into an equivalent directed ConFL instance on the layered graph
LGx as described above.

We link binary variables to the arcs in Ax as follows: X1
rj corresponds to

(r, (j, 1)) ∈ A1, X
p
ij to ((i, p− 1), (j, p)) ∈ A2, X

H
ij to ((i,H − 1), (j,H)) ∈ A3,

Xp
ii to ((i, p− 1), (i,H)) ∈ A4, Xjk to ((j,H), k) ∈ A5 and X1

rk to rk ∈ A6.

Let X[Vx \W,W ] denote the sum of all variables Xp
ij and Xjk in the cut

δ−(W ) defined in LGx by W ⊂ Vx and r 6∈ W . In our previous work [1] we
have described two cut set based formulations for ConFL, CUTF and CUTR.
In the former, connectivity is ensured by cuts between the root and the fa-
cilities, while assignment constraints guarantee, that each customer is served.
Model CUTR comprises connectivity constraints between the root and each
customer and facility variables are linked to assignment edges. Based on these
models we derive two formulations, LGxCUTF and LGxCUTR, as follows:

(LGxCUTF ) min
∑
rj∈A

crjX
1
rj +

∑
ij∈A,i6=r

cij

H∑
p=2

Xp
ij +

∑
jk∈AR,j 6=r

cjkXjk +
∑
i∈F

fizi

X[Vx \W, W ] ≥ zi ∀W ∈ Sx, r 6∈W, (i, H) ∈W, i ∈ F \ {r}
(10)

X1
rk +

∑
jk:((j,H),k)∈A5

Xjk = 1 ∀k ∈ R (11)

Xjk ≤ zj ∀((j,H), k) ∈ A5 (12)

X ∈ {0, 1}|Ax| (13)
(6), (9)

Constraints (10) are cuts on LGx between sets containing the root and a
facility i respectively. These cuts ensure connectivity between the root and
each open facility i ∈ Fx. Equalities (11) ensure each customer is assigned to
a facility. Inequalities (12) necessitate a facility to be open if customers are
assigned to it.



If we replace constraints (10) and (11) by the following ones, we obtain a
stronger formulation that we denote by LGxCUTR:

X[Vx \W,W ] ≥ 1 ∀W ⊂ Vx \ {r},W ∩R 6= ∅ (14)

Inequalities (14) are cuts on LGx between sets that contain the root and at
least one customer respectively.

Layered Core and Assignment Graph LGx,z

In graph LGx,z = (Vx, Ax,z), the set of potential facilities is defined as Fx,z =
{(i, p) : i ∈ F \ {r}, 1 ≤ p ≤ H}. The arc set Ax,z =

⋃3
i=1Ai ∪ A6 ∪ A7 with

A7 = {((i, p), k) | (i, p) ∈ Fx,z, k ∈ R}}. The arc costs for the latter set are
defined as cik for all i ∈ F \ {r} and k ∈ R.

Layered Graph with Split Customers LGx,z,x

Graph LGx,z,x equals ({r} ∪ Sx ∪ Rx, Ax,z,x), where the set of customers Rx

is disaggregated as follows: Rx = {(k, p) : k ∈ R, 1 ≤ p ≤ H + 1}. The set
of potential facilities is Fx,z as defined above. The set of arcs in this graph is
Ax,z,x =

⋃3
i=1Ai ∪

⋃10
i=8Ai where

A8 = {(r, (k, 1)) : rk ∈ AR},
A9 = {((j, p), (k, p+ 1)) : (j, p) ∈ FL, jk ∈ AR} and

A10 = {((k, p), (k,H + 1)) : k ∈ R, 1 ≤ p ≤ H}.

The arc costs for A8 and A9 are given by the respective facility-customer pairs,
the costs for arcs in A10 are 0.

Let υLP(.) denote the optimal solution value of the LP relaxation of a
given model. The LP relaxations of the latter two formulations do not lead
to improved lower bounds, compared to the respective formulations on LGx:

Lemma 3.2 (Ljubić and Gollowitzer [4])

a) υLP(LGxCUTR) = υLP(LGx,zCUTR) = υLP(LGx,z,xCUTR) and
υLP(LGxCUTF ) = υLP(LGx,zCUTF ) = υLP(LGx,z,xCUTF )

b) υLP(HOP) ≤ υLP(LGxCUTF ). There are instances for which the strict
inequality holds.

Therefore, in our computational study we only considered LGx. It comprises
the least number of arcs and nodes.



4 Computational Results

In our computational study we used a set of instances derived from OR-
library 3 and UflLib 4 . These instances consist of up to 1000 facilities, 300
customers and 115000 edges. A detailed description can be found in [1].
Our experiments were performed on a Intel Core2 Quad 2.33 GHz machine
with 3.25 GB RAM, where each run was performed on a single processor.
For solving the linear programming relaxations and for a generic implementa-
tion of the branch-and-cut approach, we used the commercial packages IBM
CPLEX (version 11.2) 5 and ILOG Concert Technology (version 2.7).
In our settings we deactivated CPLEX cuts and set a time limit of 1 hour.
We set the highest branching priority to variables z.
The first three columns in Table 1 show the hop limit and the respective in-
stance group. Then, for each of the three models and the instance group we
report the average LP gap (gapLP = (OPT − υLP)/OPT ), the number of
instances that were solved to optimality and the average running time until
the optimum was reached. Hyphens denote that not all instances of the group
could be solved.

Preprocessing: In all instances considered, we removed arcs jk with j ∈
F \{r} and k ∈ R if crk < cjk. From the layered graph we recursively removed
nodes different from the root node with in-degree 0, starting from level 1. Also,
Steiner nodes with out-degree 0 were removed recursively, starting from level
H − 1.

LP Gaps: Between the LP gaps obtained for CUTF and HOP there were
almost negligible differences. For CUTR the obtained results were slightly
better. The largest gap obtained was 3.42% for instance d15-mp1 and model
HOP with H = 3. Note, that not for all instances the LP relaxation of HOP
could be solved due to the large memory consumption.
For models CUTF/R and HOP 9 and 8 LP solutions were found to be integer,
respectively.

Running times: CUTF solves all instances to optimality in less than 110
seconds on average. The maximum running time was 666 seconds for instance
d15-mq2 with a hop limit of 5.
Using model HOP we solved all but 7 instances to optimality. The average
(maximum) running time for these instances was 81.5 (350.7) seconds. For
the remaining 7 instances the model was too large and could not be solved

3 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
4 http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/
5 http://www.ilog.com/products/cplex/



due to memory limitations.
CUTR solved 82 models to optimality within the given time limit of one hour.
For the remaining 14 instances we obtained a gap between 0.14 and 1.66%.

CUTF HOP CUTR

H gapLP #OPT t gapLP #OPT t gapLP #OPT t
3 c mp 1.43 8 26.3 1.45 8 25.8 1.28 8 107.0
3 c mq 2.11 8 116.5 2.12 8 87.0 2.01 8 955.3
3 d mp 1.04 8 21.0 1.04 8 31.3 0.97 8 139.9
3 d mq 1.36 8 68.8 1.36 8 75.5 1.30 8 620.8
4 c mp 1.35 8 42.9 1.37 8 39.2 1.12 8 297.9
4 c mq 2.06 8 211.7 2.07 8 167.0 1.91 5 2058.6
4 d mp 1.71 8 41.1 1.72 8 52.2 1.53 8 222.6
4 d mq 2.21 8 167.2 - 6 - 2.10 6 1561.8
5 c mp 1.67 8 66.6 1.71 8 64.5 1.41 7 1207.9
5 c mq 2.38 8 235.9 - 6 - 2.24 3 2702.8
5 d mp 1.55 8 87.6 - 7 - 1.33 8 305.4
5 d mq 2.26 8 229.9 - 6 - 2.10 5 2279.8

96 89 82

Table 1
Average results per instance group and hop limit.

The obtained results indicate the computational advantage of layered graph
models in comparison to compact models for HC ConFL. The facility-based
cut set model with weaker lower bounds (CUTF ) computationally outperforms
its customer-based counterpart (CUTR) on layered graphs.
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