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Abstract

In this paper we propose an analysis and comparison of the strength
of the lower bound, measured as the value of the linear programming
relaxation, of di�erent formulations for the Inventory Routing Prob-
lem (IRP). In particular, we �rst focus on aggregated formulations, i.e.,
formulations where variables have no index associated with vehicles,
and we analyse the link between compact formulations and their coun-
terparts involving exponentially many constraints. We show that they
are equivalent in terms of value of the linear relaxation. In addition,
we study the link between aggregated and disaggregated formulations,
i.e., formulations where variables have an index related to vehicles.
Also in this case, we show that aggregated and disaggregated formu-
lations are equivalent in terms of the value of the corresponding linear
relaxation. To the best of our knowledge, this analysis has never been
done for the IRP, which instead is gaining a lot of popularity in the lit-
erature. Finally, we propose di�erent exact solution approaches based
on the aggregated formulations and we compare them with state-of-
the-art exact methods for the IRP. Results show that the approaches
based on aggregated formulations are competitive in terms of quality
of both upper and lower bounds.

Keywords: Inventory routing; aggregated formulation; linear pro-
gramming relaxation; polyhedral projection.



1 Introduction

The Inventory Routing Problem (IRP) has attracted a lot of attention from
the research community in the last years. The main reason is related to the
economical bene�ts related to the integration of transportation and inventory
management. In fact, the IRP is the problem of building a distribution plan
covering a given planning horizon where commodities are distributed from
the supplier to a set of geographically dispersed customers who face a per
period demand. A �eet of vehicles is available to perform the deliveries, and
the replenishments have to be such that each customer is always capable of
satisfying its demand, in each period of the planning horizon. The goal is to
determine the distribution plan that minimizes the total cost, which is given
by the sum of transportation (or routing) cost and inventory holding cost.

The bene�ts coming from integrating transportation and inventory man-
agement where analysed in Archetti and Speranza (2016) through a com-
putational study from which it resulted that the average savings related to
integration are around 24% of the total cost.

A second reason why the IRP gained such a popularity in the research
community is related to the scienti�c challenges associated with �nding its
solution. In fact, the IRP combines routing, which is an extremely com-
plex problem in itself, with inventory management, i.e., with replenishment
decisions. The �rst exact approach for the IRP was proposed in 2007 by
Archetti et al. (2007) for the single-vehicle case. More recently, the liter-
ature has focused on the multi-vehicle case. Exact approaches are mainly
based on branch-and-cut schemes (see Coelho and Laporte (2013a), Coelho
and Laporte (2013b), Adulyasak et al. (2014), Archetti et al. (2014), Coelho
and Laporte (2014), Avella et al. (2015), Avella et al. (2018), Manousakis
et al. (2021)) while just one contribution proposes a branch-and-price algo-
rithm (see Desaulniers et al. (2016)). In the latter paper, a nice and complex
decomposition of the problem is proposed. The computational results, in
which the branch-and-price algorithm is compared with the branch-and-cut
proposed in Coelho and Laporte (2013b), show that no method is dominat-
ing the other, with branch-and-price performing better for instances with a
larger number of vehicles and viceversa. In terms of heuristic approaches,
recent contributions are based on metaheuristcs (see Alvarez et al. (2018)
and Santos et al. (2016)) or matheuristics (see Archetti et al. (2012), Coelho
et al. (2012), Archetti et al. (2017), Chitsaz et al. (2019) and Archetti et al.
(2021)). We refer the reader to Bertazzi and Speranza (2012) and Bertazzi
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and Speranza (2013) for two tutorials on the IRP and to Coelho et al. (2013)
and Roldán et al. (2017) for surveys on scienti�c contributions to the study
of the IRP.

Our contribution: In this article, we study two types of formulations:
(a) aggregated ones in which the variables describing the feasible routes and
quantities delivered to customers in each time period are aggregated over all
vehicles, and (b) disaggregated ones, in which separate variables are used to
describe the routes and delivered quantities of each vehicle. For the aggre-
gated approaches, we study compact formulations and their counterparts of
exponential size. To the best of our knowledge, there are no studies in the ex-
isting literature that compare these di�erent formulations with respect to the
quality of their linear programming (LP) relaxations. The major questions
we attempt to answer in our theoretical study are: does the LP-relaxation of
one formulation dominates that of another, and whether two LP-relaxations
provide the same lower bounds. Our results are based on the methodol-
ogy of polyhedral projections which has been used for related routing and
network design problems, see, e.g. Gouveia (1995); Letchford and González
(2006); Ljubi¢ et al. (2006); Chimani et al. (2010). In addition, we apply the
same methodology to propose a compact aggregated formulations of the IRP
variant of the so-called multi-star inequalities.

Contrary to the Capacitated Vehicle Routing Problems where the quan-
tities to be delivered to each customer are pre-determined, they are part of
the decisions to be made when solving the IRP. This renders the inventory
routing problems more di�cult to solve in practice, and it also highly a�ects
the quality of the underlying MIP formulations.

In a computational study performed on benchmark IRP instances, we
show that the aggregated formulations studied in this paper are competitive
with respect to state-of-the-art exact solution approaches in terms of quality
of upper and lower bounds provided.

The paper is organized as follows: In Section 2 we introduce the formal
de�nition of the IRP and some useful notation used in the following sections.
In Section 3 we introduce the aggregated IRP formulations and we show
the equivalent compact formulations that can replace fractional capacity cuts
(FCC), generalized subtour elimination constraints (GSEC) and IRP-multi-
star inequalities (MS), respectively. In Section 4 we show the link between the
LP-relaxation of aggregated and disaggregated formulations. Computational
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experiments are shown in Section 6 and conclusions are drawn in Section 7.

2 Problem De�nition

The IRP is de�ned as follows: We are given a complete directed graph
G = (N,A) where N is the set of vertices and A is the set of arcs. Set
N is composed by vertex 0, representing the supplier (also called depot in
the following), and the set N ′ of customers, with |N ′| = n. The planning
period is T = {1, ..., H}, where H is the planning horizon. In the following,
each element of T is refereed to as `time period'. Each customer i ∈ N ′ is
associated with a per period consumption rate rit ≥ 0, an initial inventory
level Ii0 ≥ 0 and a maximum inventory capacity Ui > 0. The supplier has a
per period production rate r0t ≥ 0 and an initial inventory level I00 ≥ 0, but
no limit on inventory capacity. A unitary per period inventory holding cost
hi ≥ 0 is charged at each vertex i ∈ N . A �eet K of homogeneous vehicles
of capacity Q is available to perform deliveries in each time period, with
|K| = m. Every time a vehicle traverses an arc (i, j) ∈ A, a cost cij ≥ 0 is
incurred. We assume costs cij satisfy the triangle inequality. The IRP aims
at determining a distribution plan such that:

� vehicle capacity and customer inventory capacities are satis�ed;

� no stockout occurs, i.e., customer demands are satis�ed in each time
period;

� each customer is visited at most once in each time period;

� vehicle routes start and end at the supplier;

� the total cost, given by the sum of inventory holding cost at the cus-
tomers and at the supplier plus the routing costs, is minimized.

We now introduce some notation that will be used in the following sec-
tions. Given a set of vertices S ⊂ N , Sc is the subset of customers not in S,
i.e., Sc = N ′ \ S. Also, δ+(S) is the set of arcs going from a vertex i ∈ S to
a vertex j /∈ S. Similarly, δ−(S) is the set of arcs going from a vertex i /∈ S
to a vertex j ∈ S. For the ease of notation, we write δ+(i) (δ−(i)) instead of
δ+({i}) (δ−({i})) when S is a singleton. We also de�ne as A(S) the set of
arcs in S, i.e., (i, j) ∈ A such that i, j ∈ S. Given two subsets A,B ⊂ N ,

4



(A : B) is the set of arcs linking a vertex in A with a vertex in B. Finally,
given a set of variables X , we write X (S) =

∑
s∈S Xs.

In addition, let us introduce a de�nition and notation for the projection of
a linear programming formulation that will be used in the theoretical analysis
presented in the following two sections.

Given a MIP formulation A, by PA we denote the polyhedron of its LP-
relaxation in which discrete variables are replaced by continuous ones with
the lower and upper bounds on their domains de�ning the valid intervals.
Given a formulation A in the extended space of (x, g) variables, its natural
projection into the space of x variables (if not stated otherwise), denoted by
Projx(PA), is de�ned as

Projx(PA) = {x | (x, g) ∈ PA}.

Given two MIP formulations, A and B, we say that A is at least as
strong as B if for any problem instance, the value of the LP-relaxation of
the formulation A is at least as good as the value of the LP-relaxation of the
formulation B.

3 Aggregated Formulations

For aggregated formulations, we introduce the following decision variables:

� I ti (continuous): inventory level at vertex i in time period t, i ∈ N ,
t ∈ T .

� Qt
i (continuous): quantity delivered to customer i in time period t,

i ∈ N ′, t ∈ T .

� Zt
i (binary): decides whether the customer i is visited in time period t.

� Zt
0 (integer): number of vehicles used in time period t.

� X t
ij (binary): decides whether arc (i, j) ∈ A is traversed in time period

t.

The following model is a relaxation of the original problem, as its solution
does not necessarily respect the vehicle capacity, or it may contain subtours.
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min
∑
t∈T

h0I0t +
∑
i∈N ′

∑
t∈T

hiIit +
∑

(i,j)∈A

∑
t∈T

cijX
t
ij (1a)

s.t. I0t = I0,t−1 + r0t −
∑
i∈N ′

Qt
i t ∈ T (1b)

Iit = Ii,t−1 − rit +Qt
i i ∈ N ′, t ∈ T (1c)

(A) Qt
i ≤ Ui − Iit−1 i ∈ N ′, t ∈ T (1d)

Qt
i ≤ Ct

iZ
t
i i ∈ N ′, t ∈ T (1e)

X t(δ+(i)) = X t(δ−(i)) i ∈ N, t ∈ T (1f)

X t(δ−(i)) = Zt
i i ∈ N, t ∈ T (1g)

Zt
i ∈ {0, 1} i ∈ N ′, t ∈ T (1h)

Zt
0 ∈ {0, 1, . . . , |K|} t ∈ T (1i)

X t
ij ∈ {0, 1} {i, j} ∈ A, t ∈ T (1j)

Qt
i ≥ 0, Iit ≥ 0 i ∈ N, t ∈ T (1k)

The objective function (1a) aims at minimizing the total cost given by
the inventory cost at the supplier, the inventory cost at the customers and
the routing cost. Equations (1b)-(1c) are inventory balance equations, at the
supplier and at the customers, respectively. Constraints (1d)-(1e) provide
upper bounds on the quantities that can be delivered to each customer i ∈ N ′
in each time period. The constant Ct

i is de�ned as

Ct
i := min{Ui, Q,

H∑
t′=t

rit′}.

Finally, the degree constraints (1f)-(1g) provide a link between Z and X
variables guaranteeing that each customer is visited at most once during
each time period. We notice that the variables I are auxiliary in this model,
and that they can be projected out, but we keep them for simplicity.

The formulation (1) is incomplete in the sense that there is no guarantee
that the variables X t build a feasible set of up to |K| routes, each of which
not exceeding the given capacity Q. In the following, we discuss two possible
ways proposed in the literature to extend this model and provide a valid
formulation. The �rst one is an extended compact formulation in which we
introduce an additional set of load-based �ow variables, whereas the second
one uses an exponential number of constraints to guarantee the feasibility of
the routes.
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3.1 Load-Based Formulation (LOAD)

To guarantee the feasibility of the routes, one can consider an extended for-
mulation in which additional �ow variables `tij are introduced, to count the
load of the vehicle, while traversing the arc (i, j) ∈ A in time period t ∈ T .
In addition to the constraints in (1), we add the following constraints:

`t(δ−(i))− `t(δ+(i)) =

{
Qt
i if i 6= 0,

−
∑

i∈N ′ Qt
i if i = 0.

i ∈ N, t ∈ T (2a)

0 ≤ `tij ≤ QX t
ij (i, j) ∈ A, t ∈ T (2b)

These constraints guarantee that exactly Qt
i units of �ow are delivered to

each i ∈ N ′, t ∈ T , and that the vehicle capacity is respected. Together with
degree constraints (1f) they also guarantee that subtours are eliminated.

Hence, constraints in (1) together with (2) provide a valid compact for-
mulation for the IRP to which we will refer as LOAD in the remainder of the
paper. This model has been originally proposed by Archetti et al. (2014). In
a similar fashion, Gavish and Graves (1979) originally proposed to use the
load-based variables to derive a compact formulation for the CVRP. Gouveia
(1995) later showed that if we project the polyhedron of the LP-relaxation of
this model to the space of binary arc variables, we obtain fractional capacity
cuts for the CVRP, formulated as in the following section. Contrary to the
CVRP, in case of the IRP, the quantities to be delivered to the customers
are unknown. Nevertheless we show that a similar result holds for the MIP
formulations of the IRP derived from the load-based variables, on one side,
and fractional capacity cuts, on the other side.

3.2 Formulation with Fractional Capacity Cuts

The following constraints, called fractional capacity cuts, can be alternatively
used to guarantee the feasibility of the routes, both in terms of connectivity
and capacity (see, e.g., Adulyasak et al. (2014)):

X t(δ−(S)) ≥ 1

Q
Qt(S) S ⊆ N ′, t ∈ T. (FCC)

By summing up degree constraints (1f) over all i ∈ S, we obtainX t(δ−(S)) =
X t(δ+(S)). Hence, degree constraints (1f) together with constraints (FCC)
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imply the fractional capacity cuts related to arcs going out of S:

X t(δ+(S)) ≥ 1

Q
Qt(S) S ⊆ N ′, t ∈ T. (3)

Moreover, using the degree constraints (1g), fractional capacity cuts can be
equivalently restated as

X t(A(S)) ≤ Zt(S)− 1

Q
Qt(S) S ⊆ N ′, t ∈ T. (4)

To see why this is the case, consider a set S ⊆ N ′, and let us sum up the
degree constraints (1g) for all i ∈ S. We obtain:

Zt(S)−X t(A(S)) = X t(δ−(S)). (5)

Assuming that inequality (FCC) holds, this implies

Zt(S) ≥ X t(A(S)) +
1

Q
Qt(S)

which is an alternative way of restating (4). Similarly, assuming that inequal-
ity (4) holds, together with (5), it implies (FCC). We remark that constraints
(4) are directed counterpart of the cuts used in a formulation proposed by
Adulyasak et al. (2014) for the problem with symmetric route costs.

The following result shows that projecting out ` variables from the for-
mulation (2), we obtain constraints (FCC). It also establishes a connection
between the load based formulation and the model derived from the fractional
capacity cuts. In the following, we use A+FCC to denote the formulatoin
(1) extended by constraints (FCC).

Theorem 1 There is a one-to-one correspondence between solutions of the
LP-relaxation of the model LOAD, and the solutions of the LP-relaxation of
the formulation A+FCC, i.e.:

Proj(Z,Q,X)(PLOAD) = PA+FCC .

Proof The proof consists of two parts:

� Proj(Z,Q,X)(PLOAD) ⊆ PA+FCC: Let (Z̃, Q̃, X̃, ˜̀) represent a feasible
LP-solution of LOAD formulation. We only need to show that the vec-
tor (Z̃, Q̃, X̃) satis�es the fractional capacity constraints (FCC) (as all

8



other constraints in the two formulations remain unchanged). Let us
consider a set S ⊆ N ′ and t ∈ T . After summing up the �ow conser-
vation constraints (2a) over all i ∈ S, we obtain:

˜̀t(δ−(S)) = ˜̀t(δ+(S)) + Q̃t(S)

After using the capacity constraints (2b) to bound the �ow from above
for the arcs (i, j) ∈ δ−(S) and from below for the arcs (i, j) ∈ δ+(S),
we obtain

QX̃ t(δ−(S)) ≥ ˜̀t(δ−(S)) = ˜̀t(δ+(S)) + Q̃t(S) ≥ Q̃t(S)

i.e.,
QX̃ t(δ−(S)) ≥ Q̃t(S),

which is another way of writing cuts (FCC). This derivation shows
that (FCC) are contained in the projection of the load-based formulation
onto the space of (Z,Q,X) variables.

� PA+FCC ⊆ Proj(Z,Q,X)(PLOAD): Let t ∈ T be an arbitrary time period.
To show that constraints (FCC) provide a complete description of the
projection of the �ow into the space of X variables, we now start with
a solution (Z̄, Q̄, X̄) for the formulation based on (FCC), and we show
that there exists a feasible �ow ¯̀t which satis�es constraints (2a)-(2b).
Such a �ow exists if and only if there exists a feasible �ow ˜̀t on the
same graph with the lower and upper bounds on the arc capacities (κt,
κt, respectively) de�ned as follows:

κtij = 0, κtij = QX̄ t
ij, i ∈ N, j ∈ N ′, (6)

κtj0 = Q̄t
j, κtj0 = Q̄t

j, j ∈ N ′. (7)

Indeed, this follows from the fact that the �ow demands of Q̄t
j of each

vertex j ∈ N ′ are transformed into �xed arc capacities for backward arcs
(j, 0) entering the depot (see, e.g., Section 6.7 in Ahuja et al. (1993)
for more details). The �ow ˜̀t is said to be feasible if and only if the fol-
lowing constraints (the �ow conservation and the capacity constraints,
respectively) are satis�ed:

˜̀t(δ−(i)) = ˜̀t(δ+(i)), i ∈ N, (8)

κtij ≤ ˜̀t
ij ≤ κtij, (i, j) ∈ A. (9)
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According to Ho�man (1960), in a digraph (N,A) with arc capacities
de�ned as in (9), there exists a feasible �ow ˜̀t if and only if

κt(δ−(S)) ≤ κt(δ+(S)), S ⊂ N. (10)

Hence, to prove tha there exists a feasible �ow ˜̀t described above, let
us consider a set S ⊂ N . We distinguish the following two cases:

1. 0 ∈ S: in that case, κt(δ−(S)) = Q̄t(Sc) and κt(δ+(S)) = QX̄ t(δ+(S)) =
QX̄ t(δ−(Sc)), and so the inequality (10) turns into

QX̄ t(δ−(Sc)) ≥ Q̄t(Sc),

which is the fractional capacity cut imposed for the set Sc.

2. 0 6∈ S: in that case, κt(δ−(S)) = 0 and κt(δ+(S)) = Q̄t(S) +
QX̄ t(S : Sc), and so the inequality (10) is trivially satis�ed.

�

Hence, the compact way of expressing the fractional capacity cuts is given
by introducing the load-based variables together with constraints (2a)-(2b).
This result is in-line with what is known for the capacitated VRP (see, Gou-
veia (1995)).

The following result shows that our aggregated model also includes the
aggregated vehicle capacity constraints that ensure that in each time period
t ∈ T , the total amount of �ow delivered by all vehicles does not exceed the
number of used vehicles times their capacity Q.

Lemma 1 The aggregated vehicle capacity constraints

Qt(N ′) ≤ Q · Zt
0, t ∈ T (11)

are implied by the degree constraints (1f)-(1g) and constraints (FCC).

Proof From the degree constraints (1f)-(1g) we have

Zt(N ′) =
∑
i∈N ′

X t(δ−(i)) = X t(δ−(N ′)) +X t(A(N ′)) =

= X t(δ+(0)) +X t(A(N ′)) = Zt
0 +X t(A(N ′))⇒
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⇒ X t(A(N ′)) = Zt(N ′)− Zt
0. (12)

On the other hand, the FCC for S = N ′ can be re-written as

X t(A(N ′)) ≤ Zt(N ′)− 1

Q
Qt(N ′)⇒ Zt(N ′)− Zt

0 ≤ Zt(N ′)− 1

Q
Qt(N ′)

⇒ Qt(N ′) ≤ Q · Zt
0.

�

3.3 Strengthened Load-Based Formulation and Multi-
Star Inequalities for the IRP

In this subsection we attempt to strengthen the previously introduced for-
mulations by exploiting the following property of optimal solutions:

Lemma 2 When input parameters (Q, r, U) take on integer values, then
there exists an optimal solution such that the values of the quantities Qt

i

delivered to each customer i ∈ N ′, for each t ∈ T , are integer.

Proof Indeed, once the design variables (X,Z) are �xed, the problem be-
comes a minimum-cost �ow in a time-expanded network with vertex- and
arc-capacities determined by the values of (Q, r, U). The problem can be re-
formulated as a minimum-cost �ow problem in a digraph with integral arc
capacities and integer supplies/demands. The result follows from the inte-
grality property of the minimum-cost �ow, which is guaranteed whenever all
arc capacities and supplies/demands of vertices are integer (see, e.g., Theo-
rem 9.10 in Ahuja et al. (1993)). �

Corollary 1 The following constraints are valid for the aggregated formula-
tion:

Zt
i ≤ Qt

i, i ∈ N ′, t ∈ T. (13)

Indeed, these constraints state that if a customer i ∈ N ′ is visited in time
period t ∈ T , at least one unit of demand is delivered at this vertex. Note
that this is valid as we assume that costs cij satisfy the triangle inequality.

In the following subsections we discuss how the property of Lemma 2 can
be exploited to improve the bounds of the load-based formulation and frac-
tional capacity cuts, respectively. We also show that by projecting out �ow
variables from the strengthened load formulation, we obtain new inequalities
for the IRP, that we refer to as IRP-multi-star inequalities.
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3.3.1 Strengthened Load-Based Formulation (SLOAD)

Due to Lemma 2, we can impose lower and upper bounds on the load trans-
ported along each arc (i, j) ∈ A as in the following lemma.

Lemma 3 The load-based formulation can be strengthened by replacing con-
straints (2) with the following ones:

X t
ij ≤ `tij ≤ (Q− 1)X t

ij i, j ∈ N ′, t ∈ T (14a)

`tj0 = 0 j ∈ N ′, t ∈ T (14b)

X t
0j ≤ `t0j ≤ QX t

0j j ∈ N ′, t ∈ T (14c)

Proof If arc (i, j) ∈ A is traversed in time period t, then both customers i
and j have to be served. Hence, the load transported along the arc is at least
one (cf. Lemma 2), and the maximal load is Q− 1 (because at least one unit
has to be delivered before traversing the arc). �

We will denote by SLOAD the strengthened load-based formulation, which
is determined by (1), (13), (14). We point out that, following the CVRP
literature, much stronger formulations could be obtained by replacing for
example constraints (14a) by Qt

jX
t
ij ≤ `tij ≤ (Q−Qt

i)X
t
ij. Unfortunately, due

to the fact that the quantities Qt
j are decision variables, we obtain bilinear

constraints, and hence the study of the underlying models is out of scope of
this article.

3.3.2 IRP-Multi-Star Inequalities

In this section we introduce multi-star inequalities for the IRP, which are
adaptation of the well-known multi-star inequalities for the capacitated VRP
(see, e.g., Gouveia and Hall (2002); Letchford and González (2006, 2015)).
We also show that projecting out the �ow variables from the formulation
SLOAD, we obtain the IRP-multi-star inequalities.

De�nition 1 Let us consider a set S ⊆ N ′ and t ∈ T . Then:

QX t(δ−(S)) ≥ Qt(S) +X t(Sc : S) +X t(S : Sc), (MS)

are called IRP-multi-star inequalities.
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Based on the value of Qt(S) which represents (variable) demand served
to the customers from the set S, constraints (MS) provide an upper bound
on the number of arcs (non-adjacent to the depot) that have exactly one
endpoint in S. Indeed, the latter quantity is bounded from above as follows:

X t(Sc : S) +X t(S : Sc) ≤ QX t(δ−(S))−Qt(S).

We notice that inequalities (MS) are a lifted version of constraints (FCC),
as the latter ones can be obtained from (MS) by just omitting the term
X t(Sc : S) +X t(S : Sc) from the right-hand side.

With the following theorem, we show that constraints (MS) are contained
in the model SLOAD, and are therefore valid for the IRP.

Theorem 2 The IRP-multi-star inequalities (MS) are implied by the strength-
ened load-based formulation SLOAD.

Proof Let us consider a set S ⊆ N ′, S 6= ∅ and t ∈ T . After summing up
the �ow conservation constraints (2a) over all i ∈ S, we obtain:

`t(δ−(S))− `t(δ+(S)) = Qt(S).

In the above equation, we can substitute

`t(δ−(S)) = `t(0 : S) + `t(Sc : S),

and
`t(δ+(S)) = `t(S : 0) + `t(S : Sc).

Then, after bounding from above the values of `t(δ−(S)) using (14a),(14c) and
bounding from below the values of `t(δ+(S)) using (14a),(14b), we obtain:

QX t(0 : S) + (Q− 1)X t(Sc : S)−X t(S : Sc) ≥ Qt(S). (15)

Finally, after adding X t(Sc : S) to both sides, we obtain the IRP-multi-star
inequalities (MS). �

Theorem 3 Projecting out ` variables from the formulation SLOAD we ob-
tain the inequalities (MS).

The proof of Theorem 3 is similar o the one of Theorem 1 and is moved
to the Appendix.

Putting together the results from Theorems 2 and 3, we obtain:

Corollary 2
Proj(Z,Q,X)(PSLOAD) = PA+MS.
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3.4 Connectivity Cuts

The following constraints, known as the generalized subtour elimination con-
straints (GSECs), are frequently used to impose the connectivity and to
eliminate subtours in routing (see, e.g., Coelho et al. (2013)) and network
design problems (see, e.g., Ljubi¢ (2021)):

X t(A(S)) ≤ Zt(S \ {i}) S ⊆ N ′, |S| ≥ 2, i ∈ S, t ∈ T. (GSEC)

Thanks to the degree constraints (1f)-(1g), GSECs can be equivalently stated
as connectivity cuts

X t(δ−(S)) ≥ Zt
i S ⊆ N ′, i ∈ S, t ∈ T (CC)

enforcing that for every customer i visited at time t, there is a directed path
between the depot and i. In the following, we will use interchangeably the
terms GSECs and connectivity cuts. Indeed, this transformation follows from
the following equations:

Zt(S) =
∑
i∈S

X t(δ−(i)) = X t(A(S)) +X t(δ−(S)).

Multi-Commodity Flow GSECs can be replaced by a polynomial num-
ber of constraints in an extended space in which additional multi-commodity
�ow variables f tl are introduced for each t ∈ T and l ∈ N ′. For each customer
l ∈ N ′ such that Zt

l = 1, the following constraints guarantee that there exists
a directed path between the depot and l in the solution determined by the
vector X:

f tl(δ−(i))− f tl(δ+(i)) =


Zti if i = l,

−Zti if i = 0,

0 otherwise.

l ∈ N ′, i ∈ N, t ∈ T (16a)

0 ≤ f tlij ≤ Xt
ij l ∈ N ′, (i, j) ∈ A, t ∈ T (16b)

Let in the following MCF refer to constraints (16) and LOAD+MCF refer
to the load-based model extended by the multi-commodity �ow constraints,
i.e., the formulation (1), (2), (16).

From the VRP literature, it is known that constraints (FCC) and (GSEC)
are not dominating each other (see, e.g., Letchford and González (2015)), and
this result carries over to the IRP. Hence, it is bene�cial to include both in the
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Formulation Constraints Size Variables
LOAD (1), (2) compact (Z,Q,X, `)
SLOAD (1), (13), (14) compact (Z,Q,X, `)
LOAD+MCF (1), (2), (16) compact (Z,Q,X, `, f)
SLOAD+MCF (1), (13), (14), (16) compact (Z,Q,X, `, f)
A+FCC (1), (FCC) exponential (Z,Q,X)
A+FCC+GSEC (1), (FCC), (GSEC) exponential (Z,Q,X)
A+MS (1), (13), (MS) exponential (Z,Q,X)
A+MS+GSEC (1), (13), (MS), (GSEC) exponential (Z,Q,X)

Table 1: Aggregated formulations considered in this work.

aggregated formulation. We will denote by A+FCC+GSEC the aggregated
formulation determined by (1),(13), (FCC) and (GSEC). Similarly, if in the
latter formulation constraints (FCC) are replaced by (MS), we will denote it
by A+MS+GSEC.

Theorem 4 Projecting out f variables from the model LOAD+MCF, we
obtain the constraints (GSEC), i.e.:

Proj(X,Z,Q)(PLOAD+MCF ) = PA+FCC+GSEC .

Proof The result follows from the min-cut max-�ow theorem, see, e.g., Lju-
bi¢ et al. (2006); Ljubi¢ (2021). �

Table 1 summarizes all the models considered in this section. Figure
1 provides a hierarchy of these formulations. An arrow pointing from a
formulation A to formulation B indicates that the latter is at least as strong
as the former one. Correspondingly, with↔ we indicate that the two models
are equivalent, i.e., projecting out the �ow variables (` and/or f) from a
given extended formulation results into the corresponding formulation (of
exponential size) in the natural space of (Z,Q,X) variables.

4 Disaggregated Formulations

We now turn our attention to disaggregated formulations, in which we dis-
aggregate variables X,Z and Q per vehicle, assuming that an upper bound
|K| on the available vehicles is known. Hence we introduce the following
variables:

15



SLOAD+MCF ↔ A+MS+GSEC

LOAD+MCF ↔ A+FCC+GSEC SLOAD ↔ A+MS

LOAD ↔ A+FCC

Figure 1: Hierarchy of aggregated formulations. An arrow from a model A
to model B indicates that model B is at least as strong as model A.

� I ti (continuous): inventory level at vertex i in time period t, i ∈ N ,
t ∈ T .

� qkti (continuous): quantity delivered to customer i in time period t, by
vehicle k, i ∈ N ′, t ∈ T , k ∈ K.

� zkti (binary): decides whether vertex i ∈ N is visited in time period t
by vehicle k ∈ K, i ∈ N ′, t ∈ T , k ∈ K.

� xktij (binary): decides whether arc (i, j) ∈ A is traversed in time period
t by vehicle k, (i, j) ∈ A, t ∈ T , k ∈ K.

A relaxation of the IRP can then be modelled as:
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min
∑
t∈T

h0I0t +
∑
i∈N ′

∑
t∈T

hiIit +
∑
k∈K

∑
(i,j)∈A

∑
t∈T

cijx
kt
ij (17a)

s.t. I0t = I0,t−1 + r0t −
∑
k∈K

∑
i∈N ′

qkit t ∈ T (17b)

Iit = Ii,t−1 − rit +
∑
k∈K

qkit i ∈ N ′, t ∈ T (17c)

(D)
∑
k∈K

qkit ≤ Ui − Iit−1 i ∈ N ′, t ∈ T (17d)

0 ≤ qkit ≤ Ct
iz
kt
i i ∈ N ′, k ∈ K, t ∈ T (17e)∑

i∈N ′

qkit ≤ Qzkt0 k ∈ K, t ∈ T (17f)∑
k∈K

zkti ≤ 1 i ∈ N ′, t ∈ T (17g)

xkt(δ−(i)) = xkt(δ+(i)) i ∈ N, k ∈ K, t ∈ T (17h)

xkt(δ−(i)) = zkti i ∈ N, k ∈ K, t ∈ T (17i)

zkti ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (17j)

xktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T (17k)

Iit ≥ 0 i ∈ N, t ∈ T (17l)

Indeed, this models is incomplete and represents only a relaxation of the
original problem. Even though the vehicle capacity constraints are respected
(thanks to constraints (17e), (17f) and (17i)), the connectivity of the routes
to the depot is not guaranteed. Constraints (17b)-(17d), (17h), (17i) rep-
resent disaggregated counterparts of constraints (1b)-(1g). With (17e) we
guarantee that the quantity delivered at each customer i is at most Ct

i . Fi-
nally, constraints (17g) ensure that every customer is visited by at most one
vehicle in each time period.

Disaggregated Connectivity Cuts One possible way to impose the con-
nectivity (i.e., eliminate the subtours, and hence obtain a valid formulation)
is by inserting the so-called disaggregated GSECs :

xkt(A(S)) ≤ zkt(S \ {i}) S ⊆ N ′, i ∈ S, t ∈ T, k ∈ K (dGSEC)
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Formulation Constraints Size Variables
D+FCC (17), (dFCC) exponential (z, q, x)
D+GSEC (17), (dGSEC) exponential (z, q, x)
D+FCC+GSEC (17), (dFCC), (dGSEC) exponential (z, q, x)

Table 2: Disaggregated formulations considered in this section.

Coelho and Laporte (2014) used the undirected counterpart of these cuts for
the IRP with symmetric arc costs. (dGSEC) can be equivalently stated as
disaggregated connectivity cuts :

xkt(δ−(S)) ≥ zkti S ⊆ N ′, i ∈ S, t ∈ T, k ∈ K.

In the remainder of the article we will refer to the model (17) with
(dGSEC) as D+GSEC. We point out that in a similar fashion as shown
for the aggregated formulations, one can derive the compact counterpart of
constraints (dGSEC), by using a 5-index formulation, in which �ow variables
hktlij indicate whether the arc (i, j) is traversed to visit customer l ∈ N ′ at
time t by vehicle k.

Disaggregated Fractional Capacity Cuts Similarly, one can consider
disaggregated fractional capacity cuts de�ned as:

xkt(δ−(S)) ≥ 1

Q
∑
i∈S

qkti S ⊆ N ′, t ∈ T, k ∈ K. (dFCC)

These cuts provide a lower bound on the number of arcs entering each S, for
each vehicle k.

In the following we will denote by D+FCC+GSEC the disaggregated
formulation (17) with (dFCC) and (dGSEC) constraints. Table 2 provides a
summary of disaggregated formulations considered in this article.

Strength of the Disaggregated Formulation. The following result shows
that, in terms of the quality of lower bounds, the disaggregated model
D+FCC+GSEC studied in this article (and frequently used in the IRP liter-
ature, see Archetti et al. (2014)) does not contribute in improving the quality
of lower bounds (compared to their disaggregated counterpart).
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Theorem 5 We have

Proj(Z,Q,X)(PD+FCC+GSEC) = PA+FCC+GSEC ,

where the projection Proj(Z,Q,X)(PD+FCC+GSEC) is de�ned as:

Proj(Z,Q,X)(PD+FCC+GSEC) = {(Z,Q,X) | (z, q, x) ∈ PD+FCC+GSEC and

X t
ij =

∑
k∈K

xktij , (i, j) ∈ A, Zt
i =

∑
k∈K

zkti , i ∈ N and Qt
i =

∑
k∈K

qkti , i ∈ N ′, t ∈ T}.

(18)

Proof The proof consists of two parts:

� Proj(Z,Q,X)(PD+FCC+GSEC) ⊆ PA+FCC+GSEC: To show this result, we
consider an arbitrary point feasible for the LP-relaxation of the model
D+FCC+GSEC, (ẑ, q̂, x̂) ∈ PD+FCC+GSEC and we consider its projec-
tion point (Ẑ, Q̂, X̂) ∈ Proj(Z,Q,X)(PD+FCC+GSEC) following the de�ni-

tion from (18). It is not di�cult to see that such de�ned point (Ẑ, Q̂, X̂)
satis�es all the constraints of the model A+FCC+GSEC, i.e., it be-
longs to PA+FCC+GSEC. Moreover, the value of the objective function
remains unchanged.

� PA+FCC+GSEC ⊆ Proj(Z,Q,X)(PD+FCC+GSEC): Let (Ẑ, Q̂, X̂) ∈ PA+FCC+GSEC

be an arbitrary point satisfying the LP-relaxation of the model
A+FCC+GSEC. We will show how to �lift� this point into the PD+FCC+GSEC

polyhedron without changing the value of the objective function. We
construct a vector (ẑ, q̂, x̂) ∈ PD+FCC+GSEC such that for all t ∈ T :

x̂ktij = X̂ t
ij/K, (i, j) ∈ A ẑkti = Ẑt

i/K, i ∈ N and q̂kti = Q̂t
i/K, i ∈ N ′,

and we show that the point (ẑ, q̂, x̂) satis�es all the constraints of the
model D+FCC+GSEC. Clearly, constraints (17b)-(17e) follow directly
from constraints (1b)-(1e), respectively. No-split cuts (17g) are satis-
�ed, which follows from the fact that Zt

i variables are bounded by one
for any i ∈ N ′. Moreover, the disaggregated degree constraints (17h)-
(17i), cuts (dFCC) and (dGSEC) all follow from (1g)-(1h), (FCC)
and (GSEC), respectively. Finally, the validity of (17f) follows from
Lemma 1.

�
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5 Valid Inequalities

The following valid inequalities are used to strengthen the lower bound for
aggregated formulations. They are all inherited from previous works on the
IRP and adapted to aggregated formulations. Constraints (19)-(20) were
proposed in Archetti et al. (2014), whereas constraints (21)-(23) are from
Coelho and Laporte (2014).

Iτi ≥(
H∑

t′=t−τ+1

Zt
i )(

H∑
t′=t−τ+1

rit) i ∈ N ′, t ∈ T, τ = 0, ..., t− 1 (19)

Zt
i ≤Zt

0 i ∈ N ′, t ∈ T (20)
t∑

τ=1

Zτ
i ≥d

(
∑t

τ=1 riτ − Ii0)
min{Q,Ui}}

e i ∈ N ′, t ∈ T (21)

t2∑
τ=t1

Zτ
i ≥d

(
∑t2

τ=t1
riτ − Ui)

min{Q,Ui}}
e i ∈ N ′, t1, t2 ∈ T, t2 ≥ t1 (22)

t2∑
τ=t1

Zτ
i ≥

(
∑t2

τ=t1
riτ − I t1i )

min{Q,Ui}}
i ∈ N ′, t1, t2 ∈ T, t2 ≥ t1 (23)

We also introduced the following inequalities for breaking symmetries in
instances with symmetric costs cij and directed formulation:∑

i∈N ′

iX t
0i ≤

∑
i∈N ′

iX t
i0 t ∈ T (24)

In addition, we explicitly consider the subset of GSECs with |S| = 2 for
initialization of MIP models tested in our empirical study provided below:

X t
ij +X t

ji ≤Zt
i i, j ∈ N ′, t ∈ T (25)

6 Computational Experiments

In this section we aim at evaluating the performance of the aggregated formu-
lations presented in Section 3. Tests are performed on benchmark instances
for the IRP (see Archetti et al. (2014)). The characteristics of the instances
are the following:
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� Time horizon H: 3 and 6;

� Number of customers n: 5l, with l = 1, ..., 6 for H = 6 and l = 1, ..., 10
for H = 3.

� Number of vehicles m: from 2 to 5.

� High and low inventory cost.

For each combination of the above parameters, 5 instances were gener-
ated, thus having 640 instances in total. We refer to Archetti et al. (2014)
for more details on the instances.

Computational tests were made on a Windows 64 machine equipped with
Intel(R) Xeon(R) CPU E5-1650 v2, 3050 GHz, 64.0 GB RAM. The code was
written in C++, compiled with MS Visual Studio 2019 Express Edition in
release mode, and CPLEX 12.10 was used as an exact solver and run on 4
threads.

Experiments are organized as follows. We �rst test the e�ect of the di�er-
ent valid inequalities and cuts on the lower bound associated with the plain
load-based formulation. To do that, we compare the LP-relaxation of the
following compact formulations:

1. Plain aggregated formulation with load variables given by (1)�(2) (LOAD).

2. Formulation LOAD plus subtour elimination constraints on symmetric
arcs (25) (LOAD+S).

3. Strenghtened aggregated formulation determined by (1), (13), (14),
plus subtour elimination constraints on symmetric arcs (25) (SLOAD+S).

4. Strenghtened aggregated formulation determined by (1), (13), (14),
plus connectivity constraints (16) (SLOAD+G).

5. Formulation SLOAD+G plus valid inequalities (19)�(24) (SLOAD+G+VI).

A second set of tests is aimed then at evaluating the performance of
aggregated formulations in solving the problem, thus by retaining integrality
constraints. On the basis of the results of the �rst tests mentioned above, a
subset of formulations is used in this second set. Formulations are solved to
optimality and compared with state-of-the-art solution approaches, namely
the branch-and-cut approach proposed in Coelho and Laporte (2014) (called
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CL from now on) and the branch-and-price algorithm in Desaulniers et al.
(2016) (called DRC from now on). Some observations about the two latter
approaches are needed. Concerning CL, it is a branch-and-cut algorithm
where GSECs are formulated as in (GSEC) and separated dynamically using
the min-cut algorithm. However, arc variables are undirected and, thus, the
formulation is not equivalent to the disaggregated formulation presented in
Section 4, having half of the arc variables. Concerning DRC, it uses Dantzig-
Wolfe decomposition coupled with column generation. The master problem
is a set-partitioning-like formulation and the subproblem is formulated as an
elementary shortest path problem with resource constraints.

6.1 Strength of the Relaxation of Aggregated Formula-
tions

In this section we summarize the results of the �rst set of tests. Table 3
reports, for each of formulation mentioned above except LOAD, the average
percentage improvement of the LP-relaxation bound with respect to the value
of the LP-relaxation of LOAD (% impr.) and the average computing time
(Time) in seconds. The computing time for LOAD is always negligible (few
milliseconds) and thus not reported. Instances are divided in two classes
according to the value of inventory cost (low and high). Then, they are
classi�ed by time horizon H �rst, number of vehicles m second and number
of customers n third.

The results show that (25) are e�ective in improving the bound with a
negligible burden on computing time. IRP-multi-star inequalities (i.e., their
compact counterpart given by (14)) and valid inequalities (19)�(24) are less
e�ective but the computational time increase caused by their inclusion is
tiny. On the other side, connectivity cuts (16) cause a remarkable increase in
computational time. Thus, in the following tests we decided to keep (14) and
(19)�(25). Connectivity cuts are instead either disregarded or dynamically
separated as described in the following section.

6.2 Comparison with State-of-the-Art

In this section we compare the performance of aggregated formulations versus
CL and DRC. Given the results from the previous section, valid inequalities
(14), and (19)�(25) are added to the basic formulation (1)�(2). Note that,
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Table 3: Average results on solutions of linear relaxations

LOAD+S SLOAD+S SLOAD+G SLOAD+G+VI

% impr. Time % impr. Time % impr. Time % impr. Time

Low inventory cost

H
3 3.19 0.20 3.25 0.20 4.30 127.97 4.79 140.25
6 5.23 0.17 5.28 0.43 7.32 23.22 7.32 27.93

m

2 7.30 0.15 7.33 0.26 10.46 85.09 10.66 95.70
3 4.82 0.18 4.87 0.25 6.63 85.88 6.74 96.25
4 3.37 0.23 3.43 0.30 4.53 91.29 4.74 99.56
5 2.38 0.20 2.44 0.31 3.14 92.50 3.36 100.99

n

5 0.85 0.00 0.94 0.00 0.96 0.00 1.59 0.00
10 1.90 0.00 1.96 0.00 2.09 0.00 2.44 0.00
15 3.52 0.00 3.59 0.00 5.21 1.38 5.37 1.93
20 5.56 0.00 5.61 0.00 7.19 6.83 7.28 8.38
25 5.60 0.00 5.64 0.43 8.50 22.23 8.59 25.50
30 4.84 0.50 4.89 0.85 6.41 60.48 6.57 70.33
35 6.80 0.00 6.83 0.00 9.14 64.00 9.14 67.45
40 7.11 0.80 7.14 0.00 10.91 136.35 10.91 154.20
45 7.31 1.20 7.35 0.95 11.05 336.75 11.05 345.40
50 5.67 0.00 5.70 1.00 7.20 700.10 7.20 790.70

Av. Low 4.46 0.19 4.52 0.28 6.19 88.69 6.37 98.13

High inventory cost

H
3 1.56 0.21 1.59 0.20 2.12 131.68 2.86 143.24
6 1.90 0.17 1.92 0.36 2.64 23.58 2.64 27.94

m

2 2.72 0.16 2.73 0.23 3.85 85.85 4.16 97.59
3 1.91 0.20 1.94 0.26 2.63 88.86 2.87 95.81
4 1.42 0.20 1.45 0.25 1.90 93.59 2.19 102.09
5 1.05 0.20 1.08 0.30 1.39 96.26 1.67 104.51

n

5 0.53 0.00 0.59 0.00 0.60 0.00 1.12 0.00
10 1.03 0.00 1.07 0.00 1.13 0.00 1.58 0.00
15 1.70 0.00 1.74 0.00 2.53 1.35 2.89 1.80
20 2.43 0.00 2.46 0.00 3.14 6.95 3.44 8.70
25 2.37 0.00 2.39 0.35 3.62 21.93 3.93 25.98
30 1.80 0.50 1.82 0.73 2.43 62.75 2.71 70.73
35 2.35 0.00 2.37 0.00 3.18 68.95 3.18 70.90
40 2.36 0.85 2.37 0.00 3.46 143.75 3.46 155.30
45 2.15 1.20 2.16 1.00 3.27 337.35 3.27 352.70
50 1.76 0.00 1.77 1.00 2.30 722.25 2.30 806.70

Av. High 1.77 0.19 1.80 0.26 2.44 91.14 2.72 100.00

Total av. 3.12 0.19 3.16 0.27 4.32 89.91 4.55 99.06
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as they are polynomial in number, no separation is needed. The following
exact approaches are tested:

� Compact: SLOAD+S+VI is passed to Cplex and solved.

� B&C: SLOAD+S+VI is augmented by GSECs (GSEC), which are dynam-
ically separated on fractional points through the classical min-cut al-
gorithm (see Padberg and Rinaldi (1991)). Notice that subtours at
integer points are already eliminated by the constraints of the formu-
lation SLOAD.

� Benders: SLOAD+S+VI is augmented by connectivity constraints (16).
In order to avoid the sharp computational burden caused by constraints
(16) and observed in the results presented above, a Benders decompo-
sition is proposed where variables f and the associated constraints (16)
are moved to the subproblems. Thus, with this setting, we replace the
combinatorial separation of constraints (GSEC), by internal separa-
tion provided by Cplex using the annotated Benders setting. Benders
subproblems are separated by t ∈ T and l ∈ N ′ as they are fully inde-
pendent.

A time limit of two hours has been set. For the two competing approaches,
CL was run on a grid of Intel XeonTM processors running at 2.66 GHz with up
to 48 GB of RAM installed per node, with the Scienti�c Linux 6.1 operating
system and a time limit of 2 hours. Cplex 12.5 was used as exact solver. DRC
was run on an Intel Core i7-2600 processor clocked at 3.4 GHz with 8 cores
and 16 GB RAM, with a time limit of 2 hours. Cplex 12.2 was used as exact
solver.

We point out that we did not separate inequalities (MS) and we kept
them explicitly in the model using (14). There are two reasons for this: 1)
projecting out load variables ` does not reduce the size of the model signif-
icantly (as we keep the same order of magnitude of X variables), and 2) by
keeping ` variables in the model, a complete information about the struc-
ture of feasible solutions is provided to the general-purpose solver. Hence,
generic heuristics integrated in modern solvers can be more e�ective in �nd-
ing high-quality solutions earlier in the branching tree. This property might
be lost when ` variables are eliminated and the solver learns the feasibility
constraints �on the �y�.
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Figure 2: Optimality gap at termination.
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Figure 3: Gap between lower bound at termination and best upper bound.
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Figure 4: Gap between upper bound at termination and best lower bound.
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Figure 5: Number of instances solved to optimality vs. computing time.
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Results are reported in Figures 2�5. Figure 2 shows the optimality gap
at termination. In particular, the �gure shows the number of instances (on
the vertical axis) for which the gap at termination is smaller than the value
reported on the horizontal axis. We see that the approaches proposed in this
paper largely outperform CL and DRC: in fact, for the latter two the optimality
gap goes up to more than 100%. Instead, it remains below 20% for Compact,
below 40% for Benders and below 70% for B&C.

Similar considerations can be observed with respect to Figure 3 which
reports the average gap between the lower bound at termination and the best
upper bound among all the �ve compared approaches: Compact, Benders
and B&C are always below 20% while CL and DRC go above 40% and 50%,
respectively. This means that our approaches are more e�ective in producing
good lower bounds.

A symmetric analysis is done to verify the quality of the upper bounds
produced by the di�erent approaches. Figure 4 reports the average gap be-
tween the upper bound at termination and the best lower bound among all
approaches. Again, Compact is by far the best approach while DRC behaves
much worse than the second worst, which is CL. Speci�cally, Compact pro-
duces upper bounds which are always within at most 20% of the best lower
bound. The maximum gap increases to at most 35% for Benders and to
slightly less than 60% for B&C. Instead, for CL and DRC the maximum gaps
are slightly more than 60% and almost 120%, respectively.

Overall, Figures 2�3 show that the approaches proposed in this paper
are much more e�ective than CL and DRC in producing good upper and lower
bounds in a shorter computing time. DRC is largely outperformed on both up-
per and lower bound analysis. Focusing on upper bounds, CL behaves similar
to B&C but is outperformed by Compact and Benders. Finally, Compact is the
best methodology on all former statistics, which seems to be contradicting
the outcome of Table 3, where it was shown that connectivity constraints
are indeed helpful in strengthening the formulation. We will provide a more
detailed analysis on this aspect afterwards.

Lastly, Figure 5 reports the number of instances solved to optimality
within a given computational time. Here the picture changes: Both CL and
DRC dominate the three approaches proposed in this paper in terms of num-
ber of instances solved. Among the approaches we propose, Compact and
Benders are comparable and dominate B&C. This seems to be contradicting
what has been seen in Figure 2�3. We will explain the reason afterwards.

Table 4 provides some statistics about computations performed with
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Compact, B&C and Benders. In particular, the average computational time
(in seconds) and the number of branch-and-bound (B&B) nodes explored
are reported for each method. In addition, the average number of GSECs
inserted is reported for B&C and, similarly, the average number of Benders
cuts is reported for Benders. The table is organized as Table 3. From Table
4 we can see that Compact explores a much larger number of B&B nodes
than B&C and Benders in a lower or comparable time, which is expected
as no separation of GSECs or Benders cuts is done, so the solution of each
B&B node is faster. This explains why, even if from Table 3 we know that
GSECs and connectivity constraints strengthen the relaxation, still Compact
behaves better in terms of lower bound quality (see Figure 4).This, together
with the fact that the load based model includes the complete information
about the structure of feasible solutions, also explains a better quality of the
upper bounds.

We unfortunately do not have statistics related to the number of B&B
nodes explored by CL, but we can reasonably argue that it is much lower
than the number of nodes explored by Compact given that the corresponding
formulation is disaggregated so the corresponding linear relaxation is much
heavier. Instead, in Desaulniers et al. (2016) the number of B&B nodes
explored by DRC is reported and we can notice that it is nearly one order of
magnitude lower than the one associated with Compact. On one side, this
explains the better quality of primal and dual bounds associated with the
approaches proposed in this paper. On the other side, this also explains why,
despite providing better lower and upper bounds, Compact, Benders and B&C

close a lower number of instances to optimality: as the size of the B&B tree
increases much faster, a larger number of B&B nodes are open so it becomes
more di�cult to close all of them and to prove the optimality.

Finally, we note that a new exact approach for the IRP has been pro-
posed in Manousakis et al. (2021). It is based on a two-commodity formula-
tion strengthened through a set of valid inequalities, some of them being in
exponential number and thus, giving rise to a branch-and-cut algorithm. In
addition, the authors implemented a Tabu Search (TS) heuristic to compute
an initial upper bound which is provided as warm start for the branch-and-
cut. We decided not to include this algorithm, called from now on MRZT, in
the comparison done above as the initial heuristic upper bound plays a crucial
role and makes the comparison unfair with respect to all other approaches
included in the comparison. Indeed, the advantages are multiple:

28



Table 4: Statistics on solvers' behavior

Compact B&C Benders

Time # nodes Time # nodes Time # nodes

Low inventory cost

H
3 4212 72627 4925 30785 4302 59947
6 5693 132127 5885 106194 5636 83728

m

2 3106 48762 4151 19451 3087 38788
3 4907 99582 5236 54369 4879 70634
4 5455 112316 5883 78831 5585 85366
5 5601 119097 5870 83602 5658 80670

n

5 354 133584 500 176053 36 20055
10 2679 154436 2894 136399 2849 161495
15 4334 146341 5205 102437 4543 130347
20 5686 105096 6405 24590 5677 81828
25 6194 83725 6475 14413 6211 69229
30 6287 45043 6896 7755 6386 29403
35 5614 50868 6542 7787 5688 35651
40 6427 51007 7205 6580 6552 36830
45 6321 42922 6851 4405 6303 26295
50 6849 37781 7208 2944 6890 18344

Av. Low 4767 94939 5285 59063 4802 68865

High inventory cost

H
3 4285 58191 4888 25035 4293 42318
6 5472 105209 5775 105415 5536 82245

m

2 3142 41926 4161 16940 3086 34482
3 5077 74283 5231 35198 5012 54046
4 5309 88474 5772 70280 5488 71426
5 5394 98608 5719 98293 5449 69208

n

5 131 63587 196 136223 16 8187
10 2347 131793 2761 167639 2712 152743
15 4346 124775 5212 90126 4192 94886
20 5580 82655 6238 19175 5733 66977
25 6292 67229 6556 11980 6371 51994
30 6289 44266 6895 7241 6238 25301
35 5558 51588 6382 6640 5577 30713
40 6512 51769 7206 5149 6616 37978
45 6761 46888 7016 3641 6533 29956
50 6892 34311 7209 2649 6890 17828

Av. High 4731 75823 5221 55178 4759 57291

Total av. 4749 85381 5253 57121 4781 63078
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� the upper bound found by the initial heuristic might be better than
any solution found by the pure branch-and-cut,

� a good initial upper strongly helps in pruning the branch-and-bound
tree and thus improving the lower bound and the overall branch-and-
cut performance.

Anyway, MRZT is the new state-of-the-art approach for the solution of the
IRP. We brie�y mention that it solves to optimality 394 instances out of 640,
the average optimality gap is 0.85% and the average computing time is 2973
seconds (a time limit of two hours was set in the experiments). Thus, MRZT
largely outperforms all former exact solution approaches. We refer the reader
to Manousakis et al. (2021) for details on computational results.

7 Conclusions

We presented a polyhedral study of aggregated formulations for the IRP,
i.e., formulations in which vehicle index is discarded. We show that compact
formulations using �ow variables that ensure capacity and connectivity con-
straints provide a lower bound, in terms of value of the LP-relaxation, which
is equivalent to the one provided by modelling capacity constraints through
fractional capacity cuts, which are exponential in number. We also provide a
strengthening of the load-based formulation corresponding to the adaptation
to the IRP of the multi-star inequalities proposed for the capacitated VRP
and we again show that a compact formulation of the multi-star inequalities
provides the same lower bound as the formulation using exponentially many
constraints. In addition, we show that no advantage is gained when con-
sidering disaggregated formulations, i.e., formulations where variables have
vehicle index: the value of the LP-relaxation is equivalent to the one of aggre-
gated formulations. To the best of our knowledge, this is the �rst study that
shows the link between aggregated vs. disaggregated and compact vs. expo-
nential formulations for the IRP. Most of the formulations analysed in this
paper have been used in former contributions to the IRP. Thus, this analysis
provides a picture of the links between them. It also shows that nothing is
gained when moving from an aggregated to a disaggregated formulation and,
thus, there is a clear advantage in using a smaller number of variables (and
constraints) involved in the aggregated formulations.
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We perform exhaustive computational tests on benchmark IRP instances
comparing di�erent aggregated formulations with two state-of-the-art ap-
proaches. The results show that the aggregated formulations are competitive
in terms of values of both upper and lower bounds. In particular, the best
aggregated formulations is the compact formulation.

As a future research direction, it might be interesting to study the link
between the aggregated formulations presented in this paper and the two-
commodity �ow formulation recently proposed in Manousakis et al. (2021),
that provides excellent computational results. Also, the analysis of the link
between directed and undirected formulations (as the one used in Coelho and
Laporte (2014)) could provide further hints in formulations' performance.
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8 Appendix

Proof of Theorem 3.

Proof To show that MS cuts provide a complete description of the projection
of the �ow into the space of X variables, we start with a solution (Z̄, Q̄, X̄)
for the formulation based on MS cuts, and we show that there exists a feasible
�ow ¯̀which satis�es constraints (14). Such a �ow exists if and only if there
exists a feasible �ow ˜̀ on the same graph with the lower and upper bounds
on the arc capacities (κ, κ, respectively) de�ned as follows:

κtij = X̄ t
ij, κtij = (Q− 1)X̄ t

ij, i, j ∈ N ′, t ∈ T (26)

κt0j = X̄ t
0j, κt0j = QX̄ t

0j, j ∈ N ′, t ∈ T (27)

κtj0 = Q̄t
j, κtj0 = Q̄t

j, j ∈ N ′, t ∈ T (28)

As in the proof of Theorem 1, this follows from the fact that the �ow demands
of Q̄t

j of each vertex j ∈ N ′ are transformed into �xed arc capacities for

backward arcs (j, 0) entering the depot. The �ow ˜̀ is said to be feasible if
and only if the following constraints (the �ow conservation and the capacity
constraints, respectively) are satis�ed:

˜̀t(δ−(i)) = ˜̀t(δ+(i)), i ∈ N, t ∈ T
κtij ≤ ˜̀t

ij ≤ κtij, (i, j) ∈ A, t ∈ T. (29)
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Then, according to Ho�man (1960), there exists a feasible �ow ˜̀ if and only
if

κt(δ−(S)) ≤ κt(δ+(S)), S ⊂ N, t ∈ T (30)

To prove this result, let us consider t ∈ T , and a set S, ∅ 6= S ⊂ N . We
distinguish the following two cases:

1. 0 ∈ S: in that case, κt(δ−(S)) = Q̄t(Sc) + X̄ t(Sc : S \ {0}) and
κt(δ+(S)) = QX̄ t(0 : Sc)+(Q−1)X̄ t(S\{0} : Sc), and so the condition
(30) turns into

QX̄ t(0 : Sc) + (Q− 1)X̄ t(S \ {0} : Sc) ≥ Q̄t(Sc) + X̄ t(Sc : S \ {0}),

which is the MS cut imposed for the set Sc.

2. 0 6∈ S: in that case, κt(δ−(S)) = X̄ t(δ−(S)) and κt(δ+(S)) = Q̄t(S) +
(Q− 1)X̄ t(S : Sc), and so we have:

Q̄t(S)+(Q− 1)X̄ t(S : Sc) ≥
≥ Q̄t(S) ≥ Z̄t(S) = X̄ t(δ−(S)) + X̄ t(A(S))

≥ X̄ t(δ−(S)).

The second inequality follows from (13) and the equation above follows
from (1g).
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