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Abstract

In an optical network a signal can only travel a maximum distance of dmax before its quality
deteriorates to the point that it must be regenerated by installing regenerators at nodes of the
network. As the cost of a regenerator is high we wish to deploy as few regenerators as possible
in the network, while ensuring that nodes can communicate with each other. In the generalized
regenerator location problem (GRLP), that we introduce in this paper, we are given a set S that
corresponds to candidate locations for regenerators, and a set T that corresponds to the set of nodes
that must communicate with each other. Together S and T make up the node set N of the network.
If S = T = N , we obtain the regenerator location problem (RLP) which we have studied previously.
We show that the GRLP is NP-Complete. We then devise reduction procedures, a heuristic, and
improvement procedures for the GRLP. We also establish a correspondence between the directed
Steiner forest problem (DSF) and the GRLP. Using this fact we model the GRLP as a DSF problem.
We provide some preliminary computational results of our heuristic and MIP formulation for the
GRLP problem.

Keywords: optical network design, heuristics, directed steiner forest.

1 Introduction

An optical network provides higher capacity and reduced costs for new applications such as the Internet,
video and multimedia interaction, and advanced digital services. A critical problem that arises in the
design of optical networks relates to the placement of regenerators. A signal can only travel a maximum
distance of dmax before its quality deteriorates and needs to be regenerated. To accomplish this regener-
ators may be installed at nodes of the network. As the cost of regenerators is very high we wish to deploy
as few regenerators as possible, while ensuring all nodes can communicate with each other (i.e., send a
signal to each other). In this context within this paper we introduce and discuss the following problem
that we call the generalized regenerator location problem (GRLP).

Mathematically, the generalized regenerator location problem (GRLP) can be described as follows.
Given a network G = {N = S ∪ T ;F ;D; dmax}, where N is the set of nodes, S and T are two subsets of
N (S is the set of location nodes where regenerators can be placed, and T is the set of terminal nodes
that must communicate with each other), F is the set of edges, and D is the associated distance matrix of
edges, and a maximum distance of dmax that determines how far a signal can traverse before its quality
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Figure 1: Transform a HSP to GRLP

deteriorates and needs to be regenerated. Determine a minimum cardinality subset of nodes L ⊆ S such
that for every pair of nodes in T there exists a path in G with the property that there is no subpath
(i.e., a subsequence of edges on the path) with length > dmax without internal regenerators (i.e, we do
not include the end points of the subpath). When S = T = N we obtain a special case of the GRLP
problem that we refer to as the regenerator location problem (RLP). Here, all nodes are terminal nodes
as well as candidate locations for placement of regenerators. We introduced the RLP in [1] and presented
several heuristics and a branch-and-cut approach for it. In particular, we established a correspondence
between the RLP and the maximum leaf spanning tree problem. In this paper, we focus on the GRLP
problem. In this situation, the correspondence to the max leaf spanning tree problem does not hold.
Consequently, the heuristics and exact solution procedures we developed for the RLP do not apply to
the GRLP problem.

The rest of this extended abstract will be organized as follows: Section 2 proves that GRLP is NP-
Complete; Section 3 describes our heuristic for solving GRLP; Section 4 discusses a MIP formulation for
GRLP; and Section 5 presents some preliminary computational results from our heuristics and compares
them with the optimal solutions obtained from the MIP formulation.

2 NP-Completeness of GRLP

In this section we prove that GRLP is NP-Complete.

Theorem 1. The generalized regenerator location problem is NP-complete.

Proof. We consider a special case of Hitting Set Problem (HSP), which is stated as follows ([4]).
Instance: Collection C of subsets of a finite set S, where |c| = 2 for all c ∈ C, positive integer K ≤ |S|.
Question: Is there a subset S′ ⊆ S with |S′| ≤ K such that S′ contains at least one element from each
subset in C?

We now construct the corresponding instance of the GRLP. Create a node for every s ∈ S. Connect
all nodes in S. For every c = {c1i , c2i } in C, create a pair of nodes vi and wi. Connect vi to node c1i and
c2i (the elements of ci), and wi, c1i and c2i . Set the length of all edges in the resulting graph to dmax. Let
T = {vi, wi |i = 1, 2, ..., |C|}.

The question is whether there is a feasible solution (a set of nodes L ⊆ S where we place regenerators)
to the GRLP problem with cardinality less than or equal to K. It is easy to observe that an instance
of HSP has a ”yes” answer if and only if the corresponding GRLP has a ”yes” answer. As this is a
polynomial transformation, the decision version of the GRLP is NP-complete.

3 Proposed Heuristic

In this section, we discuss a heuristic procedure for the GRLP. Before we do, it is useful to consider the
following graph transformation of GRLP.
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Figure 2: The transformed graph B from M

Given a graph G = {N = S ∪ T ;F ;D; dmax}, apply the all pairs shortest path algorithm. Replace
edge lengths by the shortest path distance. If the edge length is less than or equal to dmax then keep the
edge, and if the edge is greater than dmax delete the edge. Denote this new graph as M (with node set N
and edge set E). We define the subgraphs induced by node sets S and T of M as MS = {S,E(S)} and
MT = {T,E(T )}), where E(S) is the set of edges with both end points in S and E(T ) is the set of edge
with both end points in T . Every node pair that is not connected by an edge in MT requires regenerators
to communicate. We call such node pairs “not directly connected” or NDC node pairs. It suffices to
consider the GRLP problem on the transformed graph M and determine the minimum cardinality subset
of nodes L, such that for the NDC node pairs in M there exists a path with regenerators at all internal
nodes on the path.

Lemma 1. Without loss of generality, we can assume that in any GRLP instance S ∩ T = ∅.

Proof. To show this, assume that we are given an instance M such that S ∩ T 6= ∅. We now show the
transformation from M into a new graph B where the set of potential regenerator locations and the set
of terminal nodes are disjoint.

• For every node i in M

1. if i ∈ T ∩ S, create an s-node si and a t-node ti, otherwise

2. if i ∈ S \ T ∩ S or i ∈ T \ T ∩ S, add i to B.

• For every edge (i, j) in M

1. if i, j ∈ T ∩ S, create four edges (si, sj), (ti, tj), (si, tj) and (sj , ti), add them to B, otherwise

2. if exactly one end point, say i ∈ T ∩ S, create two edges: (si, j) and (ti, j) in B, otherwise

3. Add (i, j) to B.

Let SB denote the set of S nodes in B and TB the set of T nodes in B. Figure 2 illustrates the
transformation from M with S = {1, 3, 6} and T = {1, 2, 4, 5} to B with SB = {s1, 3, 6} and TB =
{t1, 2, 4, 5}. Observe that any feasible solution on M can be transformed into an equivalent one on B of
the same cardinality and vice versa.

Given the previous observation, in the rest of the paper we assume that S and T are disjoint. We call
nodes in S, s nodes; and nodes in T , t nodes.

We now discuss the issue of checking feasibility of the GRLP problem. We first consider the two
disjoint induced subgraphs in B, BS = {S,E(S)} and BT = {T,E(T )}. The former contains only S
nodes and edges between them, while the latter contains only T nodes and edges between them. An
S component is a connected subgraph of BS . Observe that for an instance of GRLP to be feasible the
two end points of every NDC node pair in BT must be connected to at least one common S component.
Figure 3 identifies the S components of B in Figure 2 and replaces them with super nodes S1 and S2.
Observe that the GRLP problem on B is feasible since the two end points of every NDC node pair are
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Figure 3: S components of B and NDC node pairs in BT
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Figure 4: Illustration of Heuristic GH for GRLP

connected to at least one common S component. It is easy to show that the running time for checking
feasibility is O(|N |3) (details are left for the full length paper).

We now discuss how preprocessing can be used to reduce the problem size and fix regenerators in the
solution. Observe that (1) if t-node i in B is only connected to one other s-node j, every feasible solution
must include a regenerator deployed at node j. Once a regenerator is deployed at node j, node i can be
eliminated from B; (2) if a t-node i is connected to all other t-nodes, removal of i from B will not change
the problem; (3) if all the neighbors of a s-node i are connected to each other, removal of i from B will
not change the problem; (4) if the two end points of an NDC node pair (i, k) are connected to only one
common S-component, and i(k) is connected to only one s-node j from this S-component, any feasible
solution must deploy a regenerator at j.
Heuristic GH: This heuristic focuses on S-components. First, it selects the t-node i that has the lowest
t-degree. Next, for each S-component Sj connected to i, it identifies the subset of nodes LSmax with
the largest value of wLSj , which is defines as the ratio of the number of NDC node pairs that can be
reduced after we deploy a regenerator at every node in LSj )/|LSj |. It then adds regenerators to all nodes
in LSmax . The steps are repeated until all t nodes are connected.

We use Figure 4 to illustrate the heuristic. In (a) all t-nodes have t-degree zero, GH arbitrarily chooses
node t1. It is connected to three s-components: S1 = {s6}, S2 = {s1, s2, s3} and S2 = {s7}. Since S1
and S3 contain only single node and S2 is a spanning tree, LS1 = S1, LS2 = S2 and LS3 = S3. Their
weights are wLS1

= 1, wLS2
= 10

3 and wLS3
= 1, respectively. As wLS2

= 10
3 is the largest, we choose to

deploy regenerators at every node in LS2 . As shown in Figure 4(d) we now have a feasible solution.
After applying our heuristic GH we apply the following post-optimizer (to improve upon the heuristic

solution) which consists of two subroutines: REMOVE and 2-for-1 SWITCH. REMOVE is applied to each
S-component housing at least one regenerator location. It first tries to remove the entire S-component
(i.e., remove all regenerators that are deployed at the s-nodes in the S-component). If the S-component
cannot be completely removed, it then tries to remove some subset of the component. Finally, it tries to
remove each regenerator location in the component one at a time. The 2-for-1 SWITCH modifies the a
solution by swapping two s-nodes in the current solution with one that is not. It is first applied within
each S-component and then in between two S-components.
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4 Solving the GRLP to Optimality

In this section we describe a Multi-Commodity Flow Formulation for GRLP. Before we do so, it is useful
to consider the following graph transformation.

Transforming the GRLP into the Directed Steiner Forest Problem: Given a directed graph
H = (V,A) with nonnegative arc costs and a collection D ⊆ V ×V of ordered pairs, in the Directed Steiner
Forest problem (DSF) we are looking for the minimum cost subgraph of H that contains a directed path
for every pair of nodes in D. The DSF problem has not been investigated in the literature very intensively.
In fact, there are only few approximation algorithms known for the DSF. Dodis and Khanna [2] have
shown that the DSF cannot be approximated within O(2log1−ε n) for any fixed ε > 0, unless NP-hard
problems can be solved in quasi-polynomial time. The currently best known approximation ratio for the
DSF is O(n4/5+ε) and it was shown by Feldman et al. [3].

Despite the name that seems to suggest that any solution of the DSF must be a forest, this is in
general not always the case. In fact, the problem is a union of Steiner arborescences. In particular,
consider the set D, and denote with VO = {i ∈ B | ∃k s.t. (i, k) ∈ D}, the set of all origins, and with
VD = {i ∈ B | ∃ks.t. (k, i) ∈ D} the set of all destinations of the DSF. For each origin node r ∈ VO,
denote with VD(r) = {i ∈ VD | (r, i) ∈ D} the set of its destination nodes. The DSF problem can then
be viewed as the union of Steiner arborescences each rooted at a node r ∈ VO and connecting terminals
i ∈ VD(r). Therefore an optimal solution on H is not always cycle-free. In a common example in which
D = V ×V and all costs are equal to one, the optimal solution is given by an oriented Hamiltonian cycle.

We now show how the generalized regenerator location problem can be transformed into the DSF
problem, and then we propose a flow based formulation for it. We first transform the graph B into a
directed graph H as follows:

• For every node i in B we create two nodes i1 and i2 in H, and, if i ∈ S, we add an arc < i1, i2 >
in H with cost ci1i2 = 1. We denote the set of nodes with index 1 in H as V1, the set of nodes
with index 2 in H as V2, and the set of all nodes in H as V = V1 ∪ V2. This definition applies to
T nodes as well, so we distinguish between S1, S2, T1 and T2 in the node sets. The nodes from T2

will act as sources, the nodes from T1 as destinations, whereas the nodes from S1 ∪ S2 will help us
in modeling the node-variables of S. We refer to the set of unit cost arcs as A1.

• For every edge (i, j) in B, we add two arcs < i2,j1 > and < j2, i1 > to H with costs ci2j1 = cj2i1 = 0.
We denote these arcs by A2 and we set A = A1 ∪A2.

Consider the set of NDC node pairs in B. Each pair (u, v) of NDC nodes in B, corresponds to an ordered
pair (u2, v1) ∈ D in the graph H. We are looking for a minimum cost subgraph of H that contains a
directed path for every pair of nodes in D.

Multi-Commodity Flow Formulation for the DSF: For every pair (i, j) in D create a commodity
with origin node i, destination node j, and a requirement of 1. Let K denote the set of all commodities.
It is easy to show that by solving the following uncapacitated fixed charge network design problem on
H, we find the optimal solution of the DSF problem.

(MCF ) min
∑

<i,j>∈A
cijxij (1)

s.t.
∑

<i,j>∈A
fkij −

∑
<j,i>∈A

fkji =


−1, i = D(k)
1, i = O(k)
0, otherwise

∀i ∈ V, ∀k ∈ K (2)

0 ≤ fkij ≤ xij ∀ < i, j >∈ A ∀k ∈ D (3)

xij ∈ {0, 1} ∀ < i, j >∈ A (4)
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GH MIP
n nS nT m NF RT(sec) NF RT Diff

30 10 20 75 3 0.00 3 0.20 0
30 10 20 126 5 0.00 5 0.60 0
50 10 40 375 5 0.00 4 4.70 1
70 10 60 831 5 0.00 5 37.50 0
90 10 80 1439 6 0.00 6 102.50 0

110 10 100 2229 6 0.00 6 194.40 0
70 20 50 1219 11 0.00 10 67.80 1
80 20 60 1724 12 0.00 12 146.00 0

100 20 80 3073 14 0.00 - - -
50 30 20 178 6 0.00 5 9.70 1
70 30 40 713 9 0.00 9 503.90 0
80 30 50 1144 11 0.00 - - -
90 30 60 1620 10 0.00 - - -

100 30 70 2092 10 0.00 - - -
100 30 70 2074 10 0.00 - - -
110 30 80 2790 12 0.00 - - -
80 40 40 762 12 0.00 10 808.00 2

100 40 60 1755 14 0.00 - - -
100 40 60 1724 14 0.00 - - -
120 40 80 3073 17 0.00 - - -

Table 1: Computational Results for GH v.s MIP

5 Computational Results

We now briefly discuss our computational experience with our heuristic. We compared our heuristic with
the exact solution obtained by applying CPLEX 11.0 (a commercial MIP solver) to the Multi-Commodity
flow formulation. All results were obtained on a 2GHz PC with 3GB memory running under Windows
XP. We generated 20 instances where the underline graphs have all edges longer than dmax eliminated
and only pure s and t nodes. All instances are also generated so that they are feasible.

We now discuss the performance of the heuristic GH. Table 1 summarizes our the results. ”n” is
the number of nodes; ”nS” is the number of s-nodes; ”nT” is the number of terminal nodes; ”m” is the
number of NDC node pairs; ”NF” is the number of regenerators; ”RT” is the running time in seconds;
”Diff” is the difference between the heuristic solution and the optimal solution. The empty cells indicate
that the MIP solver cannot produce the optimal solutions due to lack of memory.

Observe that CPLEX succeeds in finding the optimal solutions for 11 instances, for which our heuristic
finds the optimal solutions for 7 but at a much faster pace. Diff ranges from 0 to 2. Based on these
limited computational results, our heuristic appears to have good potential for application to large-sized
problems. As part of the future work we wish to improve the performance of our heuristic and also find
tighter lower bounds that can help us better evaluate the performance of our heuristic.
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