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Abstract

Connected Facility Location (ConFL) is a problem that combines network design and facility location aspects:
given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for
the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities
via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs
need to be minimized.
In the Hop Constrained Facility Location Problem (HC ConFL) the number of edges between the root and any
open facility should not exceed a given number H > 1. We develop 16 mixed integer programming models for this
problem. In branch-and-bound frameworks the quality of linear programming lower bounds of these formulations
is of particular interest. In this theoretical study we compare the relative quality of these relaxations and provide
a hierarchy of the corresponding models.
This paper comprises a first theoretical study on polyhedral aspects of this problem of great practical importance
in the design of telecommunication or data-management networks.
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1. Introduction

The Connected Facility Location problem (ConFL) is defined as follows: We are given an undirected graph
(V, E) with R ⊂ V being the set of customers, F ⊂ V the set of facilities, and S ′ = V \(F∪R) the set of intermediate
nodes and the root node r ∈ F. There are two sets of edges: core edges ES ⊆ V × V that can be used to connect
the set of open facilities to the root, and assignment edges ER ⊆ F × R that can be used to assign customers to
open facilities. We are also given costs of core edges cc

e ≥ 0, e ∈ ES , assignment costs ca
e ≥ 0, e ∈ ER and facility

opening costs f j ≥ 0, j ∈ F. The root node is always considered as an open facility. The goal is to find a subset of
open facilities such that:

• each customer is assigned to an open facility,

• a Steiner tree (consisting of core edges) connects all open facilities, and

• the sum of assignment, facility opening and Steiner tree costs is minimized.

If a facility node j ∈ F is part of the core network without serving any customer, then j does not incur any opening
costs and it is considered as an intermediate node (also referred to as Steiner node). Customer nodes may be used
as Steiner nodes as well. In [1] we have shown that without loss of generality, one may assume that sets F, R
and S ′ form a non-trivial partition of V . This implies that the sets of core and assignment edges will be disjoint
(ER ∪ ES = E, ER ∩ ES = ∅), and hence we will use the same notation ce, for e ∈ ES ∪ ER, instead of cc

e and ca
e .

By S = F ∪ S ′ we will denote the set of nodes building the core network.
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If connection costs are non-negative, there always exists an optimal ConFL solution that obeys a tree structure.
In such simply connected graphs, reliability against a single edge/node failure is not provided. More precisely,
the probability that a communication will be interrupted by a link/node failure increases with the number of
links/nodes in the path between the root and an installed facility. Typically, in applications of ConFL like content
distribution networks [2] or telecommunication networks [1], economic arguments do not allow the installation of
survivable networks with higher edge/node connectivity. Since paths with fewer hops have a better performance,
these reliability constraints are modeled using hop constraints. In the tree representing a feasible ConFL solution,
the number of edges on the path between the root node and an open facility is usually called the number of hops.

Based on this definition the Hop Constrained Connected Facility Location Problem (HC ConFL) is: Given an
instance of the rooted ConFL and an integer number H > 1, find a minimum-cost solution that is valid for ConFL
and in which there are at most H hops between the root and any open facility.

An instance of HC ConFL is shown in Figure 1a). Figure 1b) illustrates a feasible solution for H ≥ 2. In this
and all succeeding examples we use the following symbols: r represents the root node, represents a Steiner

node, j represents a facility j, represents a customer. In these examples the default edge/arc values, facility
opening and assignment costs are all set to one. Costs different from one are displayed next to the respective arc /

node. The core network is presented as undirected graph.
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Figure 1: a) Original instance; b) Feasible solution.

1.1. Literature Review

The Hop Constrained Connected Facility Location Problem has first been considered in [3]. There we prove
that the HC ConFL is not in APX and describe how to model the HC ConFL as Connected Facility Location
problem on a layered graph. We give a polyhedral comparison of six cut set based and one compact formulation.
In a computational study we show that the branch-and-cut approach, based on a weaker cut set model on a layered
graph, computationally outperforms the layered graph model with stronger LP relaxation bounds.

Two combinatorial optimization problems closely related to HC ConFL, the Connected Facility Location prob-
lem and the Steiner tree problem with hop constraints, have been intensively studied in the literature.

The Connected Facility Location problem. Early work on ConFL mainly includes approximation algorithms. The
currently best-known (constant) approximation ratio is provided by Eisenbrand et al. [4]. Ljubić [5] describes a
hybrid heuristic combining Variable Neighborhood Search with a reactive tabu search method and compares it to
an exact branch-and-cut approach and two new sets of test instances. Tomazic and Ljubić [6] present a Greedy
Randomized Adaptive Search Procedure (GRASP) for the problem. Bardossy and Raghavan [7] develop a dual-
based local search (DLS) heuristic for a generalization of the ConFL problem. Leitner and Raidl [8] present a
branch-and-cut-and-price approach for a variant of ConFL with capacities on facilities.

In [1] we provide a complete hierarchy of ten MIP formulations with respect to the quality of their LP-bounds
and compare them in a computational study. Formulations that model connectivity of customers give better lower
bounds than their counterparts modeling connectivity of facilities but a cut set based model using the latter shows
the best performance in practice.

The Steiner tree problem with hop constraints (HCSTP). In the hop constrained Steiner tree problem, the goal
is to connect a given subset of customers at minimum cost, while using a subset of Steiner nodes, so that the
number of hops between the root and each terminal does not exceed H. A large body of work has been done for
the Minimum Spanning Tree problem with hop constraints (HCMST), a special case of the HCSTP where each
node in the graph is a terminal. A recent survey for the HCMST can be found in [9]. Gouveia et al. [10] use a
reformulation on layered graphs to develop the strongest MIP models known so far for the HCMST.
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Much less has been said about the HCSTP: The earliest work is by Gouveia [11]. The author develops a
strengthened multi-commodity flow model for HCMST and HCSTP. The obtained LP lower bounds are equal to
those of a Lagrangean relaxation approach described in [12].

Voß [13] presents MIP formulations based on Miller-Tucker-Zemlin constraints. The models are strengthened
by disaggregation. A simple heuristic and numerical results are also provided. Gouveia [14] gives a survey of
hop-indexed tree and flow formulations for the hop constrained spanning and Steiner tree problem.

Costa et al. [15] compare a greedy heuristic, a destroy-and-repair algorithm and a tabu search approach for
a HCSTP with revenues and budget constraints. In [16] the same authors introduce new formulations based on
generalized subtour elimination constraints and a set of hop constraints of exponential size. They compare them
to the models presented in Voß [13] and Gouveia [14] both theoretically and computationally.

1.2. Our Contribution

There are two ways to define hop constraints on a ConFL instance: a) there are at most H hops between the
root and any open facility, or b) there are at most H + 1 hops between the root and any customer. Correspondingly,
following one or the other concept, various formulations can be derived using, e.g., path or jump inequalities,
multi-commodity flows or layered graphs to model hop constraints. We introduce 16 formulations to model
HC ConFL and provide a full polyhedral comparison of these models. We thereby show that the approaches
proposed in [3] are stronger than all other approaches found in the literature so far and that the models based on
the customers-hops concept are in most cases stronger than their facility-hops based counterparts.

This paper comprises a first theoretical study on polyhedral aspects of this problem of great practical impor-
tance in the design of telecommunication or data-management networks.

2. (M)ILP Formulations for HC ConFL

Problem formulations on directed graphs often give better lower bounds than their undirected equivalents (see,
e.g., [17]). By replacing edges between nodes in S by two directed arcs of the same cost and each edge between
a facility and a customer by an arc directed from the facility towards the customer, undirected instances can be
transformed into directed ones [1]. In the remainder of this paper we will focus on the Hop Constrained Connected
Facility Location problem defined on a directed graph G = (V, A) where A = AS ∪ AR and AR = { jk | j ∈ F, k ∈
R, { j, k} ∈ ER}, AS = {i j, ji | e = {i, j} ∈ ES }. We will refer to AR as assignment arcs and to AS as core arcs.
Furthermore, for any W ⊂ V we denote δ−(W) and δ+(W) by {i j ∈ A | i < W, j ∈ W} and {i j ∈ A | i ∈ W, j < W},
respectively.

To model the problem, we will use the following binary variables:

xi j =

1, if i j belongs to the solution
0, otherwise

∀i j ∈ A z j =

1, if j is open
0, otherwise

∀ j ∈ F

We define x(D) =
∑

i j∈D xi j, for every D ⊆ A. By P(.) we denote the polytope of the LP-relaxation of any of the
MIP models described in the following. By Px,z(.) we denote the orthogonal projection of that polytope onto the
space of variables x and z. By υLP(.) we denote the value of the optimal LP-solution over the polytope P(.). We
call formulation A stronger than formulation B if υLP(A) ≥ υLP(B) for all instances of HC ConFL. The relation is
referred to as strictly stronger, if there exist instances for which υLP(A) > υLP(B). A constraint set C is referred to
as (strictly) dominating constraint set D if the model obtained by replacing D by C is (strictly) stronger than the
original one.

2.1. Cut Set Based Formulations for ConFL

To model the ConFL problem without hop constraints, we may follow two concepts to describe connectivity:
(a) Customer based approach: we ensure that there is a path between the root and each customer, where in addition,
facilities adjacent to customers in the solution need to be open, or (b) Facility based approach: we ensure that the
solution defined on the assignment graph AR is a feasible facility location solution, and in addition, there is a path
between the root and each open facility.
Considering corresponding ConFL models proposed in the literature, the best lower bounds can be obtained using
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the model based on directed cut set inequalities for the customer based approach, which is given as follows:

(CUTR) min f (x, z) =
∑
i j∈A

ci jxi j +
∑
j∈F

f jz j

s.t.
∑

uv∈δ−(W)

xuv +
∑

jk∈AR: j<W

x jk ≥ 1 ∀W ⊆ S \ {r},W ∩ F , ∅, ∀k ∈ R (CR)∑
jk∈AR

x jk = 1 ∀k ∈ R (1a)

x jk ≤ z j ∀ jk ∈ AR (1b)
zr = 1 (1c)

xi j ∈ {0, 1} ∀i j ∈ AS (1d)
x jk ∈ [0, 1] ∀ jk ∈ AR (1e)
z j ∈ {0, 1} ∀ j ∈ F (1f)

The objective comprises the cost for the Steiner arborescence (i.e., the cost of the core network,
∑

i j∈AS
ci jxi j), the

cost to connect customers to facilities (that we also refer to as assignment cost, i.e.
∑

i j∈AR
ci jxi j) and the facility

opening cost (
∑

j∈F f jz j). Inequalities (CR) represent the set of connectivity cuts. For every subset W ⊆ S \ {r} and
for each customer k ∈ R, an open arc from a facility in W toward j, necessitates a directed path from r towards
W. Constraints (1a) ensure that every customer is connected to one facility, constraints (1b) guarantee that each
facility is opened if a customer is assigned to it, equation (1c) defines the root node. Constraints (1a) are redundant
in case that c jk > 0 for all jk ∈ AR.

If we replace (CR) by the following constraints,∑
uv∈δ−(W)

xuv ≥ z j ∀W ⊆ S \ {r}, ∀ j ∈ W ∩ F , ∅ (CF)

we obtain a facility based cut set model. We refer to it as CUTF . We have shown in [1] that the LP-relaxation
lower bounds of this formulation may be |F| − 1 times worse than the bounds of CUTR. HC ConFL contains
ConFL as a special case. Thus, this result still holds for HC ConFL as well.

When considering models involving variables x and z only, there are two ways to extend the cut set based
formulations to model hop constraints: (i) path based and (ii) jump based inequalities. The earlier have been
mentioned by Costa et al. [16], the latter are a development of Dahl et al. [9]. Both classes of inequalities are of
exponential size. They can be used to model facility based or customer based hop constraints. We discuss these
variants below.

2.1.1. Cut Set Formulations with Path Constraints
Let P = {(i1, j1), . . . , (il, jl)} with i1 = r, jl ∈ F \ {r} and jk−1 = ik, k = 2 . . . l denote a simple path with l arcs

between the root node and a facility. For a given number l, let Pl be the set of all such paths P consisting of l arcs.

Facility based path constraints. Observe that for any path on the core graph consisting of H + 1 arcs at most
H arcs are allowed to be open in a valid solution. This can be ensured using the following facility based path
constraints: ∑

uv∈P

(xuv + xvu) ≤ H ∀P ∈ PH+1, P ⊆ AS (P1)

These constraints are a lifted version of the path constraints∑
uv∈P

xuv ≤ H ∀P ∈ PH+1, P ⊆ AS (P2)

that have been proposed in [16] for a related variant of the hop constrained Steiner tree problem. Our new path
constraints (P1) are even strictly stronger than (P2) as is shown in the example in Figure 2.
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Customer Based Path constraints. When considering the graph G, only rooted paths whose length does not exceed
H + 1 are allowed. Therefore, we can ensure that the number of hops between the root and any customer does not
exceed H + 1 using the following customer based path constraints:∑

uv∈P

(xuv + xvu) + x jk ≤ H + 1 ∀P ∈ PH+1, P ⊆ AS , jk ∈ AR (P3)

For design variables x taking values less or equal than 1, constraints (P3) are implied by (P1). Hence, in the
remainder of this paper we will only consider facility based path constraints.
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Figure 2: a) An instance for HC ConFL for which the hop limit H is 2. b) A solution for the instance in a) in which xr1 = xr2 = x1s = xs2 =

x2s = xs1 = 0.5. It is only valid for model CUTR (or CUTF ) in which constraints (P1) are replaced by the weaker constraints (P2).

The cut set formulation CUTR (CUTF) in which hop constraints are modeled using facility based path con-
straints will be denoted by CUTP

R (CUTP
F).

Lemma 1. υLP(CUTP
R) ≥ υLP(CUTP

F).

Proof. Any LP-optimal solution of the model CUTR is also feasible for the model CUTF and has the same objec-
tive value. Since the constraints (P1) are common in both models, the result follows immediately.

2.1.2. Cut Set Formulations with Jump Constraints
To formulate cut set based models for HC ConFL with jump constraints we use the notation proposed in [9].

Again, we will propose two classes of jump constraints derived on the ideas of measuring the distance between
the root and (i) an open facility, or (ii) a customer.

Facility based jump constraints. Let S 0, S 1, . . . , S H+1 be a partition of S into (possibly empty) subsets but such
that r ∈ S 0 and S H+1 ∩ F , ∅. We call J = J(S 0, S 1, . . . , S H+1) =

⋃
(i, j):i< j−1[S i, S j] where [S i, S j] = {uv ∈ A :

u ∈ S i, v ∈ S j} a H-jump. Using JH , the set of all possible H-jumps, we can formulate hop constraints on the core
graph by using the following jump inequalities:∑

i j∈J

xi j ≥ zl ∀J ∈ JH , S H+1 = {l}, l ∈ F. (JF)

Given a feasible ConFL solution, constraints (JF) ensure that for any open facility, at least one edge in each of the
jumps is used, i.e., the path between the root and the facility is at most H.

Lemma 2. Every jump constraint defined on a partition of the nodes such that |S H+1| ≥ 2 and S H+1 ∩ F , ∅ is
implied by a jump constraint for a partition of the nodes such that S H+1 = {l}, l ∈ F.

Proof. The set of arcs in the jump can only become smaller when a node from S H+1 is moved to S H .

Lemma 3. Connectivity cuts (CF) are contained in the family of facility based jump constraints if empty subsets
are allowed in the partitions defining the jumps.

Proof. An inequality (CF) for W ⊆ S \ {r} is the jump inequality for the following partition of the node set:
S H+1 = { j} such that j ∈ W ∩ F, S H = W \ { j}, S 0 = S \W and S i = ∅ for i = 1, . . . ,H − 1.

To the best of our knowledge, this class of jump constraints involving arc and node variables has not been used
in the literature so far. Besides HC ConFL, these inequalities are of particular importance when modeling other
hop constrained network design problems with node variables, like the hop constrained prize-collecting STP or
STP with revenues, budget and hop constraints (see, e.g., [15]). In the following, let CUT J

F denote the formulation
given by replacing constraints (P1) by (JF) in formulation CUTP

F .
An illustration of the jump set for J = J(S 0, S 1, . . . , S 4) is given in Figure 3.
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Figure 3: Illustration of the arcs contained in a jump for H = 3.

Customer based jump constraints. Let S 0, S 1, . . . , S H+2 be a partition of S such that S H+2 = {k}, k ∈ R and
{r} ∪ R \ {k} ⊆ S 0. We call J = J(S 0, S 1, . . . , S H+2) =

⋃
(i, j):i< j−1[S i, S j] a (H + 1)-jump. Using JH+1, the set of all

possible (H +1)-jumps, we can formulate hop constraints on the core and assignment graph by using the following
jump inequalities. ∑

i j∈J

xi j ≥ 1 ∀J ∈ JH+1. (JR)

Lemma 4. Connectivity cuts (CR) are contained in the family of customer based jump constraints if empty subsets
are allowed in the partitions defining the jumps.

Proof. An inequality (CR) for W ⊆ S \ {r} and k ∈ R is the jump inequality for the following partition of the node
set: S H+2 = {k}, S H+1 = W, S 0 = V \ (W ∪ {k}) and S i = ∅ for i = 1, . . . ,H − 1.

Lemma 5. υLP(CUT J
R) ≥ υLP(CUT J

F).

Proof. See the argument in the proof of Lemma 1.

Lemma 6. Under LP optimality conditions (∀ j ∈ F : z j > 0 ⇒ ∃ k ∈ R : x jk = z j), customer based jump
constraints (JR) are strictly stronger than the facility based ones, (JF).

Proof. Let (x, z) be a vector satisfying customer based jumps and also such that ∀ j ∈ F : z j > 0 ⇒ ∃ k ∈ R : x jk =

z j. Then, we will show that (x, z) also satisfies facility based jump constraints, for any given H-jump partition set
J = J(S 0, S 1, . . . , S H+1 = { j}), j ∈ F, r ∈ S 0. Assume the opposite, i.e., that there exists a facility jump J ∈ JH

violated by (x, z), which means x(J) < z j. The customer jump J′ = J′(S 0, S 1, . . . , S H+1 = { j}, S H+2 = {k}) for k
chosen such that x jk = z j is then also violated:

x(J′) = x(J) +
∑

i∈F\{ j}

xik
(1a)
= x(J) + 1 − x jk < z j + 1 − z j = 1,

which is a contradiction. To show that the constraints (JR) are strictly stronger than (JF), consider the example in
Figure 4 a): The customer jump constraint for the partition into subsets S 0 = {r}, S 1 = {1}, S 2 = {2}, S 3 = {3, 4}
and S 4 = {c} is violated by the solution depicted in Figure 4 b).
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Figure 4: a) HC ConFL instance for which H = 2; b) Solution that is cut off by customer jumps, but not by facility jumps. Dashed lines
correspond to xi j = 0.5, i j ∈ A.

The formulation derived by replacing inequalities (P1) by (JR) in CUTP
R will be denoted by CUT J

R. It is an
open question whether the separation of jump constraints is polynomially solvable.
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2.2. Flow-based Formulations
In this section we present several ways to model HC ConFL using flow-based formulations.

2.2.1. Multi-Commodity Flow Formulations
Balakrishnan and Altinkemer [18] and Gouveia [12] have used multi-commodity flow formulations for net-

work design problems with hop constraints. In both papers the authors limit the amount of flow for each com-
modity by the hop limit. Together with flow preservation constraints, this idea can be used to derive two valid
MIP models for HC ConFL. In the facility based model, commodities will correspond to open facilities, in the
customer based model, commodities will be customers.

Multi-Commodity Flow with One Commodity per Facility. Choosing one commodity per facility, each variable
indicating an open facility is linked to a distinct commodity. A multi-commodity flow formulation with one
commodity per each facility ensures connectivity of the solution and limits the number of hops at the same time.
Variables gk

i j will be set to one if facility k ∈ F is open and a path between the root and k uses arc i j ∈ AS . The
model is given by:

(MCFF) min
∑
i j∈A

ci jxi j +
∑
j∈F

f jz j

s.t.
∑
ji∈AS

gk
ji −
∑

i j∈AS

gk
i j =


zk

−zk

0

i = k
i = r
i , k, r

∀i ∈ S ∀k ∈ F \ {r} (2a)

0 ≤ gk
i j ≤ xi j ∀i j ∈ AS , ∀k ∈ F \ {r} (2b)∑

i j∈AS

gk
i j ≤ H ∀k ∈ F \ {r} (2c)

(1a) − (1f)

Equations (2a) are the flow preservation constraints defining the flow from the root node to each facility. These
constraints ensure the existence of a connected path from r to every open facility. The coupling constraints (2b)
guarantee that the arc is open if a flow is sent through it. The maximum number of hops on the path from r to k
is modeled by inequalities (2c). The remaining constraints ensure that the solution on the assignment subgraph
induced by AR is a feasible facility location solution.

Constraints (2c) can be replaced by stronger ones,∑
i j∈AS

gk
i j ≤ H · zk ∀k ∈ F \ {r}. (3)

Thereby we obtain a formulation that we denote by MCF+
F .

Multi-Commodity Flow with One Commodity per Customer. Another choice for the commodities we use, is the
set of customers. Assigning a commodity of demand 1 to each customer allows to remove the z variables from the
flow preservation constraints. We obtain formulation MCFR by replacing (2) by the following set of constraints:

∑
ji∈A

f k
ji −
∑
i j∈A

f k
i j =


1
−1

0

i = k
i = r
i , k, r

∀i ∈ V ∀k ∈ R (4a)

0 ≤ f k
i j ≤ xi j ∀i j ∈ A, ∀k ∈ R (4b)∑

i j∈A

f k
i j ≤ H + 1 ∀k ∈ R (4c)

Constraints (4a) and (4b) guarantee the existence of a directed path from the root r to customer k. Together with
constraints (4c) this path contains at most H + 1 arcs.

Note that in this formulation variables x jk can be replaced by flows f k
jk for all jk in AR, as we have already

shown in [1]. Also note that given the assignment (1d) and coupling constraints (4b) for i j ∈ AR, inequalities (4c)
are equivalent with the following inequalities in which flow is only restricted on the core graph:∑

i j∈AS

f k
i j ≤ H ∀k ∈ R (5)
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Lemma 7. υLP(MCFR) ≥ υLP(MCFF). Furthermore, there exist HC ConFL instances for which the strict inequal-
ity holds.

Proof. We show that every LP-optimal solution (x, z, f) in P(MCFR) can be projected into a feasible solution from
P(MCFF) by decomposing the flows to the customers into facility flows. Given an LP-optimal solution (x, z, f) ∈
P(MCFR) we define the capacities on the subgraph GS = (S , AS ) as xi j, for all i j ∈ AS . Since xi j = maxk∈R f k

i j,
and z j = max jk∈AR x jk, there will be enough capacity to independently route z j units of flow, for all j ∈ F, such that
z j > 0. Now, we are going to construct (x, z, g) ∈ P(MCFF) as follows: We fix the ordering of the outgoing arcs
of every node i ∈ S and then apply an adapted Ford-Fulkerson maximum flow algorithm. To define g, we send
z j units of flow from r towards j ∈ F, for all j ∈ F such that z j > 0. When searching for augmenting paths, we
always follow the fixed ordering. Therefore, the outgoing arcs of a node always get saturated in the same order,
independently of the commodity under consideration.
From equations (4a) we have

∑
jk∈AR

f k
jk = 1 for all k ∈ R and thus also

∑
i j∈AS

f k
i j ≤ H holds for all k ∈ R. The

objective value of the feasible solution (x, z, g) is the same as υLP(MCFR) and it is at most the value of the optimal
LP-solution over P(MCFF), which concludes this part of the proof.
Example 1 in Figure 6 shows a HC ConFL instance such that υLP(MCFR) = 28 > 18 = υLP(MCFF).

2.2.2. Hop Indexed Multi-Commodity Flow Formulations
We now present two four-index models that are obtained from the previous ones by disaggregating flow vari-

ables for each arc and each commodity according to the arc’s distance from the root. This idea has been originally
proposed by Gouveia [11] where he developed a hop indexed formulation for the HCMST and HCSTP.

As for the MCF models, there are two choices on the commodities considered, facilities or customers. The
variant in which facilities resemble commodities is a disaggregation of MCFF , the other one is based on MCFR.

Hop Indexed Multi-Commodity Flow Between Root and Facilities. Let gkp
i j denote the flow towards facility k ∈ F,

over arc i j, at position p on the path from r to k. Then formulation HDF using hop-indexed multi-commodity
flows from the root to facilities is given by replacing (2a)-(2c) with the following set of constraints:∑

ji∈AS

gk,p−1
ji −

∑
i j∈AS

gkp
i j = 0 ∀k ∈ F \ {r}, i ∈ S \ {r, k}, p ∈ IH

2 (6a)

−
∑

r j∈AS

gk1
r j = −zk ∀k ∈ F \ {r} (6b)

H∑
p=1

∑
jk∈AS

gkp
jk = zk ∀k ∈ F \ {r} (6c)

gkp
i j = 0 ∀i j ∈ AS , k ∈ F \ {r},

i , r, p = 1
i = r, p ∈ IH

2

(6d)

H∑
p=1

gkp
i j ≤ xi j ∀i j ∈ AS , k ∈ F \ {r} (6e)

gkp
i j ≥ 0 ∀i j ∈ AS , k ∈ F \ {r}, p ∈ IH

1 (6f)

Equations (6a) - (6c) are flow conservation constraints. Equalities (6a) set the outflows of a commodity equal
to the inflows of the same commodity one position earlier. Constraints (6b) ensure that zk units of commodity k
leave the root, constraints (6c) ensure they terminate in the respective facility. Constraints (6d) fix some flows to
zero: Flows at position one are limited to arcs emanating from the root, flows at a higher position than one don’t
emanate from the root. Inequalities (6e) ensure an arc is in the solution if flow is sent through it.

In contrast to the model in [11] we do not consider variables gkp
kk in our model. Thus, commodity flows can

end in the respective facility at any position. All flows fixed to zero in (6d) could be removed from the model but
they are kept to simplify the notation of constraints (6a)-(6c).

Hop Indexed Multi-Commodity Flow Between Root and Customers. Based on the MCFR model, we can now
derive a different hop-indexed formulation. Let f kp

i j denote the flow towards customer k ∈ R, over arc i j, at position
p of the path from r to k. Disaggregation HDR of model MCFR is obtained by replacing constraints (4a)-(4c) by

8



the following: ∑
ji∈AS

f k,p−1
ji −

∑
i j∈A

f kp
i j = 0 ∀i ∈ S \ {r}, k ∈ R, p ∈ IH+1

2 (7a)∑
r j∈A

f k1
r j = 1 ∀k ∈ R (7b)

H+1∑
p=1

∑
jk∈AR

f kp
jk = 1 ∀k ∈ R (7c)

f kp
i j = 0 ∀i j ∈ A, k ∈ R,


i , r, p = 1
i = r, p ∈ IH+1

2

i j ∈ AS , p = H + 1
(7d)

H+1∑
p=1

f kp
i j ≤ xi j ∀i j ∈ A, k ∈ R (7e)

f kp
i j ≥ 0 ∀i j ∈ A, k ∈ R, p ∈ IH+1

1 (7f)

Constraints (7a), (7b) and (7c) are flow preservation constraints similar to the ones in HDF . Constraints (7d)
fix some flows to zero as in HDF : Flows at position one are only allowed to emanate from the root node. No flows
in a later position can occur on arcs leaving the root. Inequalities (7e) ensure an arc is in the solution if there is
flow on it.

Lemma 8. υLP(HDR) ≥ υLP(HDF). Furthermore, there exist HC ConFL instances for which the strict inequality
holds.

Proof. Every LP-optimal solution (x, z, f) in P(HDR) can be projected into a feasible solution from P(HDF) using
a similar procedure as the one described in the proof of Lemma 7. Example 1 in Figure 6 shows a HC ConFL
instance such that υLP(HDR) = 28 > 18 = υLP(HDF).

2.3. A Formulation Based on Subtour Elimination Constraints
Miller-Tucker-Zemlin Formulation. Miller-Tucker-Zemlin constraints [19] have been applied to a number of prob-
lems. Besides Connected Facility Location [1] we shall mention the models for the Hop Constrained Minimum
Spanning and Steiner Tree Problem [16, 20]. In addition to variables x and z, we now introduce hop variables
ui ≥ 0, for all i ∈ S . These indicate the distance in hops of each node i from the root. The root node has a distance
of zero.

Using the Miller-Tucker-Zemlin (MTZ) constraints (see, e.g., [14]), HC ConFL can be stated as min f (x, z)
subject to

(MTZ) Hxi j + ui ≤ u j + (H − 1) ∀i j ∈ AS (8a)∑
i j∈AS ,i,k

xi j ≥ x jk ∀ j ∈ S \ {r}, k ∈ V (8b)

ur = 0 (8c)
1 ≤ ui ≤ H ∀i ∈ S \ {r} (8d)

(1a) − (1f)

Constraints (8a) are Miller-Tucker-Zemlin subtour elimination constraints, setting the difference u j − ui for an
open arc i j to at least 1. They thereby eliminate cycles in the Steiner tree connecting the facilities and paths on the
core graph with more than H arcs. Constraints (8b) limit the out-degree of a node by its in-degree. Constraint (8c)
sets the hop variable to zero for the root node.

It is not difficult to see that customer based MTZ formulation leads to the model with the same quality of lower
bounds. We therefore consider only one MTZ model here.

2.4. Hop-Indexed Tree Formulations
By disaggregating arc variables in the MTZ formulation according to their distance from the root node, we ob-

tain a model which is known as the hop-indexed tree model (see Gouveia [14] and Voß [13]). To model HC ConFL,
there are two options for the hop-indexed variables. We can consider them on the whole graph or alternatively we
can separate core and assignment graph and link them by the z-variables indicating the use of facilities.
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Hop-Indexed Tree on the Entire Graph. Let Xp
i j indicate whether arc i j ∈ A is used at the p-th position from the

root node. Then we can model HC ConFL by min f (x, z) subject to:

(HOPR)
∑

i∈S \{k}:
i j∈AS

Xp−1
i j ≥ Xp

jk ∀ jk ∈ A, j , r, p ∈ IH+1
2 (9a)

H+1∑
p=1

∑
jk∈AR

Xp
jk = 1 ∀k ∈ R (9b)

H+1∑
p=1

Xp
jk ≤ z j ∀ jk ∈ AR, j , r (9c)

H+1∑
p=1

Xp
i j = xi j ∀i j ∈ A (9d)

Xp
i j = 0 ∀i j ∈ A,


i j ∈ AS , p = H + 1
i = r, p ∈ IH+1

2

i , r, p = 1
(9e)

Xp
i j ∈ {0, 1} ∀i j ∈ A, p ∈ IH+1

1 (9f)

Constraints (9a) are connectivity constraints. As Xp
i j are binary, they eliminate cycles as well. Constraints (9c)

ensure a facility is open if it serves a customer. Constraints (9b) ensure that each customer is served. Equations (9e)
fix some of the Xp

i j to zero: Arcs emanating from the root can only be 1 hop away from it. Conversely, all other
arcs are at least two hops away from the root. Equalities (9d) link the disaggregated variables X to the variables in
the original space.

Hop-Indexed Trees on the Core Graph. As in the previous facility based approaches we separate core and assign-
ment graph and link them by variables z j, j ∈ F. After replacing variables Xp

jk, jk ∈ AR from formulation HOPR

by assignment variables x jk, jk ∈ AR, we can formulate HC ConFL using hop constraints only on the core graph
as min f (x, z) such that

(HOPF)
∑

i∈S \{k}:
i j∈AS

Xp−1
i j ≥ Xp

jk ∀ jk ∈ AS , j , r, p ∈ IH
2 (10a)

∑
i j∈AS

H∑
p=1

Xp
i j ≥ z j ∀ j ∈ F\{r} (10b)

H∑
p=1

X′pi j = xi j ∀i j ∈ AS (10c)

Xp
i j = 0 i j ∈ AS ,

i = r, p ∈ IH
2

i , r, p = 1
(10d)

Xp
i j ∈ {0, 1} ∀i j ∈ AS , p ∈ IH

1 (10e)

(1a) − (1c),(1e), (1f)

Constraints (10a) are connectivity constraints like (9a). Similarly, inequalities (10b) link open facilities to their
in-degree. Constraints (10d) are similar to (9e). Equalities (10c) link the disaggregate variables X to the variables
in the original space.

Lemma 9. υLP(HOPR) = υLP(HOPF).

Proof. To prove the relation we describe a mapping from any LP optimal solution of HOPF to a solution of HOPR

of the same objective value and vice versa.

υLP(HOPR) ≥ υLP(HOPF): Let (X, z) ∈ P(HOPR) and LP optimal. Then for any facility j ∈ F equality z j =

maxk∈R
∑H+1

p=1 Xp
jk holds. Let (X′, x′, z′) be defined as: z′j := z j for all j in F; X′pi j := Xp

i j for all i j in AS ,
p ∈ IH

1 and x′ jk :=
∑H+1

p=1 Xp
jk for all jk in AR. Then, (X′, x′, z′) has the same objective value as (X, z). To

10



conclude this part of the proof, we will show that it is a feasible solution from P(HOPF). Inequalities (10a)
and (10d) follow from (9a) and (9e). Constraints (1a) and (1b) are implied by (9c) and (9b) respectively.
For all j ∈ F \ {r} let k j := arg maxk∈R

∑H+1
p=2 Xp

jk. Then, w.l.o.g., we have z j =
∑H+1

p=2 Xp
jk j and further we have

z′j = z j =

H+1∑
p=2

Xp
jk j

(9a)
≤

H∑
p=1

∑
i j∈AS

Xp
i j =

H∑
p=1

∑
i j∈AS

X′pi j ,

hence equations (10b) also hold for (X′, x′, z′).

υLP(HOPF) ≥ υLP(HOPR) : Let (X′, x′, z′) ∈ P(HOPF) and (X, z) defined as z j := z′j for all j in F and Xp
i j :=

X′pi j for all i j in AS , p ∈ IH
1 . Let x′jk > 0 with j ∈ F\{r}, k ∈ R. From equations (10b) and (1b) we

have x′jk ≤ z′j ≤
∑

i j∈AS

∑H
p=1 X′pi j. From the right hand side we can select X∗pi j with X∗pi j ≤ X′pi j such that∑

i j∈AS

∑H
p=1 X∗pi j = x′jk. We can do so for all jk ∈ AR. Let

Xp+1
jk :=

∑
i j∈AS

X∗pi j ∀ j ∈ F\{r}, k ∈ R, p ∈ IH
1 (11)

and X1
rk := x′rk for all k ∈ R. Then we can show that (X, z) ∈ P(HOPR): Equations (9a) follow from the

definitions. Constraints (9c) follow from

H+1∑
p=1

Xp
jk

(10d)
= 0 +

H+1∑
p=2

Xp
jk

(11)
=
∑

i j∈AS

H∑
p=1

X∗pi j = x′jk ≤ z′j = z j ∀ jk ∈ AR.

Constraints (9b) follow from

H+1∑
p=1

∑
jk∈AR

Xp
jk = X1

rk +

H∑
p=1

∑
i j∈AS

X∗pi j = X1
rk +
∑

i j∈AS

H+1∑
p=1

X∗pi j =
∑
jk∈AR

x′jk
(1a)
= 1.

2.5. Modeling Hop Constraints on Layered Graphs
In [3] we have proposed several ways of modelling HC ConFL as ConFL or Steiner arborescence problem on

layered graphs. We recite the main results given there. In Section 3 we prove new relations in addition to the ones
stated in our earlier work.

There are two basic structures of layered graphs. In the customer based approach, we disaggregate both the
core and assignment graph by introducing a copy of each node in the core graph at each level h, 1 ≤ h ≤ H.
Customers can be assigned to each facility at each level via a distinct arc. In the facility based approach, copies
of facilities at a lower level than H are considered as Steiner nodes, thus the assignment graph is identical to the
one in the original graph.

2.5.1. Layered Core and Assignment Graph LGx,z (Customer Based Approach)
Consider a graph LGx,z = (Vx,z, Ax,z) defined as follows:

Vx,z := {r} ∪ S x,z ∪ R where

Fx,z = {(i, p) : i ∈ F \ {r}, p ∈ IH
1 },

S x,z = Fx,z ∪
{
(i, p) : p ∈ IH−1

1 , i ∈ S \ F
}

and

Ax,z :=
5⋃

i=1

Ai where

A1 = {(r, ( j, 1)) : r j ∈ AS },

A2 = {((i, p), ( j, p + 1)) : p ∈ IH−2
1 , i j ∈ AS },

A3 = {((i,H − 1), ( j,H)) : i j ∈ AS , i ∈ S \ {r}, j ∈ F \ {r}},

A4 = {rk : rk ∈ AR}

A5 = {((i, p), k) | ik ∈ AR, (i, p) ∈ Fx,z, k ∈ R}.
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In [3] we have shown that one can obtain the optimal solution of HC ConFL by solving ConFL on LGx,z with Fx,z

as the set of facilities. The cost structure on LGx,z is as follows: Arcs in A1 ∪ A2 ∪ A3 and A4 ∪ A5 are assigned
the cost of the corresponding arc from AS and AR, respectively. The facility opening costs are fi for all (i, p) with
p ∈ IH

1 , i ∈ F \ {r}.
An illustration of LGx,z for the example in Figure 1 is shown in Figure 5a).
We will associate binary variables to the arcs in Ax,z as follows: X1

r j corresponds to (r, ( j, 1)) ∈ A1, Xp
i j to

((i, p − 1), ( j, p)) ∈ A2, XH
i j to ((i,H − 1), ( j,H)) ∈ A3, X1

rk to rk ∈ A4 and Xp+1
ik corresponds to ((i, p), k) ∈ A5. For

notational convenience we also introduce the following variables: a) Xp
ri, for ri ∈ AS , p ∈ IH

2 ; b) Xp
rk, for rk ∈ AR,

p ∈ IH+1
2 ; c) X1

i j for i j ∈ A, i , r and d) XH
i j for i j ∈ AS , j ∈ S \ F. These variables are fixed to zero throughout the

remainder of this paper.
We link the variables introduced above to the initial ones, x and z, as follows:

xi j =

H∑
p=1

Xp
i j ∀i j ∈ AS (12a)

x jk =

H∑
p=0

Xp+1
jk ∀ jk ∈ AR (12b)

z j =

H∑
p=1

Zp
j ∀ j ∈ F \ {r} (12c)

Let X[δ−(W)] denote the sum of all variables X in the cut δ−(W) in LGx,z defined by W ⊆ Vx,z \ {r}. Model CUT x,z
F+

is then given by the following:

(CUT x,z
F+

) min f (x, z) =
∑
i j∈A

ci jxi j+
∑
j∈F

f jz j

s.t. X[δ−(W)] ≥
H∑

p=1

Zp
i ∀W : {(i, p) | p ∈ IH

1 } ⊆ W ⊆ S x,z \ {r} (13a)

0 ≤ Xp+1
jk ≤ Zp

j ∀ jk ∈ AR, p ∈ IH
1 , j , r (13b)

Xp
i j ≥ 0 ∀i j ∈ AS , p ∈ IH

1 (13c)

(1a), (1c) − (1f), (12)

Constraints (13a) are connectivity cuts on LGx,z between the root r and each set of facilities {(i, p) ∈ Fx,z | p ∈ IH
1 }.

Inequalities (13b) are coupling constraints - they necessitate a facility j at a level p to be open if a customer is
assigned to it.

If we replace (13a) and (1a) in model CUT x,z
F+

by the following inequalities we obtain formulation CUT x,z
R :

X[δ−(W)] ≥ 1 ∀W ⊆ Vx,z \ {r},W ∩ R , ∅, (14)

Inequalities (14) are connectivity cuts on LGx,z between sets containing the root and a customer respectively.

2.5.2. Layered Core Graph LGx

An alternative way of building a layered graph to model the HC ConFL problem relies on a layered graph in
which only the core network will be disaggregated while the assignment graph will be left unchanged. Consider
the graph LGx = (Vx, Ax) defined as follows:

Vx := {r} ∪ S x ∪ R where
Fx = {(i,H) : i ∈ F \ {r}} ,

S x = Fx ∪ {(i, p) : 1 ≤ p ≤ H − 1, i ∈ S \ {r}} and

Ax :=
4⋃

i=1

Ai ∪ A6 ∪ A7 where

A1, A2, A3 and A4 are defined as for Ax,z,

A6 = {((i, p), (i,H)) : 1 ≤ p ≤ H − 1, i ∈ F \ {r}} and
A7 = {(( j,H), k) : jk ∈ AR, j , r}

12



An illustration of LGx for the example in Figure 1 is shown in Figure 5b).

a) r

1,1

1,2

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

b) r

1,1

1,2

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

Figure 5: Layered graph a) LGxz and b) LGx for the instance given in Figure 1a).

The facility opening and assignment costs are left unchanged. The set AS x := A1 ∪ A2 ∪ A3 ∪ A6 determines
the layered core graph. The cost of an arc from A1 ∪ A2 ∪ A3 and A4 ∪ A7 is set to the cost of the corresponding
arc from AS and AR, respectively. Arcs between (i, p) and (i,H) are assigned costs of 0 for all p ∈ IH−1

1 and i ∈ F.
We will associate binary variables to the arcs in Ax as follows: X1

r j corresponds to (r, ( j, 1)) ∈ A1, Xp
i j to

((i, p − 1), ( j, p)) ∈ A2, XH
i j to ((i,H − 1), ( j,H)) ∈ A3, Xp

ii to ((i, p − 1), (i,H)) ∈ A6. Again, for notational
convenience, we also introduce the following binary variables but fix them to zero: a) Xp

ri, for i j ∈ AS , p ∈ IH
2 ,

and b) X1
i j, for i j ∈ AS , i , r. Since the assignment graph is left unchanged, we will associate the corresponding x

variables to the assignment graph in LGx, i.e.: x jk to (( j,H), k) ∈ A7 and xrk to rk ∈ A4. For the same reason, we
link binary variables zi to each (i,H) in Fx.

Let Xx[δ−(W)] denote the sum of all X and x variables in the cut δ−(W) in LGx defined by W ⊆ Vx \ {r}.
Formulation CUT x

F is then given as follows:

(CUT x
F) min f (x, z) =

∑
i j∈A

ci jxi j +
∑
j∈F

f jz j

Xx[δ−(W)] ≥ z j ∀W ⊆ S x \ {r}, j ∈ W ∩ Fx (15)
(1) and (12a)

Constraints (15) are connectivity cuts on LGx between sets containing the root and a facility i respectively.
Similarly, if we now replace constraints (15) and (1a) by the following ones, we obtain a stronger formulation

that we denote by CUT x
R:

Xx[δ−(W)] ≥ 1 ∀W ⊆ Vx \ {r},W ∩ R , ∅ (16)

Lemma 10 (Ljubić and Gollowitzer [3]). υLP(CUT x
R) ≥ υLP(CUT x

F). Furthermore, there exist HC ConFL in-
stances for which the strict inequality holds.

Lemma 11. υLP(CUT x,z
R ) = υLP(CUT x

R) and υLP(CUT x,z
F+

) = υLP(CUT x
F).

Proof. The proof of the first equality is given in [3]. For the proof of the second equality we show mappings for
an optimal LP-solution of CUT x,z

F+
onto a feasible solution of CUT x

F and vice versa.

υLP(CUT x,z
F+

) ≥ υLP(CUT x
F): Let (X,Z) be an optimal LP-solution of the model CUT x,z

F+
. We project (X,Z) into a

solution (X′, x′, z′) and show that it is feasible for the model CUT x
F . We set X′pi j := Xp

i j for all arcs in A1, A2

and A3; X′pj j := Zp
j (= maxk∈R Xp

jk) for all arcs in A6; x′ jk :=
∑H

p=1 Xp+1
jk for all arcs in A7; x′rk := X1

rk for all
arcs in A4; z j :=

∑H
p=1 Zp

j . All remaining X′ values are set to zero. Inequalities (13b), summed up over p,
imply inequalities (1b). Constraints (15) hold by the definition of variables z′ and X′pj j.

υLP(CUT x
F) ≥ υLP(CUT x,z

F+
): Let (X′, x′, z′) be an optimal LP-solution of the model CUT x

F . We project this vector
into (X,Z) as follows: Xp

i j := X′pi j for all arcs in A1, A2 and A3; X1
rk := x′rk for all arcs in A4. Furthermore,

we set Zp
j := X′pj j, for all arcs from A6, for p ∈ IH−1

1 , and ZH
j := z′j −

∑H−1
p=1 Zp

j , for all j ∈ F \ {r}. We then

recursively define Xp+1
jk := min(Zp

j , x
′

jk −
∑H

q=p+1 Xq+1
jk ) starting from p = H, . . . , 1. By definition, (X,Z)

satisfies constraints (12).

13



3. Hierarchy of formulations

In this section we provide a theoretical comparison of the MIP models described above with respect to optimal
values of their LP-relaxations. The examples given below are used in the proofs of this section. In the example in
Figure 6 c) H = 5, in all other examples H = 3. Recall, that the default arc, facility opening and assignment costs
are set to 1.

1)

r 1 2

3

4

5

2)

r 1 2

3

4

5

10

10

3)

r
10

4) r
10

5)

r

1 2 3

4

15

30

Figure 6: Examples 1 - 5

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
OPT 29.00 30.00 15.00 13.00 33.00
MTZ 18.00 13.93̇ 8.00 7.50 20.25
HOP{F,R} 18.00 30.00 10.33̇ 13.00 33.00
CUTP

F 18.00 19.80 15.00 8.50 27.00
CUTP

R 28.00 19.80 15.00 8.50 27.00
MCFF 18.00 21.00 15.00 8.50 23.00
MCF+

F 18.00 21.00 15.00 13.00 23.00
MCFR 28.00 21.00 15.00 9.00 23.00
HDF 18.00 30.00 15.00 13.00 33.00
HDR 28.00 30.00 15.00 13.00 33.00

Table 1: Optimal LP solutions for the examples in Figure 6.

By comparing the optimal LP solution values for the aforementioned examples, provided by the models in
Section 2, we can state the following

Lemma 12. In the following pairs of formulations neither of the two dominates the other with respect to the
quality of lower bounds:

a) HOP· and CUTP
· ,

b) HOP· and MCF(+)
· , where · is to be replaced by F or R and

c) MCF+
F and MCFR.

d) MCF(+)
· and CUTP

·

Proof. Consider the optimal LP solution values for the Examples given in Table 1.
14



Lemma 13. The following results hold:

a) υLP(CUT x
R) ≥ υLP(HDR) ≥ υLP(MCFR),

b) υLP(CUT x
F) ≥ υLP(HDF) ≥ υLP(MCF+

F) ≥ υLP(MCFF),

c) υLP(HDR) ≥ υLP(CUT J
R) ≥ υLP(CUTP

R),

d) υLP(HDF) ≥ υLP(CUT J
F) ≥ υLP(CUTP

F) and

e) υLP(HDF) ≥ υLP(HOPF) ≥ υLP(MTZ).

Proof. Strict inequalities in a) to e) follow from the optimal LP solution values in Table 1.

a) υLP(CUT x
R) ≥ υLP(HDR): By disaggregating constraints (7e) and introducing variables Xp

i j, formulation
HDR becomes a multi-commodity flow formulation for ConFL on the layered graph LGx, and hence,
equivalent to CUT x

R. Therefore, CUT x
R is at least as strong as HDR.

υLP(HDR) ≥ υLP(MCFR): HDR is a disaggregation of MCFR ( f k
i j :=

∑H+1
p=1 f kp

i j ).

b) The inclusions follow from similar arguments as those used in a), except for the following:

υLP(HDF) ≥ υLP(MCF+
F): MCF+

F is an aggregation of HDF (gk
i j :=

∑H
p=1 gkp

i j , for all i j ∈ AS ), except for
constraints (3). These are implied by the flow conservation constraints (6a)-(6c) together with the fact
that variables gkp

i j are defined only for p ∈ IH
1 , thus there is no path between r and any facility with

more than H arcs.

c) υLP(HDR) ≥ υLP(CUT J
R): Assume that (x, z) is an optimal LP solution from P(HDR) and (x, z) < P(CUT J

R).
Then there exists a (H + 1)-jump J such that

∑
i j∈J xi j = 1 − ε, and ε > 0. Because of the flow

preservation constraints (7a) - (7c) there needs to be a flow of ε on the path P = {i j : i ∈ S i, j ∈ S i+1, i =

0, . . . ,H + 1}. This flow uses H + 2 hops and cannot be composed of flow variables f kp
i j , p ∈ IH+1

1 ,
which is a contradiction.

υLP(CUT J
R) ≥ υLP(CUTP

R): Assume that (x, z) ∈ Px,z(CUT J
R) is optimal and (x, z) < Px,z(CUTP

R). Let
P = {(r, i1), (i1, i2), . . . , (iH , iH+1)} with iH+1 ∈ F be the path for which constraint (P1) is violated,
i.e. inequality

∑
i j∈P(xi j + x ji) > H holds. For the jump J with S j = {i j} for j = 1, . . . ,H + 1,

S H+2 = {k}, k ∈ R and S 0 = V \
⋃H+2

j=1 S j we have
∑

i j∈J xi j ≥ 1. Let P′ := P ∪ {(iH+1, k)}. By
adding (P1) for P and the jump constraint for J we get

∑
j:i j∈P′ x(δ−( j)) ≥

∑
i j∈J∪P xi j > H + 1, thus

x(δ−( j)) > 1 for some j ∈ {i1, . . . , iH+1}, which is a contradiction to (x, z) being an optimal LP solution.
In a similar way one can show that the jump formulation for HCSTP is stronger than the path formu-
lation [21].

d) See the arguments in c). The sum of the in-degrees of the nodes in P′ is calculated as follows:∑
j:i j∈P′ x(δ−( j)) ≥

∑
i j∈P xi j +

∑
i j∈J xi j +

∑
i∈F\{ j} xik > H + z j +

∑
i∈F\{ j} xik ≥ H +

∑
i∈F xik = H + 1.

e) υLP(HDF) ≥ υLP(HOPF) Let (x, z, f) be an optimal solution for the LP-relaxation of HDF and let (X′, x′, z′)
be defined as follows: x′ jk := x jk for all jk in AR; z′j := z j for all j in F and X′pi j := maxk∈F f kp

i j for all
i j in AS , p ∈ IH

1 .
Then (X′, x′, z′) ∈ P(HOPF): From equations (6c) and the definition of X′ we have

z j =

H∑
p=1

∑
i j∈AS

f jp
i j ≤

H∑
p=1

∑
i j∈AS

max
k∈F

f kp
i j =

H∑
p=1

∑
i j∈AS

X′pi j

for compliance with equations (10b). With k∗ := arg maxk∈F f kp
i j estimations

X′pi j = max
k∈F

f kp
i j

(6a)
≤
∑

l∈S \{ j}:
li∈AS

f k∗,p−1
li ≤

∑
l∈S \{ j}:

li∈AS

max
k∈F

f k,p−1
li =

∑
l∈S \{ j}:

li∈AS

X′p−1
li

give equations (10a). Constraints (1a) - (1c), (1e), (1f) are common in both models and thus they are
met trivially.

υLP(HOPF) ≥ υLP(MTZ): MTZ is an aggregation of HOPF (cf. [13]; u j :=
∑H

p=1 pXp
i j).
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The hierarchical scheme given in Figure 7 summarizes the relationships between the LP relaxations of MIP
models considered throughout this paper. A filled arrow specifies that the target formulation is strictly stronger than
the source formulation. A double-headed arrow denotes formulations of equal strength. Whenever formulations
are not comparable or we do not know their relation, this is not indicated in the figure for the sake of simplicity.

MTZ

HOPF ←→ HOPR

CUTP
F

CUT J
F

MCFF

MCF+
F

HDF

CUT x
F ←→ CUT x,z

F+

CUTP
R

CUT J
R

MCFR

HDR

CUT x
R ←→ CUT x,z

R

Figure 7: Relations between LP-relaxations of MIP models for HC ConFL.

4. Conclusions and Future Work

In this paper we provide an extensive theoretical comparison of the LP relaxations of 16 MIP models for HC
ConFL. We also introduce new sets of path and jump inequalities that can be used to model hop constrained tree
problems with node variables in general.
We derive two groups of models for HC ConFL: in the first one, we ensure that the number of hops between the
root and any open facility is at most H, in the second one we guarantee that the number of hops between the root
and any customer is at most H +1. The hierarchy of formulations shows that the models derived on layered graphs
provide the best quality of lower bounds.
In an accompanying paper (see Ljubić and Gollowitzer [22]), we provide a computational study on some of the
computationally tractable models presented in this paper. We show that the facility based cut model on the layered
graph (CUT x

F) outperforms its customer based counterpart (CUT x
R). Among the compact models, only the model

HOPF appears to be able to deal with larger problem instances, but it is still outperformed by the branch-and-cut
approaches.
A further study of valid and facet defining inequalities that could improve the computational efficacy remains open
and of particular interest as well.
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