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Given a set of customers, a set of potential facility locations and some inter-connection nodes,

the goal of the Connected Facility Location problem (ConFL) is to find the minimum-cost way

of assigning each customer to exactly one open facility, and connecting the open facilities via a

Steiner tree. The sum of costs needed for building the Steiner tree, facility opening costs and the

assignment costs needs to be minimized. If the number of edges between the root and an open

facility is limited, we speak of the Hop Constrained Facility Location problem (HC ConFL). This

problem is of importance in the design of data-management and telecommunication networks. We

propose two disaggregation techniques that enable to model HC ConFL: i) as directed (asymmetric)

ConFL on layered graphs, or ii) as the Steiner arborescence problem (SA) on layered graphs. This

allows for usage of best-known MIP models for ConFL or SA to solve the corresponding hop

constrained problem to optimality. In our polyhedral study, we compare the obtained models with

respect to the quality of their LP lower bounds. These models are finally computationally compared

in an extensive computational study on a set of publicly available benchmark instances. Optimal

values are reported for instances with up to 1300 nodes and 115 000 edges.
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1. Introduction

Connected Facility Location (ConFL) models data distribution and management problems in a

network setting that arises in information/content distribution networks (see, e.g. Krick et al.

(2003)). In these applications, there are facilities (e.g., servers) to be located on a network that will

cache information. Demand nodes make requests for the information. Each demand node is served

from the closest open facility. Updates to the information on the servers are made over time. Every

piece of information that is updated at a single server location, must also be updated at every other

server on the network. Therefore, we are looking for a network that opens a set of facilities such
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that each demand node is assigned to exactly one facility and facilities can communicate to each

other via a Steiner tree.

A similar problem appears in the design of the last mile telecommunication networks. In (Gol-

lowitzer and Ljubić, 2010) we have shown that the Fiber-to-the-Curb strategy is modeled by the

Connected Facility Location problem (ConFL) as follows: Fiber optic cables run from a central

office to a cabinet serving a neighborhood. End users connect to this cabinet using the existing

copper connections. Expensive switching devices are installed in these cabinets. The problem is

to minimize the costs by determining positions of cabinets, deciding which customers to connect

to them, and how to reconnect cabinets among each other and to the central office (i.e., to the

backbone) via a Steiner tree.

If connection costs are non-negative, ConFL solutions obey a tree structure. In such simply con-

nected graphs, reliability against a single edge/node failure is not provided. More precisely, the

probability that a session will be interrupted by a link/node failure increases with the number

of links/nodes in the path between the root and an installed facility. In both, data distribution

and telecommunication networks, economic arguments do not allow the installation of more sur-

vivable networks with higher edge/node connectivity. Since paths with fewer hops have a better

performance, we model these reliability constraints by generalizing the ConFL problem to the Hop

Constrained ConFL problem (HC ConFL).

Problem Definition Assuming that a root facility is given and it needs to be open in any feasible

solution, ConFL can be stated as follows:

Definition 1 (rooted ConFL). We are given an undirected graph (V,E) with a disjoint partition

{S,R} of V with R ⊂ V being the set of customers, S ⊂ V the set of possible Steiner nodes, F ⊆ S

the set of facilities, and the root node r ∈ F . We are also given edge costs ce ≥ 0, e ∈ E and facility

opening costs fi ≥ 0, i ∈ F . The root node is always considered as an open facility. The goal is to

find a subset of open facilities such that: 1) each customer is assigned to the closest open facility,

2) a Steiner tree connects all open facilities, and 3) the sum of assignment, facility opening and

Steiner tree costs is minimized.

In the tree representing a feasible ConFL solution, the number of edges on the path between

the root node and an open facility is usually called the number of hops. Based on this definition

the Hop Constrained Connected Facility Location Problem is:

2



Definition 2 (HC ConFL). Given an instance of the rooted ConFL, find a solution that is valid

for ConFL and in which there are at most H hops between the root and any open facility.

Observation 1. Using the transformation given in Gollowitzer and Ljubić (2010), any (HC)

ConFL instance, in which S ∩ R 6= ∅, can be transformed into an equivalent one such that {S,R}

is a proper partition of V .

Our Contribution We first show that HC ConFL is an NP-hard optimization problem that

does not belong to APX, i.e., it is not possible to have polynomial time heuristics that guarantee

a constant approximation ratio. By extending the ideas given by Gouveia et al. (2010) we then

propose two possibilities for modeling the hop constrained ConFL: i) as directed (asymmetric)

ConFL on layered graphs, or ii) as the Steiner arborescence (SA) problem on layered graphs. This

allows for using the best-performing mixed integer programming (MIP) models for ConFL or SA

in order to solve HC ConFL to optimality. Our layered graphs correspond to two different levels of

disaggregation of MIP variables. In a polyhedral comparison we show that the strongest models on

different layered graphs provide lower bounds of the same quality. Hence, we use the layered graph

with less edges and facilities to conduct our computational study. In an extensive computational

study, we compare the performance of several branch-and-cut algorithms developed to solve the

proposed MIP models. This is a first theoretical and computational study on MIP models for this

challenging combinatorial optimization problem.

Computational Complexity of HC ConFL A polynomial time algorithm M for an NP-hard

minimization problem is an approximation algorithm with approximation ratio α > 1 if for every

instance I, c(M(I)) ≤ αOPT (I), where c(M(I)) is the objective value of the solution M(I), and

OPT (I) is the value of the optimal solution. APX is a class of NP-hard optimization problems for

which there exist polynomial-time approximation algorithms with approximation ratio bounded by

a constant.

Lemma 1. HC ConFL (H ≥ 2) is not in APX — it is at least O(log |V |)-hard to approximate HC

ConFL, unless P = NP . The result holds even if the edge weights are all equal to 1 (ce = 1, for

all e ∈ E) and, consequently, even if the edge weights satisfy the triangle inequality.

Proof. This result can be obtained by applying an error-preserving polynomial reduction from SET

COVER. Any SET COVER instance can be reduced into a hop constrained ConFL instance in
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polynomial time, as follows. We first reduce the SET COVER instance into a hop constrained

Steiner tree instance in which all edge weights are set to 1 (see Manyem and Stallmann (1996)

or Manyem (2009)). We then reduce such obtained hop constrained Steiner tree instance into a HC

ConFL instance by defining each terminal i to be a potential facility in HC ConFL and introducing

a customer node ci for every single facility i. Each customer ci is connected only to facility i with

an edge of weight 1. The result follows immediately from the fact that SET COVER cannot be

approximated in polynomial time within any factor smaller than c lnn (c is a constant given by Alon

et al. (2006) and n is the number of items to be covered) unless P = NP .

Observe that HC ConFL becomes the uncapacitated facility location problem for H = 1: Steiner

nodes can be removed, and weights of the edges between the root and each potential facility i can

be incorporated into facility opening costs. Hence, if the edge weights satisfy the triangle inequality

and H = 1, HC ConFL belongs to APX (see, e.g. an approximation algorithm given by Mahdian

et al. (2006)).

The remainder of this paper is organized as follows: The following section provides a literature

review on some problems related to HC ConFL. In Section 3 we describe MIP formulations for

HC ConFL based on the concept of layered graphs. In Section 4 a polyhedral comparison of these

formulations is given. Section 5 describes the implementation of branch-and-cut algorithms that are

used to compare these models computationally. Section 5 contains also an extensive computational

study conducted on a set of publicly available benchmark instances.

2. Literature Review

The Hop Constrained Connected Facility Location Problem is closely related to two well-known

network design problems: the Connected Facility Location problem and the Steiner tree problem

with hop constraints.

Connected Facility Location Early work on ConFL mainly includes approximation algorithms.

The problem can be approximated within a constant ratio and currently best-known approximation

ratio is provided by Eisenbrand et al. (2010). Ljubić (2007) describes a hybrid heuristic combining

Variable Neighborhood Search with a reactive tabu search method. The author compares it with an

exact branch-and-cut approach, using two new classes of test instances. Results for these instances

with up to 1300 nodes are presented. Tomazic and Ljubić (2008) present a Greedy Randomized

Adaptive Search Procedure (GRASP) for the ConFL problem and results for a new set of test
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instances with up to 120 nodes. The authors also provide a transformation that enables solving

ConFL as the Steiner arborescence problem. Bardossy and Raghavan (2010) develop a dual-based

local search (DLS) heuristic for a generalization of the ConFL problem. The presented DLS heuristic

computes lower and upper bound using a dual-ascent and then improves the solution with a local

search procedure. Computational results for instances with up to 100 nodes are presented.

In Gollowitzer and Ljubić (2010) we study MIP formulations for ConFL, both theoretically and

computationally. We provide a complete hierarchy of ten MIP formulations with respect to the

quality of their LP-bounds. In the computational study, instances with up to 1300 nodes and

115 000 edges have been solved to optimality using a branch-and-cut approach.

The Steiner tree problem with hop constraints (HCSTP) In the hop constrained Steiner

tree problem, the goal is to connect a given subset of customers at minimum cost, while using a

subset of Steiner nodes, so that the number of hops between a root and each terminal does not

exceed H. A large body of work has been done for the Minimum Spanning Tree problem with hop

constraints (HCMST), a special case of the HCSTP where each node in the graph is a terminal.

A recent survey for the HCMST can be found in Dahl et al. (2006). Gouveia et al. (2010) use a

reformulation on layered graphs to develop the strongest MIP models known so far for the HCMST.

Much less has been said about the Steiner tree problem with hop constraints: The problem was

first mentioned by Gouveia (1998), who develops a strengthened version of a multi-commodity flow

model for HCMST and HCSTP. The LP lower bounds of this model are equal to the ones from a

Lagrangean relaxation approach of a weaker MIP model introduced in Gouveia (1996). Results for

instances with up to 100 nodes and 350 edges are presented.

Voß (1999) presents MIP formulations based on Miller-Tucker-Zemlin subtour elimination con-

straints. The models are then strengthened by disaggregation of variables indicating used arcs.

The author develops a simple heuristic to find starting solutions and improves these with an ex-

change procedure based on tabu search. Numerical results are given for instances with up to 2500

nodes and 65 000 edges. Gouveia (1999) gives a survey of hop-indexed tree and flow formulations

for the hop constrained spanning and Steiner tree problem.

Costa et al. (2008) give a comparison of three heuristic methods for a generalization of the HC-

STP, namely the Steiner tree problems with revenues, budget and hop constraints (STPRBH). The

considered methods comprise a greedy algorithm, a destroy-and-repair method and a tabu search

approach. Computational results are reported for instances with up to 500 nodes and 12 500 edges.

In Costa et al. (2009) the authors introduce two new MIP models for STPRBH. They are both

5



based on the generalized sub-tour elimination constraints and a set of hop constraints of exponential

size. The authors provide a theoretical and computational comparison with the two models based

on Miller-Tucker-Zemlin constraints presented in Voß (1999) and Gouveia (1999).

3. (M)ILP Formulations for HC ConFL

In this section we will show several ways of modeling HC ConFL as a mixed integer linear program.

MIP formulations for trees on directed graphs often give better lower bounds than their undirected

counterparts (see, e.g., Magnanti and Wolsey (1995)). By replacing each edge e between nodes i

and j from S by two directed arcs ij and ji and each edge between a facility i ∈ F and a customer

k ∈ R by an arc ik without changing the edge costs, undirected instances can be transformed into

directed ones. In the remainder of this paper we will focus on the Hop Constrained Connected

Facility Location problem on directed graph G = (V,A) obtained that way.

It is well-known that compact MIP formulations based on flow variables can be used to model

hop constrained network design problems in general. In case of HC ConFL, the corresponding flow-

based models can be derived from the formulations for related hop constrained problems presented

in Balakrishnan and Altinkemer (1992), Gouveia (1996) and Gouveia (1998). In this work, we are

not going to consider such formulations. According to our computational experience for the much

simpler ConFL problem (see, Gollowitzer and Ljubić (2010)), flow-based MIP formulations are of

limited usage if they are simply plugged in into a MIP solver without any usage of advanced decom-

position techniques (e.g., column generation, Lagrangean relaxation or Benders decomposition). In

this work we will use the cutting plane method as a decomposition technique for models with an

exponential number of constraints. These models are developed on layered graphs that implicitly

model hop constraints.

For comparison purposes, in Section 3.3 we will also present a three-index model with a polyno-

mial number of variables and constraints. This model, according to our preliminary computational

results, performs best in practice, as far as compact models are concerned.

Notation To model the problem, we will use the following binary variables:

xij =

{
1, if ij belongs to the solution

0, otherwise
∀ij ∈ A zi =

{
1, if i is open

0, otherwise
∀i ∈ F

Some of the MIP models provided below do not make an explicit usage of x and z variables. They

are rather provided in a lifted space of layered graphs, and the values of their variables are projected

back into the space of (x, z) variables.
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We will use the following notation: AR = {ij ∈ A | i ∈ F, j ∈ R}, AS = {ij ∈ A | i, j ∈ S}. We will

refer to AR as assignment arcs and to AS as core arcs. Consequently, subgraphs induced by AR

and AS will be referred to as core and assignment graphs, respectively. For any W ⊂ V we denote

by δ−(W ) = {ij ∈ A | i 6∈ W, j ∈ W}, δ+(W ) = {ij ∈ A | i ∈ W, j 6∈ W} and x(D) =
∑

ij∈D xij ,

for every D ⊆ A. In the examples described in the following sections we will use the following

symbols: � represents the root node, ◦ represents a Steiner node. �l represents a facility with

label l. ? represents a customer. In these examples the default arc values, facility opening and

assignment costs are all set to one. Costs different from one are displayed next to the respective

arc / node. The core network is presented as undirected graph.

3.1. Modeling Hop Constraints on Layered Graphs

We develop two variants of a layered graph to model HC ConFL as ConFL on a directed graph.

In the first variant we build a layered graph, denoted by LGx,z, by a disaggregation of both, the

core and the assignment graph. In the second variant we transform only the core graph into the

layered graph, define nodes at the level H as potential facilities and leave the assignment graph

unchanged. We denote the models on this graph by LGx.

3.1.1. Layered Core and Assignment Graph LGx,z

Consider a graph LGx,z = (Vx,z, Ax,z) defined as an instance of directed ConFL with the set of

potential facilities Fx,z and the set of core nodes Sx,z given as follows:

Vx,z := {r} ∪ Sx,z ∪R where

Fx,z = {(i, p) : i ∈ F \ {r}, 1 ≤ p ≤ H},

Sx,z = Fx,z ∪ {(i, p) : 1 ≤ p ≤ H − 1, i ∈ S} and

Ax,z :=
5⋃
i=1

Ai where

A1 = {(r, (j, 1)) : rj ∈ AS},

A2 = {((i, p), (j, p+ 1)) : 1 ≤ p ≤ H − 2, (i, j) ∈ AS},

A3 = {((i,H − 1), (j,H)) : ij ∈ AS , i ∈ S \ {r}, j ∈ F \ {r}},

A4 = {rk : rk ∈ AR}

A5 = {((i, p), k) | ik ∈ AR, (i, p) ∈ Fx,z, k ∈ R}.

Cost of an arc from A1∪A2∪A3 and A4∪A5 is set to the cost of the corresponding arc from AS

and AR, respectively. The facility opening costs are fi for all (i, p) with p = 1, . . . ,H, i ∈ F \ {r}.

7



A node (i, p) will also be referred to as a “node i at level p”.

Preprocessing Observe that a node (i, p) ∈ Sx,z whose in-degree is zero, can be removed from

LGx,z. Similarly, a Steiner node (i, p) ∈ Sx,z \ Fx,z whose out-degree is zero, cannot contribute to

any optimal solution. The removal of those redundant nodes is performed iteratively:

• Nodes with in-degree zero are removed starting from level 1 to H.

• Nodes with out-degree zero are removed starting from level H − 1 to 1.

Finally, we observe that, without loss of generality, all arcs ((j, p), k) with j ∈ F \ {r} and k ∈ R

such that crk < cjk can be removed from LGx,z, for all p = 1, . . . ,H.

Figure 1 illustrates the layered graph LGx,z = (Vx,z, Ax,z): Figure 1a) shows an original HC

ConFL instance G = (V,A) with H = 3; Figure 1b) represents the complete layered graph LGx,z =

(Vx,z, Ax,z); Figure 1c) shows the layered graph after the preprocessing; An optimal solution on

LGx,z is given in Figure 1e), and its projection back onto the original graph G = (V,A) is given in

Figure 1f).

Lemma 2. There always exists an optimal solution of directed ConFL on the layered graph LGx,z

such that
H∑
p=1

in-degree{(i, p)} ≤ 1 ∀i ∈ F \ {r} (1)

and
H−1∑
p=1

in-degree{(i, p)} ≤ 1 ∀i ∈ S \ F. (2)

Proof. Assume that, w.l.o.g., there exists a node j ∈ S, whose in-degree over all levels is equal to

2, i.e., there exist p and q (1 ≤ p < q ≤ H) such that in-degree of (j, p) and (j, q) is equal to one.

Denote by T qj the optimal sub-tree rooted at (j, q). We transform the solution as follows: a) We

move the core arcs in T qj up by q − p levels, such that the obtained tree is then rooted in (j, p).

We then refer to it as T pj . b) For customers assigned to open facilities (i, l), q ≤ l ≤ H in T qj , we

assign them to facility (i, l− q+p) instead. c) Finally, starting from (j, q) towards r, we recursively

remove nodes with out-degree 0 from the solution.

By repeating this procedure for all nodes whose respective in-degree is greater than 1, we

obtain a solution with the desired property. As we remove arcs with non-negative cost and reassign

customers without incurring additional cost, the obtained solution is at most as expensive as the

original one.
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Figure 1: a) Original instance; b) LGx,z before, and c) after preprocessing; d) An optimal LP-
solution for LGx,zCUTF – dotted and solid arcs take LP-value of 1/2 and 1, respectively; e) An
optimal LP-solution for LGxCUTR which is already MIP-optimal; f) Projection of solution in e)
back onto the original graph.
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Lemma 3. Given the graph transformation from G to LGx,z described above, any optimal solution

of the directed ConFL on LGx,z can be transformed into a ConFL solution on G with at most H

hops that incurs the same cost. Conversely, every feasible HC ConFL solution on G corresponds

to a directed ConFL solution on LGx,z.

Proof. Consider an optimal ConFL solution on LGx,z. If it does not satisfy properties (1) and (2),

we construct a solution of equal cost by performing the transformation given in the proof of Lemma

2.

Ignoring the second index on the nodes of that solution, we obtain a feasible HC ConFL solution

(i.e., a ConFL solution with at most H hops in G). Because of Lemma 2, at most one copy of each

facility is opened in the considered solution. Thus, the assignment and facility opening costs are

the same for both solutions. To show that the Steiner tree costs are the same, assume that there

exists an optimal solution on LGx,z whose cost is strictly greater than the cost of the optimal hop

constrained solution on G. In that case, the ConFL solution on LGx,z projected back onto G either

contains a cycle or uses the same edge twice, which again contradicts Lemma 2.

It is not difficult to see that every hop constrained ConFL solution on G corresponds to a

ConFL solution with the same cost in the layered graph. Figures 1e) and 1f) illustrate such a pair

of solutions.

We will associate binary variables to the arcs in Ax,z as follows: X1
rj corresponds to (r, (j, 1)) ∈

A1, X
p
ij to ((i, p − 1), (j, p)) ∈ A2, X

H
ij to ((i,H − 1), (j,H)) ∈ A3, X

1
rk to rk ∈ A4 and Xp

ik

corresponds to ((i, p), k) ∈ A5.

Let X[δ−(W )] denote the sum of all X variables in the cut δ−(W ) in LGx,z defined by W ⊆

Vx,z \ {r}. In Gollowitzer and Ljubić (2010) we describe two cut-set based formulations for the

(directed) ConFL problem. The models differ in the way they make use of the connectivity concept.

In the first one, called CUTF , connectivity is ensured between the root and any open facility, and

additional assignment constraints are required between the facilities and customers. The second

model, referred to as CUTR, uses cut-sets that ensure connectivity between the root and every

customer.

We now use these two models to derive corresponding cut-set formulations on LGx,z, denoted

by LGx,zCUTF and LGx,zCUTR. For notational convenience we will also introduce the following

variables:

• Xp
ri, for ri ∈ A, p = 2, . . . ,H,
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• X1
ij for ij ∈ AS , i 6= r, and

• XH
ij for ij ∈ AS , j ∈ S \ F .

These variables will be fixed to zero (see constraints (7) below).

Connectivity Cuts Between Root and Facilities The model LGx,zCUTF reads as follows:

(LGx,zCUTF ) min
∑
ij∈A

cij

H∑
p=1

Xp
ij +

∑
i∈F\{r}

fi

H∑
p=1

Zpi + frzr

X[δ−(W )] ≥ Zpi ∀W ⊆ Sx,z \ {r}, (i, p) ∈ Fx,z ∩W (3)∑
jk∈AR

H∑
p=1

Xp
jk = 1 ∀k ∈ R (4)

Xp
jk ≤ Z

p
j ∀jk ∈ AR, p = 1, . . . ,H, j 6= r (5)

zr = 1 (6)

Xp
ij = 0 ij ∈ A,


i = r, p = 2, . . . ,H

i 6= r, p = 1

j ∈ S \ F, p = H

(7)

Xp
ij ∈ {0, 1} ∀ij ∈ A, p = 1, . . . ,H (8)

Zpi ∈ {0, 1} ∀(i, p) ∈ Fx,z (9)

Constraints (3) are connectivity cuts on LGx,z between the root r and each open facility i at a

level p, (i, p) ∈ Fx,z. Equalities (4) are assignment constraints. They ensure that each customer

k ∈ R is assigned to exactly one facility from Fx,z ∪ {r}. Inequalities (5) are coupling constraints

— they necessitate a facility j at a level p to be open if a customer is assigned to it. Equation (6)

forces the facility at the root node to be open. In this model, both arc- and facility variables are

disaggregated, and their projection into the space of (x, z) variables is given as: xij :=
∑H

p=1X
p
ij ,

for all ij ∈ A and zi :=
∑H

p=1 Z
p
i , for all i ∈ F \ {r}.

One observes that, since fi ≥ 0 for all i ∈ F \ {r} and cij ≥ 0 for all ij ∈ AR, every optimal

solution on LGx,z also satisfies:

H∑
p=1

Zpi ≤ 1 ∀i ∈ F \ {r}.

The validity of this claim follows from Lemma 2 and from the fact that for each i ∈ F , Zpi ≤

in-degree{(i, p)}, for all p = 1, . . . ,H. Consequently, we can show the following
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Lemma 4. In the model LGx,zCUTF , connectivity cuts (3) can be replaced by the following stronger

ones:

X[δ−(W )] ≥
H∑
p=1

Zpi ∀W ⊆ Sx,z \ {r}, i ∈ F \ {r} (10)

Proof. For all i ∈ F , each facility in the corresponding set of facility nodes Fi = {(i, p) | p =

1, . . . ,H} in LGx,z, serves the same subset of customers with the same assignment costs. Therefore,

there always exists an optimal solution for which at most one among the facilities of the same group

Fi is opened, which explains the validity of these constraints.

The new MIP formulation, in which (3) is replaced by (10) will be denoted by LGx,zCUT+
F .

Connectivity Cuts Between Root and Customers By replacing (3) and (4) in the model

LGx,zCUTF with the following inequalities,

X[δ−(W )] ≥ 1 ∀W ⊆ Vx,z \ {r},W ∩R 6= ∅, (11)

we obtain a new model that we denote by LGx,zCUTR.

Inequalities (11) are connectivity cuts on LGx,z between sets containing the root and a customer

respectively. Our study on ConFL in Gollowitzer and Ljubić (2010) has shown that these connec-

tivity constraints ensure stronger lower bounds than the bounds obtained using the connectivity

cuts between the root and facilities.

In a recent study by Gouveia, Simonetti, and Uchoa (2010), it has been shown that cut-set based

MIP models on layered graphs represent the tightest formulations for modeling the hop constrained

minimum spanning tree problem. In a similar way, one can show that the same holds for HC ConFL.

Layered graph models dominate not only extended formulations (derived by using flow variables,

hop-indexed trees or MTZ constraints mentioned above), but also formulations projected in the

space of (x, z) variables based on exponentially many path or jump inequalities (see Costa et al.

(2009) and Dahl et al. (2006), respectively). In Gollowitzer (2010), the corresponding path- and

jump-based MIP models for HC ConFL have been described, and compared to the other extended

formulations for HC ConFL with respect to the quality of their lower bounds.

3.1.2. Layered Core Graph LGx

In this section, we will show an alternative way of building a layered graph to model the hop

constrained ConFL problem. In this new layered graph, only the core network will be disaggregated,

while the assignment graph will be left unchanged. Consider a graph LGx = (Vx, Ax) representing

12
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Figure 2: Layered graph LGx for an instance given in Figure 1a) obtained a) before and b) after
preprocessing.

an instance of directed ConFL with the set of customers R defined as above and the set of potential

facilities Fx and the set of core nodes Sx defined as follows:

Vx := {r} ∪ Sx ∪R where

Fx = {(i,H) : i ∈ F \ {r}} ,

Sx = Fx ∪ {(i, p) : 1 ≤ p ≤ H − 1, i ∈ S \ {r}} and

Ax :=
4⋃
i=1

Ai ∪A6 ∪A7 where

A1, A2, A3 and A4 are defined as for Ax,z,

A6 = {((i, p), (i,H)) : 1 ≤ p ≤ H − 1, i ∈ F \ {r}} and

A7 = {((j,H), k) : jk ∈ AR, j 6= r}

The facility opening and assignment costs are left unchanged. Set ASx := A1 ∪ A2 ∪ A3 ∪ A6

determines the layered core graph. Cost of an arc from A1 ∪A2 ∪A3 and A4 ∪A7 is set to the cost

of the corresponding arc from AS and AR, respectively. Arcs between (i, p) and (i,H) are assigned

costs of 0 for all p = 1, . . . ,H − 1 and i ∈ F .

One observes that the same preprocessing rules explained for LGx,z also apply to LGx. Further-

more, Lemma 2 applies as well. Hence, we can show the following:

Lemma 5. Given the graph transformation from G to LGx described above, any optimal solution

of the directed ConFL on LGx can be transformed into a ConFL solution on G with at most H

hops that incurs the same cost. Conversely, every feasible HC ConFL solution on G corresponds

to a directed ConFL solution on LGx.

13



Figure 2 illustrates the transformation of an original HC ConFL instance given in Figure 1a) into

an instance for directed ConFL on LGx, before and after preprocessing.

We will associate binary variables to the arcs in Ax as follows: X1
rj corresponds to (r, (j, 1)) ∈ A1,

Xp
ij to ((i, p−1), (j, p)) ∈ A2, X

H
ij to ((i,H−1), (j,H)) ∈ A3, X

p
ii to ((i, p−1), (i,H)) ∈ A6. Again,

for notational convienience, we will also introduce the following binary variables:

• Xp
ri, for ij ∈ AS , p = 2, . . . ,H, and

• X1
ij , for ij ∈ AS , i 6= r

and fix them to zero. Since the assignment graph is left unchanged, we will associate the correspond-

ing x variables to the assignment graph in LGx, i.e.: xjk to ((j,H), k) ∈ A7 and xrk to rk ∈ A4.

For the same reason, we link binary variables zi to each (i,H) in Fx. The corresponding projection

of a feasible solution (X′,x′, z′) into the space of (x, z) variables is given as: xij :=
∑H

p=1X
′p
ij for

all ij ∈ AS , xjk := x′jk for all jk ∈ AR and zi := z′i for all i ∈ F .

Connectivity Cuts Between Root and Facilities/Customers Let Xx[δ−(W )] denote the

sum of all X and x variables in the cut δ−(W ) in LGx defined by W ⊆ Vx\{r}. We now develop the

MIP model for directed ConFL on LGx with connectivity cuts involving node-variables as follows:

(LGxCUTF ) min
∑
ij∈AS

cij

H∑
p=1

Xp
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fizi

Xx[δ−(W )] ≥ zi ∀W ⊆ Sx \ {r}, W ∩ Fx 6= ∅ (12)∑
jk∈AR

xjk = 1 ∀k ∈ R (13)

xjk ≤ zj ∀jk ∈ AR (14)

Xp
ij = 0 ij ∈ AS ,

{
i = r, p = 2, . . . ,H

i 6= r, p = 1
(15)

Xp
ij ∈ {0, 1} ij ∈ AS , p = 1, . . . ,H (16)

zi ∈ {0, 1} ∀i ∈ F \ {r} (17)

xjk ∈ {0, 1} ∀jk ∈ AR (18)

(6)

Constraints (12) are connectivity cuts on LGx between sets containing the root and a facility i

respectively. Equations (13) are the assignment constraints, and inequalities (14) are the coupling

constraints.

14



Similarly, if we now replace constraints (12) and (13) by the following ones, we obtain a stronger

formulation that we denote by LGxCUTR:

Xx[δ−(W )] ≥ 1 ∀W ⊆ Vx \ {r},W ∩R 6= ∅ (19)

One observes that, if constraints (18) are relaxed to xjk ≥ 0, for all jk ∈ AR, the optimal

solution remains integral. Although constraints (13) are redundant (provided that the vectors c

and f in the objective function are non-negative), we will explicitly use them in the computational

study given in Section 5.

3.2. Modeling HC ConFL as Steiner Arborescence on Layered Graphs

In general, every (directed) ConFL problem can be modeled as the Steiner arborescence problem

(see Gollowitzer and Ljubić (2010)). The transformation works as follows: each potential facility

node i is split into i and i′ and replaced by a directed arc from i to i′ of cost fi. Assignment arcs

ik ∈ AR are then replaced by i′k. That way, by solving the Steiner arborescence problem on the

transformed graph, we distinguish the following two situations:

1. arc ii′ is taken into a Steiner arborescence, i.e., the potential facility node i is used as an open

facility in a ConFL solution, or

2. only node i is taken into a Steiner arborescence, i.e., i is used only as a Steiner node in the

corresponding ConFL solution.

Hence, by applying this transformation to both LGx and LGx,z we can reformulate the hop con-

strained ConFL problem as the Steiner arborescence on even more larger layered graphs. This

transformation increases namely the number of nodes by |F |, but does not provide stronger lower

bounds for the corresponding cut-set formulation (see Gollowitzer and Ljubić (2010)).

Steiner Arborescence Model on LGx We now show an alternative and simpler way of model-

ing HC ConFL as the Steiner arborescence problem on the layered graph LGx. The main difference

between ConFL and the (node-weighted) Steiner tree problem is that it is now known in advance

whether the opening costs of a potential facility node are going to be paid, or it will be used only

as a Steiner node. However, looking at LGx, one observes that in any optimal solution of the di-

rected ConFL on LGx, the only Steiner nodes that are taken into an optimal solution are at levels

1, . . . ,H − 1. In other words, if a facility node (i,H) belongs to an optimal solution, it serves only

to connect the root with a customer, i.e., every node (i,H) that belongs to an optimal solution is

15



an open facility. Because in-degree of every (facility) node in an optimal solution is at most one,

facility opening costs can now be integrated into ingoing arcs as follows:

• for each arc from ASx connecting a node (j,H − 1) to (i,H) we set its cost to cji + fi

• for each arc from ASx connecting a node (i, p) (1 ≤ p ≤ H − 1) to (i,H) we set its cost to fi.

We will denote the layered graph LGx with the new cost structure as LGSTP .

Lemma 6. Every optimal solution of the Steiner arborescence on LGSTP with R being the set of

terminals, can be transformed into a ConFL solution on G with at most H hops that incurs the same

cost. Conversely, every feasible HC ConFL solution on G corresponds to a Steiner arborescence

solution on LGSTP .

The corresponding MIP model reads then as follows:

(LGSTPCUT ) min
∑
ij∈AS

cij

H−1∑
p=1

Xp
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fi

H−1∑
p=1

Xp
ii +

∑
ij∈AS ,j∈F

(cij + fj)X
H
ij + fr

(13), (15), (16), (18), (19)

One observes that the given transformation works only for the graph LGx, but not for LGx,z. In

Section 5, we will provide computational results for the given cut-set formulation LGSTPCUT .

3.3. Hop-indexed Tree Formulations

The following three-index model can be seen as a compact MIP formulation for HC ConFL on

LGx. A hop-indexed tree model has been originally proposed by Gouveia (1999) for solving the

Hop Constrained STP. Voß (1999) has observed that this formulation is a disaggregation of a

formulation based on Miller-Tucker-Zemlin constraints. Costa et al. (2009) have extended this

model with valid inequalities to solve the hop constrained STP with profits. We will now extend

the ideas of using the hop-indexed tree variables to model HC ConFL. We model constraints for

core and assignment graph separately. Variables Xp
ij indicate whether an arc ij ∈ AS is used at

the p-th position from the root node. Variables xjk indicate whether customer k ∈ R is assigned

to facility j ∈ F . We link core and assignment graph by variables zj , indicating whether a facility

is installed on node j ∈ F . Using the variables described above we can formulate the HC ConFL

16



problem as follows:

(HOPF ) min

H∑
p=1

∑
ij∈AS

cijX
p
ij +

∑
jk∈AR

cjkxjk +
∑
i∈F

fizi∑
i∈S\{k}:
ij∈AS

Xp−1
ij ≥ Xp

jk ∀jk ∈ AS , j 6= r, p = 2, . . . ,H (20)

∑
ij∈AS

H∑
p=1

Xp
ij ≥ zj ∀j ∈ F\{r} (21)

(6), (13)− (18)

Constraints (20) are connectivity constraints given in a compact way — comparing HOPF with

the model LGxCUTF , we observe that the former one is obtained by replacing constraints (12)

by (20) and (21). Constraints (20) ensure that for every arc on level p leaving out a node j, there

is at least one arc at the level p− 1 entering j. Similarly, inequalities (21) link opening facilities to

their in-degree, i.e. if facility j is open, at least one of the arcs on levels p ∈ {1, . . . ,H} needs to

enter it. Using the same arguments as for the construction of the graph LGSTP , one could replace

inequalities in (21) by equations, and consequently eliminate z variables.

To model HC ConFL, there are actually two options for the hop-indexed variables. We propose

to separate core and assignment graph and link them by the z-variables indicating the use of

facilities. Alternatively, we can define hop-indexed variables on the whole graph G, modeling

connectivity between the root and each customer node. In Gollowitzer (2010) we have shown that

the latter model in which hop-indexed variables are introduced for both, the core and assignment

graph, provides the same lower bounds as the model HOPF , while exhibiting a much larger number

of variables and constraints. Hence, this alternative approach will not be considered throughout

this paper.

4. Polyhedral Comparison

In this section we provide a theoretical comparison of the MIP models described above with respect

to optimal values of their LP-relaxations. Denote by P. the polytope and by υLP (.) the value of

the LP-relaxation of any of the MIP models described above. We call a formulation R1 stronger

than a formulation R2 if the optimal value of the LP-relaxation of R1 is no less than that of R2

for all instances of the problem. If R2 is also stronger than R1, we call them equivalent, otherwise

we say that R1 is strictly stronger than R2. If neither is stronger than the other one, they are

incomparable.
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Figure 3: a) Instance on G with H = 3; b) LP optimal solution for LGx,zCUTF . Dotted and solid
arcs take LP-values equal to 1/2 and 1, respectively. υLP (LGx,zCUTF ) = L/2 + 4 ; c) LP optimal
solution for LGx,zCUT+

F with cost L+ 4.

Lemma 7. Formulation LGx,zCUT+
F is strictly stronger than formulation LGx,zCUTF . Further-

more, there exist HC ConFL instances for which
υLP (LGx,zCUT+

F )

υLP (LGx,zCUTF ) ≈ H − 1.

Proof. Constraints (10) dominate constraints (3). Thus, formulation LGx,zCUT+
F is at least as

strong as LGx,zCUTF . The strict relation holds because of the example in Figure 3. To show an

instance for which
υLP (LGx,zCUT+

F )

υLP (LGx,zCUTF ) ≈ H − 1 holds, we generalize the above example. The subgraph

induced by nodes {1, 2, 3} is replaced by the subgraph containing nodes {1, . . . ,H − 1} being the

Steiner nodes and a node H, being the facility node. This subgraph is connected as follows: Node

H is connected to all i = 1, . . . ,H − 1 with an edge of cost ciH = H − i. For each i = 1, . . . ,H − 1,

node i is connected to i + 1 with an edge of cost ci,i+1 = 1. In the LP-relaxation of the model

LGx,zCUTF , all facilities (H, p) at levels p = 2, . . . ,H will be open with ZpH = 1/(H − 1), and

consequently, X1
r1 = 1/(H − 1), so that υLP (LGx,zCUTF ) ≈ L/(H − 1). In contrast, the optimal

LP-value of the model LGx,zCUT+
F is υLP (LGx,zCUT+

F ) ≈ L, which proves the claim.

Lemma 8. The formulation LGxCUTF is strictly stronger than the formulation HOPF .

Proof. υLP (LGxCUTF ) ≥ υLP (HOPF ): It is enough to show that an optimal LP-solution of the

formulation LGxCUTF is also feasible for the model HOPF . For that purpose we will use

the max-flow min-cut theorem. A flow formulation on the graph G which is equivalent to

the LGxCUTF formulation is given below. It comprises additional flow variables fkpij , for all

ij ∈ AS , and k ∈ F \ {r}, p = 1, . . . ,H, representing the flow of commodity k on arc ij at

18
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Figure 4: a) Instance G with H = 3. b) An optimal LP-solution for HOPF in which dotted arcs
take value 1/2.

the p-th position from the root node. We denote this formulation by MCFF :

∑
ji∈AS

fk,p−1ji −
∑
ij∈AS

fkpij = 0 ∀k ∈ F \ {r}, i ∈ S \ {r, k}, p = 2, . . . ,H (22)

∑
rj∈AS

fk1rj = zk ∀k ∈ F \ {r} (23)

H∑
p=1

∑
jk∈AS

fkpjk = zk ∀k ∈ F \ {r} (24)

0 ≤ fkpij ≤ X
p
ij∀ij ∈ AS , k ∈ F \ {r}, p = 1, . . . ,H (25)

(6), (13)− (18)

Let (X′,x′, z′, f ′) be an optimal LP-solution for MCFF and (X′,x′, z′) its projection into the

space of (X,x, z) variables. We will show that (X′,x′, z′) ∈ PHOPF
. Constraints (21) are

directly implied by inequalities (22)-(25). To show that constraints (20) are also satisfied, we

first observe that, for every Xp
jl, jl ∈ AS , p = 1, . . . ,H, there exists a commodity k ∈ F \ {r}

such that constraint (25) is tight, i.e. Xp
jl = fkpjl . From the flow conservation constraints (22)-

(24), it follows:

X ′
p
jl = f ′

kp
jl ≤

∑
i∈S\{k}:
ij∈AS

f ′
k,p−1
ij ≤

∑
i∈S\{k}:
ij∈AS

X ′
p−1
ij

and thus, inequalities (20) hold for (X′,x′, z′).

υLP (LGxCUTF ) > υLP (HOPF ): Consider an example given in Figure 4. LP-solution for HOPF

shown in Figure 4b) is not feasible for LGxCUTF and the strict inequality regarding the

LP-values holds.

Lemma 9. The following results hold:
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1. The formulation LGxCUTR is strictly stronger than LGxCUTF . Furthermore, there exist

HC ConFL instances such that υLP (LGxCUTR)
υLP (LGxCUTF ) ≈ |F | − 1.

2. The formulation LGx,zCUTR is strictly stronger than LGx,zCUTF . Furthermore, there exist

HC ConFL instances such that
υLP (LGx,zCUTR)
υLP (LGx,zCUTF ) ≈ (|F | − 1)|H|.

Proof. The result given in Gollowitzer and Ljubić (2010) shows that the relative gap between the

LP-values of models CUTF and CUTR can be as large as |F | − 1, where |F | is the number of

facilities of a ConFL instance. Since the number of facilities in LGx is |F | and the number of

facilities in LGx,z is (|F | − 1)|H|+ 1, the result follows immediately.

Proposition 1. Formulations LGx,zCUTR and LGxCUTR are equivalent.

Proof. To prove this claim, we describe mappings between corresponding LP-solutions as follows.

υLP (LGx,zCUTR) ≥ υLP (LGxCUTR): Let (X,Z) be an optimal LP-solution of the model LGx,zCUTR.

We project (X,Z) into a solution (X′,x′, z′) and show that it is feasible for the model

LGxCUTR. We set X ′pij := Xp
ij for all arcs in A1, A2 and A3; X

′p
jj := Zpj (= maxk∈RX

p
jk)

for all arcs in A6; x
′
jk :=

∑H
p=1X

p
jk for all arcs in A7; x

′
rk := X1

rk for all arcs in A4;

zi :=
∑H

p=1 Z
p
i . All the remaining X′ values are set to zero. Obviously, constraints (14)-(15)

are satisfied, it only remains to show that (X′,x′, z′) satisfies (19). Denote by δ−(W )|D =

{ij ∈ δ−(W ) | ij ∈ D}. Then, Xx[δ−(W )] = Xx[δ−(W )|∪4i=1Ai
] + Xx[δ−(W )|A6∪A7

] =

X[δ−(W )|∪4i=1Ai
] +Xx[δ−(W )|A6∪A7

] ≥ X[δ−(W )|∪4i=1Ai
] +X[δ−(W )|A5

] = X[δ−(W )] ≥ 1.

υLP (LGxCUTR) ≥ υLP (LGx,zCUTR): Let (X′,x′, z′) be an optimal LP-solution of the model

LGxCUTR. We project this vector into (X,Z) as follows: Xp
ij := X ′pij for all arcs in A1, A2

and A3; X
1
rk := x′rk for all arcs in A6. Furthermore, we set Zpj := X ′pjj , for all arcs from

A4, for p = 1, . . . ,H − 1, and ZHj := z′j −
∑H−1

p=1 Z
p
j , for all j ∈ F \ {r}. We then recursively

define Xp
jk := min(Zpj , x

′
jk −

∑H
q=p+1X

q
jk) starting from p = H, . . . , 1. By definition, (X,Z)

satisfies constraints (4)-(8). To show that constraints (11) are satisfied as well, observe that

arc capacities defined as (X′,x′) enable for each commodity k ∈ R one unit of flow to be sent

from r to k in LGx. By using the above mapping of arcs and their capacities from LGx to

LGx,z, we also ensure that one unit of flow can be sent from the root to each commodity

k ∈ R in the graph LGx,z which concludes the proof.
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5. Computations

In this section we present a computational comparison of the MIP models for solving HC ConFL

given above. According to Proposition 1 and the theoretical analysis given in the previous section,

transformations of G into LGx,z and LGx provide two strongest MIP formulations with the same

quality of lower bounds. Therefore, we concentrate on models derived from the layered graph

LGx, which comprises smaller number of edges and facilities. The computational comparison is

conducted on three branch-and-cut (B&C) algorithms derived for MIP models with the exponential

number of variables, and on one compact model, HOPF (cf. Section 3.3).

5.1. Branch-and-Cut: Implementation Details

We implemented B&C algorithms for solving HC ConFL using the following MIP models: LGxCUTF ,

LGxCUTR and LGSTPCUT . B&C algorithms for ConFL are described in detail in our recent

computational study on ConFL given in Gollowitzer and Ljubić (2010). The most important non-

standard ingredients of this schema are outlined below. We used the commercial package IBM

CPLEX (version 11.2) and IBM Concert Technology (version 2.7), for solving the LP-relaxations,

as well as a generic implementation of the branch-and-cut approach. All experiments were per-

formed on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM, where each run was performed

on a single processor.

Initialization Each branch-and-cut algorithm is initialized with the assignment and coupling

constraints, (13) and (14), respectively. In addition, the following flow-balance inequalities are

used. Let Xx[δ+(W )] denote the sum of all variables Xp
ij in the cut δ+(W ) in LGx defined by

W ⊆ Sx \ {r}. The flow-balance inequalities ensure that Steiner nodes i ∈ Sx cannot be leaves in

the core graph:

Xx[δ−({i})] ≤ Xx[δ+({i})] ∀i ∈ Sx.

These inequalities are also known to strengthen the quality of lower bounds of cut-based models in

general (see, e.g., Koch and Martin (1998)).

Separation Separation of cut-set inequalities (12) and (19) is done in polynomial time by running

the maximum-flow algorithm of Cherkassky and Goldberg (1994) on the corresponding support

graphs. In case of inequalities (12), the maximum flow is calculated between the root node and

any facility i, such that zi > 0. Inequalities (19) are separated by calculating the flow between the

root and any customer j, j ∈ R.
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Branching Among all binary variables, the biggest influences on the structure of the solution

is due to facility variables zi. Therefore, in our default branch-and-bound implementation, the

highest branching priority is assigned to facility variables zi, i ∈ F .

The remaining details of our implementation can be found in Gollowitzer and Ljubić (2010).

5.2. Data Set

We consider a class of benchmark instances, originally introduced in Ljubić (2007), and also used

by Tomazic and Ljubić (2008) and Bardossy and Raghavan (2010). The ConFL instances are

obtained by merging data from two public sources. In general, one combines an UFLP instance

with an STP instance, to generate ConFL input graphs in the following way: Nodes indexed by

1, . . . , |F | in the STP instance are selected as potential facility locations, and the node with index

1 is selected as the root. The number of facilities, the number of customers, opening costs and

assignment costs are provided in UFLP files. STP files provide edge-costs and additional Steiner

nodes.

• We consider a set of non-trivial UFLP instances from UflLib (see http://www.mpi-inf.mpg.

de/departments/d1/projects/benchmarks/UflLib/): mp-{1,2} and mq-{1,2} instances

have been proposed by Kratica et al. (2001). They are designed to be similar to UFLP real-

world problems and have a large number of near-optimal solutions. There are 6 classes of

problems, and for each problem |F | = |R|. We took 2 representatives of 2 classes MP and

MQ of sizes 200× 200 and 300× 300, respectively.

• STP instances: Instances {c,d}n, for n ∈ {5, 10, 15, 20} were chosen randomly from the

OR-library (see http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html) as

representatives of medium size instances for STP. These instances define the core networks

with between 500 and 1000 nodes and with up to 25 000 edges.

For the instances described above, Table 1 shows: the name of the original STP and UFLP

instance it is derived from; the number of customers (|R|); the number of facilities (|F |), the numer

of nodes in the core graph (|S̃ ∪F |); the number of edges in the core graph (|ES |) and the number

of assignment edges (|ER|). Combined with assignment graphs, the largest instances of this data

set contain 1300 nodes and 115 000 edges.
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Table 1: Basic properties of benchmark instances.
STP UFLP |R| |F | |S̃ ∪ F | |ES | |ER|
c5 mp{1,2} 200 200 500 625 40000
c5 mq{1,2} 300 300 500 625 90000
c10 mp{1,2} 200 200 500 1000 40000
c10 mq{1,2} 300 300 500 1000 90000
c15 mp{1,2} 200 200 500 2500 40000
c15 mq{1,2} 300 300 500 2500 90000
c20 mp{1,2} 200 200 500 12500 40000
c20 mq{1,2} 300 300 500 12500 90000
d5 mp{1,2} 200 200 1000 1250 40000
d5 mq{1,2} 300 300 1000 1250 90000
d10 mp{1,2} 200 200 1000 2000 40000
d10 mq{1,2} 300 300 1000 2000 90000
d15 mp{1,2} 200 200 1000 5000 40000
d15 mq{1,2} 300 300 1000 5000 90000
d20 mp{1,2} 200 200 1000 25000 40000
d20 mq{1,2} 300 300 1000 25000 90000

5.3. Comparison of Three Formulations

In the first step of our computational study we compare the performance of three proposed for-

mulations: the compact formulation HOPF and two cut set based formulations LGxCUTF and

LGxCUTR. Tables 2 to 5 show the results of this experiment. For all reported results, the default

time limit was set to 3600 seconds.

The first column shows the name of the instance; column OPT provides the value of the optimal

solution; columns BB show the number of nodes in the branch-and-bound tree; columns #Iter give

the number of iterations; in columns t [s] we show the CPU time (in seconds) needed to solve the

instance. For formulations LGxCUTR and HOPF we also provide two gap values: if the solver does

not find the optimal solution within the given time limit, it terminates with a feasible solution,

providing an upper bound (UB) and a global lower bound (LB). The percentage gap between

this upper and lower bound, calculated as (UB − LB)/UB is given in columns denoted by g. In

columns denoted by gopt, we show the percentage gap between the optimal solution (OPT , usually

determined by running the model LGxCUTF ) and the corresponding lower bound, calculated as

(OPT − LB)/OPT .

Comparing these three models, we observe the following: the best performing model overall

is LGxCUTF , which solves all the instances to optimality for H ∈ {3, 5, 7, 10}, except the four

largest ones for H = 10. The average running time over all 32 instances for LGxCUTF increases

from 25.9 seconds (H = 3) to 743.1 seconds (H = 10). We also observe that the complexity of the
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Table 2: Comparison of models LGxCUTF , LGxCUTR and HOPF with H = 3. The best running
times are shown in bold.

LGxCUTF LGxCUTR HOP
Inst. OPT BB #Iter t [s] g gopt BB #Iter t [s] g gopt BB #Iter t [s]

c5mp1 2907.96 5 729 1.6 0.0 0.0 5 738 5.0 0.0 0.0 5 796 9.7
c5mp2 2912.63 3 988 1.2 0.0 0.0 3 988 2.4 0.0 0.0 3 1139 9.0
c5mq1 4505.04 11 2015 2.5 0.0 0.0 11 1939 26.1 0.0 0.0 11 2094 20.2
c5mq2 4082.42 0 1190 2.5 0.0 0.0 0 1190 4.7 0.0 0.0 0 1245 20.6
c10mp1 2861.05 39 15157 7.3 0.0 0.0 71 24508 41.9 0.0 0.0 34 13943 16.9
c10mp2 2760.27 3 5493 2.2 0.0 0.0 3 5889 9.6 0.0 0.0 3 5726 11.9
c10mq1 4092.96 17 23209 13.7 0.0 0.0 23 23141 74.8 0.0 0.0 13 17767 29.7
c10mq2 3946.52 29 22947 15.8 0.0 0.0 23 25142 92.0 0.0 0.0 29 23050 35.4
c15mp1 2668.48 9 17689 9.0 0.0 0.0 9 22761 38.2 0.0 0.0 9 20381 28.9
c15mp2 2679.63 9 20623 12.5 0.0 0.0 9 29522 40.7 0.0 0.0 9 21552 33.1
c15mq1 3861.57 25 48068 32.1 0.0 0.0 23 65601 197.4 0.0 0.0 21 46393 149.2
c15mq2 3694.56 63 65637 50.8 0.0 0.0 27 90172 299.6 0.0 0.0 23 58815 141.5
c20mp1 2618.66 11 25251 20.6 0.0 0.0 9 30989 68.4 0.0 0.0 13 26114 49.4
c20mp2 2630.46 7 20629 20.2 0.0 0.0 5 24935 52.5 0.0 0.0 9 20132 38.8
c20mq1 3828.50 45 81670 84.9 0.0 0.0 33 98490 429.1 0.0 0.0 43 76559 141.1
c20mq2 3687.49 37 86136 156.3 0.0 0.0 25 120643 484.7 0.0 0.0 27 82104 237.2
d5mp1 2846.01 0 605 1.5 0.0 0.0 0 605 1.9 0.0 0.0 0 667 10.2
d5mp2 2847.68 3 1180 1.1 0.0 0.0 3 1199 2.3 0.0 0.0 5 806 11.0
d5mq1 4190.20 0 2038 2.4 0.0 0.0 0 2038 3.6 0.0 0.0 0 2090 20.3
d5mq2 3978.17 0 2008 3.0 0.0 0.0 0 2008 4.1 0.0 0.0 0 2052 22.1
d10mp1 2970.53 0 779 1.2 0.0 0.0 0 779 1.6 0.0 0.0 0 818 10.8
d10mp2 2941.59 0 783 1.2 0.0 0.0 0 783 1.4 0.0 0.0 0 829 10.3
d10mq1 4212.81 7 3243 2.9 0.0 0.0 3 3340 18.8 0.0 0.0 3 3278 23.0
d10mq2 3979.59 3 2539 3.0 0.0 0.0 3 3380 11.6 0.0 0.0 3 3367 22.7
d15mp1 2805.22 123 69957 42.8 0.0 0.0 101 104514 117.8 0.0 0.0 75 58651 76.3
d15mp2 2692.85 11 15610 7.3 0.0 0.0 9 15069 29.0 0.0 0.0 11 12852 18.5
d15mq1 3890.39 19 31877 36.0 0.0 0.0 9 34984 107.0 0.0 0.0 17 31853 65.3
d15mq2 3788.07 25 38224 32.4 0.0 0.0 29 60221 209.9 0.0 0.0 27 42901 86.9
d20mp1 2621.66 11 24875 23.0 0.0 0.0 17 41773 125.3 0.0 0.0 13 27338 64.5
d20mp2 2632.46 5 21785 17.9 0.0 0.0 6 29507 73.7 0.0 0.0 9 20786 54.4
d20mq1 3830.50 49 79970 112.2 0.0 0.0 47 126686 572.3 0.0 0.0 39 75435 142.9
d20mq2 3687.49 38 88147 108.0 0.0 0.0 33 106292 421.3 0.0 0.0 31 80268 216.4

Avg. 19 25658 25.9 0.0 0.0 17 34370 111.5 0.0 0.0 15 24431 57.1

model increases, and its performance slows down with the increasing size of the assignment graph

(|ER|) and the increasing size of the core graph (|ES |). The latter one has a stronger influence on

the performance of the model LGxCUTF . As the value of H increases, the compact model HOPF

outperforms LGxCUTF on sparser instances. For dense graphs ({c,d}-{15,20}) the memory

requirements of the compact model prevent even from solving its LP relaxation. The number of

instances not solved by HOPF was 0, 4, 8 and 12 for H = 3, 5, 7 and 10, respectively.

Comparing the other two models, HOPF and LGxCUTR, we observe that in many cases the

compact model HOPF outperforms LGxCUTR with respect to the running time. While for H = 3

LGxCUTR solves 12 out of 32 instances faster than HOPF , for H = 10 the compact model is faster

on all instances for which the memory limit was not exceeded.

We compared the average running times of all three models for the instances that HOPF (and,
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Table 3: Comparison of models LGxCUTF , LGxCUTR and HOPF with H = 5. The best running
times are shown in bold.

LGxCUTF LGxCUTR HOP
Inst. OPT BB #Iter t [s] g gopt BB #Iter t [s] g gopt BB #Iter t [s]

c5mp1 2839.80 33 8700 3.8 0.0 0.0 25 13010 17.6 0.0 0.0 27 10705 18.1
c5mp2 2839.05 15 7053 2.8 0.0 0.0 15 9016 16.5 0.0 0.0 15 6962 17.2
c5mq1 3986.08 0 6804 3.2 0.0 0.0 0 6804 4.3 0.0 0.0 0 7031 33.5
c5mq2 3928.49 23 15822 7.9 0.0 0.0 17 19274 82.3 0.0 0.0 15 16033 41.9
c10mp1 2683.48 11 27665 20.8 0.0 0.0 17 61003 98.5 0.0 0.0 13 27117 60.1
c10mp2 2663.46 7 20670 10.3 0.0 0.0 5 26022 30.5 0.0 0.0 7 19826 42.8
c10mq1 3867.57 27 67196 53.2 0.0 0.0 56 172822 628.9 0.0 0.0 29 67977 191.1
c10mq2 3733.85 57 87075 94.5 0.0 0.0 69 180209 682.4 0.0 0.0 33 81605 342.7
c15mp1 2637.66 17 48095 39.0 0.0 0.0 19 108243 352.4 0.0 0.0 31 33536 58.4
c15mp2 2644.46 10 27452 18.9 0.0 0.0 13 65202 193.0 0.0 0.0 15 23222 39.7
c15mq1 3846.50 39 115710 111.2 0.0 0.0 37 240929 1250.0 0.0 0.0 53 98950 184.3
c15mq2 3692.56 25 97008 115.6 0.0 0.0 45 268070 1271.0 0.0 0.0 30 81486 228.3
c20mp1 2618.66 11 30786 93.6 0.0 0.0 25 44749 355.4 0.0 0.0 19 40529 185.0
c20mp2 2626.46 6 22961 58.0 0.0 0.0 7 23322 174.1 0.0 0.0 9 26279 118.0
c20mq1 3826.50 44 114730 210.1 0.0 0.0 47 108013 1175.0 - - - - -
c20mq2 3686.49 31 105996 335.1 0.0 0.0 57 124667 1286.0 - - - - -
d5mp1 2766.52 9 6448 3.3 0.0 0.0 5 7873 10.8 0.0 0.0 9 6589 17.6
d5mp2 2795.15 11 6053 2.8 0.0 0.0 5 6116 8.2 0.0 0.0 9 5790 17.1
d5mq1 4124.65 13 19360 12.2 0.0 0.0 17 22402 78.4 0.0 0.0 15 19051 46.2
d5mq2 3826.77 9 12584 7.9 0.0 0.0 7 16854 35.3 0.0 0.0 11 13359 40.3
d10mp1 2759.67 13 18377 9.3 0.0 0.0 5 35134 46.1 0.0 0.0 11 17230 31.3
d10mp2 2782.68 37 24085 11.3 0.0 0.0 37 45084 56.6 0.0 0.0 15 21125 33.5
d10mq1 3892.51 9 30322 21.6 0.0 0.0 19 41035 109.8 0.0 0.0 7 28429 85.6
d10mq2 3760.49 17 37470 34.2 0.0 0.0 23 91095 275.0 0.0 0.0 23 38865 118.3
d15mp1 2643.66 21 46410 52.4 0.0 0.0 17 82080 243.5 0.0 0.0 21 30308 55.6
d15mp2 2647.46 9 28322 22.2 0.0 0.0 9 52534 130.0 0.0 0.0 7 20863 40.7
d15mq1 3850.06 53 94289 102.2 0.0 0.0 53 152246 621.2 0.0 0.0 51 81428 148.8
d15mq2 3702.56 23 83001 129.0 0.0 0.0 19 197594 924.4 0.0 0.0 23 78052 235.3
d20mp1 2619.66 15 36363 149.8 0.0 0.0 11 47237 617.5 1.6 1.6 0 17616 172.0
d20mp2 2628.46 7 22770 91.3 0.0 0.0 9 27663 397.4 1.0 1.0 0 21951 184.7
d20mq1 3828.50 46 115641 513.3 0.0 0.0 54 136100 2647.0 - - - - -
d20mq2 3685.49 35 98976 429.6 0.0 0.0 53 119892 1958.0 - - - - -

Avg. 21 46381 86.6 0.0 0.0 25 79759 493.0 0.1 0.1 18 33640 99.6

of course, also the other two models) could solve to optimality. The factor, by which the compact

model is faster than LGxCUTR strongly increases with the allowed number of hops. For H = 3

it is 2.0, for H = 5 it is 3.2, for H = 7 it is 9.0 and for H = 10 it is 12.5. The comparison of

corresponding average running times for HOPF and LGxCUTF shows a slightly different picture.

For H = 3 and H = 5, LGxCUTF is approximately twice as fast as the compact model (factors

of 0.5 and 0.4 respectively). For H = 7 model HOPF is 1.5 times faster and for H = 10 the

corresponding ratio is 3.5.

Figure 5 shows the increase of costs caused by a reduced number of allowed hops in the solution.

Provided values are obtained as averages over 28 instances we could solve for all values of H ∈

{3, 5, 7, 10}.
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Table 4: Comparison of models LGxCUTF , LGxCUTR and HOPF with H = 7. The best running
times are shown in bold.

LGxCUTF LGxCUTR HOP
Inst. OPT BB #Iter t [s] g gopt BB #Iter t [s] g gopt BB #Iter t [s]

c5mp1 2703.97 13 18447 10.9 0.0 0.0 11 27276 26.8 0.0 0.0 13 17923 34.1
c5mp2 2736.55 25 23094 9.9 0.0 0.0 27 47641 59.1 0.0 0.0 15 21726 37.1
c5mq1 3906.98 29 50650 37.2 0.0 0.0 24 67556 193.3 0.0 0.0 23 43942 96.2
c5mq2 3842.99 49 80539 77.0 0.0 0.0 75 307967 778.0 0.0 0.0 45 78156 209.5
c10mp1 2661.66 25 55921 57.5 0.0 0.0 21 175953 461.8 0.0 0.0 12 30416 72.8
c10mp2 2663.46 9 43840 44.9 0.0 0.0 5 98566 249.1 0.0 0.0 25 22988 41.9
c10mq1 3867.57 51 118689 136.3 0.0 0.0 39 334988 1295.0 0.0 0.0 31 81028 180.1
c10mq2 3733.85 47 171302 262.1 0.0 0.0 57 416607 2078.0 0.0 0.0 41 97491 338.8
c15mp1 2634.66 17 85993 169.2 0.0 0.0 15 214975 981.5 0.0 0.0 68 50970 98.4
c15mp2 2640.46 12 62810 91.2 0.0 0.0 11 98959 475.7 0.0 0.0 51 28929 57.9
c15mq1 3844.50 53 193202 371.9 0.0 0.0 42 486451 2737.0 0.0 0.0 52 106759 227.0
c15mq2 3689.56 57 266504 501.0 0.0 0.0 44 373958 2414.0 0.0 0.0 29 100087 269.7
c20mp1 2618.66 35 59624 299.9 0.0 0.0 39 50313 882.6 - - - - -
c20mp2 2626.46 12 27692 118.5 0.0 0.0 15 27392 567.5 - - - - -
c20mq1 3826.50 81 169237 685.7 0.0 0.0 38 121211 2022.0 - - - - -
c20mq2 3686.49 269 165396 841.5 0.0 0.0 86 111921 2485.0 - - - - -
d5mp1 2685.94 10 15504 6.2 0.0 0.0 3 21203 21.4 0.0 0.0 11 14203 28.1
d5mp2 2761.15 22 31293 13.3 0.0 0.0 11 36929 48.0 0.0 0.0 21 23968 31.3
d5mq1 3903.51 21 44667 42.9 0.0 0.0 17 70306 204.4 0.0 0.0 15 44749 138.7
d5mq2 3744.49 17 49148 48.7 0.0 0.0 11 67838 154.7 0.0 0.0 13 43107 163.8
d10mp1 2685.54 17 52164 66.0 0.0 0.0 17 176343 457.9 0.0 0.0 21 34661 80.4
d10mp2 2693.46 13 43555 44.7 0.0 0.0 13 106356 285.8 0.0 0.0 13 27404 60.4
d10mq1 3873.06 33 143529 290.8 0.0 0.0 69 694032 3248.0 0.0 0.0 33 75724 213.1
d10mq2 3724.49 51 200516 482.7 0.0 0.0 27 603672 2978.0 0.0 0.0 23 71748 270.7
d15mp1 2639.66 41 95420 240.3 0.0 0.0 13 168002 959.0 0.0 0.0 32 39481 87.6
d15mp2 2647.46 9 51261 132.9 0.0 0.0 17 106702 595.5 0.0 0.0 5 26433 66.3
d15mq1 3847.06 43 172332 525.0 0.0 0.0 46 375512 2697.0 24.4 3.1 0 39697 93.2
d15mq2 3698.49 45 205779 775.3 0.0 0.0 35 428176 3573.0 24.8 2.6 0 42271 107.4
d20mp1 2619.66 26 43846 407.7 0.0 0.0 44 58982 1611.0 - - - - -
d20mp2 2628.46 18 32745 292.2 0.0 0.0 28 33444 1182.0 - - - - -
d20mq1 3828.50 118 158943 1173.0 0.0 0.0 61 122887 3477.0 - - - - -
d20mq2 3685.49 59 136651 894.4 0.0 0.0 41 116773 2290.0 - - - - -

Avg. 41 95947 286.0 0.0 0.0 31 192153 1296.5 2.0 0.2 25 48494 125.2

5.4. Solving HC ConFL as Steiner Arborescence

The second aim of our computational study was to analyze, whether the transformation into the

Steiner arborescence problem, described in Section 3.2, can speed up the performance of the model

LGxCUTR. Table 6 summarizes the obtained results.

Each entry in that table is an average value calculated over all H ∈ {3, 5, 7, 10} and over all

instances that could be solved to optimality by LGxCUTR. The average running time in seconds

of LGxCUTR is given in the third column. Column 4 shows the average speed-up factor obtained

by solving HC ConFL as the Steiner arborescence problem (formulation LGSTPCUT ). The last

column shows the average speed-up factor of LGxCUTF , compared to LGxCUTR. One observes

that the speed-up factor increases with the size of the assignment graph.
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Table 5: Comparison of models LGxCUTF , LGxCUTR and HOPF with H = 10. The best running
times are shown in bold.

LGxCUTF LGxCUTR HOP
Inst. OPT BB #Iter t [s] g gopt BB #Iter t [s] g gopt BB #Iter t [s]

c5mp1 2692.66 39 78276 78.1 0.0 0.0 17 294564 789.5 0.0 0.0 33 43198 105.0
c5mp2 2692.46 27 65906 72.7 0.0 0.0 15 166161 408.3 0.0 0.0 17 27260 65.7
c5mq1 3906.98 62 182486 204.8 0.0 0.0 67 657451 2029.0 0.0 0.0 54 103537 230.5
c5mq2 3769.56 95 203270 321.3 0.0 0.0 52 768108 2946.0 0.0 0.0 59 112824 437.9
c10mp1 2661.66 41 251694 801.1 0.9 0.9 5 771577 3602.0 0.0 0.0 31 47887 101.5
c10mp2 2661.46 15 132510 307.4 0.0 0.0 5 342710 1435.0 0.0 0.0 84 33250 65.3
c10mq1 3867.57 35 294028 866.0 2.9 2.4 5 569299 3603.0 0.0 0.0 47 102548 208.6
c10mq2 3732.56 51 419344 970.5 1.6 1.6 12 671745 3603.0 0.0 0.0 62 122362 341.1
c15mp1 2634.66 35 198342 932.1 0.0 0.0 36 323422 2204.0 0.0 0.0 215 90268 176.2
c15mp2 2640.46 7 61654 197.9 0.0 0.0 14 97618 708.2 0.0 0.0 160 58242 110.9
c15mq1 3842.50 37 326566 1041.0 3.3 1.4 23 476541 3604.0 - - - - -
c15mq2 3689.56 43 164733 676.0 2.8 2.3 25 379847 3603.0 - - - - -
c20mp1 2618.66 46 54360 567.5 0.0 0.0 89 94524 3026.0 - - - - -
c20mp2 2626.46 23 27248 227.3 0.0 0.0 21 28179 909.4 - - - - -
c20mq1 3826.50 91 182093 1180.0 1.5 0.6 40 139302 3616.0 - - - - -
c20mq2 3686.49 128 159428 1180.0 0.0 0.0 52 137822 3013.0 - - - - -
d5mp1 2677.94 23 72843 103.1 0.0 0.0 9 297567 880.9 0.0 0.0 11 28519 85.0
d5mp2 2713.63 23 83292 76.7 0.0 0.0 11 125418 282.2 0.0 0.0 15 30305 82.2
d5mq1 3878.98 37 199597 456.9 0.0 0.0 25 461187 2050.0 0.0 0.0 33 78927 241.7
d5mq2 3741.49 88 407613 1004.0 0.5 0.5 20 710614 3603.0 0.0 0.0 27 79118 321.9
d10mp1 2678.94 31 212180 491.1 1.2 1.2 5 703605 3602.0 0.0 0.0 55 61059 120.9
d10mp2 2682.46 21 137930 376.3 0.0 0.0 7 474851 2521.0 0.0 0.0 15 34725 76.9
d10mq1 3869.06 69 502630 1968.0 3.0 2.0 3 552368 3603.0 0.0 0.0 77 114371 250.1
d10mq2 3724.49 47 576931 2839.0 2.5 2.5 2 496475 3603.0 0.0 0.0 77 114541 344.2
d15mp1 2635.66 23 105521 502.4 0.0 0.0 33 300581 2657.0 0.0 0.0 19 45540 155.4
d15mp2 2647.46 11 82989 392.8 0.0 0.0 15 168835 1739.0 0.0 0.0 11 31820 145.1
d15mq1 3844.50 39 298551 1711.0 1.7 1.4 17 322490 3605.0 - - - - -
d15mq2 3698.49 39 216203 1262.0 1.8 1.0 28 303107 3603.0 - - - - -
d20mp1 - - - - - - - - - - - - - -
d20mp2 - - - - - - - - - - - - - -
d20mq1 - - - - - - - - - - - - - -
d20mq2 - - - - - - - - - - - - - -

Avg. 44 203508 743.1 0.8 0.6 29 386999 2530.3 0.0 0.0 55 68015 183.3

Although we can observe that there is a speed-up obtained by solving the problem as the Steiner

arborescence on LGSTP , the formulation LGxCUTF remains the best performing one. This can

be explained by the density of connectivity cuts: cut-sets (19) are dense cuts involving both, core

and assignment arcs, in general. In contrast, connectivity cuts (12) involve only core arcs, so they

can be much sparser, especially if the assignment graph is a complete bipartite graph. Finally,

the overall number of cuts of type (12) is significantly smaller than the number of cut-sets (19).

Our computational study shows that the trade-off between weaker lower bounds and the number

of potential cuts has been resolved in favor of the slightly weaker model LGxCUTF .

27



!"#$"%&'$!()&'*

+(,-./

!"# !"$ !"% !"&' !"()(
&''*''+

&'&*''+

&',*''+

&'#*''+

&'-*''+

&'$*''+

&'.*''+

Figure 5: An average increase of cost induced by different hop limits.

Table 6: Speedup factors for solving HC ConFL as Steiner arborescence.
t [s] Relative speed-up

STP UFLP LGxCUTR LGSTPCUT LGxCUTF

c p1 511.5 1.2 4.8
c p2 290.5 1.1 4.8
c q1 772.8 1.3 7.0
c q2 990.9 1.2 6.2
d p1 458.7 1.1 4.2
d p2 408.6 1.0 4.3
d q1 1024.5 1.1 4.9
d q2 651.8 1.1 5.8

5.5. Size of the Layered Graph

One of the potential drawbacks of layered graph models might be the size of the underlying graph

LGx. We now study the growth of the size of the layered graph in relation with the number of

allowed hops H and in relation with the density of the core graph. Figures 6 and 7 show the

relative size of the layered graph, dependent on the value of H, for 4 different instances. We chose

one UFLP instance (mp1) and combine it with four STP instances of different densities: c5, c10,

c15, c20. For each of the four instances, we report the following two quotients: Qv = |Vx|/|V |

(Figure 6) and Qa = |ASx|/|AS | (Figure 7), for H = 3, . . . , 10.

One observes that for sparse graphs (c5, c10) and smaller values of H, the graph LGx is

significantly smaller than G, which explains the efficacy of models on LGx in those cases. Solving

HC ConFL for H = 3, 5 is in most cases even faster than solving the ConFL problem without any

hop constraints (cf. the running times for ConFL given in Gollowitzer and Ljubić (2010)). As the

density of the graph and / or the value of H increase, the layered graph may become ten times as

large as the original graph G (for example, for c20mp1 and H = 10). This suggests that layered
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graph models are better suited for sparse core graphs and / or smaller values of H. We recall that

the density of the assignment graph does not influence the size of the layered graph LGx.

6. Conclusions

Strongest MIP models for the hop constrained minimum spanning tree problem are obtained on

layered graphs (see Gouveia, Simonetti, and Uchoa (2010)). Following this concept, we described

two possibilities to develop strongest MIP models for hop constrained ConFL by modeling it as

the directed ConFL problem on layered graphs. In the first transformation, a disaggregation of

both, the core and the assignment graph leads towards the corresponding strong MIP models. In

the second transformation, we disaggregate only the core graph, and then show that the best MIP

formulation on that graph provides the same strong lower bounds, while saving a significant number

of variables. We finally propose a simpler way of modeling HC ConFL as the Steiner arborescence

problem on the latter layered graph.
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In the computational study, we show that proposed layered graph models are computationally

tractable. The model based on connectivity cuts between the root and open facilities computation-

ally outperforms its stronger counterpart. Surprisingly, the compact three-index model performs

comparatively well but shows certain limitations due to the memory usage. The size of the layered

graph may drastically increase with the density of the core graph and with the number of allowed

hops.
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Ivana Ljubić is supported by the Hertha-Firnberg Fellowship of the Austrian Science Fund (FWF).

The authors thank to Luis Gouveia for very useful discussions on topics related to HCMST and HC-

STP. Preliminary results of this paper appeared in the Proceedings of the International Symposium

on Combinatorial Optimization (ISCO), 2010.

Bibliography

Alon, N., D. Moshkovitz, S. Safra. 2006. Algorithmic construction of sets for k-restrictions. ACM

Trans. Algorithms 2 153–177.

Balakrishnan, A., K. Altinkemer. 1992. Using a hop-constrained model to generate alternative

communication network design. INFORMS Journal on Computing 4 192–205.

Bardossy, M. G., S. Raghavan. 2010. Dual-Based Local Search for the Connected Facility Location

and Related Problems. INFORMS Journal on Computing , to appear.

Cherkassky, B. V., A. V. Goldberg. 1994. On implementing push-relabel method for the maximum

flow problem. Algorithmica 19 390–410.

Costa, A. M., J.-F. Cordeau, G. Laporte. 2008. Fast heuristics for the Steiner tree problem with

revenues, budget and hop constraints. European Journal of Operational Research 190 68–78.

Costa, A. M., J.-F. Cordeau, G. Laporte. 2009. Models and branch-and-cut algorithms for the

Steiner tree problem with revenues, budget and hop constraints. Networks 53 141–159.

Dahl, G., L. Gouveia, C. Requejo. 2006. On formulations and methods for the hop-constrained

minimum spanning tree problem. P. M. Pardalos, M. Resende, eds., Handbook of Optimization

in Telecommunications. Springer, 493–515.

30
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