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Abstract

In an optical network a signal can only travel a maximum distance of dmax before its quality
deteriorates to the point that it must be regenerated by installing regenerators at nodes of the
network. As the cost of a regenerator is high, we wish to deploy as few regenerators as possible
in the network, while ensuring all nodes can communicate with each other. In this paper we
introduce the generalized regenerator location problem (GRLP) in which we are given a set S
of nodes that corresponds to candidate locations for regenerators, and a set T of nodes that
must communicate with each other. If S = T = N , we obtain the regenerator location problem
(RLP) which we have studied previously and shown to be NP-complete. Our solution procedure
to the RLP is based on its equivalence to the maximum leaf spanning tree problem (MLSTP).
Unfortunately, this equivalence does not apply to the GRLP; nor do the procedures developed
previously for the RLP. To solve the GRLP, we propose reduction procedures, two construction
heuristics, and a local search procedure. We also establish a correspondence between the (node-
weighted) directed Steiner forest problem and the GRLP. Using this fact, we provide several ways
to derive mixed-integer programming (MIP) models for the GRLP and compare the strength of
these models. We then develop a branch-and-cut approach to solve the problem to optimality.
The results indicate that the exact approach can easily solve instances with up to 200 nodes to
optimality, while both heuristic frameworks are high-quality approaches for solving large-scale
instances.

Keywords: optical network design; (node-weighted) directed Steiner forest; branch-and-cut; heuris-
tics; minimum connected dominating set; regenerator location

1 Introduction

In today’s society the internet has become ubiquitous. The number of services and applications

based on Internet Protocol (IP) have grown exponentially over the last decade. Much of this growth

has been fueled by modern optical networks that provide high capacity transport infrastructure for
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advanced digital services. This paper deals with an important and fundamental problem concerning

the geographical reach of an optical network. An optical signal can only travel a maximum distance

(say dmax ) before its quality deteriorates (due to transmission impairments in the fiber) and needs

to be regenerated. To accomplish this, regenerators that convert the optical signal to an electronic

one (using 3R regeneration to reamplify, reshape, and retime the signal, see Borella et al., 1997;

Mukherjee, 2000; Zymolka, 1999) and then back to an optical one are installed at nodes of the

optical network. Traditionally, optical networks have been designed to be opaque, in the sense that

regenerators have been installed at every node of the network. However, this strategy is expensive

and energy consuming (because each optical signal is converted to an electrical one and back to

an optical one at each node of the network). To lower the costs of the optical network, as the

cost of regenerators is very high (for example, Mertzios et al., 2010, indicate a cost of $160,000 per

regenerator), we wish to instead design a translucent optical network (Rumley and Gaumier, 2009)

and deploy regenerators at a subset of nodes in the network (i.e., to deploy fewer regenerators)

while ensuring all nodes can communicate with each other (i.e., send a signal to each other).

In this context our paper studies the following network design problem that we refer to as the

generalized regenerator location problem (GRLP). We are given a network G = (N,F ) where N

denotes the set of nodes and F denotes the set of edges. S ⊆ N is the set of candidate locations

where regenerators can be placed, T ⊆ N is the set of terminal nodes that must communicate with

each other. A mapping ` : F 7→ R+ ∪ {0} defines the length of edges. A maximum distance of

dmax > 0 determines how far a signal can traverse before its quality deteriorates and needs to be

regenerated. Our goal is to determine a minimum cardinality subset of nodes L ⊆ S such that for

every pair of nodes in T there exists a simple path in G with the property that there is no subpath

(i.e., a subsequence of edges on the path) with length > dmax without regenerators placed on its

internal nodes. (The length of a simple path P between u and v from N is defined as the sum of

lengths of its edges, and the nodes other than u and v visited along that path are called internal

nodes.)

When S = T = N , we obtain a special case of the GRLP problem that we refer to as the

regenerator location problem (RLP). In the RLP, all nodes serve as terminals as well as candidate

locations for placement of regenerators. In our earlier work (see Chen et al., 2010), we introduced

the RLP and presented three heuristics and a branch-and-cut approach for it. In particular, we

established a correspondence between the RLP and the maximum leaf spanning tree problem (ML-

STP). In this paper, we focus on the GRLP (which turns out to be significantly more challenging)

for several reasons. In practice it is not necessarily the case that all nodes in the network need

to communicate with each other (i.e., T 6= N). Further, for administrative reasons (e.g., ease of

maintenance) a service provider may wish to restrict the set of locations where regenerators may

be installed (i.e., S 6= N). Thus, the solution to the RLP may not accurately reflect some of the

practical constraints that a service provider may wish to ensure (in the first situation the solution

to the RLP may install more regenerators than necessary to ensure all nodes in N can commu-

nicate, while in the second situation it may install a regenerator at a node where it may not be
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desirable to do so). Unfortunately, for the GRLP, the correspondence to the MLSTP does not hold.

Consequently, our earlier work for the RLP cannot be applied to the GRLP.

Although regenerator placement is a significant issue in optical network design, prior to our

earlier work in Chen and Raghavan (2007), the RLP seems to have been relatively ignored by the

academic literature on telecommunications network design. At the time of submission of our earlier

work (Chen et al., 2010) we had only come across two papers (Gouveia et al., 2003; Yetginer and

Karasan, 2003) that discussed the issue of regenerator placement within the context of a larger

network design problem. Since then, interest in the RLP has grown significantly and additional

papers have appeared in the literature that discuss the RLP (Flammini et al., 2011; Lucerna et al.,

2009; Mertzios et al., 2010; Pachnicke et al., 2008; Rumley and Gaumier, 2009), though still in the

restrictive form where regenerators can be placed at every node of the network.

Our Contribution In this paper, we develop a mathematical programming approach for the

GRLP by establishing a connection between the GRLP and the node-weighted directed Steiner

forest problem (NWDSFP). Unfortunately, typical multicommodity or directed cut formulations

that are known to be extremely strong formulations for the Steiner tree problem are weak and are

not computationally viable for the GRLP. Using a technique of disaggregation—which we show

to be computationally equivalent to node splitting—results in a strong formulation for the GRLP.

We then develop a branch-and-cut (B&C) approach based on the node splitting model to provide

exact solutions for the GRLP. The node-splitting approach results in a model with fewer variables

(while still being the strongest model introduced in this paper) and is quite amenable to solving

to optimality instances with up to 200 nodes. We also devise a preprocessing procedure, two

construction heuristics and a local search procedure. Two heuristic frameworks are proposed, in

which the preprocessing, followed by one of the two construction heuristic and the local search

procedure, is applied. These heuristic frameworks are extremely fast and produce high-quality

solutions for the GRLP. Specifically, out of 450 instances studied in this paper (ranging from 50

to 500 nodes) the B&C approach solves 326 instances to optimality within the given time limit of

one hour per instance. Of these 326 instances our heuristic frameworks found the optimal solution

290 times. Even for the largest 500 node problems, our heuristic frameworks typically run in about

half a minute per instance while the B&C approach is unable to generate any meaningful upper

bounds (and provides weak lower bounds) in an hour.

Organization of the Paper The rest of this paper is organized as follows. Before we conclude

this introductory section we provide a brief literature review on the RLP. In Section 2 we describe a

graph transformation procedure that greatly simplifies conceptualization of the GRLP, and propose

a set of preprocessing steps to reduce the size of GRLP instances. In Section 3 we show how the

GRLP can be transformed into the NWDSFP. Mixed-integer programming (MIP) models for both

the GRLP and the NWDSFP are also proposed in Section 3; and the strength of the different

models is established. Section 4, describes two heuristics and a local search procedure for the

GRLP. Section 5 describes the weighted GRLP and explains how to adapt our B&C procedure
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and heuristics to it. Section 6 presents our computational experiments and Section 7 provides

concluding remarks.

1.1 Related Literature

Regenerator technology and its use within an optical network has been well-known for quite a

long time. However, until our earlier work (Chen et al., 2010), the RLP does not seem to have

been considered as a stand alone network design problem within the academic research community.

Frequently, in optical network design problems constraints related to regeneration were ignored and

dealt with once routing paths had been determined for optical transmission, or costs associated

with regenerators were ignored (Gouveia et al., 2003). Since network design is often done in a

hierarchical fashion, addressing the RLP or GRLP at the outset of the network design planning

process ensures that regenerators are placed at nodes of the network so that all nodes of the network

that need to communicate may communicate without worry of physical impairments of the signal.

This greatly simplifies the design process; and is extremely useful for telecommunications managers.

In Chen et al. (2010) we established a correspondence between the RLP and the MLSTP.

We then devised three heuristics and a branch-and-cut algorithm for the RLP. The branch-and-

cut approach was based on formulating the RLP as a Steiner arborescence problem (SAP) with

a unit degree on the root node on a directed graph in which nodes are split into arcs. Due to

the correspondence between the RLP and the MLSTP, these procedures are equally applicable to

the MLSTP as well. Recently, independently and subsequent to our work, Lucena et al. (2010)

considered the MLSTP and proposed two different formulations for it. The first one is based on a

model developed by Fernandes and Gouveia (1998) for the minimum spanning tree problem with

a constraint on the number of leaves. The second one, is identical to the SAP model proposed in

Chen et al. (2010). Lucena et al. (2010) also (independently) proposed a heuristic for the MLSTP,

which is identical to the heuristic called H1 in Chen et al. (2010).

Recently Flammini et al. (2011) developed an approximation algorithm for the RLP with ap-

proximation ratio O(log n). They showed that the RLP is not approximable in polynomial time

with an approximation factor better than (1 − ε) log n. Arunabha et al. (2010) point out some

errors in the Flammini et al. (2011) paper. By making the connection between the RLP and

the minimum connected dominating set problem (MCDSP)1 the authors showed that there is a

(log δ+2)-approximation algorithm for the RLP, where δ denotes the maximum degree of the input

graph. In some design scenarios, rather than focusing on minimizing the number of regenerator

locations, the focus is on minimizing the total number of regenerators installed with the provision

that at each location multiple regenerators need to be installed (one for each pair of nodes that

communicates through that location and needs a regenerator at that location). Mertzios et al.

(2010) studied the complexity of this problem and showed that it does not admit a polynomial

time approximation scheme. While the papers discussed so far focused solely on the location of

1This connection is also implicit from the correspondence between RLP and the MLSTP shown in Chen et al.
(2010) and the correspondence between the MLSTP and MCDSP shown in Lucena et al. (2010).
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regenerators, recently Patel et al. (2010) considered regenerator placement and traffic grooming

problem together. In other words, in addition to determining the location of regenerators, they

also determine a logical topology of the network (links on this logical topology are lightpaths)

and route traffic over this logical topology. They described separate heuristics for the RLP and

the traffic grooming problem; and discussed how to combine the two heuristics to consider both

problems together.

To the best of our knowledge, neither the GRLP nor the NWDSFP has been considered previ-

ously in the literature. The variant of the NWDSFP without any node weights (i.e., the directed

Steiner forest problem (DSFP)) has been studied by a few researchers in the literature. There are

a handful of approximation algorithms known for the DSFP. Dodis and Khanna (1999) have shown

that the DSFP cannot be approximated within O(2log
1−ε n) for any fixed ε > 0, unless NP-hard

problems can be solved in quasi-polynomial time. The currently best known approximation ratio

for the DSFP is O(n4/5+ε) (Feldman et al., 2009), where n is the number of nodes in the graph.

2 Preliminaries

In Chen et al. (2010) we showed that the RLP is NP-complete. Since the GRLP generalizes the

RLP, its NP-completeness follows immediately. Alternatively, to show the NP-completeness of the

GRLP directly, one might consider a transformation from the hitting set problem (Chen et al.,

2009).

Before solving the GRLP, it is useful to consider a graph transformation into a communication

graph B that is described in this section. We also address questions related to checking the feasibility

of the input graph. Finally, in this section we show how to efficiently reduce the size of the input

graph, by applying several reduction procedures. These reduction procedures partially fix the

solution by determining locations where regenerators must be placed; and use this information to

reduce the size of the input graph.

2.1 The Communication Graph

Given a graph G = (N,F ) with edge lengths l : F 7→ R+, for each pair of nodes u and v in G, let

d(u, v) denote the length of the shortest path between u and v in G. We now generate a graph B =

(N,E), called the communication graph, such that E = {e = {u, v} | u, v ∈ N, d(u, v) ≤ dmax}. In

other words if the length of the shortest path d(u, v) between a pair of nodes (u, v) in G is ≤ dmax

we construct edge {u, v} in B. Observe that, if every pair of nodes in T has an edge connecting

them in B, then no regenerators are required. On the other hand, every node pair in T that is not

connected by an edge in B requires regenerators to communicate. We call such node pairs “not

directly connected” or NDC node pairs. Without loss of generality, we will assume that the NDC

node pairs are defined as (t1, t2), where t1, t2 ∈ T and t1 < t2. The set of all NDC node pairs will

be denoted by NDC . It suffices to consider the GRLP problem on the communication graph B.

Definition 1 (GRLP on Communication Graph). Given the communication graph B, the GRLP

5



4

6
3

2

5

1

(a) Graph B with S = {1, 3, 6} and
T = {1, 2, 4, 5}.

4

6
3

2

5

t1s
1

(b) Transformation into B′ with
S ∩ T = ∅, S′ = {s1, 3, 6} and
T = {t1, 2, 4, 5}.

,

.+
.*

+

-

/*

(c) Checking feasibility: merged s-
nodes into 2 S-components, S1 =
{s1, 3} and S2 = {6}.

Figure 1: Eliminating nodes from S ∩ T in the communication graph B and checking feasibility.

on B searches for the minimum cardinality set of nodes L ⊆ S to place regenerators, such that for

every NDC node pair in T there exists a path with regenerators placed at all its internal nodes.

Lemma 1. Without loss of generality, we can assume that for any GRLP instance, {S, T} is a

proper partition of N , i.e., S ∩ T = ∅, S ∪ T = N and S, T 6= ∅.

Proof. Assume that in a graph G we have that S ∪ T 6= N . The nodes from N \ {S ∪ T} will

not be candidates for placing regenerators, nor will they be part of an NDC node pair. Since the

communication graph B already specifies nodes that can communicate without regenerators the

nodes in N \ {S ∪ T} can be deleted from B.

Assume now that S ∩ T 6= ∅. We show how to transform B into a communication graph

B′ = (N ′, E′) in which the set of potential regenerator locations (S′) and the set of terminal nodes

(T ′) are disjoint, without changing the value of the solution. To do so, we basically split every node

i ∈ T ∩ S into a node si ∈ S′ and a node ti ∈ T ′ and reconnect them as follows.

N ′ :={si | i ∈ T ∩ S} ∪ {ti | i ∈ T ∩ S} ∪ {j | j 6∈ T ∩ S}

E′ :={{si, sj}, {ti, tj}, {si, tj}, {sj , ti} | {i, j} ∈ E, i, j ∈ T ∩ S}

∪ {{si, j}, {ti, j} | {i, j} ∈ E, i ∈ T ∩ S, j 6∈ T ∩ S}

∪ {{i, j} | {i, j} ∈ E, i, j 6∈ T ∩ S}.

Figures 1(a) and 1(b) illustrate this transformation. It is easy to verify that any feasible solution

on B can be transformed into an equivalent one on B′ with the same number of regenerators, and

vice versa.

Given the definition of the GRLP on the communication graph and the previous lemma, in the

rest of the paper we will assume that the GRLP is posed on a communication graph, and the sets

S and T form a proper partition of N . We call nodes in S, s-nodes, and nodes in T , t-nodes. Any

maximally connected component consisting of s-nodes only will be called an S-component. The
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number of all S-components in B will be denoted by nS . Given a node u ∈ T and an arbitrary set

N̂ ⊆ N , we define N̂ -degree of u as degN̂ (u) = |{{u, v} | v ∈ N̂ , v 6= u}|. If degN̂ (u) = 1, we say

that u has a unit N̂ -degree.

2.2 Checking Feasibility of the GRLP

Observe that the necessary and sufficient condition for an instance of the GRLP to be feasible is that

the two end points of every NDC node pair are connected to at least one common S-component.

For the input graph B′ given in Figure 1(b), we identified two S-components of B′ and replaced

them with super-nodes S1 and S2, as shown in Figure 1(c). The depicted instance is feasible since

the two end points of every NDC node pair are connected to at least one common S-component.

In order to check feasibility of a GRLP instance, one has to consider all NDC pairs (there are

O(|T |2) of them in the worst case) and to check that they are connected to a common S-component

(nS ∈ O(|S|)). Therefore, the feasibility check can be done in O(|T |2 · |S|) time. For the rest of the

paper, we will assume that a given instance of the GRLP is feasible.

2.3 Preprocessing for the GRLP

Observe that in the communication graph B the following properties hold:

(P0) If an s-node i has unit degree, removal of i from B will not change the problem;

(P1) If all the neighbors of an s-node i are connected to each other, removal of i from B will not

change the problem;

(P2) If a t-node i is not in any NDC node pair, removal of i from B will not change the problem;

(P3) If a t-node i has unit S-degree (i.e., it is only connected to one s-node l), every feasible

solution must include a regenerator deployed at node l;

(P4) If the two end points of an NDC node pair (i, k) are connected to only one common S-

component, say Sj ⊆ S, and i (or k) has unit Sj-degree, any feasible solution must deploy a

regenerator at the corresponding adjacent node l ∈ Sj .

We now propose a preprocessing procedure that repeatedly uses the properties (P0)-(P4) in

order to reduce the input graph B. Let us denote by L ⊆ S, the set of locations where regenerators

can be placed, and by Q ⊆ {1, . . . , nS} the set of indices of S-components in which regenerators can

be placed. In this iterative procedure, the variable Lpre denotes the set of regenerators fixed in the

preprocessing procedure. When removing a node u from B, we will denote it by B \u. In that case,

the node will be removed from N (and, correspondingly, from T or S), and all its neighboring edges

will be removed from E. The pseudo-code of the preprocessing procedure is given in Algorithm 1.

Our preprocessor uses a subroutine called UPDATE(B,L,Q) whose pseudo-code is provided in

Algorithm 2. The procedure essentially identifies all the node pairs that can be connected after

deploying regenerators in L, and adds to B the edges associated with these node pairs. Thereby, the

7



Algorithm 1: PREPROCESSING(B,Lpre)

L = ∅, Q = ∅, Lpre = ∅;
repeat

Lpre = L ∪ Lpre ;
UPDATE (B,L,Q);
while ∃v ∈ S that satisfies (P0) do B = B \ {v};
while ∃v ∈ S that satisfies (P1) do B = B \ {v};
while ∃u ∈ T that satisfies (P2) do B = B \ {u};
if T = ∅ then STOP (optimal solution found) ;
while ∃i ∈ T that satisfies (P3) do

Let l ∈ S be connected to i, l belongs to the S-component, Sj ;
L = L ∪ {l}, Q = Q ∪ {j};

while ∃ NDC node pair (i, k) that satisfies (P4) do
Let Sj be the shared S-component;
if degSj (i) = 1 then

L = L ∪ {l}, where l ∈ Sj is the corresponding adjacent node to i;

if degSj (k) = 1 then

L = L ∪ {w}, where w ∈ Sj be the corresponding adjacent node to k;

Q = Q ∪ {j};

until L = ∅;
return (B,Lpre)

connectivity of B is iteratively improved and the number of NDC node pairs reduced. In addition,

the UPDATE procedure deletes nodes from B where we have fixed the location of regenerators.

This can significantly reduce the number of s-nodes of the communication graph B. The UPDATE

procedure is used later in Section 4 within the construction heuristics and the post-optimization.

Figure 2 gives an example in which we obtain an optimal solution after applying the prepro-

cessing procedure. There are three S-components in this example: S1 = {s1, s2}, S2 = {s3, s4}
and S3 = {s5, s6, s7}. In the first step, the preprocessor detects that all the neighbors of s7 are

connected to each other and deletes it from B. The preprocessor also detects that node t3 has a

unit S-degree. Thus, node s4 is added to L and 2 (the index of the corresponding S-component)

is added to Q. Next, the preprocessor detects that NDC node pair (t1, t5) shares only one S-

component S3 = {s5, s6} and that t1 is only connected to s6 in S3 and t5 is only connected to

s5 in S3. Thus, nodes s5 and s6 are added to L and 3 is added to Q. After that, the prepro-

cessor detects that NDC node pair (t2, t4) shares only one S-component S2 = {s3, s4} and that

t2 is only connected to s3 in S2. Thus, node s3 is added to L. At this point L = {s3, s4, s5, s6}
and Q = {2, 3} and the preprocessor calls UPDATE(B,L,Q) (see Figure 2(b)). The routine adds

to B edges between node pairs that can communicate after a regenerator is placed at every node

in L (Figure 2(c)) and then removes from B nodes s3, s4, s5, s6, and their adjacent edges. In the

resulting graph, nodes t1, t2, t3, t4, t5 are all connected to each other (Figure 2(d)). We again repeat

all preprocessing steps. Now, all t-nodes are removed from B, L = ∅, and the algorithm terminates.
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Algorithm 2: UPDATE (B,L,Q)

for each j ∈ Q do
Apply depth first search on Sj ∩ L and identify connected components on Sj ;

Let S denote the set of all identified connected components;
for each component Sq in S do

for each node pair (i, k) where i and k are either in Sq or connected to Sq do
if there is no edge between i and k in B then

add edge {i, k} to B;

Eliminate from B all nodes in L and adjacent edges;
L = Q = ∅;
return (B,L,Q)

We end up with an optimal solution Lpre = {s3, s4, s5, s6}.

Lemma 2. The running time of the preprocessing procedure is O(|S|2|N |2).

Proof. See Appendix.

3 Mathematical Programming Approach

In this section we first show how to transform a GRLP instance given on B into an instance of

the node-weighted directed Steiner forest problem (NWDSFP) on an auxiliary graph H. Then, we

study MIP formulations that are valid for the GRLP (and with a change in objective function the

NWDSFP). We propose a compact and an extended formulation on graphH and a third formulation

on a graph obtained by “splitting” s-nodes. For the strongest among these models (with respect to

the quality of lower bounds), we propose a branch-and-cut algorithm that is described at the end

of this section.

3.1 Transforming the GRLP into the Node Weighted Directed Steiner Forest

Problem

When modeling the GRLP, we want to find a solution such that any NDC node pair (t1, t2) is

connected via a path where all the internal nodes are from S. In order to forbid t-nodes along

a path between any two NDC node pairs, we will work on a directed graph H in which t-nodes

will therefore have either in-degree or out-degree equal to zero. The construction of H is described

below. During this transformation, we will create a set of origin-destination pairs, denoted by D,

that will correspond to the NDC node pairs from B.
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Figure 2: Illustration of the preprocessing procedure for the GRLP.

The directed graph H = (VH , AH) is defined as follows.

VH = VO ∪ VD ∪ S, where VO and VD are created as follows:

vo ∈ VO ⇔ ∃v ∈ T, ∃(v, l) ∈ NDC

vd ∈ VD ⇔ ∃v ∈ T, ∃(l, v) ∈ NDC

AH ={(i, j) | i ∈ VO, j ∈ S, or i ∈ S, j ∈ VD, or i, j ∈ S}

The cost of each arc (i, j) ∈ AH is defined as cij := 0. Node weights are defined as: wi := 1 if i ∈ S,

and wi := 0, if i ∈ VD ∪ VO. Figure 3 illustrates this transformation. We now define the NWDSFP

as follows.

Definition 2 (NWDSFP). Given a directed graph H = (VH , AH), a collection of origin-destination

pairs D ⊆ VH × VH , and node and arc weights, w : VH 7→ R+
0 and c : AH 7→ R+

0 , respectively, the

node-weighted directed Steiner forest problem (NWDSFP) searches for a subgraph H ′ = (V ′, A′)

of H that contains a directed path for every pair of nodes from D and that minimizes
∑

i∈V ′ wi +∑
a∈A′ ca.

If, in the previous definition, all node weights are equal to zero, the problem is simply referred

to as the Directed Steiner Forest problem (DSFP). One can easily show that the GRLP can be
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Figure 3: Transformation of a GRLP instance into a NWDSFP instance.

transformed into the NWDSFP on the graph H obtained as described above.

Lemma 3. Given a feasible solution to a GRLP instance on the communication graph B it can be

transformed to a feasible solution of equal cost to the NWDSFP on the graph H (whose construction

is described above), and vice versa.

Despite the term “forest” in the name of the problem, a solution to the (NW)DSFP is not

necessarily a forest. In a common example in which D = VH×VH and all arc costs are equal to one

(and all node-weights are equal to zero), the optimal solution is given by an oriented Hamiltonian

cycle. Hence, in general case, an optimal solution on H is not necessarily cycle-free. However, due

to the special structure of GRLP instances on H (i.e., the arc costs are zero), the following lemma

shows that there always exist an optimal solution on H, whose only possible cycles are of type

(i, j) ∪ (j, i), for some i, j ∈ S.

Lemma 4. For any NWDSFP instance on the directed graph H constructed as above, there always

exists an optimal solution H ′ = (V ′, A′) that induces an undirected cycle-free subgraph on S. A

subgraph of H is undirected cycle-free if it is cycle-free after disregarding the arc directions.

Proof. Assume there is an optimal solution to the NWDSFP that is not undirected cycle-free. Let

C denote the cycle (disregarding directions) on H ′. Since, by construction, all arcs connecting

s-nodes are bidirected and with zero costs, we can eliminate the cycle C by replacing one of its

arcs (i, j) by the directed path between i and j in C (adding zero cost arcs as needed) without

increasing the cost of the objective function. Repeating this procedure yields the desired result.

3.1.1 Flow and Cut Set Formulations on H

We first consider the multi-commodity flow model for the GRLP derived from the special cost

structure of the corresponding NWDSFP problem on the graph H = (VH , AH). We introduce
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binary variables yi ∈ {0, 1}, i ∈ VH that are set to one if the node i ∈ S is used as an intermediate

node of the NWDSFP solution. Furthermore, we fix yi := 1 if i ∈ VO ∪ VD.

Every origin-destination pair (o, d) ∈ D can now be considered as a single commodity, and we

are searching for the minimal subset of nodes from S, needed to be installed in that network in

order to allow origin-destination pairs to communicate with each other. In order to ensure the

existence of a directed path between each origin-destination pair k = (o, d), we introduce flow

variables fkij that will be set to one if the path uses the arc (i, j) ∈ AH , and to zero otherwise. The

multi-commodity flow model reads as follows.

(MCF y) min
∑
i∈S

yi (1)

s.t.
∑

(i,j)∈AH

fkij −
∑

(j,i)∈AH

fkji =


−1, i = d

1, i = o

0, otherwise

∀i ∈ VH , ∀k = (o, d) ∈ D (2)

0 ≤ fkij ≤ min{yi, yj} ∀(i, j) ∈ AH ∀k ∈ D (3)

yi = 1 ∀i ∈ VO ∪ VD (4)

yi ∈ {0, 1} ∀i ∈ S (5)

In contrast to classical multi-commodity flow models for trees (see, e.g., Magnanti and Wolsey

(1995); Vanderbeck and Wolsey (2010)), we do not use binary arc variables to define arc capacities.

Since there are no arc costs involved, our capacity constraints (3) ensure that each time an arc

is used, both of its end nodes are included into solution. In this and in the following models, y

variables assigned to VO ∪ VD can easily be removed from the formulation, but they are kept for

the sake of better readability.

This compact model containsO(|S|) binary andO(|AH ||D|) continuous variables andO(|AH ||D|)
constraints. Unfortunately, only small instances can be solved to optimality by plugging the MCF y

model into a black-box MIP solver. Therefore, we resort to cut set based models for which efficient

branch-and-cut approaches appear to be more effective in practice.

Two Equivalent Cut Set Formulations An optimal solution to the GRLP on H (and to the

NWDSFP, in general) can be seen as a union of Steiner arborescences. Thereby, each node ô such

that (ô, d) ∈ D defines the root of a Steiner arborescence whose terminals are all possible destination

nodes having ô as an origin. Therefore, the GRLP can be solved by simultaneously searching for

Steiner arborescences on H with arc capacities set to min{yi, yj}, for every (i, j) ∈ AH . For each

origin node r ∈ VO, denote by VD(r) = {i ∈ VD | ∃k = (r, i) ∈ D} the set of its destination nodes.

Every subgraph of the solution that enables connection between r ∈ VO and all other i ∈ VD(r) can

be seen as a Steiner arborescence rooted at r with VD(r) nodes as terminals that are leaves. The

12



correctness of the claim follows from the fact that, by construction, all destination nodes have only

ingoing arcs, and therefore, cannot be used as interconnection nodes within the paths connecting

NDC node pairs.

Given W ⊆ VH , denote by δ−(W ) = {(i, j) | i 6∈ W, j ∈ W}. We will also denote δ−({i})
by δ−(i). Furthermore, for a binary variable x ∈ {0, 1}|AH |, let x(U) =

∑
(i,j)∈U xij , for all U ⊆

AH . The cut set formulation that models multiple Steiner arborescences on H can be obtained

from the previous flow based model by replacing inequalities (2) and (3) with the following set of

exponentially many cut set inequalities∑
(i,j)∈δ−(W )

min{yi, yj} ≥ 1 ∀r ∈ VO, ∀W ⊆ VH \ {r},W ∩ VD(r) 6= ∅. (6)

The model defined by inequalities (4)-(6) will be denoted by CUT y. Constraints (6) represent just

a compact way of writing 2|δ
−(W )| many inequalities per each constraint of type (6). Indeed, for

any index set of arcs I = {1, . . . , |I|}, inequality
∑

(i,j)∈I min{yi, yj} ≥ 1 can be replaced by the

following collection of 2|I| inequalities:
∑

(i,j)∈I,k=i⊕j yk ≥ 1. (For example if I = {(1, 2), (3, 4)},
then the collection of inequalities is y1 + y3 ≥ 1, y1 + y4 ≥ 1, y2 + y3 ≥ 1, and y2 + y4 ≥ 1.)

Alternatively, one may also consider an extended formulation of CUT y, by introducing binary

arc variables xij ∈ {0, 1}, that will be set to one if the arc (i, j) ∈ AH is used along a path between

an origin-destination pair (o, d) ∈ D, and to zero, otherwise. In the corresponding model, that we

will refer to as CUT x,y, inequalities (6) are replaced by:

x(δ−(W )) ≥ 1 ∀r ∈ VO, ∀W ⊆ VH \ {r},W ∩ VD(r) 6= ∅ (7)

xij ≤ min{yi, yj} ∀(i, j) ∈ AH (8)

xij ∈ {0, 1} ∀(i, j) ∈ AH (9)

We should note in passing that CUT x,y is a valid formulation for the NWDSFP as well. In the

case of the NWDSFP the objective function contains both node and arc variables. Let vLP (M)

denote the value of the LP-relaxation of an arbitrary MIP model M , and PM denote the feasible

space of its linear relaxation. The following lemma easily follows in a straightforward fashion from

the max-flow min-cut theorem (Ford and Fulkerson, 1956).

Lemma 5. The formulations CUT y, MCF y and CUT x,y are equally strong, i.e., vLP (CUT y) =

vLP (MCF y) = vLP (CUT x,y). Further their projections onto the space of the y variables are iden-

tical.

In the next section we will show that an extended formulation obtained by a disaggregation

technique leads to a stronger MIP model than the ones considered above.
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3.2 A Disaggregated Cut Set Formulation

In order to model each single Steiner arborescence rooted at r ∈ VO separately, we now disaggregate

node and arc variables of the CUT x,y formulation. To each origin node r ∈ VO, we assign the set of

binary arc and node variables, xrij and yri , respectively, that are set to one if the arborescence rooted

at r uses these arcs/nodes in order to connect to its destination nodes VD(r). The formulation reads

then as follows.

(DCUT x,y) min
∑
i∈S

yi

s. t. xr(δ−(W )) ≥ 1, ∀r ∈ VO, ∀W ⊆ VH \ {r},W ∩ VD(r) 6= ∅ (10)

xr(δ−(i)) =

yri ∀i ∈ S

1 ∀i ∈ VD(r)
∀r ∈ VO (11)

yri ≤ yi ∀r ∈ VO ∀i ∈ S (12)

yi = 1 ∀i ∈ VO ∪ VD (13)

xrij ∈ {0, 1} ∀(i, j) ∈ AH , ∀r ∈ VO (14)

yri , yi ∈ {0, 1} ∀i ∈ VH ,∀r ∈ VO (15)

Notice that for each arborescence rooted at node r we have enforced the indegree constraints

that state the indegree of each node of an arborescence is equal to one. This strengthens the model.

Lemma 6. The model DCUT x,y is strictly stronger than the model CUT x,y, i.e., vLP (DCUT x,y) ≥
vLP (CUT y), and there exist GRLP instances for which the strict inequality holds.

Proof. To prove this result it suffices to consider minimal feasible solutions (x′r,y′r,y′) ∈ PDCUTx,y .

Let x′ij = maxr x
′r
ij . Then it is easy to verify that (x′,y′) is also feasible to inequalities (4) and (7).

With regards to inequality (8), since x′rij ≤ x
′r(δ−(j)) = y′rj , xij ≤ yj is automatically satisfied.

In a minimal solution, for each arborescence at node r, x′rij ≤ x
′r(δ−(i)) (this is consequence of

max-flow min-cut). Since x′rij ≤ x
′r(δ−(i)) = y′ri , xij ≤ yi is also automatically satisfied. Figure 4

illustrates an example that shows that vLP (DCUT x,y) can be strictly greater than vLP (CUT y).

While the above lemma is stated in the context of the GRLP, it should be clear that DCUT x,y

is a valid formulation for the NWDSFP and Lemma 6 also holds for the NWDSFP.

3.3 Node Splitting Transformation of the GRLP

Node splitting has been shown to be a very useful technique for different network design problems

(see e.g., Ahuja et al., 1993; Chen et al., 2010; Gamvros et al., 2012). We now use the node

splitting to develop a strong MIP formulation on an extended graph. The new model does not use
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(a) An optimal LP-solution of the model CUTx,y.
For all depicted (i, j), xij = 0.5, and for all
i ∈ S, yi = 0.5. The optimal objective value
vLP (CUTx,y) = 2.5. This solution is infeasible
for the model DCUTx,y because the s-node in the
middle violates constraints (12).

1

3
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(b) An optimal LP-solution of the model DCUTx,y.
vLP (DCUTx,y) = 3. For all depicted (i, j), xij = 1,
and for all non-isolated i ∈ S, yi = 1.

Figure 4: Example for proof of Lemma 6

disaggregation and therefore it has significantly fewer variables than the model DCUT x,y, while

keeping the same quality of lower bounds.

The graph H is transformed into an extended directed graph H̃ = (ṼH , ÃH) such that:

ṼH = VO ∪ VD ∪ S′ ∪ S′′ where S′ = {i′ | i ∈ S} and S′′ = {i′′ | i ∈ S}

ÃH = ÃS ∪ Ã where ÃS = {(i′, i′′) | i ∈ S}, and

Ã =
⋃

(i,j)∈AH

{(i′′, j′) | i, j ∈ S} ∪ {(i′′, j) | i ∈ S, j ∈ VD} ∪ {(i, j′) | i ∈ VO, j ∈ S}

In other words, for every node i in S we create two nodes i′ and i′′ corresponding to node’s input

and output functions. Thereby, the cost of an arc a ∈ Ã is set to zero, and the cost of an arc a ∈ ÃS
is set to one. Figure 5 illustrates this transformation and it is easy to see that the following result

holds:

Lemma 7. Given a feasible solution to a GRLP instance on the communication graph B, it can

be transformed to a feasible solution of equal cost to the directed Steiner forest problem (DSFP) on

the extended directed graph H̃ (whose construction is described above), and vice versa.

Directed Cut Set Formulation on H̃ For every arc (i, j) ∈ ÃH , we introduce a binary variable

zij ∈ {0, 1} that is set to one if the arc is used in establishing a connection between some o ∈ VO
and d ∈ VD ((o, d) ∈ D), and to zero, otherwise. The following cut set formulation models multiple

Steiner arborescences on H̃, and is valid for both the GRLP and the DSFP (as well as the NWDSFP
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Figure 5: Node-splitting transformation of the graph given in Figure 3(b). Dashed arrows corre-
spond to the s-nodes that are split.

after transformation to an extended directed graph where the nodes are split).

min{
∑

(i,j)∈ÃH

cijzij |
∑

(i,j)∈δ−(W )

zij ≥ 1, ∀r ∈ VO, W ⊆ ṼH \ {r},W ∩ VD(r) 6= ∅, zij ∈ {0, 1}|ÃH |}

We will refer to this model as SCUT .

Theorem 1. Formulations SCUT and DCUT x,y are equally strong, i.e., vLP (SCUT ) = vLP (DCUT x,y).

Proof. vLP (SCUT ) ≥ vLP (DCUT x,y): To prove this inequality, it suffices to consider minimal

feasible solutions from PSCUT . Given a minimal feasible ẑ ∈ PSCUT , we will show that there

always exists a solution (x̂r, ŷr, ŷ) feasible for the DCUT x,y model, with the same objective

value. We set ŷi = ẑi′i′′ , for all i ∈ S and ŷi = 1, for i ∈ VD ∪ VO. On the graph H̃

with arc capacities defined using ẑ values, we are able to send one unit of flow from every

r ∈ VO to every d ∈ VD(r). Without explicitly stating the corresponding multi-commodity

flow formulation on H̃, let f
(r,d)
ij denote the amount of flow for a commodity (r, d) ∈ D sent

along an arc (i, j) ∈ ÃH . We now define the values of x̂r and ŷr as follows.

x̂rij =


maxd∈VD(r) f

(r,d)
i′′j′ , i, j ∈ S

maxd∈VD(r) f
(r,d)
i,j′ , i ∈ VO, j ∈ S

maxd∈VD(r) f
(r,d)
i′′,j , i ∈ S, j ∈ VD

r ∈ VO, (i, j) ∈ AH and ŷri = x̂r(δ−(i)), i ∈ S

By construction of the flow and the definition of x̂r variables, we also have that x̂r(δ−(i)) = 1,

for all r ∈ VO and i ∈ VD(r) and hence, together with the definition of ŷr variables, con-

straints (10) and (11) are satisfied. The constructed vector (x̂r, ŷr, ŷ) also satisfies con-

straints (12), due to the minimality of the capacity vector ẑ. Indeed, assume that our choice

of the flow f causes a violation of the constraint ŷri ≤ ŷi for some r ∈ VO and i ∈ S. This

implies that, without loss of generality, there exist two commodities, say d1, d2 ∈ VD(r), such

that f (r,d1) and f (r,d2) are routed over (i′, i′′) in H̃, but they are not routed over the same
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collection of paths between r and i′. In that case, re-routing the flow of one of the two

commodities still induces a feasible solution, with at least one of ẑ capacities being reduced.

However, this is in contradiction with our assumption that ẑ is a minimal feasible solution in

PSCUT .

vLP (DCUT x,y) ≥ vLP (SCUT ): Given any feasible solution (x̂r, ŷr, ŷ) ∈ DCUT x,y, we construct

a solution ẑ ∈ PSCUT by setting ẑi′i′′ = ŷi, for all i ∈ S, and ẑij = 1, otherwise. By max-flow

min-cut arguments, it follows that on the extended directed graph H̃ with capacities equal to

ẑ, we are able to send one unit of flow from each r ∈ VO to each d ∈ VD(r). In other words,

the solution ẑ is feasible for the model SCUT .

Given the specific cost structure of the GRLP, we are not interested in all possible cut sets

separating the set of terminals VD(r) from its root r ∈ VO, but rather on those cut sets among

them consisting solely of split arcs represented by ÃS . This means that for modeling the GRLP on

the extended directed graph H̃, it is sufficient to change the objective function to
∑

(i′,i′′)∈ÃS zi′i′′

and to look at the following family of cut sets

W =
⋃
r∈VO

{W |W ⊆ ṼH \ {r},W ∩ VD(r) 6= ∅ and δ−(W ) ∩ Ã = ∅}. (16)

The correctness of this claim follows from observing that setting zij = 1 for all (i, j) ∈ A will not

change the value of the objective function. Thus the only cuts of interest in the above model are

the ones that do not contain arcs in Ã. In other words we can rewrite the above model for the

GRLP in terms of the “split arcs” as follows.

(NSCUT ) min
∑

(i′,i′′)∈ÃS

zi′i′′

s. t.
∑

(i′,i′′)∈δ−(W )

zi′i′′ ≥ 1, ∀W ∈ W (17)

zi′i′′ ∈ {0, 1} ∀i ∈ S (18)

Notice that, after projecting back the arc variables zi′i′′ into the node variables yi, for all i ∈ S, the

cut sets defined by (16) correspond to the (r, d) separating-node-cuts in H, i.e., to the subsets of

nodes WS ⊆ S, such that for at least one NDC node pair (r, d), eliminating nodes from WS from

H results in a graph in which the nodes r and d are disconnected. Therefore, it suffices to consider

minimal separating-node-cuts to define the model NSCUT .

3.4 Branch-and-Cut Algorithm

For solving the GRLP to optimality, among all models presented above, we chose the NSCUT

model. As discussed previously, this model exhibits the best lower bounds and involves significantly
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Algorithm 3: OrderingNDCPairs(NDC)

D = ∅;
repeat

Let r ∈ T be the node with the highest frequency in NDC node pairs;
for each (r, i) or (i, r) in NDC do

VO = VO ∪ {r}, VD = VD ∪ {i}, D = D ∪ {(r, i)};
NDC = NDC \{(r, i), (i, r)};

until NDC is empty ;
return D

fewer variables than the equally strong disaggregated model DCUT x,y. The main algorithmic issues

of an efficient implementation of the branch-and-cut framework for solving the NSCUT formulation

are provided below.

3.4.1 Constructing the DSFP

When transforming a GRLP instance into an instance of the directed Steiner forest problem, we need

to decide how to set up the set D of ordered NDC node pairs so that the number of arborescences

that need to be simultaneously constructed, is minimized. To do so, we proceed in a greedy fashion

as shown in Algorithm 3.

3.4.2 Initialization

Recall that in the enhanced directed graph H̃, each s-node i ∈ S, is split into arc (i′, i′′) ∈ ÃS . To

speed-up the performance of the branch-and-cut algorithm, one might consider the following set of

inequalities in the initialization phase.

In-degree and Out-degree Inequalities: The following in-degree inequalities state that among

all adjacent s-nodes of a destination node k ∈ VD, at least one needs to be passed through:∑
i′i′′:i′′k∈Ã zi′i′′ ≥ 1, for all k ∈ VD. Similarly, the following out-degree inequalities ensure that

among all adjacent s-nodes of a source node r ∈ VO, at least one need to be passed through:∑
i′i′′:ri′∈Ã zi′i′′ ≥ 1, for all r ∈ VO. Both groups of inequalities are special cases of cut set inequal-

ities (17).

Flow-Balance Inequalities: Denote by Sin the set of all internal s-nodes, i.e., s-nodes that are

not adjacent to a t-node. Observe that if a solution contains an s-node from Sin , then there must

be some other s-node adjacent to VD in the solution. Similarily, there must also be some other

s-node adjacent to VO in the solution. To state this in the enhanced directed graph H̃, we use the

following inequalities: zi′i′′ ≤
∑

k′k′′:i′′k′∈Ã zk′k′′ and zi′i′′ ≤
∑

k′k′′:k′′i′∈Ã zk′k′′ , for all i ∈ Sin .

We found that, although some instances were solved faster, on average the first group of con-

straints slowed down the performance of the branch-and-cut procedure. For the instances considered
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in our computational work the second group of constraints generally did not apply (i.e., the set Sin

was typically empty). Therefore, in the computational results presented in Section 6, we did not

add any cuts in the initialization phase except the trivial ones (0 ≤ zi′i′′ ≤ 1, for all i ∈ S).

3.4.3 Separation

The cut set inequalities (17) can be separated in polynomial time. The separation algorithm relies

on the calculation of multiple maximum flows. Here, we explain an efficient way to do that. Given

a fractional solution z′ of the current LP-relaxation, we define the capacities on the arcs of the

support graph as follows:

capuv =

z′i′i′′ , (u, v) = (i′, i′′), i ∈ S

1, otherwise

This way, only the cut sets from the collection W defined above, i.e., cut sets involving split node

variables only, will be separated. Before running the separation, the nodes of the set VO are

sorted into decreasing order according to the number of terminals of the arborescence rooted at r

(|VD(r)|), and a pool of cut sets is built. Using nested and back-cuts (as described in e.g., Ljubić

and Gollowitzer (2012)) up to 100 cuts are added into this pool, and then inserted into the master

LP whose value is then recalculated. Detected violated cut sets are inserted as global cuts into

the model, in every node of the branch-and-cut tree. Finally, our separation algorithm makes use

of minimum-cardinality cuts (see, e.g., Ljubić and Gollowitzer (2012)), i.e., during the separation

procedure, among all cut sets with equal violation, those with the smallest cardinality are preferred.

4 Heuristic Approach

As the exact approach presented above is unable to solve large-scale GRLP instances, in this section

we consider heuristic approaches. We propose two construction heuristics, referred to as GH1 and

GH2 for the GRLP. We then explain a local search procedure, called p-for-q, in which p regenerator

locations are replaced by q new ones (p > q ≥ 1). The overall heuristic framework works then as

follows: (1) preprocessing; (2) GH1 or GH2; (3) post-optimization (local search procedure).

4.1 Heuristic GH1

Our first heuristic GH1 focuses on S-components. At each iteration we identify a node t ∈ T with

the lowest T -degree (ties are broken randomly). We then examine all the neighboring S-components,

Sj , that are connected to t. In each of the components Sj , we determine a set of nodes Lj ⊆ Sj

on which the regenerators are to be placed. The pseudo-code of the procedure PLACE REGENS

that identifies Lj for a given component Sj and node t is provided in Algorithm 4. We illustrate

the algorithm in two examples given below. We assign weight w(Lj) to each Lj by taking the ratio

of the number of NDC node pairs that can be reduced after we deploy a regenerator at every node

in Lj and the size of Lj . Let Lmaxt ⊆ Sj denote the subset with the highest weight among all Lj ’s.
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Figure 6: Illustration of Heuristic GH1: Input graph B and a solution found by GH1.

GH1 deploys a regenerator at every node in Lmaxt . We then update the graph B (using Algorithm 2

with UPDATE(B,Lmaxt , Q = {1, 2, . . . , nS})), and repeat the whole process while there exist NDC

node pairs in B.

We first use a simple example given in Figure 6 to illustrate basic ideas of the heuristic. Initially

all t-nodes have T -degree equal to zero. GH1 arbitrarily chooses node t1. Node t1 is connected to

three S-components: S1 = {s6}, S2 = {s1, s2, s3} and S3 = {s7}. If we place regenerators at all

nodes from Sj (i.e., Lj = Sj , 1 ≤ j ≤ 3), the weights for L1, L2 and L3 will be equal to 1, 10
3 and

1, respectively. GH1 sets Lmaxt1 = L2 and places a regenerator at each of the nodes s1, s2 and s3.

In this particular case, after we updated the graph, we already obtain a feasible solution and the

algorithm stops.

In general, it is not necessary to place regenerators at all s-nodes within a component Sj and our

procedure PLACE REGENS takes this into account. We first select an arbitrary s-node s∗ ∈ Sj
adjacent to t and perform a restricted breath-first-search (BFS) (denoted by RESTRICTED BFS

in Algorithm 4) in which the BFS search is performed on the subgraph of B induced by the set of

nodes Sj ∪ T with s∗ being a root. The search in one direction is interrupted each time a t-node

is encountered. That way, all t-nodes adjacent to the given Sj are leaves of the resulting BFS tree

that we denote by TBFS = (VBFS , EBFS ). In a subsequent iterative process, we eliminate s-nodes

that are leaves of that tree. Observe at this point that if regenerators are placed at all the internal

nodes of TBFS , all t-nodes adjacent to the given Sj can communicate. Rather than doing so, we

try to rearrange the edges in TBFS , so that the number of its internal s-nodes is minimized. The

idea is to try and reduce the number of internal s-nodes in TBFS without sacrificing the number

of NDC node pairs that can be reduced after a regenerator is added to each one of these internal

nodes. At each iteration the number of s-nodes on the longest branch (from s∗) in TBFS represents

the minimum number of regenerators that need to be deployed before the node t can communicate

with a leaf node l ∈ T via Sj (this is because the breath-first-search is used to construct TBFS ). We

try to make the best use of the longest branch by merging it with other branches (or parts of these
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Algorithm 4: PLACE REGENS(Sj , t)

Arbitrary select a neighboring s-node of t, say s∗ ∈ Sj ;
TBFS = (VBFS , EBFS ) = RESTRICTED BFS(Sj ∪ T , s∗);
Mark all s-nodes from VBFS ∩ Sj as “unmerged”;
Iteratively eliminate from TBFS s-nodes that are leaves, until there are no such nodes left;
while ∃s ∈ Sj ∩ VBFS labeled as “unmerged” do

Select a longest (from s∗) “unmerged” branch B in TBFS ;
for each s-node l ∈ B do

for each e = {k, l} ∈ E do
if k ∈ VBFS and e 6∈ EBFS then

Delete the edge from k to its predecessor in EBFS ;
EBFS = EBFS ∪ {e};

Mark l as “merged”;

Iteratively eliminate from VBFS s-nodes that are leaves, until there are no such nodes left;

return Lj = VBFS ∩ Sj

branches). We then eliminate parts of the truncated branches from TBFS consisting of s-nodes that

are not used to connect NDC nodes pairs. Finally, the set Lj corresponds to the set of all internal

s-nodes of the resulting tree TBFS .

Figure 7 illustrates the procedure PLACE REGENS for given S1 = {s1, s2, s3, s4, s5, s6, s7} and the

identified t-node t1 and s∗ = s1. TBFS is constructed through Figure 7(a)-(c). The merging process

is shown in Figure 7(d)-(f). The longest unmerged branch from s1 consists of {s1, s4, s7, t3} (ties

are broken randomly). While scanning this path, we delete edges {s2, t2} and {s3, s6} and replace

them by {s7, t2} and {s7, s6}, respectively. Nodes s2 and s3 become leaves and after their deletion,

we obtain a tree TBFS such that L1 = {s1, s4, s6, s7}. Since six NDC node pairs — (t1, t2), (t1, t3),

(t1, t4), (t2, t3), (t2, t4) and (t3, t4) — can communicate after a regenerator is placed at each of the

nodes from L1, we have w(L1) = 6
4 = 1.5.

Lemma 8. Heuristic GH1 runs in O(|T ||S||N |2) time.

Proof. See Appendix.

4.2 Heuristic GH2

Heuristic GH2 is a somewhat greedier version of the heuristic GH1. The main difference between

GH1 and GH2 lies in the way how we place regenerators, once the BFS tree TBFS is found. As

opposed to GH1, GH2 focus on placing regenerators on only the longest branch in TBFS . For each

neighboring S-component Sj of a selected node t ∈ T , in the corresponding BFS tree we identify

the longest branch. Let Bj denote the set of internal nodes in the identified branch. GH2 then

computes w(Bj) by taking the ratio of the number of NDC node pairs that can be reduced after a

regenerator is placed at every node in Bj and the size of Bj . The branch Bmax
t with the largest

w(Bj) value among all neighboring S-components of t is then selected for deploying regenerators.
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Figure 7: Illustration of the RESTRICTED BFS ((a)-(c)) and PLACE REGENS ((d)-(f)) proce-
dure.

The graph B is then updated (using the UPDATE-procedure given in Algorithm 2), a new t-node

with the lowest degree in selected, and the whole procedure is repeated until all NDC node pairs

can communicate with each other. We note that the running times of the heuristic GH2 remain

unchanged from the modifications it makes on GH1.

4.3 Local Search Procedure

The post-optimization local search procedure (POLS) consists of a basic subroutine called p-for-q.

POLS is applied to the solutions obtained from GH1 or GH2 in order to improve upon them. p-for-

q is a local search procedure that tries to replace p regenerator locations in the current solution with

q new regenerator locations. When p-for-q results in a feasible solution, its application reduces

the number of regenerators in the solution by (p− q). We consider two variants of this procedure:

(1) p-for-q replacement within the same S-component, and (2) p-for-q replacement between two

different S-components. In the first case, for a given S-component Si, and a set of regenerators

placed in Li ⊂ Si, we try to replace p regenerator locations P ⊆ Li by q new ones Q ⊆ Si \ Li. In

the second case, for two disjoint S-components (Si, Sj) and two sets of locations where regenerators

are placed, Li ⊆ Si and Lj ⊂ Sj , we try to replace p regenerator locations P ⊆ Li with q new

locations Q ⊆ Sj \ Lj .
Given a feasible solution L ⊆ S, we iteratively apply p-for-q moves until we end up with a
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solution that cannot be improved anymore (our local search selects the first improvement). Then

we change the neighborhood by switching to new values for p and q and repeat the same process

again. We implement 2-for-1, 3-for-2 and 4-for-3 improvement, within each S-component, and

2-for-1 improvement between two S-components.

Lemma 9. Each single p-for-q move takes at most O(|S||N |2) time.

Proof. See Appendix.

The number of possible p-for-q moves is bounded by |S|p+q. In case the moves are performed within

the same S-component, the search of the p-for-q neighborhood takes at most
∑nS

i=1O(|S|p+q|S||N |2) =

O(|S|p+q+2|N |2) time. Similarly, if the moves are performed between two distinct components, the

search will take at most O(|S|p+q+3|N |2) time (this is because for each fixed S-component from

which p nodes are to be replaced, there are O(|S|) possibilities to select the other component for

the exchange).

5 Weighted GRLP

The weighted version of the GRLP problem (WGRLP) is motivated by recognizing that in many

real-world situations the cost of installing regenerators at different nodes of a network may vary

due to real estate costs. In particular, installing and maintaining a regenerator at a dense urban

area may be much more expensive than in a small town (or a rural area). Mathematically the

WGRLP is identical to the GRLP, except that the objective is to minimize the weighted sum of

nodes selected as regenerator locations. If we let wi denote the weight of node i, the objective of

the WGRLP is to minimize
∑

i∈Lwi, while the objective of GRLP is to minimize
∑

i∈L 1 = |L|.
The construction of the communication graph B and the preprocessing procedure described in

Section 2 do not depend on weights and thus remain unchanged for the WGRLP. Regarding the

MIP formulations proposed in Section 3, we only need to change the objective function to address

the WGRLP. With respect to heuristics, we only need to make minor modifications. More precisely,

for both of the heuristics we define the longest branch as the one with the highest total weight of all

its internal unmerged nodes. That way, we always select the branch that maximizes the number of

NDC node pairs eliminated per unit cost. Finally, it is straightforward to incorporate weights into

the POLS procedure and its running time per single p-for-q move remains unchanged. In addition

to the moves implemented in GRLP, we also allow the following four moves if they lead to a feasible

solution with reduced total weight: 3-for-3, 2-for-2 and 1-for-1 within each S-component, and

2-for-2∗ between S-components where two regenerator locations in one S-component are replaced

by one regenerator location from the same S-component and one from another S-component.
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6 Computational Results

For solving the linear programming relaxations and for a generic implementation of the branch-

and-cut approach, we used the commercial packages IBM CPLEX (version 11.0) and Concert

Technology (version 2.9) (CPLEX, 2012). Our experiments were performed on an Intel Core 2

Duo 3 GHz machine with 3.25 GB RAM, where each run was performed on a single processor. All

implementations are done using C++ programming language. For calculating the maximum flow

we adapted the implementation of Cherkassky and Goldberg (1997).

6.1 Data Sets

In our study on the RLP in Chen et al. (2010), we generated three types of networks: (i) randomly

generated networks in which the communication graph was generated explicitly; (ii) networks with

random distances and (iii) Euclidean networks. We found that the instances of the first group of

randomly generated networks were much harder to solve than the other two types of networks.

Consequently, in our computational study on the GRLP, we focus on randomly generated commu-

nication graphs B. The instance generator procedure described below guarantees that the sets S

and T are disjoint and that the instances are feasible.

Set1 (GRLP Instances): Each instance of this set is generated according to two parameters:

the first one, n, controls the number of nodes (|N |) and the other one, p ∈ [0, 1], determines the

percentage of t-nodes among them. The number of S-components, nS , is a random integer value

chosen from {2, . . . , 5} with equal probability. Each s-node is randomly assigned to one of the

S-components with probability 1
nS

. Notice that the probability of a particular S-component being

empty is Π
|S|
i=1(

nS−1
nS

). When this happens, we move a randomly chosen s-node into the empty

S-component. This makes sure that there are no empty S-components. We define the density of

an S-component as di = 2|Ei|
|Si|(|Si|−1) , where |Ei| is the number of edges in the S-component Si and

|Si| its number of nodes. Each Si has a fifty-fifty chance of getting assigned either a high density

(di = 70%) or a low density (di = 30%). To ensure connectivity of each S-component Si, we first

generate a tree spanning all its nodes and then randomly add edges until its density reaches the

assigned level di. Each t-node ` and an S-component Sj are connected according to the parameter

q whose value is randomly chosen from the set {0, 1
|Sj | ,

2
|Sj | , ...,

|Sj |−1
|Sj | } with equal probability for

each element. We then randomly generate q × |Sj | distinct edges between ` and Sj . Observe that

the probability of a t-node ` being isolated (not connected to any s-node) is ΠnS
j=1(

1
|Sj |). When this

happens, we arbitrarily choose a component Si and randomly select q ∈ { 1
|Si| ,

2
|Si| , ...,

|Si|−1
|Si| } with

equal probability given to each element. This makes sure that every t-node is connected to at least

one s-node. In the resulting graph, we check every pair of t-nodes: only if they share at least one

common S-component we add them to the set of NDC node pairs. This final step guarantees that

all generated instances are feasible. Set1 contains 10 instances for each n ∈ {50, 75, 100, 125, 150}
and each p ∈ {0.25, 0.5, 0.75}.
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Set2 (WGRLP Instances): We generate instances for weighted GRLP using the same under-

lying graphs as in Set1. We only modify these graphs by assigning to each s-node an integer weight

randomly chosen from {2, 3, 4} with equal probability.

Set3 (Large-scale GRLP Instances): This set of instances is generated following the same

rules as for the Set1. Set3 contains 10 instances for each n ∈ {175, 200, 300, 400, 500} and each

p ∈ {0.25, 0.5, 0.75}.

6.2 Results

For the sets of generated benchmark instances, we now report on the results obtained by running

the branch-and-cut algorithm (B&C) described in Section 3, and by running the two heuristic

frameworks described in Section 4 (preprocessing, construction heuristic and local search), that we

will refer to as GH1-Framework and GH2-Framework. We will use the B&C algorithm to measure

the quality of heuristic solutions, by comparing the corresponding solution values. B&C was given

a time limit of one hour.

Tables 1, 2 and 4 summarize the computational results for Set1, Set2 and Set3, respectively.

Each row of these three tables aggregates results from 10 instances with the same parameter

settings. The parameter settings are specified in the first two columns “n” and “p(%)”. Blocks “

GH1-Framework”, and “GH2-Framework”, report the computational results for the two heuristic

frameworks, respectively. In particular, “NR” is the average number of regenerators obtained by

the heuristic framework, “RT” reports the average running time in seconds, “#Opt” reports the

number of optimal solutions obtained by the heuristic framework (in case the optimum is known).

In columns denoted by “#Imp” we report the number of times the post-optimization local search

improved the solution found by the underlying construction heuristic. “#PO” denotes the average

number of regenerators that were reduced after applying the POLS procedure. For the B&C

algorithm we report the following values: lower and upper bounds (“LB” and “UB”, respectively)

and the running time (“RT”) averaged over 10 instances per group. “#Opt” column shows in how

many (out of 10) instances, B&C solved the the underlying instance to optimality. For the set of

WGRLP instances (Set2), instead of “NR”, we report “Obj” values, i.e., the objective function

values averaged over 10 instances per group. When the B&C algorithm terminates without solving

the problem to optimality, we round up the fractional lower bound. If the heuristic solution equals

this lower bound we state that the heuristic has found the optimal solution.

Set1. Out of 150 instances of this group, B&C solves all but two to provable optimality within

the time limit of one hour. Regarding the overall performance of the B&C approach, we observe

that, for a fixed number of nodes n, instances with p = 0.5 (the percentage of t-nodes in B)

appear to be more challenging than the remaining ones. This can be explained by the fact that the

computational complexity of the exact approach is directly proportional to the two values: a) the

number of NDC node pairs and b) the number of s-nodes in the input graph. Lowering the values
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of p (i.e., setting p = 0.25) implies less NDC node pairs, and therefore, less cutting planes that

need to be inserted before the optimal solution is found. On the other hand, increasing the values

of p (i.e., setting p = 0.75) implies lower percentage of s-nodes, and therefore, the reduction of the

size of the search space (as there are fewer z variables involved).

Comparing the two heuristic frameworks, from Table 1, we conclude that the GH1-Framework

is marginally better than the GH2-Framework in terms of the number of times it finds the best

solution. Notice that the two heuristic frameworks have approximately the same running times.

Looking closer at the difference between the better among the two heuristic frameworks and the

optimal solution value (or, the lower bound in two remaining cases), we observed that in 134

cases optimal solutions were found, for 12 instances, this difference was equal to one, and for the

remaining four cases, this difference was equal to two. Both heuristic approaches solved each single

Set1 instance within a few seconds, whereas the running times of the branch-and-cut algorithm

exponentially increase with the number of nodes and the number of NDC node pairs.

Comparing between the two heuristic frameworks we find that the GH1-Framework provides

the best solution in 146 instances, finds the optimal solution in 128 instances, and the POLS was

useful (i.e., found an improvement to the greedy solution) in 143 instances. The GH2-Framework

provides the best solution in 143 instances, finds the optimal solution in 125 instances, and the

POLS was useful in 141 instances. The GH1-Framework solely provides the best heuristic solution

in 7 instances, while the GH2-Framework solely provides the best heuristic solution in 4 instances.

Hence, there are always instances where each one of the heuristics solely provides the best solution.

We also compare the performance of the construction heuristics GH1 and GH2, before applying the

POLS. The values provided in the column denoted by “#PO” indicate that the POLS was slightly

more effective for GH2, indicating that the values of GH2 were slightly worse than those obtained

by GH1. We may also conclude that the POLS plays a significant role in the performance of the

proposed heuristic frameworks.

Set2. Table 2 reports computational results for Set2. The B&C procedure solves all 150 instances

to optimality, and needs on average less time than for solving the same instances of Set1. This can

be explained by the fact that weighted GRLP solutions are less symmetric than the corresponding

unweighted ones. The better of the two heuristic frameworks finds optimal solution in 134 cases,

in 10 cases the difference between the heuristic and the optimal solution is equal to one, and in

the remaining 6 cases this difference varies between 2 and 5. Comparing between the two heuristic

frameworks we find that the GH1-Framework provides the best solution in 134 instances, finds

the optimal solution in 120 instances, and the POLS was useful in all but one instances. The

GH2-Framework provides the best solution in 143 instances, finds the optimal solution in 131

instances, and the POLS was useful in all instances. In 8 instances the GH1-Framework was solely

the best heuristic approach, while the GH2-Framework was solely the best heuristic approach in

15 instances. Hence, we conclude that the GH2-Framework performs marginally better than the

GH1-Framework. Notice that, as for Set1, the running times of the two frameworks are about the
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GH1-Framework GH2-Framework B&C

n p(%) NR RT #Opt #PO #Imp NR RT #Opt #PO #Imp UB LB RT #Opt

50 25 7.2 0.0 10 1.5 9 7.2 0.0 10 1.9 9 7.2 7.2 0.34 10

50 7.7 0.0 8 1.6 7 7.7 0.0 8 2 7 7.5 7.5 0.50 10

75 4.3 0.0 10 2.1 7 4.3 0.0 10 2.7 8 7.5 7.5 0.50 10

75 25 9.8 0.0 9 1.2 9 9.8 0.0 9 1.8 10 9.7 9.7 2.21 10

50 9.5 0.0 8 3.8 10 9.6 0.0 7 5 10 9.2 9.2 5.67 10

75 5.6 0.0 8 2.9 9 5.5 0.0 9 3.6 9 5.5 5.5 4.03 10

100 25 11.8 0.0 9 1.7 10 11.8 0.0 9 3.1 10 11.7 11.7 11.30 10

50 11.0 0.0 8 3.9 10 10.9 0.0 9 6.5 10 10.8 10.8 38.64 10

75 7.3 0.0 6 3.1 10 7.2 0.2 7 4.3 10 7.0 7.0 16.59 10

125 25 14.1 0.0 10 3.1 10 14.1 0.0 10 3.9 10 14.1 14.1 45.77 10

50 12.0 0.4 9 5.1 10 12.1 0.3 9 6.5 10 11.9 11.9 290.56 10

75 8.5 0.1 6 5.4 10 8.4 0.1 7 5.9 10 8.1 8.1 110.69 10

150 25 14.5 0.1 10 4.1 10 14.5 0.5 10 4.4 10 14.5 14.5 220.49 10

50 12.3 1.3 8 6.9 10 12.3 0.7 8 9.4 10 12.2 12.0 1188.84 9

75 9.5 0.3 6 4.9 10 9.5 0.1 6 6.5 10 9.1 8.9 903.26 9

Table 1: Computational results for Set1

GH1-Framework GH2-Framework B&C

n p(%) Obj RT #Opt #PO #Imp Obj RT #Opt #PO #Imp UB LB RT #Opt

50 25 21.4 0.0 9 5.5 10 21.4 0.0 9 6.8 10 21.3 21.3 0.33 10

50 21.3 0.0 10 7.1 10 21.4 0.0 9 9.2 10 21.3 21.3 0.52 10

75 11.5 0.0 8 8.3 9 11.5 0.0 8 11.5 10 11.3 11.3 0.21 10

75 25 28.4 0.0 9 5.4 10 28.4 0.0 9 6.6 10 28.2 28.2 2.00 10

50 25.8 0.0 9 15.9 10 26.1 0.0 8 16.5 10 25.7 25.7 4.52 10

75 14.2 0.0 8 9.8 10 14.5 0.0 8 12.8 10 13.9 13.9 2.28 10

100 25 35.0 0.0 10 6.9 10 35.1 0.0 9 10.9 10 35.0 35.0 9.73 10

50 28.9 0.2 9 16 10 28.8 0.1 9 24.1 10 28.6 28.6 26.81 10

75 18.9 0.3 8 14.3 10 19.1 0.1 6 14.6 10 18.7 18.7 12.54 10

125 25 42.6 0.1 10 13.3 10 42.6 0.4 10 16.7 10 42.6 42.6 41.11 10

50 32.3 0.6 8 18.1 10 32.5 0.9 7 24.8 10 31.6 31.6 181.41 10

75 20.9 0.2 7 20.2 10 20.8 0.1 5 22.4 10 20.1 20.1 58.80 10

150 25 42.1 0.3 9 15.5 10 42 0.3 9 19.4 10 41.9 41.9 159.69 10

50 32.8 1.8 8 26.3 10 33.3 1.4 7 33.3 10 32.3 32.3 728.19 10

75 21.9 0.5 9 21.8 10 22.1 0.8 7 24.3 10 21.4 21.4 199.15 10

Table 2: Computational results for weighted instances (Set2)

same.

Table 3 compares the number of branch-and-bound nodes (BBnodes) in the B&C procedure

on Set1 and Set2. BBnodes = 0 indicates that the problem was solved to optimality at the root

node. Table 3 shows that as the number of nodes increases, the number of BBnodes increases. For

input graphs with more than 75 nodes, problems are seldom solved at the root node. Further, the

number of BBnodes significantly increases as p gets closer to 50%.

Set3. Table 4 shows the corresponding results for the large-scale instances (Set3). Since the

running time of the POLS increases with the number of nodes, for graphs with n ≥ 300 we
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Set1 Set2
n p(%) Median Mean BBnodes = 0 Median Mean BBnodes = 0

50 25 1.00 1.20 5 0.00 0.90 6
50 50 2.00 2.80 2 2.00 2.10 4
50 75 3.00 2.50 3 0.00 1.30 7
75 25 2.00 2.60 4 2.00 2.50 3
75 50 4.00 23.70 0 5.00 13.70 0
75 75 10.50 11.60 0 7.00 9.20 0

100 25 4.50 11.10 1 5.00 6.30 1
100 50 38.50 57.40 0 19.00 44.70 0
100 75 16.50 22.20 0 9.00 14.60 0
125 25 21.50 23.50 0 18.50 26.20 0
125 50 200.00 677.80 0 188.50 192.40 0
125 75 48.50 83.70 0 29.00 43.60 0
150 25 34.00 225.60 0 48.50 81.00 0
150 50 381.50 561.60 0 151.50 428.50 0
150 75 178.50 212.20 0 43.00 72.00 0

Table 3: Number of Branch and Bound nodes (Set1 and Set2).

used only 2-for-1 local search. Out of 150 instances, the branch-and-cut procedure finds optimal

solutions only in 28 cases. Out of these 28 instances, the heuristics find the optimal solution in 23

cases. Comparing between the two heuristic approaches we find that the GH1-Framework provides

the best solution in 127 instances, finds the optimal solution in 23 instances, and the POLS was

useful in all instances. The GH2-Framework provides the best solution in 115 instances, finds

the optimal solution in 21 instances, and the POLS was useful in all instances. In 35 instances

the GH1-Framework was solely the best heuristic approach, while the GH2-Framework was solely

the best heuristic approach in 23 instances, i.e., there are always instances where each one of the

approaches solely provides the best solution. However, the GH1-Framework performs marginally

better than the GH2-Framework. Notice that, as for the previous two instance groups, the running

times of the two heuristic frameworks are about the same.

7 Conclusions

In this paper, we introduced and addressed the generalized regenerator location problem that is an

important and fundamental problem that arises in the design of fiber optic networks. We devel-

oped a graph transformation procedure that simplifies conceptualization of the problem. We also

addressed the node-weighted version of the problem (WGRLP), that allows for modelling location-

dependent regenerator costs. Several safe preprocessing procedures are introduced. Application of

these procedures may already lead to an optimal solution, if the underlying instance is sufficiently

small / simple.

There are two results that are valid for the RLP (a special case of GRLP, which we have studied

previously in Chen et al. (2010)), but that cannot be directly applied to the GRLP: (1) the RLP is

equivalent to the maximum leaf spanning tree problem, and (2) the RLP problem can be modeled
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GH1-Framework GH2-Framework B&C

n p(%) NR RT #Opt #PO #Imp NR RT #Opt #PO #Imp UB LB RT #Opt

175 25 16.5 0.3 9 4.8 10 16.4 0.3 9 7.3 10 16.3 16.3 1159.39 10

50 13.4 2.2 1 7.8 10 13.2 2.0 2 8.7 10 13.6 11.2 3218.76 2

75 9.6 0.7 3 7 10 9.7 0.6 3 7.7 10 9.3 8.6 1838.60 7

200 25 17.5 0.6 3 4.4 10 17.4 0.9 4 7.5 10 17.5 15.8 2652.17 4

50 13.0 6.4 0 8.1 10 13.0 5.9 0 9.9 10 14.4 8.0 3601.09 0

75 10.5 3.6 4 7.6 10 10.6 3.6 4 9.9 10 10.4 9.0 3004.27 5

300 25 17.4 1.4 0 5.5 10 16.8 1.7 0 7.9 10 – 10.5 3600 0

50 16.1 2.6 0 6.5 10 15.4 2.0 0 9.4 10 – 7.4 3600 0

75 12.9 2.1 0 6.7 10 12.5 2.1 0 8.4 10 – 7.8 3600 0

400 25 22.4 9.2 0 7 10 22.4 8.2 0 9.6 10 – 7.3 3600 0

50 20.0 20.0 0 10.4 10 19.8 24.3 0 11.4 10 – 5.9 3600 0

75 14.4 6.0 0 10.2 10 14.7 5.9 0 11.6 10 – 7.0 3600 0

500 25 24.8 29.8 0 9.5 10 25.0 35.3 0 11.3 10 – 5.4 3600 0

50 21.4 34.8 0 11.7 10 21.4 34.7 0 13.5 10 – 4.8 3600 0

75 15.0 32.0 0 9 10 12.7 37.0 0 8.4 10 – 5.2 3600 0

Table 4: Computational results for large scale instances (Set3)

as a Steiner arborescence problem on directed graphs. Contrary to these results, the GRLP is a

new combinatorial optimization problem on undirected graphs, not known in the literature yet.

When transformed into a directed graph, we show that the GRLP can be transformed into a (node-

weighted) directed Steiner forest problem. For the latter case, we derived several mixed integer

linear programming formulations. We provided a theoretical comparison of the quality of lower

bounds obtained by solving LP-relaxations of the corresponding models. We also proposed two

construction heuristics and a local search procedure (a post-optimizer) that tries to reduce the cost

of the solution by replacing p regenerator locations by q new ones (p > q ≥ 1).

Our computational study was conducted on a set of 150 unweighted (Set1) and 150 weighted

(Set2) instances with between 50 and 150 nodes and with different densities. Additionally, we tested

150 larger graphs (Set3) with between 175 and 500 nodes. The results obtained indicate that in

both the weighted and unweighted case the quality of the heuristic solutions is quite good. While

the running time of the heuristics showed a minor increase with the increase of the size of input

graphs, the branch-and-cut algorithm showed certain limitations. Due to the exponential increase

of the running time of the branch-and-cut algorithm, at present, for 124 out of 450 instances,

optimal solution values remain unknown. In that context, both heuristics, whose running times

remain less than one minute even for the largest test instances, appear to be a viable approach for

real world problems dealing with large-scale instances.
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Appendix

Proof of Lemma 2: To check if all the neighbors of an s-node are fully connected the preprocessor needs
to compare the adjacency list of this node with the adjacency lists of each of its neighbors. Thus, testing
the property (P1) takes O(|S||E|) time. It takes O(|T |) time to scan for t-nodes with either degree 1
or |T | − 1 (properties (P2) and (P3)). For each NDC node pair (i, k) it takes O(nS) time to check if it
meets the first criterion of (P4) and O(degS(i) + degS(k)) time to check if it meets the second criterion
of (P4). Both nS and degS(.) are bounded by |S|. Thus, property (P4) can be checked in O(|S|) time
for each NDC node pair. As the number of NDC node pairs is bounded by |T |2, the entire check takes
O(|T |2|S|) time. Regarding the complexity of the UPDATE procedure, it takes O(|ESj

|) time to conduct
the depth-first-search on each Sj and identify S. Next, for each Sq in S it takes O(|E|) time to identify all
the nodes connected to Sq (the adjacency list of every node in Sq needs to be scanned) and subsequently
O(|N |2) to identify the edges that need to be added to B. The size of S is bounded by |Sj |. Thus, the
preprocessor spends O(|Sj |(|N |2 + |E|) + |ESj

|) = O(|Sj ||N |2) on each Sj . The entire UPDATE procedure
takesO(

∑
j∈Q(|Sj ||N |2) = O(|S||N |2) time. The outer while loop is repeated for at most |S| times. Therefore

the entire preprocessing procedure takes O(|S|2|N |2) time in the worst case.
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Proof of Lemma 8: The procedure is dominated by: (1) the BFS step which takes O(|Ej |+ |Sj ||T |) time,
and (2) the merging step which takes O(|Sj ||Sj + T |) time. Thus it takes O(

∑nS

j=1(|Ej |+ |Sj ||T |+ |Sj ||Sj +

T |))=O(|E|+ |S||T |+ |S||N |)=O(|N |2) time to identify all Lj ’s. It takes O(|Sj ||N |2) time to compute the
associated w(Lj) for each S-component and identify the node pairs that communicate if a regenerator is
added to each node in Lj (this information is later used to update graph B). Thus it takes O(|S||N |2) time
to compute all w(Lj)’s and identify Lmax

t . GH1 then spends O((|Lmax
t | + |T |)2) time to add to B edges

between nodes that can communicate with each other after a regenerator is placed at each node in Lmax
t .

The iterative steps are repeated for at most |T | times. Thus GH1 takes O(|T ||S||N |2) time in the worst case.

Proof of Lemma 9: Each p-for-q move involves (1) updating the connectivity within the S-components
where the changes take place as well as the connectivity of nodes connected to these S-components and
(2) checking feasibility of the resulting solution. Updating the adjacency list for each of the neighbors of
an s-node takes at most O(|N |2) time. Therefore, it takes O(|S||N |2) time to update the adjacency lists,
and O(1) time to check for each NDC node pair if the two end points now communicate. The number of
NDC node pairs is bounded by |T |2. Thus it takes O(|S||N |2 + |T |2) to complete one single p-for-q move,
independently on the fact if we are performing the move within the same S-component, or between two
different ones.
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