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Abstract

Ordered median optimization has been proven to be a powerful tool to generalize many well-known problems from the
literature. In Location Theory, the Discrete Ordered Median Problem (DOMP) is a facility location problem where clients
are first ranked according to their allocation cost to the nearest open facility, and then these costs are multiplied by a
suitable weight vector λ. That way, DOMP generalizes many well-known discrete location problems including p-median,
p-center or centdian. In this article, we also allow negative entries of λ, allowing us to derive models for better addressing
equity and fairness in facility location, for modeling obnoxious facility location problems or for including other client
preference models. We present new mixed integer programming models for DOMP along with algorithmic enhancements
for solving the DOMP to optimality using mixed integer programming techniques. Specifically, starting from state-of-
the-art formulations from the literature, we present several Benders decomposition reformulations applied to them. Using
these approaches, new state-of-the-art results have been obtained for different ordered weighting vectors.

Keywords: Discrete location; Ordered median optimization; Benders decomposition, Branch-and-Benders-cut.

1. Introduction

The Discrete Ordered Median Problem (DOMP) is a p-facility location problem which consists of finding
a set of p facilities to open so as to minimize the allocation costs of clients to facilities evaluated with an
ordered median objective function. Given a vector of weights, this function sorts clients’ allocation costs in
non-decreasing order and then performs the scalar product with the given vector of weights. Thus, DOMP
adds a sorting feature to the underlying location problem. The objective is then to minimize the weighted sum
of sorted allocation costs, where the weights can be interpreted as rank dependent compensation factors applied
to clients. DOMP objective function has been successfully applied in the field of discrete location (see Puerto
and Tamir, 2005; Boland et al., 2006; Puerto, 2008; Marín et al., 2009; Kalcsics et al., 2010a,b; Puerto and
Rodríguez-Chía, 2015; Pozo et al., 2023) and continuous location analysis (see, e.g., Blanco et al., 2013, 2014,
2016, 2023). DOMP structure has also been embedded within other well-known problems giving rise to, e.g.,
ordered weighted average problems (see Galand and Spanjaard, 2012; Fernández et al., 2014, 2017) or ordered
hub location problems (see Puerto et al., 2011, 2013, 2016; Pozo et al., 2021), among others.

DOMP allows a straightforward and flexible generalization of facility location problems since many well-
known problems in the literature can be modeled using an ordered formulation. This is the case for p-median,
p-center or centdian problems, but also, undesirable or obnoxious location problems since non-monotonous
and negative vectors of weights are allowed. This generalization of many location problems or client modeling
preferences is addressed by means of a suitable λ-vector of weights to plug in the ordered median objective
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function which would be described in Section 2. As a particular application, in the context of fairness of
allocation to open facilities, DOMP can be used to create a common framework for inclusion and analysis
of the concept of equity in location problems. Indeed, compensation of allocation costs is based on the fact
that a solution that is good for the system does not have to be acceptable for all single parties if their costs to
reach their open facilities are too high in comparison to other parties. In this way, the possibility of modeling
different forms of equity allows for circumventing unfair situations. For example, given the non-decreasing
ordered sequence of allocation costs, by using a decreasing weight vector λ, clients with high allocation costs
can be compensated (this is known as reverse criterion). Several other criteria such as the range or absolute
deviations can also be considered (see, e.g., Mesa et al., 2003).

Since the seminal paper by Nickel (2001), several formulations and methods have been proposed to solve
DOMP. In Boland et al. (2006) tailored branch-and-bound algorithms were presented which allow to solve
problems of small size. More sophisticated methods, based on new formulations using radius variables, were
presented in Puerto (2008); Marín et al. (2009, 2010); Labbé et al. (2017). Some decomposition approaches
were also tried. In Redondo et al. (2016), a Lagrangian decomposition was applied to DOMP, in Dele-
planque et al. (2020) a first branch-and-price-and-cut algorithm was specifically tailored for this problem and
in Martínez-Merino et al. (2022) a row generation algorithm was also designed. More recently, a new solution
approach that exploits partial monotonicity in efficient representations of the objective function has been pre-
sented in Marín et al. (2020). In spite of these many methods applied to solve DOMP, Benders decomposition
has been never used to address this problem. Developing competitive Benders decompositions for DOMP and
assessing their usefulness by comparing them with other methodologies is one of the goals of this paper.

Our contribution

Benders decomposition is one of the most famous solution methods for solving difficult combinatorial opti-
mization problems (Benders, 1962). Its hallmark is the capability of decomposing mixed-integer programming
formulations into smaller subproblems, each of which can be solved individually to produce local information
(notably, cutting planes) to be exploited by a centralized master problem. In general terms, the continuous
variables of the original problem are projected out, resulting into an equivalent model with fewer variables,
but many more constraints. To find an optimal solution, a large number of these constraints will not be re-
quired, suggesting then a strategy of separation that ignores all but a few of these constraints. The technique
relies on projection and solving of smaller subproblems, combined with solution strategies of dualization, outer
linearization and relaxation (Minoux, 1986; Lasdon, 2002). Over the years, several improvements have been
proposed in order to enhance the performance of the Benders decomposition algorithm, (see Geoffrion, 1972;
Magnanti and Wong, 1981; Fischetti et al., 2010; Fortz and Poss, 2009; Naoum-Sawaya and Elhedhli, 2013;
Conforti and Wolsey, 2019; Brandenberg and Stursberg, 2021; Ramírez-Pico et al., 2023). The reader could
find a more detailed description about improvements in Benders decomposition in the survey of Rahmaniani
et al. (2017).

The recent successful contributions of applying Benders decomposition on location problems (see Fischetti
et al., 2016, 2017; Cordeau et al., 2019; Coniglio et al., 2022; Duran-Mateluna et al., 2023; Gaar and Sinnl,
2022) and the lack of any attempt to solve DOMP using this technique motivate the developments in the current
work. In this article we start with two state-of-the-art MILP formulations for the DOMP (Labbé et al., 2017;
Marín et al., 2020), and we demonstrate how to further boost their computational performance by applying a
clever but simple Benders decomposition.

As we will show below, after applying Benders machinery to the structure of our problem, we obtain state-of-
the-art results for the most difficult realizations of the DOMP in terms of the compensation vector λ. Indeed,
most of the problems addressed in the previous DOMP literature concern some specific, particular classes of
λ-vectors, in many cases assuming non-negative values of λ. Moreover, in those very few cases where some
negative entries of λ were allowed, the structure of the λ-vectors always ensured that the resulting objective
function was positive. Removing this assumption renders DOMP more difficult and brings interesting new
features to the problem which we analyze in this paper. In addition, although monotonicity of the λ-vector was
well-studied in several papers about DOMP, exploiting its partial monotonicity was discussed in detail for the
first time in Marín et al. (2020). However, until now, there were no previous computational studies in which a
suitable methodology for solving problems with negative or partially negative λ-vectors (resulting in a negative
objective function value), was developed in depth. Also, to the best of our knowledge, this is the first time that
the ordered median function is used to describe and solve obnoxious facility location problems by choosing
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appropriate λ-vectors.

The remainder of the paper is organized as follows. In Section 2, we formally define the DOMP introduc-
ing the notation that will follow. In Section 3 we review the radius formulation and propose a first Benders
decomposition approach. In Section 4, we present the current state-of-the-art formulation and three possible
Benders decomposition reformulations. We also propose some improvements for the bounds of our models and
the strengthening of the Benders cuts. Section 5 shows the implementation details made in order to enhance
the proposed models. The empirical performance of the resulting DOMP formulations is analyzed in Section
6, where we depict the comparison of these formulations for different cases. Finally, some conclusions are
summarized in Section 7.

2. Formal problem definition

We assume that potential facilities and customers share the same set of locations indexed by the set
N = {1, ..., n}. This can be done without loss of generality, as otherwise, one could introduce dummy
nodes and set the facility opening and allocation costs accordingly. Assume that we are given a cost matrix
C = (cij)i,j∈N , where cij ≥ 0 represents the cost of allocating the client placed at position i to the facility
opened at location j. We consider the more general situation in which we do not assume free self-service,
therefore in general cii is not necessarily equal to zero. DOMP assumes single-allocation, i.e., each client node
has a unique facility where it is allocated. In order to model the problem, let us consider binary variables yj = 1
iff if and only if the facility at position j is open and zero otherwise; and xij = 1 iff if and only if client placed
at position i is allocated to the facility at j and zero otherwise. Then, the p-median polytope can be described
as

X = {x ∈ [0, 1]n×n, y ∈ [0, 1]n :
∑
j∈N

yj = p;
∑
j∈N

xij = 1, ∀i ∈ N ; xij ≤ yj , ∀i, j ∈ N ; (1a)

∑
j∈N :

cij>cim

xij + ym ≤ 1, ∀i,m ∈ N}. (1b)

Since negative vector weights will be considered, in order to ensure that each client is allocated to a closest
open facility (ties are randomly broken), the description of the p-median polytope includes the closest
assignment constraints of clients to facilities (1b) reported in Espejo et al. (2012). These constraints
guarantee that a client i cannot be allocated to a facility j if allocating i to j is costlier than allocating it
to given facility m (that is, if cij > cim), provided than facility m is opened. In the following, we will also
refer to the integer lattice points within X as XI . For a given feasible point (x, y) ∈ XI , its assignment costs
are given as:

c(x) :=

∑
j∈N

c1jx1j , . . . ,
∑
j∈N

cnjxnj

 .

We can now provide a formal definition of the problem.

Definition 1 (DOMP). For a given solution (x, y) ∈ XI , let us consider a reordering of c(x) that satisfies
c(1)(x) ≤ c(2)(x) ≤ · · · ≤ c(n)(x). Given a vector of (not necessarily non-negative) weights (λ1, . . . , λn) ∈
Rn, DOMP seeks to find a solution (x, y) ∈ XI such that

∑
k∈N λkc(k)(x) is minimized.

Given a vector d of n real numbers, and (d(ℓ))ℓ=1,...,n are the components of d in increasing order, let
Sk(d) =

∑n
ℓ=k d(ℓ) denote the sum of the largest n − k + 1 elements of d. Then the objective function of

DOMP can be restated as∑
k∈N

λkc(k)(x) =
∑
k∈N

∆kSk(c(x)), (2)
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where λ0 := 0 and ∆k := λk − λk−1 for all k ∈ N . For further purposes, let us also define the sets ∆− =
{k ∈ N |∆k < 0} and ∆+ = {k ∈ N |∆k > 0}.

Using different definitions of the λ-vector of weights, or its ∆ description given by (2), many prominent
facility location problems can be defined. For instance, we obtain the median with λ = (1, 1, ..., 1, 1), the
center with λ = (0, 0, ..., 0, 1), the α-centdian with λ = (α, α, ..., α, α, 1), the Hurwitz criterion with λ =
(α, 0, ..., 0, 1 − α), the k-max criterion with λ = (0, . . . , 0, 1︸︷︷︸

k−th

, 0, . . . , 0), the sum of absolute differences

with λ = (2(2i− n− 1))i∈N or the range with λ = (−1, 0, ..., 0, 1), among many others.

DOMP is NP-hard, as it contains the p-median problem as a special case (λi = 1, ∀i ∈ N ). Many different
MILP formulations for DOMP have been studied in the past two decades, see Nickel and Puerto (2006); Boland
et al. (2006); Kalcsics et al. (2010b); Marín et al. (2009, 2010); Puerto et al. (2011, 2013, 2016); Labbé et al.
(2017); Marín et al. (2020). In the following section, we will focus on two state-of-the-art formulations and
show how to efficiently apply Benders decomposition to them. The first one is a radius formulation for which
a valid Benders reformulation can be obtained for non-increasing values of λ. The second one is a partial
monotonicity formulation that uses three-index variables to ensure the ordering of allocation costs. We show
that the second approach is more general and it allows to derive a valid Benders reformulation for any value of
λ ∈ Rn.

3. Radius formulation

3.1. Compact radius formulation

Let us consider the ordered sequence of unique allocation costs of cij ≥ 0 for i, j ∈ N :

c(0) := 0 < c(1) < c(2) < . . . < c(g) = max
i,j∈N

cij ,

where g is the number of different non-zero elements of the above allocation cost sequence and let G :=
{1, . . . , g}. This ordering can be used to perform the sorting process of the allocation costs. Let us define the
following variables (namely radius variables in the following) for ℓ ∈ N,h ∈ G:

rℓh =

{
1 if the ℓ-th allocation cost is at least c(h),
0 otherwise,

that is to say, the ℓ-th smallest cost is equal to c(m) if and only if rℓm = 1 and rℓm+1 = 0, 1 ≤ m < g. As
observed in Puerto et al. (2011, 2013); Pozo et al. (2021, 2023), DOMP belongs to a rather difficult family
of problems that combines elements from two hard combinatorial optimization problems, namely location and
scheduling or ordering. Formulations using radius variables (see Elloumi et al., 2004; Nickel and Puerto, 2006;
Puerto, 2008; Espejo et al., 2009; Marín et al., 2009, 2010; Puerto et al., 2011; García et al., 2011) can be used
to reduce the number of variables and constraints in use. Indeed, note that radius formulation is defined over
a set G whose cardinality depends on the number of different non-zero elements in the cost matrix. Thus, this
formulation draws the advantage of repeated entries in the cost matrix (see Pozo et al., 2023). This happens, for
instance, when our location problem assumes free self-service and symmetrical allocation costs, what implies
a significant number of repetitions in the cost matrix and a diagonal of zeros. A general scheme which models
DOMP using radius variables is shown below:
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(DOMPr0)



min
∑
ℓ∈N

∑
h∈G

λℓrℓh(c(h) − c(h−1))

s.t.:
∑
ℓ∈N

rℓh =
∑

i,j∈N :
cij≥c(h)

xij h ∈ G

rℓh ≤ rℓ+1h ∀h ∈ G,∀ℓ ∈ N : ℓ < |N |
rℓh ≥ rℓh+1 ∀h ∈ G,∀ℓ ∈ N : h < |G|
(x, y) ∈ XI

rℓh ∈ {0, 1} ∀h ∈ G,∀ℓ ∈ N.

(3a)

(3b)

(3c)
(3d)
(3e)
(3f)

Constraints (3b) state that the number of allocations whose cost is at least c(h) must be equal to the number
of sites that support allocation costs greater than or equal to c(h). Constraints (3c) and (3d) sort the values of
variables r in non-decreasing order. As indicated in Marín et al. (2009) and Labbé et al. (2017), the extra sorting
group of constraints (3d) are redundant, nevertheless, they have been shown to improve the computational
performance, thus, we include them in our model.

3.2. Benders decomposition for DOMPr0

Radius formulation has been proven to be one of the most efficient formulation when λ is non-decreasing (see,
e.g., Labbé et al., 2017 or Pozo et al., 2023). Nevertheless, when turning to a non-monotone ordered weighting
vector, the performance of the formulation has been recently improved by some alternative approaches (Marín
et al., 2020). In this section, we propose a Benders decomposition approach based on projecting out r
variables. The decomposition is obtained from the DOMPr0 model after relaxing the integrality condi-
tions on the radius variables. However, for certain configurations of the vector λ the radius variables
must remain binary, which is why the proposed Benders decomposition approach only provides valid
lower bounds in such cases. In spite of that, we will prove that for some interesting particular values of
λ, the decomposition approach is exact and it provides a new valid reformulation for DOMP.

We have the following result:

Proposition 1. The following compact model

(DOMPr0B)



min
∑
h∈G

θh(c(h) − c(h−1))

s.t.: θh ≥ λℓ

∑
i,j∈N :
cij≥c(h)

xij −
∑
ℓ<ℓ′

(λℓ − λℓ′) ∀h ∈ G,∀ℓ ∈ N

(x, y) ∈ XI .

(4a)

(4b)

(4c)

is a reformulation of the model DOMPr0 for any monotone non-increasing vector λ. Otherwise, the optimal
value of model (4) provides a valid lower bound for DOMP.

Proof. We start with the relaxation of the model DOMPr0 in which constraints (3f) are relaxed into 0 ≤ rℓh ≤
1, for all h ∈ G, ℓ ∈ N . We first focus on monotone non-increasing values of λ and show that the model (4) can
be obtained by projecting out variables r from this relaxation. To this end, terms

∑
ℓ∈N λℓrℓh in the objective

function (3a) are replaced by new variables θh, h ∈ G.

Given h̄ ∈ G, and a point (x∗, y∗) ∈ X , let us denote by x∗
h̄
=

∑
i,j∈N :
cij≥c(h̄)

xij and consider the following

subproblem:
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min
∑
ℓ∈N

λℓrℓh̄ (5a)

s.t.:
∑
ℓ∈N

rℓh̄ = x∗h̄ (5b)

rℓh̄ ≤ rℓ+1h̄ ∀ℓ ∈ N : ℓ < |N | (5c)
0 ≤ rℓh̄ ≤ 1 ∀ℓ ∈ N. (5d)

When λ is monotone non-increasing, the constraints (5c) are redundant, and the problem (5) can be restated as
a continuous knapsack problem in which constraints (5c) are removed. Such obtained linear program is always
feasible and bounded, so we can calculate its dual, in which a variable α is associated to constraint (5b) and
variables βℓ, ℓ ∈ N , are associated to constraints (5d):

max αx∗h̄ −
∑
ℓ∈N

βℓ (6a)

s.t.: α− βℓ ≤ λℓ ∀ℓ ∈ N (6b)
(α, β) ≥ 0. (6c)

Let P = {(α, β) ≥ 0 | (α, β) satisfy (6b)-(6c)} be the dual polyhedron and Pext be the set of extreme points
of P , then the general form of Benders optimality cuts as a function of the dual and primal solution is given as:

θh ≥ α∗
∑

i,j∈N :
cij≥c(h̄)

xij −
∑
ℓ∈N

β∗
ℓ (α∗, β∗) ∈ Pext,

It is well known from knapsack theory (Martello and Toth, 1990) that the following Dantzig algorithm produces
an optimal primal solution and optimal dual variables. Let k∗ be the index of the critical item of the knapsack
problem above, the optimal primal solution is

r∗ℓh̄ =


1 if ℓ > k∗,

x∗
h̄
− (|N | − k∗) if ℓ = k∗,

0 otherwise,
ℓ ∈ N. (7)

Hence, the optimal value of the primal problem is

∑
ℓ>k∗

λℓ + λk∗(x∗h̄ − (|N | − k∗)) = λk∗x∗h̄ −
∑
ℓ>k∗

(λk∗ − λℓ),

and the dual variables can be calculated as:

α∗ = λk∗ ,

β∗
ℓ =

{
λk∗ − λℓ if ℓ > k∗,

0 otherwise,
ℓ ∈ N.

Generalizing for any possible critical item, we get the following family of Benders optimality cuts:

θh ≥ λℓ

∑
i,j∈N :
cij≥c(h)

xij −
∑
ℓ′>ℓ

(λℓ − λℓ′) ∀h ∈ G,∀ℓ ∈ N. (8)
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It now remains to show that for monotone non-increasing values of λ, for the relaxation of the model DOMPr0

in which constraints (3f) are replaced by 0 ≤ rℓh ≤ 1, h ∈ G, ℓ ∈ N , there always exists an optimal solution
in which the variables r take on integer values. Indeed, this is immediate from formula (7): whenever a feasible
point (x∗, y∗) ∈ XI is given, the optimal solution consists of setting the last x∗

h̄
values of r to one, and the

remaining ones to zero.

In case λ is not monotone non-increasing, constraints (5c) in Problem (5) cannot be avoided, and hence the
reduction to the continuous knapsack problem does not work. Moreover, solutions to the LP-relaxation of
DOMPr0 are not always integer so that (8) only provides valid inequalities which could not ensure optimality
of the master problem.

Corollary 1. For any general not monotone non-increasing vector λ, the optimal value of model (4) provides
a valid lower bound for DOMP.

Proof. In case λ is not monotone non-increasing, constraints (5c) in Problem (5) cannot be avoided, and hence
the reduction to the continuous knapsack problem does not work. Moreover, solutions to the LP-relaxation of
DOMPr0 are not always integer so that (8) only provides valid inequalities which could not ensure optimality
of the master problem.

4. State-of-the-art formulation for general λ-vectors

As already announced, our goal is to provide improved reformulations for DOMP for general lambda weights
and general costs. The Benders reformulation developed in previous section is only valid for monotone non-
increasing lambda, thus in this section, we address the question in full generality. We will first elaborate on
the state-of-the-art formulation for DOMP that can be found in Marín et al. (2020). We will then show how to
project out its variables to obtain three different Benders reformulations.

4.1. Compact formulation based on partial monotonicity

Marín et al. (2020) introduced a three-index formulation in which the variables θkij are set to 1 if the cost of
allocating client i to facility j is sorted in position k, and they are set to 0 otherwise (i, j, k ∈ N ). Even though
the variables are defined as binary, without loss of generality, they can be relaxed to be continuous from the
interval [0, 1]. This fact gives rise to a rather efficient problem formulation which is presented below:

(DOMPθ)



min
∑
k∈∆+

∆k((n− k + 1)tk +
∑
i∈N

zik)+

+
∑
k∈∆−

∆k

∑
i∈N

∑
j∈N

cijθ
k
ij

s.t.: tk + zik ≥
∑
j∈N

cijxij ∀i ∈ N, ∀k ∈ ∆+

∑
i∈N

∑
j∈N

θkij = n− k + 1 ∀k ∈ ∆−

0 ≤ θkij ≤ xij ∀i, j ∈ N, ∀k ∈ ∆−

(x, y) ∈ XI

zik, tk ≥ 0 ∀i ∈ N, ∀k ∈ ∆+.

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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The objective function (9a) has two parts: the first one accounts for the sum of the terms Sk(c(x)) for k ∈ ∆+,
and the second one does the same for k ∈ ∆−. Constraints (9b) allow for a valid representation of Sk(c(x)) for
k ∈ ∆+. The remaining constraints, namely (9c) and (9d), are used to get a valid representation of Sk(c(x)) for
k ∈ ∆−, where (9d) define the range of the variables θkij . Since xij are binary and θkij appears in the objective
function with a negative coefficient (∆k < 0), if xij = 1 then θkij = 1, thus in the optimal solution θkij ∈ {0, 1}.
The remaining variables in (9f), namely z and t, are obtained from the dual of the k-sum problem as explained
in Ogryczak and Tamir (2003), Kalcsics et al. (2002) and Marín et al. (2020).

4.2. Benders reformulations for DOMPθ

Benders reformulations proposed in this section exploit the fact that the variables z and θ of the formulation
DOMPθ are continuous. Moreover, they belong to two well separated components in both the objective func-
tion and constraints, obtained by considering k ∈ ∆+ and k ∈ ∆−, respectively. Hence, we can consider
Benders reformulations by projecting out (z, t) variables, θ variables, or both. For this purpose, we first need
to introduce the following order relation between costs indexes, previously considered by Labbé et al. (2017):

ij ≺ ÎĴ ≡


cij < cÎĴ
or
cij = cÎĴ and i < Î
or
cij = cÎĴ, i = Î and j < Ĵ.

Example 1. As an illustrative example, consider the following matrix:


0 2 7 4
1 0 5 5
3 6 0 2
9 4 1 0

 ,

then the order of couples ij by means of the above order preference is

11 ≺ 22 ≺ 33 ≺ 44 ≺ 21 ≺ 43 ≺ 12 ≺ 34 ≺ 31 ≺ 14 ≺ 42 ≺ 23 ≺ 24 ≺ 32 ≺ 13 ≺ 41.

Let H = {1, . . . , n2}, then there exists an obvious bijection between costs in C and the elements of the
ordered costs vector (cij(h)|h ∈ H)≺i,j∈N , such that for every (i, j) pair there is a single ij(h) associated to it
for a certain h ∈ H . Note that while G in the previous section has a length of the number of unique costs of C,
here the ordering of costs has the same number of elements as total costs.

Next, we will show that for k ∈ ∆− we can obtain a valid reformulation of DOMPθ by projecting out θ
variables. The advantage of this new model (that we will denote by DOMPθ1) is in the reduction of the size
of the underlying formulation. While the starting model DOMPθ comprises O(|N |3) variables and O(|N |3)
constraints, the new model requires only O(|N |2) variables and O(|N |3) constraints.

Proposition 2. The following model

(DOMPθ1)



min
∑
k∈∆+

∆k((n− k + 1)tk +
∑
i∈N

zik) +
∑
k∈∆−

∆kφk

s.t.: tk + zik ≥
∑
j∈N

cijxij ∀i ∈ N, k ∈ ∆+

0 ≤ φk ≤ (n− k + 1)cij(h) +
∑

ij: cij>cij(h)

(cij − cij(h))xij ∀h ∈ H, k ∈ ∆−

(x, y) ∈ XI

zik, tk ≥ 0 ∀i ∈ N, k ∈ ∆+.

(10a)

(10b)

(10c)

(10d)

(10e)
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is a reformulation of the model DOMPθ.

Proof. Terms
∑

i∈N
∑

j∈N cijθ
k
ij , are replaced in the objective function (9a) by new variables φk ≥ 0, for all

k ∈ ∆−. Then we can consider the following relaxed master problem:

min
∑
k∈∆+

∆k((n− k + 1)tk +
∑
i∈N

zik) +
∑
k∈∆−

∆kφk (11a)

s.t.: (9b), (9e), (9f)

0 ≤ φk ≤ Uk ∀k ∈ ∆−,

where Uk are valid upper bounds for φk. Clearly, a simple, but valid upper bound for φk is the sum of the
(n− k + 1) largest costs in C (see Section 4.3 for more details).

Let (x∗, y∗) be a solution of the above LP. To ensure that (x∗, y∗) corresponds to an optimal DOMP solution,
we need to solve the so-called Benders subproblem which is decomposable by k. For any k̄ ∈ ∆−, since
∆k̄ < 0, the k̄-th Benders subproblem is a maximization problem given as follows:

max
∑
i∈N

∑
j∈N

cijθ
k̄
ij (12a)

s.t.:
∑
i∈N

∑
j∈N

θk̄ij ≤ n− k̄ + 1 (12b)

0 ≤ θk̄ij ≤ x∗ij ∀i, j ∈ N. (12c)

We point out that constraints (12b) are stated as inequalities instead of equations. This can be done without
loss of generality, because the values cij ≥ 0, for all i, j ∈ N . Moreover, we observe that the LP-model (12)
is always feasible and bounded, which follows from the fact that

∑
i,j∈N x∗ij = n. Hence, one can consider its

LP-dual in which a variable α is associated to constraint (12b) and variables βij , i, j ∈ N , are associated to
constraints (12c):

min (n− k̄ + 1)α+
∑
i,j∈N

βijx
∗
ij (13a)

s.t.: βij + α ≤ cij ∀i, j ∈ N (13b)
(α, β) ≥ 0. (13c)

Let h∗ ∈ H be the index of a critical item of the continuous knapsack problem defined by (12), namely the
index h∗ for which the following property holds:

∑
h>h∗

x∗ij(h) < n− k̄ + 1 ≤
∑
h≥h∗

x∗ij(h).

Then, the optimal solution of the model (12) is given as follows:

θk̄ij(h) =


x∗ij(h) if h > h∗,

(n− k̄ + 1)−
∑

h>h∗ x∗ij(h) if h = h∗,

0 otherwise.

It can be verified that the optimum value of the primal subproblem satisfies
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∑
i∈N

∑
j∈N

cijθ
k̄
ij =

∑
h>h∗

cij(h)x
∗
ij(h) + cij(h∗)

[
(n− k̄ + 1)−

∑
h>h∗

x∗ij(h)

]
= cij(h∗)(n− k̄ + 1) +

∑
h>h∗

(cij(h) − cij(h∗))x
∗
ij(h)

and, therefore, the optimal dual solution is

α = cij(h∗),

βij =

{
cij(h) − cij(h∗) if h > h∗ ( ⇐⇒ cij(h) > cij(h∗)),

0 otherwise.

Generalizing for any possible critical item h ∈ H , we get the following family of Benders optimality cuts for
every k ∈ ∆− and every h ∈ H:

φk ≤ (n− k + 1)cij(h) +
∑

ij : cij>cij(h)

(cij − cij(h))xij .

For the values k ∈ ∆+, we now show how to project out (z, t) variables.

Proposition 3. The following model

(DOMPθ2)



min
∑
k∈∆+

∆kφk +
∑
k∈∆−

∆k

∑
i∈N

∑
j∈N

cijθ
k
ij

s.t.: φk ≥
∑
i∈NL

∑
j∈N

cijxij ∀k ∈ ∆+, NL ⊆ N : |NL| = n− k + 1

∑
i∈N

∑
j∈N

θkij = n− k + 1 ∀k ∈ ∆−

0 ≤ θkij ≤ xij ∀i, j ∈ N, ∀k ∈ ∆−

(x, y) ∈ XI

(14a)

(14b)

(14c)

(14d)

(14e)

is a reformulation of the model DOMPθ.

Proof. Terms (n − k + 1)tk +
∑

i∈N zik, for k ∈ ∆+, are replaced in the objective function (9a) by new
variables φk ≥ 0. Let (x∗, y∗) be a solution satisfying constraints (9c) and (9e). Again, Benders subproblem is
separable by k, and we are solving the following LP associated to a given k̄ ∈ ∆+:

min (n− k̄ + 1)tk̄ +
∑
i∈N

zik̄ (15a)

s.t.: tk̄ + zik̄ ≥
∑
j∈N

cijx
∗
ij ∀i ∈ N (15b)

zik̄, tk̄ ≥ 0 ∀i ∈ N. (15c)

This subproblem is always feasible and bounded, hence we can consider its LP-dual, in which variables αi, i ∈
N , are introduced for every constraint in (15b):

max
∑
i∈N

αi

∑
j∈N

cijx
∗
ij (16a)

10



s.t.:
∑
i∈N

αi ≤ n− k̄ + 1 (16b)

0 ≤ αi ≤ 1 ∀i ∈ N. (16c)

In order to compute the optimal solution of model (16), we need to sort i ∈ N in increasing order according to
v∗i =

∑
j∈N cijx

∗
ij . It is now enough to consider the set N∗

L ⊆ N with the (n− k̄+1) indexes associated with
the largest v∗i values, i.e., we have αi = 1 if i ∈ N∗

L, and αi = 0, otherwise. Since the choice of N∗
L depends

on x∗, after generalizing over all possible values of x∗, we obtain the following family of Benders optimality
cuts associated to subproblem k̄ ∈ ∆+:

φk ≥
∑
i∈NL

∑
j∈N

cijxij NL ⊆ N, |NL| = n− k + 1.

By merging the results of Proposition 2 and 3, we obtain the third problem reformulation.

Proposition 4. The following model

(DOMPθ3)



min
∑
k∈N

∆kφk

s.t.: φk ≥
∑
i∈NL

∑
j∈N

cijxij ∀k ∈ ∆+, NL ⊆ N : |NL| = n− k + 1

φk ≤ (n− k + 1)cij(h) +
∑

ij : cij>cij(h)

(cij − cij(h))xij ∀k ∈ ∆−,∀h ∈ H,

(x, y) ∈ XI

(17a)

(17b)

(17c)

(17d)

is a reformulation of the model DOMPθ.

Finally, we point out that one can consider aggregated formulations in which a single variable ϕ− or ϕ+ is
introduced to replace the term in the objective function associated with negative, respectively, positive multi-
pliers ∆k. This can be done for each of the previously introduced models. In the following we illustrate how
this aggregation is derived from the model DOMPθ1. We introduce a new variable ϕ =

∑
k∈∆− φk and obtain

the following result:

Proposition 5. The following model

(DOMPθ1a)



min
∑
k∈∆+

∆k((n− k + 1)tk +
∑
i∈N

zik) + ϕ

s.t.: tk + zik ≥
∑
j∈N

cijxij ∀i ∈ N, ∀k ∈ ∆+

ϕ ≥
∑
k∈∆−

∆k

[
(n− k + 1)cij(hk) +

∑
ij : cij>cij(hk)

(cij − cij(hk))xij
]

∀(hk)k∈∆− ∈ H ×H × . . .×H

(x, y) ∈ XI

zik, tk ≥ 0 ∀i ∈ N, ∀k ∈ ∆+.

(18a)

(18b)

(18c)
(18d)

(18e)

is a reformulation of the model DOMPθ.

While the reformulation DOMPθ1 contains polynomial number of constraints and variables, its aggregated
counterpart DOMPθ1a consists of an exponential number of Benders optimality cuts (18c).
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4.3. Bounds for the values of φk, k ∈ ∆−, and ϕ

To strengthen the linear relaxations of the previous formulations, several bounds can be proposed. In this
section, these bounds are only discussed for the models that have been tested in our computational study
(cf. Section 6). To this end, let cmax = max {cij | i, j ∈ N} and let cmin = min {cij | i, j ∈ N}. For the
disaggregated model DOMPθ1, the following bounds on the value of φk, k ∈ ∆−, are valid:

(n− k + 1)cmin ≤ φk ≤ (n− k + 1)cmax.

The reader may observe that in the case of free self-service (cii = 0, ∀i, cij > 0, i ̸= j) one can obtain more
accurate lower bounds. Indeed, let c+min = min {cij | i, j ∈ N, cij ̸= 0},

{
0 ≤ φk ≤ (n− k + 1)cmax if n− k + 1 ≤ p,

(n− k + 1− p)c+min ≤ φk ≤ (n− k + 1)cmax otherwise.

We recall that φk represents the sum of the n − k + 1 largest costs, i.e, Sk =
∑n

l=k c(l). Therefore, under the
free self-service assumptions, we have:

• If n− k+1 ≤ p, all the addends could assume value 0 in the lower bound and therefore the lower bound in
this case will be 0 ≤ φk.

• If n − k + 1 > p, the number of addends in Sk is greater than p and therefore at most p of them could
assume value zero in the lower bound and the remainder c+min, i.e, the lower bound in this case is 0 · p +
(n− k + 1− p)c+min.

The above upper bounds can also be enhanced. To this end, let us consider the set of maximum allocation costs
for every client, c̃ = (max {cij | j ∈ Nmax})i∈N , where Nmax ⊂ N represents a set of open facilities obtained
by solving the auxiliary problem

max{
∑
i,j∈N

cijxij |(x, y) ∈ XI},

where we are asking for a subset of p facilities that maximizes the allocation costs (with additional closest
facility allocation constraints). The set Nmax corresponds to p columns in the cost matrix C, where we can
consider the (n− k + 1) highest costs in c̃ for each k ∈ N to propose a tighter bound:

φk ≤
n∑

h=n−k+1

c̃(h),

where c̃(h) is the h-th element of the non-decreasing sorted vector c̃.

For the aggregated model DOMPθ1a, several bounds can also be proposed for ϕ, e.g:

∑
k∈∆−

∆k(n− k + 1)cmax ≤ ϕ ≤ 0.

Instead we can consider, similarly to the disaggregated case, the n− k + 1 highest single allocation costs,

∑
k∈∆−

∆k

( n∑
h=n−k+1

c̃(h)
)
≤ ϕ ≤ 0.

Indeed, if we assume non-negative λ or simply the distribution of λ that assures that the objective function
will be non-negative, since we assume non-negative costs the optimal objective function of our problem, see
(18a), must be non-negative. Therefore, the sum of the contributions associated with positive k ∈ ∆+ (those
that appear in the left of the above expression), cannot be smaller than the corresponding ones associated with
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negative k ∈ ∆− (that appear in the right of the above expression). So, if ∆+ ̸= ∅, we can also obtain as a
lower bound for ϕ:

max(−
∑
k∈∆+

∆k(

n∑
h=n−k+1

c̃(h)),
∑
k∈∆−

∆k(

n∑
h=n−k+1

c̃(h))) ≤ ϕ ≤ 0.

In the general case, where λ can be positive and negative and non-negativity of the objective function cannot
be assured, the bound above does not apply since it is based on the non-negativity of the objective function
which is not valid in this case.

4.4. Strengthening Benders cuts

In the attempt to make our models efficient, we propose the following lifting procedure for the coefficients of
the Benders optimality cuts. For strengthening the cuts (10c), let Uk be a valid upper bound for φk, k ∈ ∆−.
Then, for a given k ∈ ∆−, such that

δk := Uk − (n− k + 1)cij(h) > 0

holds, constraints

φk ≤ (n− k + 1)cij(h) +
∑

cij>cij(h)

(cij − cij(h))xij ∀h ∈ H

can be strengthened as follows:

φk ≤ (n− k + 1)cij(h) +
∑

cij>cij(h)

(min{cij − cij(h), δk})xij ∀h ∈ H : Uk > (n− k + 1)cij(h) (19)

Indeed, this follows from the fact that x variables are binary. Hence, if all values of the x variables from the
right-hand-side of (19) are zero, we have a tighter bound on φk. If, on the other hand, at least one of these x
variables is equal to one, the bound of φk should not surpass Uk, and hence the coefficient next to xij can be
downlifted correspondingly. Finally, it is not difficult to see that in the compact formulation (10), the remaining
constraints (10c) (i.e., those for which Uk ≤ (n − k + 1)cij(h) holds) are redundant as they are dominated by
φk ≤ Uk.

In order to strengthen the cuts (18c), let now L be a valid lower bound for ϕ (recall ϕ ≤ 0). For a given
(hk)k∈∆− , such that

δ :=
∑
k∈∆−

∆k(n− k + 1)cij(hk) − L > 0

holds, constraints (18c), which can be rewritten as

ϕ ≥
∑
k∈∆−

∆k(n− k + 1)cij(hk) +
∑
k∈∆−

∆k

[ ∑
cij>cij(hk)

(cij − cij(hk))xij
]

can be strengthened as follows:
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ϕ ≥
∑
k∈∆−

∆k(n− k + 1)cij(hk) +
∑
k∈∆−

∑
cij>cij(hk)

max{∆k(cij − cij(hk)),−δ} xij . (20)

Indeed, as in the case of the disaggregated reformulation, this result follows from the fact that x variables are
binary. If all values of the x variables from the right-hand-side of (20) are zero, we have a tighter lower bound
on ϕ. If, on the other hand, at least one of these x variables is equal to one, the value of ϕ should not be smaller
than L, and hence the coefficient next to xij can be strengthened correspondingly. Finally, it is not difficult to
see that in the aggregated formulation (18), the remaining constraints (18c) (i.e., those for which δ ≤ 0) are
redundant as they are dominated by ϕ ≥ L.

5. Implementation details

This section provides some implementation details that play an important role in the design of effective imple-
mentations of the models proposed in Sections 3.2 and 4.2. The major bottleneck for Benders reformulations
derived from the model DOMPθ are three-index variables θkij . Correspondingly, a significant computational
improvement is only achieved when considering Benders decomposition approach just for k ∈ ∆−, i.e., when
just projecting out those variables from the model as in DOMPθ1, or its aggregated counterpart. Therefore,
in this section we will restrict ourselves to presenting the implementation details for DOMPθ1 and DOMPθ1a

models, together with the model DOMPr0B .

5.1. Branch-and-Benders-cut implementations

For a more efficient performance, for each of our reformulations, we embed Benders cuts into a branch-and-
cut framework, also known as branch-and-Benders-cut. For the formulation DOMPr0B , we initialize the model
without the family of Benders cuts (4b) and with lower and upper bounds for θh given as 0 ≤ θh ≤

∑
ℓ∈N λℓ,

h ∈ G. Benders cuts (4b) are then separated (in polynomial time) in a branch-and-bound (B&B) scheme. The
pseudocode of the separation algorithm is shown in Algorithm 1. In this algorithm, we are given a solution
(θ̄, x̄) found in a current node of the B&B tree. For each h ∈ G, following the rationale given in the proof of
Proposition 1, we must first compute the value of x̄∗h. Next, we determine the critical item index k as in (7).
We sum unit capacity items starting from the very last index until the knapsack capacity is full, this is, until
x̄∗h minus this sum is less than one. Once the index has been identified, we can propose a cut in the form of
(8) computing the values of the cut expression and if the θ̄ value obtained as the node solution is less than the
expression plus an ε tolerance, we insert the cut in the master LP.

For the disaggregated and aggregated Benders reformulations, DOMPθ1 and DOMPθ1a, the separation is per-
formed in a similar way. The respective families of Benders optimality cuts, namely (10c) and (18c), can be
also separated in polynomial time. As for the aggregated reformulation the number of Benders optimality cuts
(18c) is exponential, the branch-and-Benders-cut is the only computationally viable option for tackling in-
stances of realistic size. The separation algorithms are summarized in Algorithms 2 and 3, respectively. These
algorithms differ from Algorithm 1 in two aspects. First, the critical item index h is now computed summing
the respective capacity for these cases, which is x̄ij(h). Actually, for DOMPθ1a we need to determine a vector
of indexes h = (hk)k∈∆− . We remark that when searching for the values of hk, k ∈ ∆−, we need to process
an alternate sequence of indexes k, not necessarily consecutive, since we only consider indexes k for which
∆k < 0. Second, the proposed Benders cuts are now in the form of (10c) and (18c).

The separation algorithms given in Algorithms 1-3 have to be applied at integer points, and alternatively, they
can also be called for fractional LP-solutions within the branching tree. The latter case can be proven to be
computationally profitable but if we do not set conditions limiting the number of fractional cuts to include,
these cuts can overload the master problem reducing the efficiency of our algorithm. In order to manage this
trade-off, the separation of fractional points is done only at the root node of the search tree.
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Algorithm 1: Branch-and-Benders-cut separation algorithm for DOMPr0B

1 Consider a solution (θ̄h, x̄ij) in a node of the branching tree
2 for h ∈ G do
3 Let x̄∗h =

∑
i,j∈N :
cij≥c(h̄)

x̄ij

4 Determine the largest k ∈ N such that x̄∗h −
∑n

k′=k 1 < 1
5 Let RHS(x̄ij , k) = λkx̄

∗
h −

∑
ℓ′>k(λk − λℓ′)

6 if θ̄h < RHS(x̄ij , k)− ε then
7 Add cut θh ≥ λk

∑
i,j∈N :
cij≥c(h)

xij −
∑

ℓ′>k(λk − λℓ′)

Algorithm 2: Branch-and-Benders-cut separation algorithm for DOMPθ1

1 Consider a solution (φ̄k, x̄ij) in a node of the branching tree
2 for k ∈ ∆− do
3 Determine the largest h ∈ H such that

∑
h′≥h,h′∈H

x̄ij(h′) ≥ n− k + 1

4 Let RHSk(x̄ij , h) = (n− k + 1)cij(h) +
∑

cij>cij(h)
(cij − cij(h))x̄ij

5 if φ̄k > RHSk(x̄ij) + ε then
6 Add cut φk ≤ (n− k + 1)cij(h) +

∑
cij>cij(h)

(cij − cij(h))xij

Algorithm 3: Branch-and-Benders-cut separation algorithm for DOMPθ1a

1 Consider a solution (ϕ̄, x̄ij) in a node of the branching tree
2 Determine h = (hk)k∈∆− where hk ∈ H is the largest s.t.

∑
h′≥hk,h′∈H

x̄ij(h′) ≥ n− k + 1

3 Let RHS(x̄ij , h) =
∑

k∈∆− ∆k

[
(n− k + 1)cij(hk) +

∑
cij>cij(hk)

(cij − cij(hk))x̄ij
]

4 if ϕ̄ < RHS(x̄ij , h)− ε then
5 Add cut ϕ ≥

∑
k∈∆− ∆k

[
(n− k + 1)cij(hk) +

∑
cij>cij(hk)

(cij − cij(hk))xij
]

5.2. In-and-out stabilization at the root node

Following observations in Fischetti et al. (2016, 2017), an in-and-out stabilization procedure can be applied
at the root node, before starting the branch-and-cut procedure. Its aim is to quickly determine a small set of
Benders cuts that brings the master LP-relaxation value as close as possible to the “real optimal value”.

We now explain how is this procedure implemented for the formulation DOMPθ1 (similar ideas are applied
to DOMPθ1a as well). We start from a feasible LP-solution û = (x̂, ŷ, φ̂, ẑ, t̂) used as the core or stabilizing
point. In our case, we compute the core point as the analytic center (see, e.g., Bonami et al., 2020) obtained
from solving the LP relaxation of the model DOMPθ without the objective and using the barrier algorithm
with crossover. If the computation of the LP relaxation takes much effort, then the core point is computed
as a convex combination of feasible solutions. These feasible solutions are the result of randomly selecting p
facilities, assigning the clients to its closest open facility and properly valuing the rest of continuous variables.
This approach, which is highly dependable of the randomness in the facility selection, has been applied to the
largest instances from our dataset.

At each cut loop iteration, we start with two points in the u space: the optimal solution of the current master
LP, u∗ = (x∗, y∗, φ∗, z∗, t∗) as in Kelley (1960) method, and the core point û. After initializing the parameter
λ ∈ [0, 1], we start moving the current master LP solution u∗ towards the core point, obtaining u∗ = λu∗ +
(1− λ)û. We perform the Benders separation to the current u∗, and if the corresponding Benders_cut(u∗) is
violated, we insert it into the pool of cuts T . This procedure is iterated a given number of times (iter2) without
reoptimizing the current master LP, just adding the cuts into T . Afterwards, the LP relaxation is computed
including all cuts from T and the process is repeated with the new master LP-solution u∗. The pseudo-code of
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this procedure is given in Algorithm 4.

The procedure ends after a given number of iterations (iter1). Also, to speed up the computation, non-binding
cuts from the current LP are also removed (cf. Step 13 of Algorithm 4). This procedure has been computa-
tionally proven to be very helpful when solving instances of larger size, but not for the small ones. For this
reason we have used this stabilization procedure for instances with 100 nodes or more. For the model based
on the reformulation DOMPr0B we implemented a lighter and faster warm-start phase. In this case, we only
computed the LP relaxation of DOMPr0 once and then we added |G| cuts in the form of (8) by means of the
separation algorithm given in Algorithm 1.

Algorithm 4: In-and-out stabilization at the root node for DOMP Benders decomposition
1 Input:
2 Scaling parameter λ
3 The core point û = (x̂, ŷ, φ̂, ẑ, t̂)
4 Initial pool of Benders cuts T = ∅
5 iter1, iter2, iteration counters
6 Procedure:
7 while iter1 do
8 Solve to optimality the current master LP including cuts from T .
9 Let u∗ = (x∗, y∗, φ∗, z∗, t∗) be its optimal solution.

10 while iter2 and violated cuts added to T do
11 u∗ = λu∗ + (1− λ)û
12 Perform Benders separation on u∗ generating Benders_cut(u∗) which (if violated) is added to T

13 Remove from the master LP the cuts from T with positive slack

6. Computational study

This section summarizes the results obtained from our computational experiments performed in order to em-
pirically compare the proposed DOMP formulations. Our algorithms were programmed in Python language
(version 3.10) using Gurobi Optimizer 9.5 as a MIP solver. The experiments were run in a MacPro server with
a 2,7 GHz Intel Xeon W processor of 24 cores and 192 GB RAM using a single thread and with all presolve
and heuristics preprocessings deactivated for unifying the comparisons. The time limit for computations was
set to 7200 seconds per instance. For the violation threshold when separating Benders cuts (see Algorithms
1-3), we set ε = 0.01. For the stabilization procedure given in Algorithm 4, we set λ = 0.9, iter1 = 10 and
iter2 = 5. This way, we are adding in the best case scenario around 50 cuts by this procedure.

Following experiments in Labbé et al. (2017) and Marín et al. (2020), we considered two sets of benchmark
instances. The first dataset, to which we will refer as Beasley instances, consists in p-median instances from
Beasley (2015). In order to obtain the cost matrix we use the procedure explained in Labbé et al. (2017) which
gives rise to instances of sizes n ∈ {50, 100, 150, 200} without symmetry but with (possibly repeated) integer
costs from [1, 1000]. For the second dataset (to which we refer as Random instances), we use instances proposed
in Labbé et al. (2017). For each complete graph of size n ∈ {20, 30, 40, 50, 100, 140, 180, 200} a set of five
instances is generated by drawing costs cij uniformly at random from [100, 1000] (with up to two decimal
digits). Following similar setting as in the literature, the number of facilities for each group of instances was
chosen as p ∈ {⌊n4 ⌋, ⌊

n
3 ⌋, ⌊

n
2 ⌋}.

Concerning the chosen criteria, i.e, the λ-vectors to be tested, our purpose was to broaden as possible the criteria
selection including non-monotone weight vectors and also negative weights. In fact, that was the reason to
introduce vectors not yet used in the existing DOMP literature. The final selection of λ-vectors (see Table 1) is
a representative sample that depicts the variety of problems that can be generalized within the ordered median
optimization framework. Among them, we find some fairness criteria (λ1, λ3, λ7, λ11, λ12), other particular
customer preferences (λ5, λ9), and the obnoxious versions of most of them, where the ordered median objective
is used to model the undesired facility location problems (λ2, λ4, λ6, λ8, λ10). Furthermore, these vectors are
among the most complex ones within the ordered median literature, primarily due to their non-monotone nature
and the presence of negative weights when the minimization of the largest costs is required. Since λ-vectors
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with negative weights are tested, we define Λ+ = {λ1, λ3, λ5, λ7, λ9, λ11, λ12} and Λ− = {λ2, λ4, λ6, λ8, λ10}
in order to compute the optimality gap as

gap =

{
(UB− LB)/UB for Λ+,

(UB− LB)/|LB| for Λ−,

where UB and LB stand for the best upper and lower bound found at termination, respectively.

Notation λ-vector Criterion name Purpose

λ1 (0, ..., 0, 1) p-center Fairness
λ2 (0, ..., 0,−1) Obnoxious p-center Obnoxious
λ3 (0, . . . , 0, 0, 1, . . . , 1︸ ︷︷ ︸

k

) k-centrum, k = n/2 Fairness

λ4 (0, . . . , 0, 0,−1, . . . ,−1︸ ︷︷ ︸
k

) Obnoxiuos k-centrum, k = n/2 Obnoxious

λ5 (0, . . . , 0, 1︸︷︷︸
k−th position

, 0, . . . , 0) k-max General preferences

λ6 (0, . . . , 0, −1︸︷︷︸
k−th position

, 0, . . . , 0) Obnoxious k-max Obnoxious

λ7 (−1, 0, ..., 0, 1) Range Fairness
λ8 (1, 0, ..., 0,−1) Obnoxious range Obnoxious
λ9 (0,−1, 0, ..., 0, 1, 0) Second range General preferences
λ10 (0, 1, 0, ..., 0,−1, 0) Second obnoxious range Obnoxious
λ11 (n, n− 1, . . . , 2, 1) Reverse Fairness
λ12 (2(2i− n− 1))i∈N Sum of absolute differences Fairness

Table 1: λ-vectors tested

First, we started by comparing DOMPr0 and its radius-Benders reformulation, DOMPr0B , in both versions,
implemented as a compact model and embedded within a Branch-and-Benders-cut algorithm (BBC) consider-
ing Algorithm 1. As remarked in Proposition 1, this reformulation is only valid for monotone non-increasing
λ-vector. In our experimentation setup we decided to test λ11 given that it is the only strictly monotone non-
increasing λ-vector and because we realized by performing some preliminary tests that DOMPr0 was outper-
forming DOMPθ for λ11. Table 2 shows cpu times for Beasley and Random instances in the first (Table 2a)
and second block (Table 2b), respectively. For the Beasley instances, each instance is indexed as (Ins-n-p),
where Ins identifies the number of the instance tested, and n and p indicates the number of nodes and the num-
ber of open facilities, respectively. For the Random instances, each row (n-p) shows average results over five
random instances with the same number of nodes (n) and open facilities (p). From Table 2 we conclude that
DOMPr0 outperforms DOMPr0B in mostly all cases. The compact reformulation DOMPr0B (whose runtimes
are given in the last column) is up to two orders of magnitude slower than the compact formulation DOMPr0.
This can be explained by the large number of constraints (O(|G||N |)) of type (4b). On the other hand, for non-
increasing λ vectors, the radius ordering constraints (3c)-(3d) are redundant (they can be removed by the MIP
solver) so that the resulting DOMPr0 model requires only O(|G|) constraints of type (3b). This difference in
the number of constraints, along with the structure of the constraint matrix, explains the inferior performance
of DOMPr0B for λ11. Comparing the BBC implementation of DOMPr0B with its compact counterpart, we
notice that speed-ups of an order of magnitude can be obtained. Nevertheless, the model DOMPr0 remains a
clear winner in this setting. The significant differences in the cpu times for Beasley and Random instances
are mainly explained by the fact that there are more repetitions in the cost matrix for the former, resulting in a
performance of the models in that case. For all these reasons, in the remainder of this section, we focus on the
Benders approaches for the state-of-the-art formulation DOMPθ.

As commented in Section 5, Benders decomposition approaches tend to be promising when they result in
reformulations with a significantly reduced number of decision variables. For the model DOMPθ, this means
projecting out θkij variables for k ∈ ∆−, i, j ∈ N . For this reason, we decided to test in our experiments two
state-of-the-art compact formulations (DOMPr0 and DOMPθ) against the branch-and-Benders-cut algorithms
based on our reformulations DOMPθ1 and DOMPθ1a. Due to the large number of experiments, we decided to
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DOMPr0 DOMPr0B (BBC) DOMPr0B

1-50-5 0.33 2.25 12.69
2-50-10 0.53 3.03 8.55
3-50-10 0.30 3.02 11.22
4-50-20 0.75 2.20 9.06
5-50-33 0.44 1.89 7.86
6-100-5 1.46 6.41 55.29
7-100-10 14.73 18.60 127.91
8-100-20 0.86 8.94 48.98
9-100-40 0.74 6.97 47.06
10-100-67 0.76 4.48 36.65
11-150-5 4.00 13.84 127.56
12-150-10 2.69 14.07 191.44
13-150-30 2.71 14.85 121.74
14-150-60 1.77 17.52 126.61
15-150-100 2.41 6.98 117.30
16-200-5 6.71 23.87 264.49
17-200-10 7.31 20.65 267.84
18-200-40 4.80 29.58 278.88
19-200-80 4.09 22.47 258.27
20-200-133 3.97 13.65 27.45

(a) Beasley instances

DOMPr0 DOMPr0B (BBC) DOMPr0B

20-5 0.09 0.39 0.41
20-6 0.27 0.47 0.76
20-10 0.19 0.32 0.39
30-7 4.08 4.50 8.89
30-10 65.76 2.92 5.35
30-15 0.57 2.12 3.75
40-10 51.39 12.89 93.83
40-13 1.03 6.47 203.82
40-20 0.92 8.49 22.43
50-12 7.74 212.08 792.50
50-16 2.17 201.28 393.59
50-25 1.70 12.56 189.62
100-25 227.04 2984.71 7200.00
100-33 55.96 1543.90 7200.00
100-50 53.79 585.79 7200.00
140-35 959.51 4656.04 7200.00
140-46 273.07 5680.54 7200.00
140-70 136.73 3695.69 7200.00
180-45 1722.72 7200.00 7200.00
180-60 956.11 7133.07 7200.00

(b) Random instances

Table 2: cpu times for Reverse criterion (λ11)

summarize the obtained results using the empirical cumulative distribution functions (ECDFs) and bar charts.
We report ECDFs w.r.t. the runtimes and percentage gaps at termination, respectively. The ECDFs with e.g.,
runtimes can be interpreted as the number of instances (shown in y-axis) that can be solved within a certain
amount of time (depicted in the x-axis).

For the Beasley instances, the ECDF in Fig. 1 shows the cumulative percentage of instances solved within
a time limit and Fig. 2 shows the cumulative percentage of instances solved within a gap value. We decided
to include both ECDFs since they capture the overall nature of our results, including those instances that
were solved within the time limit and those that were not. In both cases, DOMPθ1 and DOMPθ1a report
improvements with respect to DOMPr0 and DOMPθ. That is, our reformulations were able to solve more
instances in less time and were able to obtain lower gaps in those instances for which we could not certify
optimality. The reader may observe that, compared to other formulations, DOMPr0 improves its performance
with an increasing value of n, or in other words, with an increasing number of ties in the cost matrix (see
Pozo et al. (2023) for a deeper analysis of this effect). We recall that Beasley instances include integer cij
costs drawn uniformly in [1,100] for large instances. In order to have a better comparison between the different
formulations, Fig. 3 shows results disaggregated by n and Fig. 4 shows results disaggregated by λ-vector.
Similarly to Fig. 1, we conclude from Fig. 3 that DOMPθ1 and DOMPθ1a are consistently better than DOMPr0

and DOMPθ for all sizes, solving more instances in less time. From Fig. 4 we conclude that DOMPθ1 and
DOMPθ1a are able to compute the same or more instances to optimality for mostly all different criteria in less
running time. In this case, we highlight that, while the DOMPθ is not able to prove optimality for any of the
instances with λ11, our reformulations can, although as already noted in Table 2, DOMPr0 performs very well
for this specific criterion.

Regarding to Regarding Random instances, the cumulative percentage of instances solved within a time limit
and the cumulative percentage of instances solved within a gap value are shown in Fig. 5 and Fig. 6, re-
spectively. A first comment on these results is that, as already pointed in Section 3, we expected DOMPr0

performance to be much worse for the Random set of instances than for Beasley due to the fact that DOMPr0

leverages from having a considerable number of repetitions in the cost matrix. On the other hand, it can also
be observed that for this set of instances where we have almost no repeated costs, the performance of our
approaches is very similar in general to the compact DOMPθ formulation. However, from Fig. 7 where the
number of instances and the time to solve them are shown, we observe that our contribution for this set of
Random instances is that for large n values (180 and 200) DOMPθ1 and DOMPθ1a are able to certify optimal-
ity for more instances and in less time than DOMPr0 and DOMPθ.
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For the sake of completeness and in order to give some more insights on the performance of the models based
on DOMPθ1 and DOMPθ1a, we include some detailed results in Table 3 and Table 4 focusing on the strength
of our cuts and their efficiency. Here, columns lazy and user indicate the total number of integer (or lazy) cuts
and fractional (or user) cuts added until termination, respectively. Since we have not made uniform use of the
stabilization procedures, we only show in these tables the number of cuts added only within the Branch-and-
Benders-cut algorithm. A first comment on these results (a result which is also known in the standard facility
location literature) is that, the greater the number p of facilities to locate, the better results can be obtained
in terms of running time or final gaps, in general. The reader might notice that there are certain λ-vectors for
which we are not adding Benders cuts. These are the cases for which ∆− is empty, i.e., for the λ1 for λ1 (shown
in the summary result tables) and λ3. However, even in these cases where no cuts are added, our reformulations
DOMPθ1 and DOMPθ1a are still making a contribution in the sense that they are lighter models with a smaller
number of both variables and constraints. Overall, there is a correlation between the number of cuts we are
able to separate and the size of the set ∆−. When |∆−| is large, i.e., we have many negative “jumps” in our ∆
vector, in every separation call of the model DOMPθ1, we potentially add up to |∆−| cuts. In an extreme case,
when λ11, we have |∆−| = |∆|. In that case, many more cuts are separated for DOMPθ1a than for DOMPθ1,
further emphasizing the difference between these two models. On the contrary, when the size of ∆+ is large,
then |∆−| is relatively small. In that case, in every node we are adding fewer Benders cuts since the master LP
contains all the constraints coming from ∆+ part of the problem.

7. Conclusions

This paper has proved demonstrated that using Benders decomposition techniques brings new features to
the analysis and solution techniques of DOMP. Building from two different state-of-the-art formulations of
DOMP, namely the one based on radius variables (3) and the other based on partial monotonicity (9), we have
developed three different Benders decompositions for solving this problem. We have also tried to enlarge the
catalogue of problems previously solved in the literature of DOMP and thus, we have conducted computational
experiments including very difficult λ-vectors of weights. Those include weight vectors with positive and
negative entries, but also allow the objective function of the problem to be negative. This last feature was known
to be very challenging and not fully addressed up to this paper. By strengthening bounds and exploiting various
implementation enhancement techniques, we have improved the performance of our methods to the point of
being comparable or superior to state-of-the-art approaches. Extensive computational results are included in
the paper supporting our claims and also as source for comparison with other future approaches.

The proposed Benders decomposition approaches focus on projecting out variables that model the ”or-
dering” aspect of DOMP, while the classical facility opening and customer allocation variables are kept
in the master problem. That way, we were able to obtain fast combinatorial procedures for deriving Ben-
ders cuts. However, there is a (yet unexplored) potential to further ”thin-out” the proposed models and
obtain new Benders reformulations in which also allocation variables x are projected out. This remains
an interesting research direction for potential future work.
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Fig. 3: The number of Beasley instances solved to optimality and running time per instance size
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λ DOMPr0 DOMPθ DOMPθ1 DOMPθ1a

λ3 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

1-50-5 624.74 0.00 1.49 0.00 1.40 0.00 0 0 1.43 0.00 0 0
2-50-10 2202.05 0.00 2.15 0.00 2.15 0.00 0 0 2.01 0.00 0 0
3-50-10 6282.73 0.00 3.17 0.00 2.64 0.00 0 0 6.37 0.00 0 0
4-50-20 778.56 0.00 0.08 0.00 0.07 0.00 0 0 0.07 0.00 0 0
5-50-33 26.20 0.00 0.03 0.00 0.03 0.00 0 0 0.02 0.00 0 0
6-100-5 7200.00 18.52 4858.98 0.00 2621.46 0.00 0 0 5216.46 0.00 0 0
7-100-10 7200.00 13.12 2233.24 0.00 2221.03 0.00 0 0 2230.18 0.00 0 0
8-100-20 4475.95 0.00 1387.51 0.00 1482.35 0.00 0 0 126.72 0.00 0 0
9-100-40 5568.64 0.00 0.49 0.00 0.44 0.00 0 0 0.51 0.00 0 0
10-100-67 2326.94 0.00 0.34 0.00 0.33 0.00 0 0 0.54 0.00 0 0
11-150-5 7200.00 20.66 4751.08 0.00 4799.92 0.00 0 0 4469.07 0.00 0 0
12-150-10 3057.69 0.00 2453.91 0.00 2360.36 0.00 0 0 3855.47 0.00 0 0
13-150-30 7200.00 20.03 7200.00 3.02 7200.00 0.51 0 0 7200.00 2.53 0 0
14-150-60 4780.37 0.00 1.10 0.00 1.08 0.00 0 0 1.12 0.00 0 0
15-150-100 4048.94 0.00 1.49 0.00 1.47 0.00 0 0 2.26 0.00 0 0
16-200-5 7200.00 51.92 7200.00 4.32 7200.00 4.32 0 0 7200.00 3.08 0 0
17-200-10 7200.00 42.30 7200.00 4.00 7200.00 3.99 0 0 7200.00 3.97 0 0
18-200-40 7200.00 19.09 7200.00 3.78 7200.00 7.37 0 0 7200.00 7.37 0 0
19-200-80 7200.00 11.18 4.02 0.00 2.46 0.00 0 0 3.83 0.00 0 0
20-200-133 7200.00 18.73 3.42 0.00 4.73 0.00 0 0 3.34 0.00 0 0

λ7 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

1-50-5 7200.00 76.53 382.94 0.00 359.25 0.00 3 0 354.57 0.00 3 0
2-50-10 7200.00 89.05 25.14 0.00 15.77 0.00 3 1 17.82 0.00 3 1
3-50-10 7200.00 71.11 368.02 0.00 22.93 0.00 3 0 25.48 0.00 3 0
4-50-20 1803.42 0.00 10.19 0.00 6.38 0.00 3 0 6.39 0.00 3 0
5-50-33 187.68 0.00 4.78 0.00 4.02 0.00 3 0 3.93 0.00 3 0
6-100-5 7200.00 97.12 7200.00 63.07 7200.00 56.62 4 0 7200.00 18.84 4 0
7-100-10 7200.00 92.65 7200.00 59.91 7200.00 48.33 3 1 7200.00 63.93 4 0
8-100-20 7200.00 75.00 3214.78 0.00 4638.68 0.00 3 0 3444.02 0.00 3 0
9-100-40 7200.00 68.32 4453.26 0.00 1851.68 0.00 3 0 1870.44 0.00 3 0
10-100-67 825.64 0.00 145.38 0.00 125.62 0.00 3 0 126.26 0.00 3 0
11-150-5 7200.00 98.21 7200.00 100.00 7200.00 100.00 3 0 7200.00 100.00 3 0
12-150-10 7200.00 83.64 7200.00 13.21 7200.00 8.00 4 0 3507.46 0.00 4 0
13-150-30 7200.00 88.14 7200.00 85.67 7200.00 65.45 3 0 7200.00 82.17 3 0
14-150-60 7200.00 12.00 4146.97 0.00 3368.56 0.00 3 0 869.16 0.00 3 0
15-150-100 7200.00 53.66 7200.00 41.38 7200.00 28.21 3 0 7200.00 42.28 3 0
16-200-5 7200.00 100.00 7200.00 100.00 7200.00 99.34 4 0 7200.00 100.00 4 0
17-200-10 7200.00 100.00 7200.00 100.00 7200.00 100.00 4 0 7200.00 100.00 4 0
18-200-40 7200.00 100.00 7200.00 100.00 7200.00 100.00 3 0 7200.00 100.00 3 0
19-200-80 7200.00 74.29 7200.00 88.51 7200.00 84.86 3 0 7200.00 84.92 3 0
20-200-133 7200.00 46.51 7200.00 42.19 7200.00 42.49 3 0 7200.00 42.44 3 0

λ8 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

1-50-5 5960.74 0.00 347.76 0.00 18.53 0.00 18 4 26.71 0.00 12 3
2-50-10 7200.00 9.68 10.92 0.00 21.26 0.00 12 6 12.36 0.00 9 3
3-50-10 4846.48 0.00 336.09 0.00 22.41 0.00 18 6 388.86 0.00 7 3
4-50-20 122.78 0.00 9.49 0.00 6.85 0.00 14 4 5.63 0.00 6 3
5-50-33 44.78 0.00 7.35 0.00 5.55 0.00 8 3 4.03 0.00 3 3
6-100-5 7200.00 16.77 3618.33 0.00 3340.95 0.00 14 6 1089.98 0.00 8 3
7-100-10 7200.00 37.97 2261.79 0.00 1846.71 0.00 13 6 1869.62 0.00 5 3
8-100-20 717.39 0.00 98.54 0.00 115.99 0.00 7 3 115.83 0.00 5 1
9-100-40 1331.89 0.00 248.32 0.00 260.38 0.00 8 4 222.06 0.00 4 3
10-100-67 639.79 0.00 182.25 0.00 134.55 0.00 8 3 142.86 0.00 9 3
11-150-5 7200.00 36.28 7200.00 9.09 7200.00 11.50 13 5 7200.00 8.18 8 3
12-150-10 7200.00 19.82 1269.31 0.00 1124.14 0.00 13 6 2994.33 0.00 7 3
13-150-30 7200.00 41.53 4429.17 0.00 5559.28 0.00 10 4 7200.00 0.88 6 3
14-150-60 4442.84 0.00 211.80 0.00 429.01 0.00 8 3 319.23 0.00 5 3
15-150-100 7200.00 62.04 7200.00 62.39 2911.70 0.00 7 3 6224.55 0.00 8 3
16-200-5 7200.00 34.41 7200.00 5.43 7200.00 7.45 6 6 7200.00 21.92 5 3
17-200-10 7200.00 43.96 7200.00 49.50 7200.00 42.05 8 6 7200.00 49.50 3 3
18-200-40 7200.00 57.01 7200.00 58.18 7200.00 29.00 9 4 6909.11 0.00 5 2
19-200-80 7200.00 21.79 7200.00 64.00 7200.00 60.60 7 3 7200.00 98.93 3 0
20-200-133 7200.00 20.93 7200.00 55.52 7200.00 57.88 6 3 7200.00 51.58 3 3

λ11 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

1-50-5 0.33 0.00 29.55 0.00 4.47 0.00 147 0 3.48 0.00 3 0
2-50-10 0.53 0.00 344.28 0.00 4.30 0.00 178 0 4.49 0.00 4 0
3-50-10 0.30 0.00 26.97 0.00 2.19 0.00 166 0 2.50 0.00 4 0
4-50-20 0.75 0.00 17.99 0.00 2.14 0.00 147 0 2.08 0.00 3 0
5-50-33 0.44 0.00 344.76 0.00 4.10 0.00 147 0 3.96 0.00 3 0
6-100-5 1.46 0.00 7200.00 100.00 25.71 0.00 297 0 24.96 0.00 3 0
7-100-10 14.73 0.00 7200.00 100.00 229.08 0.00 566 0 137.14 0.00 6 3
8-100-20 0.86 0.00 3874.37 0.00 31.62 0.00 321 0 25.72 0.00 4 0
9-100-40 0.74 0.00 7200.00 100.00 40.53 0.00 302 0 51.23 0.00 4 0
10-100-67 0.76 0.00 7200.00 100.00 32.46 0.00 297 0 344.73 0.00 3 0
11-150-5 4.00 0.00 7200.00 100.00 1105.17 0.00 534 0 1127.73 0.00 4 0
12-150-10 2.69 0.00 4347.19 0.00 117.41 0.00 603 0 150.65 0.00 5 0
13-150-30 2.71 0.00 7200.00 100.00 285.98 0.00 503 0 182.58 0.00 4 0
14-150-60 1.77 0.00 4628.60 0.00 102.81 0.00 514 0 132.19 0.00 4 0
15-150-100 2.41 0.00 7200.00 100.00 777.31 0.00 447 0 1111.14 0.00 3 0
16-200-5 6.71 0.00 7200.00 100.00 772.47 0.00 1020 0 543.95 0.00 4 1
17-200-10 7.31 0.00 7200.00 100.00 332.55 0.00 796 0 413.16 0.00 4 0
18-200-40 4.80 0.00 7200.00 100.00 3210.45 0.00 712 0 493.90 0.00 6 3
19-200-80 4.09 0.00 7200.00 100.00 393.22 0.00 655 0 3113.80 0.00 6 0
20-200-133 3.97 0.00 7200.00 100.00 2591.39 0.00 597 0 448.69 0.00 3 0

Table 3: Beasley instances result tables for some λ-vectors
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λ DOMPr0 DOMPθ DOMPθ1 DOMPθ1a

λ3 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

20-5 24.23 0.00 0.12 0.00 0.13 0.00 0.00 0.00 0.12 0.00 0.00 0.00
20-6 139.24 0.00 0.16 0.00 0.18 0.00 0.00 0.00 0.17 0.00 0.00 0.00
20-10 69.48 0.00 0.06 0.00 0.08 0.00 0.00 0.00 0.07 0.00 0.00 0.00
30-7 6582.21 8.38 1.81 0.00 1.83 0.00 0.00 0.00 3.12 0.00 0.00 0.00
30-10 3935.77 0.02 2.05 0.00 2.53 0.00 0.00 0.00 1.86 0.00 0.00 0.00
30-15 1042.16 0.00 0.61 0.00 0.62 0.00 0.00 0.00 0.56 0.00 0.00 0.00
40-10 7200.00 12.35 11.30 0.00 111.12 0.00 0.00 0.00 111.15 0.00 0.00 0.00
40-13 7200.00 6.23 3.80 0.00 8.94 0.00 0.00 0.00 73.46 0.00 0.00 0.00
40-20 2391.86 0.00 1.07 0.00 1.24 0.00 0.00 0.00 1.73 0.00 0.00 0.00
50-12 7200.00 13.20 386.72 0.00 241.66 0.00 0.00 0.00 172.03 0.00 0.00 0.00
50-16 6885.43 2.82 16.02 0.00 10.21 0.00 0.00 0.00 8.77 0.00 0.00 0.00
50-25 3044.59 0.69 1.63 0.00 1.87 0.00 0.00 0.00 1.65 0.00 0.00 0.00
100-25 7200.00 30.60 5923.57 0.76 5558.21 0.53 0.00 0.00 4780.92 0.19 0.00 0.00
100-33 7200.00 24.11 624.45 0.00 529.72 0.00 0.00 0.00 502.74 0.00 0.00 0.00
100-50 7200.00 17.44 40.16 0.00 35.01 0.00 0.00 0.00 41.35 0.00 0.00 0.00
140-35 7200.00 25.91 7200.00 1.80 7200.00 1.78 0.00 0.00 7200.00 1.79 0.00 0.00
140-46 7200.00 22.76 5991.38 0.26 6242.15 0.26 0.00 0.00 6083.40 0.24 0.00 0.00
140-70 7200.00 16.46 130.91 0.00 136.21 0.00 0.00 0.00 135.58 0.00 0.00 0.00
180-45 7200.00 38.53 7200.00 1.78 7200.00 1.81 0.00 0.00 7200.00 2.00 0.00 0.00
180-60 7200.00 18.16 7200.00 0.54 7200.00 0.55 0.00 0.00 7200.00 0.54 0.00 0.00
180-90 7200.00 13.12 567.99 0.00 472.68 0.00 0.00 0.00 511.89 0.00 0.00 0.00
200-50 7200.00 84.16 7200.00 2.58 7200.00 2.22 0.00 0.00 7200.00 2.51 0.00 0.00
200-66 7200.00 83.32 7200.00 1.02 7200.00 1.03 0.00 0.00 7200.00 1.23 0.00 0.00
200-100 7200.00 82.52 3760.83 0.06 2997.36 0.08 0.00 0.00 3187.14 0.18 0.00 0.00

λ7 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

20-5 650.92 0.00 1.09 0.00 0.90 0.00 1.60 0.40 33.03 0.00 3.00 1.20
20-6 553.33 0.00 0.99 0.00 0.70 0.00 1.80 0.30 32.79 0.00 3.40 0.60
20-10 515.31 0.00 0.56 0.00 0.52 0.00 1.60 0.10 0.43 0.00 3.20 0.60
30-7 7200.00 57.18 23.48 0.00 142.40 0.00 1.60 0.30 76.24 0.00 3.20 0.40
30-10 6942.96 22.69 10.23 0.00 73.10 0.00 1.60 0.10 70.63 0.00 3.00 0.40
30-15 6436.51 4.02 7.13 0.00 5.12 0.00 1.50 0.10 36.03 0.00 3.00 0.20
40-10 7200.00 94.77 644.03 0.00 466.34 0.00 1.90 0.10 338.63 0.00 3.60 0.00
40-13 7200.00 85.43 356.56 0.00 224.65 0.00 1.50 0.00 179.34 0.00 3.00 0.00
40-20 7200.00 10.84 16.45 0.00 44.38 0.00 1.60 0.10 9.53 0.00 3.20 0.20
50-12 7200.00 78.75 132.87 0.00 113.39 0.00 1.50 0.10 100.48 0.00 3.20 0.00
50-16 7200.00 69.69 50.67 0.00 31.92 0.00 1.50 0.10 26.29 0.00 3.00 0.20
50-25 7200.00 28.97 25.78 0.00 17.04 0.00 1.60 0.00 14.48 0.00 3.20 0.00
100-25 7200.00 100.00 7200.00 10.41 7200.00 10.48 1.80 0.00 7200.00 9.50 2.70 0.00
100-33 7200.00 96.15 934.14 0.00 728.88 0.00 1.70 0.00 687.63 0.00 3.60 0.20
100-50 7200.00 81.92 477.54 0.00 432.68 0.00 1.70 0.00 397.38 0.00 3.40 0.00
140-35 7200.00 100.00 7017.64 42.50 7008.64 53.59 1.50 0.00 6806.11 61.98 1.50 0.00
140-46 7200.00 100.00 4827.15 0.00 6611.55 50.00 1.50 0.00 6140.11 53.27 1.50 0.00
140-70 7200.00 100.00 2891.72 0.00 3049.43 0.00 1.50 0.00 3108.95 0.01 1.50 0.00
180-45 7200.00 100.00 7200.00 100.00 7200.00 83.35 1.70 0.00 7200.00 100.00 1.70 0.00
180-60 7200.00 100.00 7200.00 100.00 6792.30 70.21 1.50 0.00 7106.24 80.08 1.60 0.00
180-90 7200.00 100.00 7200.00 100.00 6793.89 70.00 1.70 0.00 6720.80 70.00 1.70 0.00
200-50 7200.00 100.00 7200.00 100.00 7200.00 100.00 1.60 0.00 7200.00 100.00 1.60 0.00
200-66 7200.00 100.00 7200.00 100.00 7200.00 100.00 1.60 0.00 7200.00 100.00 1.60 0.00
200-100 7200.00 100.00 7200.00 100.00 7200.00 100.00 1.70 0.00 7200.00 100.00 1.70 0.00

λ8 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

20-5 14.95 0.00 0.46 0.00 0.40 0.00 7.10 4.10 0.33 0.00 5.40 3.00
20-6 14.84 0.00 0.52 0.00 0.42 0.00 6.30 3.50 0.26 0.00 4.00 1.40
20-10 141.15 0.00 0.43 0.00 0.44 0.00 6.50 3.00 0.21 0.00 4.20 1.00
30-7 1649.23 0.00 3.03 0.00 34.53 0.00 7.70 3.60 1.76 0.00 6.20 3.00
30-10 1251.32 0.00 3.69 0.00 2.00 0.00 7.20 3.30 1.15 0.00 4.20 2.00
30-15 779.12 0.00 4.23 0.00 1.86 0.00 8.00 3.00 2.12 0.00 5.00 3.00
40-10 6728.33 43.37 71.07 0.00 40.56 0.00 8.60 3.90 7.30 0.00 6.00 2.60
40-13 5685.67 17.72 73.78 0.00 4.41 0.00 7.30 3.30 59.76 0.00 5.20 2.60
40-20 1498.25 0.00 7.97 0.00 36.33 0.00 7.10 3.10 34.96 0.00 5.80 3.00
50-12 4709.14 7.33 14.79 0.00 44.32 0.00 8.10 3.70 24.53 0.00 6.40 3.00
50-16 4978.01 25.22 12.34 0.00 7.07 0.00 7.90 3.30 4.24 0.00 4.40 1.80
50-25 3123.47 2.92 12.25 0.00 7.81 0.00 7.30 3.00 13.15 0.00 5.20 3.00
100-25 7200.00 82.24 294.98 0.00 2364.30 4.06 8.00 3.30 3032.64 4.91 6.80 3.00
100-33 7200.00 85.95 194.07 0.00 1035.15 2.29 6.70 3.40 128.23 0.00 4.80 3.00
100-50 7200.00 91.28 217.63 0.00 3518.56 3.58 6.60 3.00 658.22 0.00 5.60 3.00
140-35 7200.00 86.51 1536.35 0.00 2578.32 3.60 8.80 3.50 3378.45 7.47 5.20 3.00
140-46 7200.00 89.48 1683.21 0.00 5269.45 10.92 9.90 3.30 1125.79 0.00 5.80 3.00
140-70 7200.00 92.25 2510.94 0.00 5802.85 8.88 6.40 3.00 602.07 0.00 5.00 3.00
180-45 7200.00 88.69 6200.90 22.81 5128.99 3.88 7.60 3.90 6252.01 8.54 6.40 3.00
180-60 7200.00 89.95 6265.51 3.11 5137.93 7.17 7.70 3.30 5233.71 11.09 5.20 3.00
180-90 7200.00 94.02 7179.83 16.99 6732.91 18.06 7.50 3.10 6137.94 8.48 6.20 3.00
200-50 7200.00 89.78 7200.00 88.57 7200.00 51.47 7.20 4.30 7007.41 51.76 4.80 3.00
200-66 7200.00 91.78 7200.00 90.81 7200.00 76.74 7.40 3.60 7200.00 79.94 5.20 3.00
200-100 7200.00 93.87 7200.00 93.13 7200.00 76.03 6.50 3.00 7200.00 77.30 5.20 3.00

λ11 cpu gap cpu gap cpu gap lazy user cpu gap lazy user

20-5 0.09 0.00 0.13 0.00 0.17 0.00 63.90 0.00 0.19 0.00 4.00 0.00
20-6 0.27 0.00 0.30 0.00 0.36 0.00 67.10 6.00 0.46 0.00 4.60 0.60
20-10 0.19 0.00 0.23 0.00 0.35 0.00 59.70 0.00 0.39 0.00 3.80 0.00
30-7 4.08 0.00 68.02 0.00 1.47 0.00 125.20 20.70 2.97 0.00 6.20 1.80
30-10 65.76 0.00 1.25 0.00 1.09 0.00 103.60 0.00 1.33 0.00 4.40 0.20
30-15 0.57 0.00 1.25 0.00 1.12 0.00 98.40 0.00 1.42 0.00 4.80 0.00
40-10 51.39 0.00 70.69 0.00 5.22 0.00 160.80 31.20 70.01 0.00 5.60 2.40
40-13 1.03 0.00 2.78 0.00 1.39 0.00 137.10 3.70 1.63 0.00 4.20 0.40
40-20 0.92 0.00 2.63 0.00 1.19 0.00 133.40 0.00 1.40 0.00 4.20 0.00
50-12 7.74 0.00 14.12 0.00 5.04 0.00 211.70 34.60 8.35 0.00 10.60 1.20
50-16 2.17 0.00 7.37 0.00 2.67 0.00 183.10 0.00 2.75 0.00 4.40 0.00
50-25 1.70 0.00 6.77 0.00 2.50 0.00 172.40 0.00 2.86 0.00 4.20 0.00
100-25 227.04 0.00 377.72 0.00 229.34 0.00 550.00 196.20 218.29 0.00 23.10 2.50
100-33 55.96 0.00 213.63 0.00 156.31 0.00 402.40 78.40 161.86 0.00 7.10 2.10
100-50 53.79 0.00 204.16 0.00 138.82 0.00 327.50 0.00 139.80 0.00 4.20 1.50
140-35 959.51 0.00 1769.48 0.00 355.25 0.00 806.20 243.60 369.71 0.00 16.10 2.70
140-46 273.07 0.00 969.40 0.00 229.55 0.00 652.60 127.80 255.43 0.00 5.20 2.10
140-70 136.73 0.00 1013.76 0.00 173.47 0.00 468.80 0.00 198.92 0.00 3.70 0.60
180-45 1722.72 0.00 4948.15 0.00 534.47 0.00 796.20 391.70 600.39 0.00 4.50 2.40
180-60 956.11 0.00 3932.68 0.00 415.65 0.00 807.30 86.10 519.57 0.00 5.00 1.90
180-90 378.79 0.00 2939.66 0.00 360.76 0.00 694.10 0.00 392.59 0.00 4.50 1.20
200-50 5429.29 2.41 7200.00 80.86 4353.53 0.06 983.70 230.70 4150.96 0.45 4.90 2.20
200-66 4184.74 0.66 7200.00 80.57 3629.96 0.23 956.10 136.20 4519.16 0.33 5.30 1.80
200-100 2561.62 0.00 6803.08 80.00 1948.59 0.00 765.30 0.00 2582.17 0.00 4.30 0.60

Table 4: Random instances result tables for some λ-vectors
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