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Abstract The (uncapacitated, unrooted) Connected Facility Location Problem
(ConFL) is the problem of determining a minimum-cost solution consisting of a
set of open facilities used to serve a given set of clients, and to connect the open
facilities using a Steiner tree. The cost of a ConFL solution consists of edge-costs
for building the Steiner tree, the cost for allocating the clients to open facilities,
and the cost for opening the facilities. Hence, the ConFL is a generalization of two
well-known combinatorial optimization problems: the uncapacitated facility loca-
tion problem, and the Steiner tree problem in graphs. In the past two decades there
has been a considerable amount of research devoted to it. The aim of this article is to
provide a comprehensive overview of the existing methods, theoretical results and
computational studies for the ConFL and its variants.

1 Introduction

Formally, the unrooted ConFL is defined as follows. We are given a graph � =

(+, �( ∪ �') with the set of nodes+ partitioned into the set of clients ('), the set of
potential facility locations (�) and the set of potential Steiner nodes (+ \ (� ∪ ')).
The undirected graph �( = (+( , �(), with+( = + \ ' and �( being the set of edges
between nodes from+( , represents the core network. Connections between potential
facilities and clients are modeled using the assignment network, which is a directed
bipartite graph �' = (� ∪ ', �') with �' ⊆ {(8, :) : 8 ∈ �, : ∈ '}. Figure 1(a)
illustrates an input graph �.

The following input parameters are associated to �:

• Facility opening cost 58 ≥ 0, for each 8 ∈ �.
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(a) Input graph
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(b) A feasible solution

Fig. 1 Example of an input instance and its solution for the rooted, undirected ConFL.

• Edge cost 24 ≥ 0, for each 4 ∈ �( .
• Assignment cost 28 9 ≥ 0, for each (8, 9) ∈ �'.

The goal is to find a subnetwork of � consisting of a set of open facilities � ′ ⊆ �, a
set of core edges � ′

(
⊆ �( and a set of assignment arcs �′

'
⊆ �' such that:

(P1) Each client is assigned to exactly one open facility using arcs from �′
'
.

(P2) The set of core edges � ′
(
connects all open facilities.

(P3) The sum of assignment, facility opening and core-edge costs, given by∑
4∈�′

(

24 +
∑
8∈� ′

58 +
∑

(8, 9) ∈�′
'

28 9 , (1)

is minimized.

Since the core-edge costs are non-negative, there always exists a solution which
connects the set of open facilities through a Steiner tree. When building the Steiner
tree induced by the set of core edges from � ′

(
, nodes from+( , together with facilities

from � \� ′ can be used as interconnecting nodes, to ensure the connectivity between
open facilities from � ′. Such nodes are typically referred to as Steiner nodes. No costs
are incurred for including such Steiner nodes in the solution. Figure 1(b) illustrates
a feasible solution.
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The ConFL is a generalization of two well-known combinatorial optimization
problems: the uncapacitated facility location (UFL, see e.g., Fernández and Landete
[2019]), and the Steiner tree problem in graphs (STP, see, e.g., Ljubić [2021]). The
problem is clearly NP-complete as, indeed, it entails as a special case the UFL (when
the core-edge costs are all equal to zero). Moreover, the problem also entails the
undirected STP as a special case: indeed, if there is a unique arc connecting each
client to a facility, the allocation of facilities and opening of facilities is uniquely
determined, and it remains to solve the STP using the set of open facilities as
terminals.

The problem has been introduced by Karger and Minkoff [2000], and since then
there has been a considerable amount of research devoted to it. Several other problem
variants have been studied in the literature:

• The rooted ConFL: In addition, we are given a root node A ∈ + \ (� ∪ '),
which usually represents a central facility that must be included in every feasible
solution. In the context of telecommunication networks, for example, the root
node establishes a connection to a higher order (e.g., backbone) network.

• The asymmetric ConFL: In some applications, the core network is represented by
a directed graph �( = (+( , �() where the arcs from �( connect nodes from +( ,
with the costs 28 9 ≥ 0, (8, 9) ∈ �( . The connection between open facilities has to
be established through a subset of arcs �′

(
⊆ �( such that there exists a directed

path between the root A and any open facility 8 ∈ � ′. Due to the assumption that
all arc costs are non-negative, there always exists an optimal solution such that in
the core-subgraph induced by �′

(
, the in-degree of every node (except the root) is

equal to one. Such a rooted, directed tree is referred to as a Steiner arborescence.
• The Capacitated ConFL (CapConFL): In this problem, we are additionally given

a capacity {8 ≥ 0 and demand 38 ≥ 0 for each 8 ∈ �, and a client demand 1: ≥ 0
for each : ∈ '. To each 4 ∈ �( we associate edge capacity D4 ≥ 0. The goal
is to find subsets � ′

(
, �′

'
and � ′, as above, such that, in addition to properties

(P1)-(P3), also properties (P4)-(P5) are satisfied:

(P4) The sum of clients’ demands assigned to a facility 8 does not exceed
its capacity {8 . If the assignment of a client’s demand is allowed to be split
between multiple facilities, we talk of multi-source allocation, otherwise, a
single-source allocation is imposed.

(P5) In the core subnetwork induced by � ′
(
, we can simultaneously route the

flow from the root node to satisfy the demand of all open facilities, without
violating the edge capacities. The flow between the root and each open facility
can be split into multiple paths.

Hence, the CapConFL combines two other prominent combinatorial optimization
problems: (1) the capacitated facility location problem [Fernández and Landete,
2019] and the single-source network loading problem [Ljubić et al., 2012].
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1.1 MILP Formulation for the Asymmetric ConFL

As an illustration, we provide a MILP formulation for the asymmetric ConFL.
Facility decision variables I8 ∈ {0, 1}, 8 ∈ �, indicate whether facility 8 is opened.
Arc decision variables G0 ∈ {0, 1}, 0 ∈ �( , are set to one if and only if arc 0 belongs
to the Steiner arborescence. Finally, assignment variables 08 9 ∈ {0, 1}, (8, 9) ∈ �'
are equal to one if and only if facility 8 serves customer 9 . For a set � ⊂ + , we define
X− (�) := {(D, {) ∈ � : D ∉ �, { ∈ �} and X+ (�) := {(D, {) ∈ � : D ∈ �, { ∉ �},
where � = �( ∪ �'. Moreover, for any vector ` ∈ {0, 1}" over a ground set " ,
we write `(" ′) = ∑

<∈" ′ `<, for any " ′ ⊆ " . The asymmetric ConFL is then
modeled as follows:

min
∑
0∈�(

20G0 +
∑
8∈�

58I8 +
∑

(8, 9) ∈�'

28 908 9 (2a)

0(X− ( 9)) = 1 ∀ 9 ∈ ' (2b)
08 9 ≤ I8 ∀(8, 9) ∈ �' (2c)
G(X− (�)) ≥ I8 ∀� ⊆ +( :A ∉ �,∀8 ∈ � ∩ � (2d)
G(X− (B)) ≤ 1 ∀B ∈ +( \ {A} (2e)

(G, I, 0) ∈ {0, 1} |�( |+ |� |+ |�' | (2f)

Constraints (2b) ensure that every client is assigned to exactly one facility, while
constraints (2c) make sure that assignment arcs can only be used if the corresponding
facility is opened. The directed cut-set inequalities (2d) ensure that there is a directed
path from the root A to every open facility 8 ∈ �. If for all 0 ∈ �( , 20 > 0, constraints
(2b)-(2d) guarantee that the core part of an optimal solution will correspond to a
Steiner arborescence rooted at A . In case some of the arc costs are equal to zero, in
order to prevent cycles, we can impose additional constraints (2e) to ensure that the
in-degree of every node in the core network is at most one. Once can replace binary
constraints on 0 variables with 08 9 ≤ 1, (8, 9) ∈ �', since the constraint matrix
associated with 0 variables is totally unimodular.

The given MILP formulation can also be used to solve the ConFL on undirected
or unrooted core graphs. Indeed, to deal with undirected core networks with a given
root node, it is sufficient to replace each edge 4 = {:, ;} with its two bidirected
counterparts, and to set 2:; = 2;: = 24. To deal with unrooted problems, one has to
insert an artificial root node A to the core network, add arcs (A, 8), 88=�, to �( with
2A8 = 0 and add an additional root-outdegree constranint G(X+ (A)) = 1 to the above
model.
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1.2 Applications

The ConFL has been used to model network design problems that arise in the
design of last mile telecommunication networks. Gollowitzer and Ljubić [2011]
report applications for the fiber to the curb (FTTC) deployment strategy in the
design of local access telecommunication networks. In this setting, fiber optic cables
run from a central office to a cabinet serving a neighborhood. End users connect
to this cabinet using the existing copper connections. Expensive switching devices
(that correspond to facilities) are installed in these cabinets. The decision where
to place the switching devices represents the facility opening decision, building
of the fiber optic network is modeled using a Steiner tree, and assignment between
households and switching devices correspond to client-facility assignment decisions.
Fiber-to-the-building (FTTB) and fiber-to-the-air (FTTA) are two other deployment
architectures in the design of local access networks that can be modeled as the
ConFL [Leitner et al., 2013]. Similarly, fiber-to-the-home (FTTH) deployment is
modeled using variants of the Steiner tree problem [Leitner et al., 2014b, Rehfeldt,
2021, Ljubić et al., 2006]. All these architectures are known under a common name
as FTTx deployment strategies. Indeed, after abstracting the more technical details
and considering mainly topology decisions, Arulselvan et al. [2019], Grötschel et al.
[2014] use the ConFL to model the deployment of FTTx architectures and report
varoius case studies with real-world telecommunication networks. Similarly, the
CapConFL models a more detailed planning of FTTx networks, in which capacities
of the links and of multiplexor devices are taken into account (see Leitner and Raidl
[2011a], Gollowitzer et al. [2013]). For further details concerning the design of local
access telecommunication networks, see Grötschel et al. [2014], Fortz [2015].

Applications arising in information/content distribution networks are discussed
by Karger and Minkoff [2000], Krick et al. [2003]. These applications deal with
network design decisions in data distribution networks where servers (acting as
facilities) need to be located. Demand nodes (clients) download the content from the
closest server. When a certain content is updated on one server, it has to be updated
on all other servers (and hence they need to communicate through a Steiner tree).
Gupta et al. [2001] report applications for the design of Virtual Private Networks
(VPNs), where a group of nodes (clients) forms a virtual subnetwork with a set of
dedicated services.

Finally, Zhu et al. [2012] show the importance of the ConFL for applications
in emergency management where distribution centers correspond to facilities that
are used for reserving, distributing and transiting relief goods. Demand nodes (i.e.,
clients) are cities and open facilities need to be connected through a transportation
network.
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2 Exact Algorithms

Gollowitzer and Ljubić [2011] propose several (mixed-integer linear programming)
MILP formulations for the ConFL with a given root node. They transform the
undirected core network into its bidirected counterpart, and study two possible ways
of modeling the connectivity in the solution. The first approach is based on ensuring
that the root is connected to each open facility, as this is done with constraints (2d) in
the model (2). The second approach imposes the connectivity between the root A and
every client. In the model (2), this would correspond to replacing constraints (2d)
with:

G(X− (�)) +
∑

8∉�∩�
08 9 ≥ 1 ∀� ⊂ +( :A ∉ �,∀ 9 ∈ ' (3)

Inequalities (3) ensure that for each client 9 ∈ ' and any subset � of the core
nodes (excluding A), either there is an arc entering the set �, or 9 has to be served
by a facility outside of � ∩ �. When � ∩ � = �, these inequalities reduce to
G(X− (�)) ≥ 1.

Gollowitzer and Ljubić [2011] show that the latter connectivity concept leads to
stronger LP-relaxation bounds. To model the connectivity, besides the cut-set based
models presented in this article, they also explore the flow-based models (single-
commodity, multi-commodity and common-flow approaches), and a model based
on Miller-Tucker-Zemlin constraints. All formulations are compared with respect to
their polyhedral strength. In addition, branch-and-cut algorithms are proposed and
tested on benchmark instances from the literature. Themodels studied byGollowitzer
and Ljubić [2011] can be also used to solve the unrooted or undirected ConFL, as
explained in Section 1.1.

Leitner et al. [2018] study the polytope for the ConFL on undirected graphs.
They show that generalized subtour elimination constraints (imposed on the nodes
of the core network) are facet-defining. Besides, they provide several new families of
valid inequalities that link core-network edge variables with facility and assignment
variables. In an earlier article, Leitner et al. [2014a] study the polytope of the
asymmetric ConFL. The authors give necessary and sufficient conditions under
which inequalities (3) are facet-defining, and provide several new families of facet-
inducing inequalities.

Leitner et al. [2017] study a larger family of problems with a tree-star topology.
They show that the Steiner tree-star [Lee et al., 1993], generalized Steiner tree-
star [Khuller and Zhu, 2002] and rent-or-buy problems [Swamy and Kumar, 2004]
can be seen as special cases of the asymmetric ConFL. A branch-and-cut algorithm
combined with sophisticated reduction and heuristic techniques is proposed. An
important ingredient of this framework is a dual ascent procedure for the asymmetric
ConFL. Optimal solutions are provided for many previously unsolved benchmark
instances in the literature. To the best of our knowledge, the framework of Leitner
et al. [2017] is currently state-of-the-art approach for the (uncapacitated) ConFL and
above mentioned problems.
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Gollowitzer et al. [2013] introduce the CapConFL and propose a MILP formu-
lation, together with strong valid inequalities and a branch-and-cut algorithm. Their
computational study is based on real-life FTTC and FTTB instances. To model the
property (P4) stated in Section 1, they introduce constraints∑

(8, 9) ∈�'

1 9G8 9 ≤ {8I8 ∀8 ∈ �.

To ensure that there is a sufficient capacity on the arcs of the core network, they
impose the capacitated cut-set inequalities:∑

(:,;) ∈X− (� )
D:;G:; ≥

∑
8∈�∩�

38I8 ∀� ⊂ +( :A ∉ �.

These cuts guarantee that the flow of 38 units can be routed from A to each open
facility 8 ∈ �. Leitner and Raidl [2011a] study a variant of the CapConFL with
capacities on facilities, but with no capacities on edges/arcs of the core network. In
addition, they consider a prize-collecting objective function, in which a penalty is
incurred for unserved clients. Overall, their problem combines features of the single-
source capacitated facility location and the prize-collecting Steiner tree problem.
Two MILP formulations are proposed: the first one is based on cut-sets between the
root and served clients, together with the single-source assignment of served clients
to open facilities. In the second formulation, the set of all feasible and profitable
assignment patterns for each potential facility 8 ∈ � is considered. Since the number
of these patterns can be exponential in size, a branch-and-cut-and-price approach is
implemented for finding optimal solutions. In terms of the quality of LP-relaxation
bounds, the second MILP model is shown to dominate the cut-based formulation as
well as the other two multi-commodity-flow-based MILP formulations proposed by
the same authors in [Leitner and Raidl, 2009].

3 Approximation Algorithms

Earlywork onConFLmainly includes approximation algorithms.AnU-approximation
algorithm for a minimization problem is a polynomial time algorithm that, for all
instances of the problem, produces a solution whose value is within a factor U of the
optimal solution value. Approximation algorithms developed for the ConFL work
under the following assumptions. We are given an input graph � = (+, �) with a
set of clients ' ⊂ + , edge lengths 24 ≥ 0, 4 ∈ � that form a metric, and a con-
stant " . Every node can act as a Steiner node, and every node can act as a facility
(with opening cost 58 ≥ 0 given for each 8 ∈ +). If node 8 is assigned to node 9 ,
assignment cost 28 9 is incurred, however if edge {8, 9} is used as part of the Steiner
tree, the edge-core cost equal to " · 28 9 is incurred. Under these assumptions, early
approximation algorithms are given by Karger and Minkoff [2000] and Gupta et al.
[2001]. The algorithm of Gupta et al. [2001] is based on an LP-rounding procedure
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and guarantees the approximation ratio of 10.66. Swamy and Kumar [2004] propose
a primal–dual approximation algorithm whose approximation ratio is reduced to
8.55. Grandoni and Rothvoß [2011] present a new 3.19 approximation algorithm for
the ConFL, which improves the previous best approximation factor of 3.92 given by
Eisenbrand et al. [2010].

The directed version of the ConFL is as hard to approximate as the Steiner ar-
borescence problem. Halperin and Krauthgamer [2003] show that the latter problem
admits no log2−Y (=)-approximation (where = is the number of nodes in the input
graph) for any constant Y > 0 unless NP ⊆ DTIME(=polylog(=) ).

4 Heuristics

Heuristics have been proposed for both, capacitated and uncapacitated variants of
the ConFL. Most of them rely on greedy randomized adaptive search procedure
(GRASP) and various neighborhood search techniques.

For solving the rooted undirected ConFL, Ljubić [2007] uses a variable neigh-
borhood search (VNS) heuristic that is combined with a reactive tabu search. Specif-
ically, the solutions are encoded as binary vectors representing the set of open
facilities and :-neighborhood is defined using Hamming distance between pairs of
such vectors. A tabu list consists of a set of facilities that cannot be flipped during
the neighborhood search, and the size of this list is dynamically adapted. A set of
benchmark instances derived by combining the UFL instances from the UflLib1, and
STP instances from the OR-Library2, is introduced.

For the unrooted, undirected ConFL, Tomazic and Ljubić [2008] propose a
GRASP heuristic with the same encoding of feasible solutions as in Ljubić [2007].
GRASP is a multi-start iterative approach where in each iteration an initial solution
is constructed in a greedy fashion, and later improved by a local improvement proce-
dure. The best overall solution is reported as the final one. As a search intensification
mechanism, open- and close-facility moves are applied, followed by a shortest path
Steiner tree heuristic to find connections between open facilities. Furthermore, the
authors show how to transform the ConFL into the minimum Steiner arborescence
problem and then solve it by an exact branch-and-cut method. The empirical results
show that the GRASP approach improves feasible solutions found by the branch-
and-cut method and provides solutions of high-quality (with the gaps to the best
found lower bound ranging between 3% and 9% on the set of considered benchmark
instances).

Bardossy and Raghavan [2010] combine dual ascent with local search to derive
strong lower and upper bounds for amore general variant of the ConFL. The proposed
methodology can namely be applied to the four problems: the Steiner tree-star
problem, the general Steiner tree-star problem, the ConFL, and the rent-or-buy

1 https://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/
2 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/steininfo.html
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problem. In order to derive valid lower bounds, the authors transform the input
instance into an instance of the general ConFL in which use of a facility node
necessarily incurs a facility opening cost, and there are no opening costs associated
with Steiner nodes. Then, they apply the dual ascent procedure fromRaghavan [1995]
to the Steiner arborescence reformulation of the general ConFL. That way, a lower
bound is obtained together with a heuristic solution. The latter is then improved by
searching for a better tree on the existing set of nodes and by closing open facilities
and possibly reassigning clients to remaining open facilities.

Leitner and Raidl [2009] study the CapConFL variant with no edge capacities in
the core network, and with the prize-collecting objective function. They propose two
multi-commodity-flow based formulations. In one of the two formulations (which
sends one unit of flow to each served client), the authors relax flow capacity con-
straints in Lagrangian fashion. They show that such obtained problem decomposes
into |' | shortest path problems, one per each client, and |� | knapsack problems, one
per each facility. Largangian dual bounds are then obtained by applying the volume
algorithm. Finally, a heuristic solution found by the Lagrangian decomposition ap-
proach is then improved by applying a plethora of local improvement procedures.
They include: key-path improvements (that were successfully used for Steiner trees
in Voß [1992]), customer-swap neighborhoods and very large scale neighborhood
search. Later, Leitner and Raidl [2011b] study the same problem variant and develop
a VNS and a GRASP procedure. Both, VNS and GRASP rely on several local im-
provement strategies, namely: key-path improvements (see Leitner andRaidl [2009]),
client-swaps to achieve lower assignment costs, and facility swaps.

5 Extensions

The hop-constrained ConFL has been introduced by Ljubić and Gollowitzer [2013].
In this problem, the maximum number of edges between the root and any open
facility cannot exceed a given parameter � ∈ N. The authors examine various
ways to model hop-constraints. Specifically, all formulations are derived on layered
graphs. Preprocessing procedures are proposed to reduce the size of the layered
graphs. A polyhedral comparison of the proposed models is given and branch-and-
cut procedures are presented.

The incremental ConFL, a multi-period variant of the rooted ConFL, has been
introduced by Arulselvan et al. [2019], see also Arulselvan et al. [2011]. The goal is
to find a schedule that, for each time period, identifies a subset of facilities that can
provide service, a subset of clients to be served, and assignment of served clients
to open facilities, as well as the set of edges in the core network that connects open
facilities. In each time period, the total demand of the served customers must satisfy
the minimum coverage requirement and the chosen edges in �( must form a network
connecting the open facilities with the root node. Once a client is served, it has
to be served for the remainder of the planning periods. The goal is to minimize
the total costs of the network, defined as the sum of investment and maintenance
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costs over all periods. A branch-and-cut approach based on cover, cut-set-cover and
degree-balance inequalities is proposed.

Leitner et al. [2013] introduce the two-architecture ConFL (2AConFL) where
clients can be served using one of the two potential technologies. As in the ConFL,
decisions regarding the set of open facilities and their connections using a Steiner
tree need to be made. In addition, a minimum-coverage rate specifies the fraction
of clients that need to be supplied by the better of the two technologies. Hence, one
has to decide which one of the available technologies should be installed at facility
locations, and which technology will be used for serving different clients. The major
challenge from the decision maker perspective is in finding the appropriate coverage
rate to properly deal with the trade-off between solution cost and the demand of
clients served by the better (and thus more expensive) technology. To overcome this
issue, Leitner et al. [2016] propose to look at the problem from the bi-objective
perspective. They introduce the bi-objective ConFL where the goal is to determine
a subset of clients to be served by the better of two technologies, so that on the
one hand the cost of the solution is minimized (as in the standard ConFL) and on
the other hand the demand of clients served by the better technology is maximized.
The authors propose two novel local search methods for biobjective optimization
(boundary induced neighborhood search and directional local branching heuristics)
and a new exact method called adaptive search in the objective space. Benchmark
instances representing telecommunication access networks from Germany are used
in the empirical study. The obtained results show that with the proposedmethodology
the Pareto front of instances of realistic size can be efficiently explored.

The ConFLwith uncertain input data has also been studied in the recent literature.
Bardossy and Raghavan [2016] assume that assignment costs are subject to interval
uncertainty, i.e., for each (8, 9) ∈ �' the assignment cost belongs to the interval
[28 9 , 28 9 +Δ8 9 ] where Δ8 9 > 0 represents the deviation from the nominal assignment
cost 28 9 . This deviation can represent the uncertainty with respect to the location
of client 9 or to their demand. Following the Γ-robustness concept introduced by
Bertsimas and Sim [2003], the goal is to find a ConFL solution that minimizes the
maximum value of the solution when up to Γ assignment costs are at their worst-case
value (28 9 + Δ8 9 ) and the remaining assignment costs are at their nominal value. In
other words, the objective function (1) of the deterministic ConFL is replaced by

min
∑
4∈�′

(

24 +
∑
8∈� ′

58 +
∑

(8, 9) ∈�′
'

28 9 + max
* ⊆�′

'
, |* | ≤Γ

∑
(8, 9) ∈*

Δ8 9 ,

Due to the result of Bertsimas and Sim [2003], see also Álvarez Miranda et al.
[2013], the optimal solution of the Γ-robust ConFL problem can be found by solving
a series of deterministic ConFL problems with modified assignment costs. Bardossy
and Raghavan [2016] exploit this result and introduce the Approximate Robust
Optimization (ARO) method which provides valid lower and upper bounds for Γ-
robust optimization problems, in general. The ARO method uses lower and upper
bounds obtained from a heuristic procedure (e.g., a dual ascent approach) applied
to the series of deterministic counterparts. In the context of the robust ConFL, the
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authors apply the dual ascent heuristic proposed earlier in Bardossy and Raghavan
[2010] and show that the ARO method finds high-quality solutions to the robust
ConFL very rapidly.

Bardossy and Raghavan [2017] introduce the stochastic ConFLwhere the facility
opening costs and the connection costs between them are assumed to be known a
priori, while the assignment costs are subject to uncertainty and dependent upon a
set of random scenarios. The here-and-now decisions are concerned with finding a
set of open facilities and a Steiner tree that connects them. After that, the uncertainty
regarding the assignment costs is revealed (i.e., one of the scenarios is realized) and
customers are assigned to closest open facilities. If we denote byS the set of possible
discrete scenario realizations, and by 2B

8 9
≥ 0 the assignment cost in a scenario B ∈ S,

(8, 9) ∈ �', the objective function of the deterministic ConFL (1) is replaced by its
two-stage stochastic counterpart

min
∑
4∈�′

(

24 +
∑
8∈� ′

58 +
∑
B∈S

cB

∑
(8, 9) ∈�B

'

2B8 9 ,

where cB > 0 refers to the probability of a scenario B and �B
'
⊂ �' represents the

optimal assignment of clients under B, B ∈ S. In contrast to the Sample Average Ap-
proximation (SAA) method (where the sample average problems are solved exactly),
the authors solve the sample average problems with a heuristic coupled with a lower
bound mechanism. This new approach, called the the Inexact SAA method, is then
applied to the stochastic ConFL where the dual ascent procedure from Bardossy and
Raghavan [2010] is used as the underlying lower- and upper-bounding heuristic.

We close this section by mentioning some other problems closely related to
the ConFL. Cherkesly et al. [2019] introduce the Median Problem with Intercon-
nected Facilities and the Covering Problem with Interconnected Facilities, see also
[Kuzbakov and Ljubić, 2023]. For the former one, all customers have to be served
by open facilities, and for the latter one, if it is not profitable to cover all customers,
a penalty is imposed for each customer that does not receive the service. Similar as
for the ConFL, all facilities have to be connected, however no connection costs are
imposed, i.e., 24 = 0 for all 4 ∈ �( , and in addition, opening costs have to be paid
for all facilities, even if they are used as Steiner nodes. Interconnectivity between
the facilities is modeling communications in wireless sensor networks or radio net-
works, which explains why no connection costs are imposed on the core network.
Other problems related to the ConFL are the ?-cable-trench problem [Calik et al.,
2017, Marianov et al., 2012] and ?-arborescence star problem [Morais et al., 2019].
We refer to Contreras and Fernández [2012] for a more detailed survey on network
design problems with facility location decisions.
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6 Conclusions

In this paper we have provided a survey on existing methods for solving the ConFL
and its variants. Recent research has focused on extensions of the ConFL, notably in
introducing more general network design concepts and combining them with facility
location. For example, capacities on the edges of the core network, or on the open
facilities were imposed, and covering variants (in which non-profitable customers
are left unserved) are studied as well. Also, the problem variants under customer
demand uncertainty have drawn the attention of the researchers in the past.

When it comes to future developments, we highlight the work of Grandoni and
Rothvoß [2011] who introduce a multi-commodity generalization of the ConFL. In
this problem we are given source-sink pairs (i.e., commodities) that wish to com-
municate. A feasible solution consists of a subset of open facilities, and a Steiner
forest (rather than a Steiner tree) spanning them. While a constant approximation
algorithm has been proposed for this problem variant, to the best of our knowledge,
exact methods and meta/matheuristics are still to be developed. Moreover, the stud-
ies on the impact of data uncertainty have been very limited so far (focusing on
customer demand only), however there are other sources of uncertainty that need to
be considered in real-life applications, such as potential failures of connections in
the core network, potential failures of open facilities, as well as uncertainty in the
cost/capacity of core-edges or open facilities.
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