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Abstract

This article comprises the first theoretical and computational study on mixed integer programming (MIP)

models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees:

given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for

the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities

via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs

need to be minimized.

We model ConFL using eight compact and two exponential mixed integer programming formulations. We

also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models

is provided. For the two exponential size models we develop a branch-and-cut algorithm. An extensive computa-

tional study is based on two benchmark sets of randomly generated instances with up to 1,300 nodes and 115,000

edges. We empirically compare the presented models with respect to the quality of obtained bounds and the

corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are

below 0.6%.
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1 Preliminary Discussion

Improving the quality of broadband connections is nowadays one of the highest priorities of telecommunication

companies. Solutions are sought that search for the optimal way of “pushing” rapid and high-capacity fiber-optic

networks closer to the customers. Developing respective models and answering questions related to the design of

“last-mile” networks defines a new challenging area of computer science and operations research. The Connected

Facility Location Problem (ConFL) models the following telecommunication network design problem: Traditional

wired local area networks require copper cable connections between end users. To reduce the signal loss, these

lines are limited by a maximum distance. To increase the quality of internet communications, telecommunication

companies decide to partially or completely replace the existing copper connection by fiber-optic cables. In order to

do so, different strategies, known as fiber-to-the-home (FTTH), fiber-to-the-node (FTTN), fiber-to-the-curb (FTTC)

or fiber-to-the-building (FTTB), are applied.

ConFL models the FTTN / FTTC strategy: Fiber optic cables run to a cabinet serving a neighborhood. End users

connect to this cabinet using the existing copper connections. Expensive switching devices are installed in these

cabinets. The problem is to minimize the costs by determining positions of cabinets, deciding which customers to

connect to them, and how to reconnect cabinets among each other and to the backbone.

1.1 What is Connected Facility Location? - Problem Definition

Gupta et al. [16] define the Connected Facility Location problem as follows: We are given a graph G = (V,E) with

a set of customers (R ⊆ V ), a set of facilities (F ⊆ V ) and a set of Steiner nodes (S̃ ⊆ V ) such that S̃ ∩ F = ∅. For

all e ∈ E we are given an edge cost ce ≥ 0 and for all i ∈ F we are given facility opening costs fi ≥ 0. Then ConFL

consists of finding an assignment of each customer to exactly one facility and connecting these facilities via a Steiner

tree. Thereby, assignment costs cij , i ∈ F, j ∈ R are given as the shortest path distance between i and j in G.

The overall costs in this problem are defined as
∑
j ∈R djci(j)j +

∑
i∈F fi +

∑
e∈T Mce, where dj ≥ 1 is demand of

customer j, i(j) denotes the facility serving j, F is the set of open facilities, T is the Steiner tree connecting open

facilities and M ≥ 1 is a constant.

Let S = S̃ ∪ F denote the set of core nodes. Then we can make the following

Observation 1. Consider a ConFL instance as defined above, where S ∩R 6= ∅. Without loss of generality, we can

transform this instance into an equivalent one in which: a) {S,R} is a non-trivial partition of V and b) all customer

demands are equal to one.

The first transformation can easily be done by replacing all the nodes u ∈ S ∩ R, with a pair of nodes, u1 ∈ S and

u2 ∈ R, connecting all i ∈ S, core neighbors of u, to u1, and all i ∈ F , facility neighbors of u to u2, without changing

the edge/assignment costs. Finally, if u ∈ F ∩R, we need to connect customer neighbors to u1 and add the service

link {u1, u2} into E, set its costs to zero and define fu1 = fu.

Demands different from 1 can be set to 1 by adapting the respective assignment costs. We set cij := djcij ∀j ∈

R,∀i ∈ F and reflect the demand in the cost structure implicitly [26]. Alternatively, we can make dj copies of

customer j, each with demand equal to one (see, e.g., [11]).

For the development of approximation algorithms there are two usual assumptions: The parameter M is used to

distinguish between “cheap” assignment and “expensive” core network edges, and c is assumed to be a metric. As we
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will see later, both these assumptions are not necessary in our approaches. Therefore, we concentrate on a general

cost structure.
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Figure 1: Transformations of nodes a) u ∈ S̃ ∩ R and b) u ∈ F ∩ R where ? ∈ R, � ∈ F , ◦ ∈ S, � ∈ F ∩ R and

• ∈ S̃ ∩R

Definition 1 (ConFL). For a given undirected graph (V,E) with edge costs ce ≥ 0, e ∈ E, facility opening costs

fi ≥ 0, i ∈ F , a disjoint partition {S,R} of V with R ⊂ V being the set of customers, S ⊂ V the set of possible

Steiner nodes and F ⊆ S the set of facilities, in the Connected Facility Location problem we search for a subset of

open facilities such that:

• each customer is assigned to the closest open facility,

• a Steiner tree connects all open facilities, and

• the sum of assignment, facility opening and Steiner tree costs is minimized.

Optionally, a root r ∈ F may be considered as an open facility always included in the network. In that case, we

speak of the rooted ConFL. Obviously, every optimal ConFL solution will be a tree where customers (and possibly

the root r) are leaves. In the telecommunications field a “central office” connecting to the backbone network is often

predefined and may be considered as a root node active in any feasible solution. Therefore, in the following we

assume that the root is given in advance. In Section 3 we show how to solve unrooted instances.

The remainder of this paper is organized as follows: The following section will provide an exhaustive literature

review on the topic. In Section 3 we propose ten mixed integer programming models for ConFL and we show a

transformation of ConFL into the Steiner Arborescence (SA) problem. In Section 4 we provide a full hierarchy of

the models based on the theoretical comparison of the quality of their lower bounds. Section 5 describes a branch-

and-cut (B&C) framework that has been used to solve two exponential size formulations. The computational results

provided in Section 6 are conducted on two sets of benchmark instances introduced earlier in the literature.

2 Literature Review

The Connected Facility Location Problem has lately started to attract stronger interest in the scientific community.

Compared to some closely related problem classes, there is just a small number of papers on the topic. A large share
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of publications about ConFL comes from the computer science community who present approximation algorithms

of different kinds and qualities. The operations research community has developed a small number of heuristic

methods. Preliminary results of one of our exact approaches have been published in [26].

Approximation Algorithms A majority of the publications about ConFL concentrate on approximation algo-

rithms. However, not a single one contains computational results. Thus, no conclusion can be drawn to the practical

applicability of the described algorithms.

Karger and Minkoff [18] describe an adapted version of the Steiner tree problem. They consider the distribution of

single data items from a root to a set of clients. It is not known beforehand which clients demand the data item in

question. For each client, there is a known probability to become active and request data. Consider caching nodes

at a certain cost, i.e. nodes storing the demanded data for resending it to clients becoming active later-on. The

problem of finding a tree with minimal expected cost is equal to the Connected Facility Location Problem. The

authors gather the clients into clusters connected to a common facility. Second, they connect these facilities by

a Steiner tree. They present a bicriterion approximation algorithm producing a solution of at most 41 times the

optimum cost.

Krick et al. [23] present a similar problem as the one in [18], although in an other context. They consider a computer

network where clients (corresponding to customers) issue read and write requests. The data for the requests is

stored in memory modules (facilities) at a certain cost. Read and write requests are served by the nearest installed

memory module for the respective client. To keep data consistent throughout the network, all other memory modules

are updated with the latest version. This requires connectivity between the memory modules. Krick et al. give a

constant approximation algorithm with a larger constant than the one given by Karger and Minkoff [18].

In the context of reserving bandwidth for virtual private networks, Gupta et al. [16] introduce the term Connected

Facility Location. They give a proof for ConFL to be NP-hard. They present a first cut-based integer programming

formulation. Their formulation will be described and discussed in detail in Section 3.2. Their approximation

algorithm for ConFL has a constant factor of 10.66. For the closely related rent-or-buy problem (RoB), in which all

nodes are potential facilities with opening costs equal to 0, the algorithm gives an approximation factor of 9.002.

Swamy and Kumar [35] develop a primal-dual approximation algorithm for ConFL, RoB and k-ConFL. The latter

comprises the additional restriction that in an optimum solution at most k facilities can be opened. The integer

programming formulation used is the same as in Gupta et al. [16]. As results the authors give approximation ratios

of 8.55, 4.55 and 15.55 for ConFL, RoB and k-ConFL, respectively.

The approximation factors have been successively improved in Jung et al. [17] and Williamson and van Zuylen [37].

Finally, Eisenbrand et al. [11] combine approximation algorithms for the basic facility location problem and the

connectivity problem of the opened facilities by running a what they call core detouring scheme. The randomised

version of the approximation algorithm gives new best expected approximation ratios for ConFL (4.00), RoB (2.92)

and k-ConFL (6.85). The ratios for the de-randomised version are 4.23, 3.28 and 6.98 respectively.

Heuristics and Exact Methods Ljubić [26] describes a hybrid heuristic combining Variable Neighborhood

Search with a reactive tabu search method. The author compares it with an exact branch-and-cut approach. The

corresponding integer programming model for the branch-and-cut approach will be explained in detail and compared
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to other formulations in Section 3. Ljubić [26] also presents two classes of test instances as a result of combining

Steiner tree and uncapacitated facility location instances. Results for these instances with up to 1300 nodes are

presented.

Tomazic and Ljubić [36] present a Greedy Randomized Adaptive Search Procedure (GRASP) for the ConFL problem.

Results for a new set of test instances with up to 120 nodes (facilities plus customers) are presented.

2.1 Related Problems

The Connected Facility Location problem is a combination of two other well-known problems in graph theory. These

are the Steiner tree problem (STP) and the Uncapacitated Facility Location problem (UFL). ConFL contains them

both as special cases. For a set of possible facility locations connected to a root via a star, we have UFL. In case

each customer can only be served by one predefined facility, we know the set of facilities that needs to be opened in

advance. Thus, we then have an STP to solve.

Rent-or-buy Problem (RoB) The rent-or-buy problem is often viewed as a special case of the ConFL problem.

In the RoB problem facility opening costs are 0 and facilities can be opened anywhere. Thus, also customer nodes

can act as facilities and have other customers assigned to them. The cost for each edge in a solution to the RoB

depends on its adjacent nodes. If an edge is used to assign a customer to a facility, only assignment costs are incurred.

If an edge connects two facilities, a comparatively higher cost, i.e. M times the assignment cost, has to be paid for.

The (general) Steiner tree-star problem ((G)STS) The Steiner tree-star problem was introduced by Lee

et al. [24]. It arises in the design of some specific telecommunication networks, where bridging occurs. The Steiner

tree-star problem is the following: Given a graph with disjoint sets of possible facility nodes and customers, we want

to find a minimum cost tree such that each customer is assigned to a facility and that all open facilities are connected

by a Steiner tree. Facility opening costs are incurred for any facility in the solution tree, regardless of whether any

customers are assigned to it or not.

Exact methods to solve the STS problem have been described by Lee et al. [24, 25], a tabu search based heuristic

was developed by Xu et al. [39]. Khuller and Zhu [19] introduced the general Steiner tree-star problem. There, the

sets of possible facilities and customers must not be disjoint. Nodes can act in both ways and an open facility can

serve the customer in its own place at no additional cost. Khuller and Zhu [19] derive two approximation algorithms

for the general STS with approximation factors of 5.16 and 5 respectively.

General Connected Facility Location (GConFL) Bardossy and Raghavan [4] develop a dual-based local

search (DLS) heuristic for a family of problems combining facility location decisions with connectivity requirements,

namely the (general) Steiner tree-star, ConFL and RoB. They introduce the general ConFL problem, into which any

of the aforementioned 4 problem classes can be transformed. The presented DLS heuristic works in two phases. After

applying dual-ascent in order to get a lower and upper bound in the first phase, in the second phase a local search

procedure is carried out on the facilities and Steiner nodes selected before. Computational results for instances with

up to 100 nodes are presented. Running time and the quality of solutions of Ljubić’ VNS heuristic and DLS are

compared for the set of instances introduced in [26].
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3 (M)ILP Formulations for ConFL

It is well known that the MIP formulations for Steiner trees and related problems provide stronger lower bounds

when defined on directed graphs (see, e.g., [8, 14]). In this section we will first describe how to transform undirected

instances for ConFL into directed ones. A range of (M)ILP formulations for the ConFL will be presented afterwards.

As the exponential size formulations are hard to implement by means of a modeling language, various compact MIP

formulations will be described in this section as well. They are either flow formulations or based on sub-tour

elimination constraints.

3.1 Transformation Into Directed Graphs

Throughout this paper, an arc from i towards j will be denoted by ij, and the corresponding undirected edge by

{i, j}. Let (V,E) be a given instance of ConFL with {S,R} being a partition of V and F ⊆ S. This instance can be

transformed into a bidirected instance (V,A) as follows (cf. [36]):

• Replace core edges e ∈ E with e = {i, j}, i, j ∈ S by two directed arcs ij ∈ A and ji ∈ A with cost cij = cji = ce.

• Replace assignment edges e ∈ E with e = {j, k}, j ∈ F, k ∈ R by an arc jk ∈ A with cost cjk = ce respectively.

Rooting Unrooted Instances To obtain an optimal solution for a directed, unrooted instance (V,A) by solving

a model for rooted instances we adapt the input instance and the corresponding model as follows:

• Expand the set of facilities F by adding an artificial root r to V ′ = V ∪ {r} with cost fr = 0.

• Expand the set of arcs by adding an arc rj for all core nodes j ∈ F with crj = 0.

• Limit the number of arcs emanating from the root r to 1, e.g. add the additional constraint
∑
j∈F xrj ≤ 1.

In the remainder of this paper we will refer to the Connected Facility Location problem on directed graphs as the

following:

Definition 2 (ConFL on directed graphs). We are given a directed graph (V,A) with edge costs cij , ij ∈ A, facility

opening costs fi, i ∈ F and a disjoint partition {S,R} of V with R ⊂ V being the set of customers, S ⊂ V the set

of possible Steiner tree nodes, F ⊂ S the set of facilities, and the root node r ∈ F . Find a subset of open facilities

such that

• each customer is assigned to exactly one open facility,

• a Steiner arborescence rooted in r connects all open facilities, and

• the cost defined as the sum of assignment, facility opening and Steiner arborescence cost, is minimized.

To model the problem, we will use the following binary variables:

xij =

1, if ij belongs to the solution

0, otherwise
∀ij ∈ A zi =

1, if i is open

0, otherwise
∀i ∈ F

We will use the following notation: AR = {ij ∈ A | i ∈ F, j ∈ R}, AS = {ij ∈ A | i, j ∈ S}. Furthermore, for any

W ⊂ V we denote by δ−(W ) = {ij ∈ A | i 6∈W, j ∈W} and δ+(W ) = {ij ∈ A | i ∈W, j 6∈W}.
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3.2 Cut-Based Formulations

In the literature there are two different exponential size formulations for ConFL. They are both based on cuts and

differ in strength.

Cut Set Formulation of Gupta et al. [16] Gupta et al. [16] first introduced an undirected ILP formulation for

ConFL. To ensure comparability, a directed version will be presented here. One might think of any ConFL solution

as a Steiner arborescence rooted at r with customers as leaves and with node weights that need to be payed for

any node that is adjacent to a customer. Therefore, instead of requiring connectivity among open facilities and

assignment of customers to open facilities, we are going to ask for the solution that ensures a directed path between

r and any customer j ∈ R, using the arcs from A.

The cut-based model reads then as follows:

(CUTR) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑

uv∈δ−(U)

xuv ≥
∑

j∈U :jk∈AR

xjk ∀U ⊆ S \ {r}, U ∩ F 6= ∅, ∀k ∈ R (1)

∑
jk∈AR

xjk = 1 ∀k ∈ R (2)

xjk ≤ zj ∀jk ∈ AR (3)

zr = 1 (4)

xij ∈ {0, 1} ∀ij ∈ A (5)

zi ∈ {0, 1} ∀i ∈ F (6)

The objective comprises the cost for the Steiner arborescence (
∑
ij∈AS

xijcij), the cost to connect customers to

facilities (that we also refer to as assignment cost, i.e.
∑
ij∈AR

xijcij) and the facility opening cost (
∑
i∈F zifi).

Constraints (2) ensure that every customer is connected to at least one facility, constraints (3) ensure that each

facility is opened if customers are assigned to it, equation (4) defines the root node. Inequalities (1) represent

the set of cuts. For every subset U ⊆ S \ {r} and for each customer k ∈ R, an open arc from a facility in U

toward j, necessitates a directed path from r towards U . Constraints (2) can be replaced by inequality in case that

cij > 0, for all ij ∈ AR. Furthermore, the same optimization problem with continuous assignment variables xij ,

for all ij ∈ AR, returns an optimal ConFL solution. This is because the underlying assignment matrix is totally

unimodular, whenever zi values are fixed to zero or one.

Observation 2. Using equations (2), we can re-write constraints (1) as follows:∑
uv∈δ−(U)

xuv +
∑

jk∈AR:j 6∈U

xjk ≥ 1, ∀U ⊆ S \ {r}, U ∩ F 6= ∅, ∀k ∈ R. (7)

Denote by W = S \U , and let AWS := δ+(W )∩AS and AWR = δ+(W )∩AR. Now, we can interpret these constraints

as follows: every cut separating customer k from r (involving all arcs from AS ∪AR) has to be greater than or equal

to one, i.e.: ∑
uv∈AW

S

xuv +
∑

jk∈AW
R

xjk ≥ 1, ∀W ⊆ S, r ∈W, W ∩ F 6= F, ∀k ∈ R.

Figure 2 illustrates an example of these cut set inequalities.
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Figure 2: Graphic illustration for cut inequalities (2). W = {r, 1, 2}, U = {3, 4}

According to the result of Swamy and Kumar [35], the integrality gap of the LP-relaxation of (CUTR) is not greater

than 8.55, if c is a metric, and core costs are M times more expensive than the assignment costs (M ≥ 1).

Ljubić’ Cut Set Formulation Ljubić [26] presents a slightly different formulation where the cuts are defined

according to the open facilities:

(CUTF ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑

uv∈δ−(W )

xuv ≥ zi ∀W ⊆ S \ {r}, ∀i ∈W ∩ F 6= ∅ (8)

(2) - (6)

Lemma 1. There are instances for which the values of the LP-relaxation of the CUTF model can be as bad as
1

|F |−1OPT , where OPT denotes the integer optimal solution.

Proof. Example 1 illustrates such a situation. In this example n := |F | − 1. The optimal solution value for the LP

relaxation of CUTL is υLP (CUTL) = L
n +K + 3 and the optimal integer solution value is OPT = L+K + 3. For

K >> L, we get vlpCUTL

OPT ≈ 1
n .

Example 1. The cost structure is as follows: all

facility opening and assignment costs are 1. crs = L

and csi = K, for all i ∈ {1, . . . , n}.
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3.3 Flow-based Formulations

Extending flow formulations for the (prize-collecting) Steiner tree problem (see, e.g., [27, 34]), several ways to model

ConFL as a flow problem are possible. One option is to have a flow from the root to each customer. Alternatively,
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flow can be allowed from the root node to open facilities only, with additional constraints ensuring customers to be

assigned to an open facility. Further it is possible to consider just one single commodity or separate commodities

for each customer or facility respectively.

In the following we propose six different flow formulations for ConFL. The strength of the different formulations is

discussed later in Section 4.

Single-Commodity Flow Between Root and Facilities This single commodity-flow formulation with flow

between root node and facilities is an extension of the single-commodity flow formulation for the prize-collecting

Steiner tree problem (see, e.g., Ljubić [27]). The amount of flow terminating in a facility is linked to the variable

indicating whether the facility is open or not. For all ij ∈ AS , continuous variable gij denotes the amount of flow

that is simultaneously routed from r toward all open facilities over arc ij.

(SCFF ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈AS

gji −
∑
ij∈AS

gij =


zk

−
∑
k∈F zk

0

i = k, k ∈ F

i = r

i ∈ S \ {F}

∀i ∈ S (9)

0 ≤ gij ≤ (|F | − 1) · xij ∀ij ∈ AS (10)

(2) - (6)

Constraints (9) ensure that each facility j ∈ F receives zj units of flow from the root. The coupling constraints (10)

ensure that on every arc ij, there is enough capacity to simultaneously route that flow. They also force an arc ij

to be installed if there is a flow sent through it. Model SCFF comprises O(|A|) constraints and O(|A|) binary and

continuous variables.

The following result is due to the usage of “big-M” constraints in (10):

Lemma 2. There are instances for which

a) the values of the LP-relaxation of the SCFF model can be as bad as 1
|F |−1OPT , and

b) the ratio υLP (SCFF )
υLP (CUTF ) ≈

1
|F | .

Proof. a) The same example given in Figure 1 provides υLP (SCFF ) = L
n + K

n + 3 which gives ratio υLP (SCFF )
OPT ≈

1
|F |−1 .

b) If K >> L in the same example, we obtain υLP (SCFF )
υLP (CUTF ) =

L
n + K

n +3
L
n +K+3

= 1
|F |−1 ≈

1
|F | .

Single-Commodity Flow between Root and Customers We now consider single commodity-flow from the

root node to each of the customers. At the expense of more flow variables this allows us to drop constraints (2) used
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in SCFF :

(SCFR) min
∑
ij∈A

xijcij+
∑
i∈F

zifi

s.t.
∑
ji∈AS

fji −
∑
ij∈A

fij =


1

−|R|

0

i ∈ R

i = r

i ∈ S \ {r}

∀i ∈ V (11)

0 ≤ fij ≤ |R| · xij ∀ij ∈ A (12)

(3) - (6)

Constraints (11) ensure that each customer receives one unit of flow from the root node and constraints (12) are

similar to (10). However, one easily observes that, although redundant for the MIP formulation, assignment con-

straints (2) can strengthen the quality of lower bounds. We denote by SCF +
R the formulation SCFR extended by (2).

Models SCFR and SCF +
R comprise O(|A|) constraints and O(|A|) binary variables.

Lemma 3. There are instances for which

a) the values of the LP-relaxation of the SCFR (SCF +
R) model can be as bad as 1

|R|OPT , and

b) the ratio υLP (SCFR)
υLP (CUTR) ≈

1
|R| .

Multi-Commodity Flow with One Commodity per Facility The two flow formulations presented above can

be improved by disaggregation of commodities.

Choosing one commodity per facility, each variable indicating an open facility is linked to a distinct commodity. A

multi-commodity flow formulation with one commodity per facility is given by:

(MCFF ) min
∑
ij∈A

xijcij+
∑
i∈F

zifi

s.t.
∑
ji∈AS

gkji −
∑
ij∈AS

gkij =


zk

−zk
0

i = k

i = r

i 6= k, r

∀i ∈ S ∀k ∈ F (13)

0 ≤ gkij ≤ xij ∀ij ∈ AS , ∀k ∈ F (14)

(2) - (6)

Equations (13) are the flow preservation constraints defining the flow from the root node to each facility. These

constraints ensure the existence of a connected path from r to every open facility. The stronger coupling constraints

ensure that the arc is open if a flow is sent through it. Formulation MCFF comprises O(|AS ||F |+ |AR|) constraints,

O(|AS ||F |) continuous and O(|A|) binary variables.

Multi-Commodity Flow with One Commodity per Customer Another choice for the commodities we use,

is the set of customers. Assigning a commodity of size 1 to each customer allows to remove the z variables from the
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flow preservation constraints. Using one commodity per customer, ConFL can be stated as:

(MCFR) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈A

fkji −
∑
ij∈A

fkij =


1

−1

0

i = k

i = r

i 6= k, r

∀i ∈ V ∀k ∈ R (15)

0 ≤ fkij ≤ xij ∀ij ∈ A, ∀k ∈ R (16)

(3) - (6)

Formulation MCFR comprises O(|A||R|) constraints, O(|A||R|) continuous and O(|A|) binary variables.

Observation 3. Variables xij, ij ∈ AR, are redundant in this formulation, as every LP-optimal solution of MCFR

also satisfies:

f ljk =

xjk, if l = k

0, otherwise
∀l ∈ R, ∀jk ∈ AR.

Therefore, constraints (2) are redundant, for both, the MCFR model and its LP-relaxation. However, we keep

variables xij , ij ∈ AR in this model for better readability.

3.3.1 Strong Formulations Comprising Common Flow Variables

Polzin and Daneshmand [34] have developed a formulation which they call Common Flow formulation for the Steiner

arborescence problem. It is based on a disaggregation of multi commodity-flow formulation with additional 4-index

variables. These variables indicate the common flow from the root towards any pair of terminals. For ConFL this

gives two choices on the common flows considered, towards facilities or towards customers. The variant, where

common flows towards facilities are considered, is an extension of MCFF , the other one is an augmentation of

MCFR and it is the strongest one among all formulations presented in this paper (see Section 4).

Common Flow Between Root and Facilities Let ḡklij denote the common flow towards facilities k and l,

k, l ∈ F, k 6= l, over an arc ij. Then a MIP formulation of ConFL using common flows from the root to facilities is

given by:

(CFF ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈AS

gkji −
∑
ij∈AS

gkij =


zk

−zk
0

i = k

i = r

i 6= k, r

∀i ∈ S ∀k ∈ F (17)

∑
ij∈AS

ḡklij −
∑
ji∈AS

ḡklji ≤

 min(zk, zl)

0

i = r

∀i ∈ S \ {r}
∀i ∈ S ∀k, l ∈ F (18)

0 ≤ ḡklij ≤ min(gkij , g
l
ij) ∀ij ∈ AS , ∀k, l ∈ F (19)

0 ≤ gkij + glij − ḡklij ≤ xij ∀ij ∈ AS , ∀k, l ∈ F (20)

(2)− (6)
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Constraints (17) are flow preservation constraints as in MCFF . Constraints (18) ensure that the common flow from

the root toward facilities k and l is non-increasing. Inequalities (19) define the relation between common flow and

commodity flow variables. The coupling constraints (20) ensure that the arc is installed whenever there is a flow

sent through it.

Formulation CFF comprises O(|AS ||F |2) constraints, O(|AS ||F |2) continuous and O(|A|) binary variables.

Common Flow Between Root and Customers Starting from the MCFR model, we can now derive the other

common flow formulation. Let f̄klij denote the common flow towards customers k and l, k 6= l. Then the common

flow formulation with flows from the root to customers is given by:

(CFR) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

s.t.
∑
ji∈A

fkji −
∑
ij∈A

fkij =


1

−1

0

i = k

i = r

i 6= k, r

∀k ∈ R (21)

∑
ij∈AS

f̄klij −
∑
ji∈AS

f̄klji ≤

 1

0

i = r

∀i ∈ S \ {r}
∀i ∈ V ∀k, l ∈ R (22)

0 ≤ f̄klij ≤ min(fkij , f
l
ij) ∀ij ∈ A, ∀k, l ∈ R (23)

0 ≤ fkij + f lij − f̄klij ≤ xij ∀ij ∈ A, ∀k, l ∈ R (24)

(3)− (6)

Constraints (21) are flow preservation constraints as in MCFR. Inequalities (22) ensure that the common flow from

the root to customers k and l is non-increasing. Constraints (23)-(24) are equivalents of (19) - (20). Formulation

CFR comprises O(|A||R|2) constraints, O(|A||R|2) continuous and O(|A|) binary variables.

3.4 Formulations Based on Sub-tour Elimination Constraints

Another well-studied group of formulations for problems on graphs are based on sub-tour elimination. We present

here one compact and one exponential size model.

Miller-Tucker-Zemlin Formulation One very simple strategy for sub-tour elimination was proposed by Miller,

Tucker and Zemlin [32] and has been applied to a number of problems, including (Asymmetric) Traveling Salesman,

Vehicle Routing, Minimum Spanning Tree and Steiner Tree Problem [9, 10, 15, 33]. In addition to x and z variables,

we now introduce level variables ui ≥ 0, for all i ∈ S, determining the level of node i in the tree solution. The root

node is assigned to the level zero.

12



Using the lifted Miller-Tucker-Zemlin (MTZ ) constraints (see, e.g., [9]), ConFL can be stated as:

(MTZ ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

∑
i∈S\{k}

xij ≥ xjk ∀j ∈ S \ {r}, k ∈ V (25)

(|S| − 2) · xji + |S| · xij + ui ≤ uj + |S| − 1 ∀ij ∈ AS (26)

ur = 0 (27)

ui ≥ 0 ∀i ∈ S \ {r} (28)

(2) - (6)

Constraints (25) limit the out-degree of a node by its in-degree. Constraints (26) are Miller-Tucker-Zemlin sub-tour

elimination constraints, setting the difference uj − ui for an open arc ij to exactly 1, thereby eliminating cycles in

the Steiner tree connecting the facilities. Constraint (27) sets the level of the root node to zero.

Formulation MTZ comprises O(|A|) constraints, O(|S|) continuous and O(|A|) binary variables. The formulation is

small in the number of constraints and variables, compared to the aforementioned formulations based on flows or

cut sets. The quality of the lower bounds, i.e. the strength of the formulations will be analyzed in the subsequent

section.

Lemma 4. The values of the LP-relaxation of the MTZ model can be arbitrarily bad.

Proof. Consider Example 2: The LP-solution opens each facility with 1/n, and builds one directed cycle of {s} ∪

{1, . . . , n} where for each arc ij in the cycle xij = 1/n. It assigns υLP (MTZ ) = 4 + 1
n and OPT = L + 4, which

gives ratio υLP (MTZ )
OPT ≈ 1

L .

Example 2. In this example n := |F | − 1. The

cost structure is as follows: all facility opening, arc

opening and assignment costs are 1, except for crs =

L, where L� 0 is an arbitrarily large number.

�1

��2
222222222222222

�2

!!CCCCCCCCC

�r
L
◦s

����������������

2222222222222222
... ?k

�n−1

==|||||||||

�n

FF����������������

Formulation Based on Generalized Sub-tour Elimination Constraints To model the Steiner tree in the

core network, one might consider another formulation extended by the following node variables:

wi =

1, if i belongs to the solution,

0, otherwise
, ∀i ∈ S

Such model has been used for the node-weighted Steiner tree problems (see, e.g., [13, 29, 30]).
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(GSEC ) min
∑
ij∈A

xijcij +
∑
i∈F

zifi

∑
uv∈A:u,v,∈U

xuv ≤
∑

i∈U\{k}

wi ∀U ⊂ S,∀k ∈ U (29)

∑
uv∈A

xuv =
∑

i∈S\{r}

wi (30)

wi ≥ zi ∀i ∈ F (31)

0 ≤ wi ≤ 1 ∀i ∈ S (32)

(2) - (6)

Equality (30) ensures that the set of edges is equal to the number of selected nodes minus one. In order to ensure

the tree structure, sub-tours are eliminated by deploying constraints (29). Since facility nodes can also be used only

as Steiner nodes, in which case wi = 1 and zi = 0, inequalities (31) must hold.

We will see in the following section that the results known for Steiner trees with respect to GSEC , directly apply to

ConFL.

4 Polyhedral Comparison

In this section we provide a theoretical comparison of the MIP models described above with respect to optimal values

of their LP-relaxations. The examples given below are used in the proofs of this section. These examples employ

the following notation:

� represents the root node, ◦ represents a Steiner node. �l represents a facility with label l. ? represents a customer.

Arc costs different from 1 are displayed next to the respective arc. Facility opening, assignment and core costs are

all 1 in all examples, unless stated differently. All the values od facility node variables stated in the descriptions

below refer to optimal LP solutions. The core network is presented as undirected graph, except in Example 5.

Example 3. The underlying network is given in the

figure below. The facility node variable is 1/4 for

SCFR and 1 for all other models.

?1 ?3

�
10

``AAAAAAA

~~}}}}}}}
�

>>}}}}}}}

  AAAAAAA

?2 ?4

Example 4. This example is a small variant of Ex-

ample 1. It will show the weakness of models where

the flows are only defined on the core subgraph AS .

Facility node variables are 1/8 for SCFR and 1/2 for

all other models.

? � //

&&MMMMMMMMMMMMM ?

�
10

OO

◦
10
◦

????????

��������
�

&&MMMMMMMMMMMMM

88qqqqqqqqqqqqq
?

� //

88qqqqqqqqqqqqq
?

Example 5. The core network is directed and there is exactly one customer that can be assigned to each facility.

Thus, every facility needs to be open in a feasible solution. The underlying graph is shown in Figure 3. Facility

node variables are 1/5 for SCFR and 1 for all other models. A version of this example was described by Polzin and

Daneshmand [34].
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5
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? �4 //oo �5

6
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Figure 3: Example 5

Example 6. The example shown below will demon-

strate the weakness of Miller-Tucker-Zemlin con-

straints. The facility node variable is 1/4 for SCFR

and 1 for all other models. In the LP solution for

model MTZ there is a cycle consisting of the arcs of

weight 1. The open facility is not connected to the

root.

? ◦
15

NNNNNNNNNNNNN ?

�

OO
5

ppppppppppppp 35

35

NNNNNNNNNNNNN ◦ �

??~~~~~~~
//

��@@@@@@@ ?

◦

ppppppppppppp
?

Example 7. The example shown below will demon-

strate the weakness of “big-M” constraints in the

models comprising single commodity flow. The fa-

cility node variable is 1/4 for SCFR and 1 for all

other models.

?

? �

__@@@@@@@

��~~~~~~~
oo ◦ ◦ ◦ � // ?

?

Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

MTZ 16 18 20 9 10

SCFF 11 14 3
8 14 1

5 16 8

SCFR 7 1
4 18 1

8 7 17 1
4 3 1

4

SCF +
R 11 22 1

4 14 1
5 21 7

MCFF 16 18 22 26 10

MCFR 16 28 22 26 10

CFF 16 18 24 26 10

CFR 16 28 24 26 10

Table 1: Optimal LP solutions for Examples 3 - 7

Let υLP (.) denote the optimal solution value of the LP relaxation of a given model. By comparing the optimal LP

solution values for the aforementioned examples, provided by the models in Section 3, we can state the following

Lemma 5. The following pairs of formulations are incomparable with respect to the quality of lower bounds:

a) MTZ and SCFF , d) SCFR (SCF +
R) and MCFF ,

b) MTZ and SCFR (SCF +
R), e) SCFR (SCF +

R) and CFF ,

c) SCFF and SCFR (SCF +
R), f) MCFR and CFF .

Proof. a) In Example 3 we have υLP (SCFF ) = 11 < 16 = υLP (MTZ ) and in Example 6 we have υLP (MTZ ) =

9 < 10 = υLP (SCFF ).
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b) In Example 3 we have υLP (SCFR) = 7.25 < υLP (SCF +
R) = 11 < υLP (MTZ ) = 16 and in Example 6 we have

υLP (MTZ ) = 9 < 17.25 = υLP (SCFR) < υLP (SCF +
R) = 21.

c) In Example 4 we have υLP (SCFF ) = 14.325 < 18.125 = υLP (SCFR) and in Example 7 we have υLP (SCFR) =

3.25 < υLP (SCF +
R) = 7 < υLP (SCFF ) = 8.

d) For Example 4 we have υLP (SCFR) = 18.125 > 18 = υLP (MCFF ). For Example 3 we have υLP (SCFR) =

7.25 < υLP (SCFR) = 11 < υLP (MCFF ) = 16.

e) For Example 3 we have υLP (SCFR) = 7.25 < υLP (SCF +
R) = 11 < υLP (CFF ) = 16, for Example 4 we have

υLP (CFF ) = 18 < υLP (SCFR) = 18.125 < υLP (SCF +
R) = 22.25.

f) Consider Examples 4 and 5. For Example 4 we have υLP (CFF ) = 18 < 28 = υLP (MCFR), for Example 5 we

have υLP (MCFR) = 22 < 24 = υLP (CFF ).

Denote by P. the polytope of the LP-relaxation of any of the MIP models described above, and with Projx,z(P.)

the natural projection of that polytope onto the space of variables x and z.

Lemma 6. The following results hold:

a) Projx,z(PCFF
) ⊂ Projx,z(PMCFF

) ⊂ Projx,z(PSCFF
), and

b) Projx,z(PCFR
) ⊂ Projx,z(PMCFR

) ⊂ Projx,z(PSCF+
R

) ⊂ Projx,z(PSCFR
).

Proof. The results follow immediately from the corresponding results for Steiner trees, see e.g., [34]. Instances that

prove the strict inclusion can be found in Table 1.

Lemma 7. The following results hold:

a) Projx,z(PMCFF
) = PCUTF

= Projx,z(PGSEC ), and

b) Projx,z(PMCFR
) = PCUTR

.

Proof.

a) The first equality follows from the min-cut max-flow theorem, the second one follows from the related result

for node-weighted Steiner trees, see e.g. [30].

b) This result follows from the min-cut max-flow theorem.

Lemma 8. The following results hold:

a) Projx,z(PMCFR
) ⊂ Projx,z(PMCFF

) and

b) Projx,z(PCFR
) ⊂ Projx,z(PCFF

).

Proof.
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a) According to Lemma 7, it is enough to show this relationship by comparing PCUTR
and PCUTF

. Then it is

easy to see that every solution (x′, z′) ∈ PCUTR
also belongs to PCUTF

. Example 4, with υLP (CUTR) = 28 >

18 = υLP (CUTF ), proves that the opposite is not true.

b) Projx,z(PCFR
) ⊆ Projx,z(PCFF

): Let (f ′, f̄ ′,x′, z′) be in PCFR
. We define the capacities on the subgraph

GS = (S,AS) as xij , for all ij ∈ AS . Since xij = maxk∈Rf
k
ij , and zi = maxij∈AR

xij , there will be enough

capacity to independently route zi units of flow, for all i ∈ F , such that zi > 0. Now, we are going to

construct (g, ḡ,x, z) ∈ PCFF
as follows: We fix the ordering of the outgoing arcs of every node i ∈ S

and then apply an adapted Ford-Fulkerson maximum flow algorithm. To define g, we send zi units of

flow from r towards i ∈ F , for all i ∈ F such that zi > 0. When searching for augmenting paths, we

always follow the fixed ordering. Therefore, the outgoing arcs of a node always get saturated in the same

order, independently on the commodity under consideration. It follows directly from construction that the

common flow ḡ for any pair of facilities k and l, once it splits up, will never meet again, i.e., ineqalities (18)

will be satisfied.

Projx,z(PCFF
) * Projx,z(PCFR

): Consider Example 4, where υLP (CFR) = 28 > 18 = υLP (CFF ).

Lemma 9. Formulation MCFF (i.e., CUTF , GSEC ) is strictly stronger than formulation MTZ , i.e. Projx,z(PMCFF
) ⊂

Projx,z(PMTZ ).

Proof. To show that Projx,z(PGSEC ) ⊆ Projx,z(PMTZ ) we assume that (x, z) ∈ Projx,z(PGSEC ) does not satisfy

constraints (26). But then there must exist a cycle K ⊂ S such that by summing up inequalities (26) over all arcs

in K we obtain

(|S| − 2)
∑

ji:ij∈K
xji + |S|

∑
ij:ij∈K

xij > |K|(|S| − 1). (33)

After dividing this inequality by |S|, the left hand side becomes:∑
ji:ij∈K

xji +
∑

ij:ij∈K
xij −

2
|S|

∑
ji:ij∈K

xji ≤
∑

ij∈AS :i,j∈K
xij −

2
|S|

∑
ji:ij∈K

xji ≤

≤
∑

ij∈AS :i,j∈K
xij

(29)

≤ min
l∈K

∑
i∈K

wi − wl ≤ |K| − 1 ≤ |K| − |K|
|S|

,

which is a contradiction to (33).

Let us finally suppose that inequalities (25) are not satisfied, i.e., that there is an arc jk ∈ AS such that
∑
ij∈AS :i 6=k xij <

xjk. After adding xkj to both sides, we obtain xjk + xkj >
∑
ij∈AS

xij = wj which is a direct contradiction to gen-

eralized sub-tour elimination constraints applied to U = {j, k}.

To show that Projx,z(PMTZ ) * Projx,z(PGSEC ) consider Example 6, where υLP (MTZ ) = 9 < 26 = υLP (GSEC).

4.1 Reformulation as the Steiner Arborescence Problem

As we already observed in [36], the ConFLP can be transformed into the Steiner Arborescence Problem. This

transformation is done by using the well-known node splitting technique that has proven useful for different network

design problems, see e.g., [3, 6].

To solve an instance of ConFL as SA, we use the following procedure:

17



• Generate a directed graph G̃ = (Ṽ , Ã) with costs c̃ : Ã 7→ R+
0 , as follows:

– Initialize Ṽ = V , Ã = A and c̃ = c.

– For any facility node i, add a node i′ to the graph, connect i to i′, and set c̃ii′ = fi.

– Replace arcs ik ∈ AR by i′k.

• Solve the Steiner arborescence problem on the transformed graph G̃ with customers as terminals.

Recall that, given a directed graph G̃ = (Ṽ , Ã), with arc weights c̃ : Ã 7→ R, a root r ∈ Ṽ , and a set of terminal nodes

R ⊂ Ṽ , the Steiner arborescence problem searches for the cheapest subtree rooted at r that connects all terminals.

Figure 4 shows a simple example that illustrates the transformation of ConFL into the SA problem, according to

the procedure described above:

�r

22222222222222 �1 //

��2
222222222222 ?3 �r //

��2
2222222222222 ◦1

��

f1 // ◦1′ //

��2
222222222222 ?3

+3

�2 //

FF�������������
?4 ◦2

OO

f2 // ◦2′ //

FF�������������
?4

Figure 4: Initial undirected ConFL instance and transformed SA instance

For each facility i ∈ F , i corresponds to node’s function as Steiner node, while i′ corresponds to its function as open

facility. With this transformation we ensure that the arc ii′ belongs to a solution if and only if facility i is open.

Similarly, facility i is used as Steiner node if and only if i belongs to the solution, but arc ii′ does not. A similar,

but undirected transformation has been used by Bardossy and Raghavan to transform (G)STS, ConFL and RoB

into the GConFL [4].

To solve the SA problem as a MIP, let us define binary variables vij as follows:

vij =

1, if ij belongs to the solution

0, otherwise
, ∀ij ∈ Ã.

We extend the directed cut-based formulation for Steiner trees (originally proposed by Chopra and Rao [8]) by the

root out-degree constraint as follows:

(SA) min
∑
ij∈Ã

c̃ijvij (34)

∑
ij∈δ−(W )

vij ≥ 1, ∀W ⊆ Ṽ \ {r},W ∩R 6= ∅ (35)

vrr′ = 1 (36)

vij ∈ {0, 1} ∀ij ∈ Ã (37)

Let us denote by

Projx,z(PSA) = {(x, z) ∈ [0, 1]|A| × [0, 1]|F | | v ∈ PSA and

xkl = vkl ∀kl ∈ AS ; xij = vi′j ∀ij ∈ AR; zi = vii′ ∀i ∈ F},
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the projection of the PSA polytope onto the space of variables (x, z).

We show the following result:

Lemma 10. The LP-relaxation of the Steiner arborescence formulation is equally strong as the LP-relaxation of

CUTR, i.e.:

Projx,z(PSA) = PCUTR
.

Proof. We prove equality by showing mutual inclusion:

Projx,z(PSA) ⊆ PCUTR
: Let v′ be an optimal fractional solution of the LP-relaxation of SA, and (x′, z′) its pro-

jection into Projx,z(PSA). Obviously, (1), (2) and (4) are satisfied by (x′, z′). It only remains to show that

x′ij ≤ z′i,∀ij ∈ AR. Let us assume that ∃i ∈ F , ∃ij ∈ AR such that x′ij > z′i. Without loss of generality assume

also that cij > 0. In G̃, x′ij > z′i implies that v′i′j > v′ii′ . Given graph G̃ with capacities v′ij on the arcs, the

only possibility to send flow from r to j over i′ is through the arc ii′. But given the capacity of v′ii′ < v′i′j , and

given the objective function (34), it follows that we can find another LP-solution v′′ whose objective value is

strictly less than c̃tv′, without violating connectivity constraints (35), by simply setting v′′ij := v′ii′ and keeping

the rest of values unchanged. This however contradicts the assumption that v′ is an optimal LP-solution.

PCUTR
⊆ Projx,z(PSA): Let (x′, z′) be a fractional solution satisfying (1)-(4), and let us assume that the cor-

responding solution v′ from PSA is not feasible. In other words, assume that there exists a cut-set W̃ ⊆

Ṽ \ {r}, W̃ ∩ R 6= ∅, such that
∑
ij∈δ−(W̃ ) vij < 1. Obviously, there must exist at least one i ∈ F \ {r}, such

that ii′ ∈ δ−(W̃ ). We now construct a new cut-set W̃n such that δ−(W̃n) = δ−(W̃ ) ∪ {i′j | j ∈ W̃} \ {ii′}.

Obviously, if
∑
ij∈δ−(W̃ ) vij < 1, then also δ−(W̃n) < 1. By repeating this procedure for all i ∈ F such that

ii′ ∈ δ−(W̃ ), we end up with a cut-set containing only arcs from AR ∪AS , that violates inequality (35), which

is a contradiction.

4.2 Full Hierarchy of Formulations

The hierarchical scheme given in Figure 4.2 summarizes the relationships between the LP relaxations of the MIP

models considered throughout this paper. A filled arrow specifies that the target formulation is strictly stronger

than the source formulation. A dashed connection specifies that the formulations are not comparable to each other.

Note that we do not display formulation SCF +
R separately, because it has the same relations as the formulation

SCFR.

Note that all three models SCFF , MCFF and CFF may have lower bounds as bad as OPT/|F |. Model CFR is the

strongest one among all considered throughout this paper. Observe that there are several other tree models known

for Steiner trees, that can directly be interpreted in ConFL context. Therefore we do not mention them here, but

refer the interested reader to Magnanti and Wolsey [30] and Polzin and Daneshmand [34].

5 Branch-and-Cut Framework

We are going to calculate lower bounds and provably optimal solutions of CUTF and CUTR models using the same

branch-and-cut framework described below. The only difference is in the separation of cut set inequalities. The

main ingredients of our implementation are provided in this section.
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Figure 5: Relations between LP-relaxations of MIP models for ConFL

Initialization: We initialize the LP with assignment, capacity- and root-inequalities (2)-(4). The following flow-

balance constraints introduced by Koch and Martin [20] are also introduced in the initialization phase. These

constraints ensure that the in-degree of each Steiner node is less or equal than its out-degree:∑
kl∈A

xkl ≤
∑
lk∈A

xlk, ∀l ∈ S \ F. (38)

These constraints are not induced by any of the MIP formulations presented above, i.e., they can further strengthen

the quality of lower bounds (see, e.g., [28, 34]).

Finally, we insert the following in-degree inequalities:∑
kl∈A

xkl ≤ 1, ∀l ∈ S \ {r} and
∑
ir∈AS

xir = 0,

and the sub-tour elimination constraints of size two:

xkl + xlk ≤ 1, ∀{k, l} ∈ E, k, l ∈ S k 6= r.

The latter two groups of constraints are not necessarily binding, but they can speed up the cutting plane phase at

the root node of the branch-and-bound (B&B) tree.

Branching: Branching on single arc variables produces a huge disbalance in the branch-and-bound tree. Whereas

discarding an edge from the solution (setting xij to zero) doesn’t bring much, setting the facility variable to one

significantly reduces the size of the search subspace. Therefore we set the highest branching priorities to variables

zi, i ∈ F .

5.1 Separation

Separation of cut set inequalities (8): In each node of the branch-and-bound tree we separate the cut-

inequalities (8). For a given LP-solution (x̂, ẑ), we construct a support graph GS = (S,AS , x̂) with arc capacities

set to x̂ij , for all ij ∈ AS . Then we calculate the maximum flow from the root node r to each potential facility node

i ∈ F such that ẑi > 0. If this maximum flow value is less than zi, we have found a violated inequality (8), induced
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by the corresponding min-cut in the graph GS , and we insert it into the LP. For the calculation of the maximum

flow we used an adaptation of Cherkassky and Goldberg’s maximum flow algorithm [7].

Separation of Cut Set Inequalities (1): In order to separate cut set inequalities (1), we build a support graph

by copying G = (V,A). For a given fractional solution (x̂, ẑ), we set the capacities to x̂ij , for all ij ∈ A. We then

calculate the maximum flow that can be sent from r to each of the customers j ∈ R. If there exists customer j

such that the value of the maximum flow is less than one, we obtain a cut set, say W ⊂ V , r ∈ W , such that

capacity of δ+(W ) is less than one. Obviously, W ∩ F 6= F , since all the cuts involving only arcs from AR are

satisfied by (2). According to Observation 2, the violated cut set inequality (1) induced by W can then be written

as:
∑
ij∈AW

S
xij +

∑
ij∈AW

R
xij ≥ 1.

Enhancing Separation To improve computational efficiency, we search for nested, back and minimum-cardinality

cuts and insert at most 100 violated inequalities in each separation phase. For more details, see our implementation

of the B&C algorithm for the prize-collecting Steiner tree problem, where the same separation procedure has been

used [27, 28]. It is important to mention that the performance of the branch-and-cut algorithm can further be

improved if we permute the order in which the minimum cuts between r and i ∈ F , zi > 0, in CUTF case, and

between r and j, j ∈ R, in CUTR case, are calculated. Since this permutation is done randomly, we fix the seed

value for the results reported in Section 6.

5.2 Primal Heuristic

The primal heuristic works as follows: First, we initialize the set of open facilities according to fractional values

zi: if zi > π, we label the facility as selected. Default value of π is set to 0.1. Denote by F = {i ∈ F | zi = 1},

the set of initially selected facilities. Starting with F , we then calculate a feasible ConFL solution according to the

pseudo-code provided in Algorithm 1. We use the following notation:

• vector xS refers to the core tree structure, i.e., xSij = 1 if ij ∈ AS belongs to the solution, and it is zero

otherwise.

• vector xA refers to assignment values, i.e., xAij = 1 if customer j is assigned to facility i and xAij = 0, otherwise,

for all ij ∈ AR.

• vector ẑ is set to one if facility i is open, and to zero otherwise.

• TS denotes the core Steiner tree (the set of nodes and edges) that is uniquely defined by xS.

Outline The algorithm works in three phases: In the assignment phase (Assign), the cheapest assignment of

customers to facilities from F is found. If there are non-assigned customers, solution is discarded. The set F is

updated to contain only open facilities, i.e., those that serve at least one customer. In the Steiner tree phase, the

set of open facilities is connected by a Steiner tree. For that purpose, we use the minimum spanning tree heuristic

(MSTHeuristic) described below. Finally, we apply a local improvement procedure (Peeling) that tries to remove

leaves of the Steiner tree in the core network and to re-assign customers to already open facilities, by decreasing the

overall costs.
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Data: Binary vector ẑ: a facility i is selected if ẑi = 1.

Result: Locally improved solution (xS,xA, ẑ).

if Hash(ẑ) defined then
(xS,xA, ẑ) = Hash(ẑ);

else

if Assignment exists? then
(xA, ẑ) := Assign(ẑ);

(xS, ẑ) := MSTHeuristic(ẑ);

(xS,xA, ẑ) := Peeling(xS,xA, ẑ);

Insert (xS,xA, ẑ) into Hash;

else
return infeasible;

end

end

return (xS,xA, ẑ);

Algorithm 1: The primal heuristic: calculation of the objective function for a given vector ẑ.

Hashing Given a vector of selected facilities, ẑ, we first check if the objective value for this configuration has been

already calculated before (see, e.g., [22]). If so, we get the corresponding solution (xS,xA, ẑ) from the hash-table

Hash. Otherwise, we run a three-step procedure whose steps are described below.

Detailed Description

Step 1: (xA, ẑ) := Assign(ẑ): For each customer j ∈ R, we find the cheapest possible assignment to a facility from

ẑ. The assignment values are stored in vector xA. We close those facilities i from F that do not serve any

customer, i.e., we set ẑi := 0. If such assignment is not possible (e.g., the subgraph induced by AR is not a

complete bipartite graph), we discard the solution.

This operation is calculated from scratch. Thus, the total computational complexity for finding the cheapest

assignment in the worst case is O(|F||R|).

Step 2: (xS, ẑ) := MSTHeuristic(ẑ): We consider the graph G′ = (S,ES) – a subgraph of G induced by the set

of facilities and Steiner nodes with the edge costs c. For G′, we generate the so-called distance network1 - a

complete graph whose nodes correspond to facilities i ∈ F , and whose edge-lengths lij are defined as shortest

paths in G′, for all i, j ∈ F .

We use the minimum spanning tree (MST) heuristic [31] to find a spanning tree TS that connects all open

facilities (ẑi = 1).

1. Let G′′ be the subgraph of G′ induced by F .

2. Calculate the minimum spanning tree MST ′′G of the distance sub-network G′′.

1Calculation of the distance network is done only once, during the initialization of the branch-and-cut algorithm.

22



3. On the subgraph of (S,ES) obtained by back-mapping the edges from MST ′′G, re-calculate the minimum

spanning tree (TS) to obtain vector xS.

Step 3: (xS,xA, ẑ) := Peeling(xS,xA, ẑ): We finally want to get rid of some of those facilities that are still part

of the Steiner tree, but that are not used at all. We do this by applying the so-called peeling procedure. Our

peeling heuristic tries to recursively remove all redundant leaf nodes (including corresponding tree-paths) from

the tree-solution defined by xS. Let k denote a leaf node of TS , and let Pk be a path that connects k to the

next open facility from F , or to the next branch, towards the root r.

1. If the leaf node is not an (open) facility, i.e. if ẑk = 0, we simply delete Pk.

2. Otherwise, we try to re-assign customers (originally assigned to k) to already open facilities (if possible).

If such obtained solution is better, we delete Pk and continue processing other leaves.

The main steps of this procedure are given in Algorithm 2.

If, for each customer, the set of facilities is sorted in increasing order with respect to its assignment costs2,

this procedure can be implemented very efficiently. Indeed, in order to find an open facility from F , nearest

to j and different from k (denoted by ik(j)), we only need to proceed this ordered list starting from k until we

encounter a facility i such that ẑi = 1.

The algorithm stops when only one node is left, or when all the leaves from the tree have been proceeded.

Thus, the worst-case running time of the whole peeling method is O(|F||R|).

6 Computational Results

In our computational study, two groups of instances were considered:

Randomly Generated Graphs From [36] For this set of instances the parameters for the generation were

set as follows: |S| ∈ {20, 50, 100}, |R| ∈ {20, 50, 100}. Edges of the core network are generated with probability

p(S) ∈ {0.1, 0.5, 1}, while the connections between facilities and customers are established with probability p(R) ∈

{0.18, 0.55, 1}. Edge weights were uniformly randomly set to an integer value between 50 and 100. Finally, the

facility opening costs were uniformly randomly assigned to values between 150 and 200. Increasing only the core

costs did not significantly change the behavior of the GRASP algorithm for this set of instances. The core network

was generated by MAPLE, using the parameters given above. Finally, customers are randomly linked to the existing

nodes using the density values p(R).

As the original instances are unrooted we selected the facility with the highest index for the root node respectively.

Graphs Derived From OR-library [5] and UflLib [1] We consider another class of benchmark instances,

obtained by merging data from two public sources. In general, we combine an UFLP instance with an STP instance,

to generate ConFL input graphs in the following way: first |F | nodes of the STP instance are selected as potential

facility locations, and the node with index 1 is selected as the root. The number of facilities, the number of customers,

opening costs and assignment costs are provided in UFLP files. STP files provide edge-costs and additional Steiner

nodes.
2Also sorting of these lists is done once, in the initialization phase of the branch-and-cut algorithm.
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Data: Assignment xA, open facilities ẑ and a Steiner tree TS corresponding to xS.

Result: Locally improved solution (xS,xA, ẑ).

for all leaves k in TS do
Determine path Pk and its costs c(Pk) :=

∑
e∈Pk

ce;

if ẑk = 0 then
TS := TS − Pk;

else
Rk := {j | j ∈ R, xAkj = 1};

ik(j) = arg min{cij | i ∈ F, ẑi = 1, i 6= k}, ∀j ∈ Rk;

if ∃j ∈ Rk : ik(j) = ∅ then
continue;

end

if
∑
j∈Rk

cik(j)j < fk + c(Pk) +
∑
j∈Rk

ckj then
ẑk := 0;

TS := TS − Pk;

xAkj := 0, xAik(j)j := 1, ∀j ∈ Rk;

end

end

end

Algorithm 2: Peeling procedure.

• We consider two sets of non-trivial UFLP instances from UflLib [1]:

– mp-{1,2} and mq-{1,2} instances have been proposed by Kratica et al. [22]. They are designed to be

similar to UFLP real-world problems and have a large number of near-optimal solutions. There are 6

classes of problems, and for each problem |F | = |R|. We took 2 representatives of the 2 classes MP and

MQ of sizes 200× 200 and 300× 300, respectively.

– The gs-{250,500}a-{1,2} benchmark instances were initially proposed by Koerkel [21] (see also Ghosh [12]).

Here we chose two representatives of the 250× 250 and 500× 500 classes, respectively. The authors drew

uniformly at random connection costs from [1000, 2000], and the facility opening costs from [100, 200].

• STP instances: Instances {c,d}n, for n ∈ {5, 10, 15, 20} were chosen randomly from the OR-library [5] as

representatives of medium size instances for the STP. These instances define the core networks with between

500 and 1000 nodes and with up to 25,000 edges.

Combined with assignment graphs, the largest instances of this data set contain 1,300 nodes and 115,000 edges.

All experiments were performed on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM, where each run was

performed on a single processor. For solving the linear programming relaxations and for a generic implementation of

the branch-and-cut approach, we used the commercial packages IBM CPLEX (version 11.2) [2] and ILOG Concert

Technology (version 2.7).
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6.1 Testing Randomly Generated Instances

For the following tests we turn the primal heuristics off, in order to compare lower bounds of all presented MIP

formulations. Furthermore, our preliminary results have shown that turning all CPLEX general purpose cuts speeds

up the performance. Therefore, and in order to avoid biased results, all the results reported in this paper are obtained

without usage of these cuts.

LP-gaps We first test the performance and the quality of lower bounds for proposed formulations. For that

purpose, we run the models as linear programs. Table 3 provides the average gaps calculated as (OPT−υLP (.))/OPT ,

where optimal values are obtained by running the branch-and-cut approach (see below). The set of 81 instances is

divided into 3 groups according to the size of the core- and the assignment-subgraph.

Not surprisingly, the worst gaps are obtained by running SCFR model in which “big-M” constraints affect all the

arcs in G. Comparing gap values of SCFF model on these three groups, we observe that the gap increases with

the size of the nodes of the core network. This is also not surprising, since “big-M” constraints of the SCFF model

affect only the core network. We observe that there is a correlation between the size of the two subgraphs and the

quality of obtained lower bounds for the other models as well. The gaps obtained by MTZ model are surprisingly

good, and very close to those obtained by MCFF . The best LP-gaps are obtained by MCFR model. Interestingly,

the most difficult instances for the latter three models appear to be those with the equal number of facilities and

customers.

Finally, we tried to make the same experiment with CFF and CFR models, but apparently in almost all cases the

execution has been erminated because of memory overconsumption.

Solving MIPs Table 2 shows the running times in seconds (t[s]) and the number of branch-and-bound nodes

(B&B) needed to solve this set of instances. Each row corresponds to three instances generated according to the

same probabilities p(R) and p(S). We provide values for t[s] and B&B averaged over the respective group. We set

the time limit to 1000 seconds. If at least one of the three instances per group is not solved to optimality, we denote

this by “-”.

As expected, due to the weak lower bounds of the SCF +
R, most of the instances could not be solved to optimality

within the given time limit. The exceptions are graphs with complete bipartite structure of the assignment subgraph

AR that appear to be easy for SCF +
R. The second worse performance was shown by the MCFR model, which is

easily explained by its huge number of variables.

This test gives two surprising results:

1. Despite the fact, that the integrality gap of model CUTF can be as bad as 1
|F | it outperforms even the strongest

cut set based model CUTR with respect to the running time. On average, the number of B&B nodes needed

by CUTF is 2.3 times larger than for CUTR. However, averaged over all 81 instances, CUTF is about 4.6

times faster than CUTR.

2. The compact MTZ model with arbitrarily bad lower bounds performs comparatively well. It outperforms

CUTR: the average running time over all instances for MTZ is 1.06 times less than the corresponding time

for CUTR.
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(a) Average slow-down factors for three MIP models and for
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(b) Speed-up factors obtained by using branching priorities for

facility nodes against default branching times.

Figure 6: Results for randomly generated instances from [36].

Testing the influence of the factor M In the following test, we multiply the costs of the core network by a

factor M ∈ {3, 5, 10}. Our goal is to test the influence of the cost structure of the core network on the overall

performance of proposed MIP models. For that purpose, we select the best performing models according to the

results obtained above, namely: MTZ , CUTF and CUTR. As a reference value, we take the average running time

the model CUTL needed to solve the problems with M = 1 to optimality. For each of the three MIP models, and

for each of possible M values, we divide the corresponding average running time with the reference time to calculate

the so-called slow down factor shown in Figure 6(a).

The obtained slow down factors indicate that the MTZ model is the most affected by increasing the costs of the core

network: MTZ needs about 7 times more time to solve the instances to optimality, if the costs of the core network

are multiplied by factor M = 10. This result is due to decreasing quality of lower bounds of the MTZ model with

increasing M values. On the other hand, models CUTF and CUTR are not so much affected by that effect: in the

worst case, when M = 10, the average running time increases by roughly a factor of 2.6 and 2.1 for CUTF and

CUTR, respectively. We also observe that CUTF outperforms MTZ by a factor of 5 for M = 1, and by a factor of

16 for M = 10.

Branching We also tested our branching strategy described in Section 5 against CPLEX default branching strat-

egy. For each of 27 density settings, Figure 6(b) shows the speed up factor obtained by dividing two running times:

one needed to solve the instance with default CPLEX setting to optimality and the other one obtained with our

branching strategy. The values are averaged over three instances per setting. In most of the cases our branching

strategy significantly reduces the overall running time. On average over all 81 instances, our branching strategy

outperforms CPLEX default branching by a factor of 1.4, 3.3 and 2.9, when models MTZ , CUTF and CUTR are

solved, respectively.

6.2 Testing Larger Graphs

The set of instances is divided into three groups according to the underlying instance for the assignment graph. We

refer to them as mp, mq and qs group. Tables 4 and 5 report on the results obtained trough this experiment. Note
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|S| |R| MTZ SCFF SCFR MCFF MCFR

20 100 1.36 % 5.44 % 96.24 % 1.33 % 0.73 %

50 50 2.57 % 7.33 % 93.28 % 2.51 % 1.36 %

100 20 2.48 % 8.33 % 85.19 % 2.43 % 1.22 %

Table 3: Average Integrality Gaps for selected MIP formulations

that the optimal values, as well as lower bounds reported in this paper differ from those reported in [26]. This is

due to in-degree inequalities used in [26], that turned out to model the Steiner tree star problem, instead of ConFL.

Comparing Two Branch-and-Cut Approaches: First, we compare the two branch-and-cut approaches by

running them with the proposed primal heuristic. Regarding 32 instances obtained by combining stein and mp/q

instances, CUTF solves all 32 instances to provable optimality within 213 seconds on average. The gaps we report

for each model were calculated as

gap[%] =
UB − LB

UB
,

where UB and LB are the upper and lower bound obtained by the respective model. In addition, we report on the

running time in seconds (t [s]), the model CUTF needs to solve the instances of the mp/q group to optimality. Note

that CUTR solves only 7 out of 32 mp/q instances to optimality. For the majority of instances CUTR does not

branch at all, as it has not finished the cutting plane phase at the root node of the branch-and-bound tree. This is

because the assignment graphs for these instances are complete bipartite, which means that many dense cuts of the

CUTR model need to be separated.

Comparing MIP Models Initialized with Best Upper Bound: Second, we run all three models, MTZ ,

CUTF and CUTR, but we deactivate the primal heuristic. Instead, we initialize the models with the best upper

bound found in the previous setting. For the gs group of instances, the best lower and upper bounds obtained with

this setting can be found in the right hand half of Table 5. Each of the models MTZ and CUTR solves only 8

instances to optimality. For the mp subgroup, MTZ gives much smaller gaps though, on average 0.17% compared to

1.42% for CUTR. For the group of mq instances MTZ also outperformes CUTR with an average gap of 1.86% vs.

3.18% for the latter.

In the last group of large scale instances derived from the gs group, the performance of MTZ is comparatively

better. CUTF obtains the smallest gap in 11 cases, but MTZ performs best on 7 instances. Not a single instance of

gs group has been solved to optimality. Note that for this last group of instances the cost structure is special. The

factor M , describing the scale between core and assignment costs is about 0.001.
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PH on, no UB given PH off, best UB given

CUTR CUTF MTZ CUTR CUTF

Stein UFL OPT gap[%] B&B gap[%] B&B t [s] gap[%] B&B gap[%] B&B gap[%] B&B t [s]

c05 mp1 2,691.5 0.00 13 0.00 27 73 0.34 605 0.00 23 0.00 33 50

c10 mp1 2,661.7 0.00 17 0.00 17 67 0.00 86 0.00 23 0.00 25 47

c15 mp1 2,634.7 1.45 1 0.00 15 100 0.15 1084 1.39 3 0.00 17 73

c20 mp1 2,618.7 1.91 3 0.00 33 185 0.00 58 1.50 1 0.00 11 104

d05 mp1 2,677.9 0.00 9 0.00 27 62 0.00 19 0.00 9 0.00 37 40

d10 mp1 2,676.5 2.39 0 0.00 21 92 0.24 542 2.39 1 0.00 21 66

d15 mp1 2,635.7 1.05 5 0.00 13 67 0.00 43 0.00 15 0.00 11 41

d20 mp1 2,619.7 1.59 0 0.00 27 229 0.06 49 1.59 1 0.00 15 82

c05 mp2 2,692.5 0.00 11 0.00 15 37 0.00 58 0.00 17 0.00 13 26

c10 mp2 2,661.5 0.00 9 0.00 5 27 0.00 97 0.00 7 0.00 11 23

c15 mp2 2,640.5 0.61 3 0.00 10 47 0.13 1772 0.89 0 0.00 5 28

c20 mp2 2,626.5 0.00 11 0.00 11 55 0.06 300 0.00 11 0.00 11 43

d05 mp2 2,710.6 0.00 25 0.00 19 41 0.00 1048 0.00 31 0.00 17 31

d10 mp2 2,682.5 1.14 0 0.00 29 50 0.26 574 0.94 3 0.00 27 50

d15 mp2 2,647.5 0.53 7 0.00 7 43 0.00 14 0.53 7 0.00 7 31

d20 mp2 2,628.5 2.14 0 0.00 11 222 0.09 70 2.14 0 0.00 11 142

c05 mq1 3,907.0 3.08 1 0.00 53 261 1.56 11 3.08 1 0.00 41 193

c10 mq1 3,866.5 4.12 0 0.00 35 214 1.49 20 4.12 0 0.00 37 146

c15 mq1 3,842.5 3.09 0 0.00 41 183 1.61 12 3.09 0 0.00 35 142

c20 mq1 3,826.5 3.08 0 0.00 33 289 1.43 7 3.08 0 0.00 35 173

d05 mq1 3,879.0 2.56 1 0.00 31 210 0.00 25 2.12 3 0.00 51 127

d10 mq1 3,869.1 2.99 0 0.00 43 242 1.72 15 2.92 0 0.00 29 156

d15 mq1 3,843.5 2.68 3 0.00 61 173 1.07 28 2.02 5 0.00 37 134

d20 mq1 3,828.5 2.80 0 0.00 45 483 1.87 5 2.80 0 0.00 39 387

c05 mq2 3,768.6 2.89 0 0.00 73 561 2.99 10 2.88 0 0.00 71 283

c10 mq2 3,732.6 5.14 0 0.00 63 320 2.99 9 5.14 1 0.00 50 190

c15 mq2 3,689.6 2.31 0 0.00 41 259 1.23 6 2.31 0 0.00 69 231

c20 mq2 3,686.5 4.58 0 0.00 45 620 2.33 3 4.03 0 0.00 27 317

d05 mq2 3,741.5 2.60 0 0.00 47 276 1.34 8 2.59 0 0.00 73 236

d10 mq2 3,720.9 4.24 0 0.00 31 285 4.07 6 2.52 0 0.00 43 396

d15 mq2 3,696.5 3.96 0 0.00 41 328 1.49 5 2.44 0 0.00 33 198

d20 mq2 3,685.5 5.73 0 0.00 27 727 2.60 2 5.73 0 0.00 33 402

Table 4: Results for large scale instances I: The best obtained gaps per setting and instance are shown in bold.
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7 Conclusion

We provide a first theoretical comparison of MIP models for ConFL. We show that there are basically two groups of

models, derived from the way the connectivity requirements in the whole graph are defined. Our “F” models require

connectivity among open facilities and the root node, and in addition a proper assignment of customers. We derive

the stronger “R” models by requiring connectivity between customers and the root node. There is also the weak

Miller-Tucker-Zemlin formulation which follows a sub-tour elimination concept, instead of a connectivity-based one.

In contrast to known results for the traveling salesman problem [38], we show that MTZ is not dominated by the

two single commodity flow models. The second interesting result is that the integrality gap of all “F” models is not

a constant value.

In our computational study we also obtain two surprising results. First, the branch-and-cut algorithm for the

correspondingly weaker “F” cut-based model, significantly outperforms all other models in practice. Second, the

weak but small MTZ formulation performs comparatively well, and in most cases outperforms even the branch-and-

cut derived for the stronger “R” model.

Acknowledgements

The authors thank to Markus Chimani for the proof of Lemma 8b.

References

[1] Ufllib. URL http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/.

[2] IBM CPLEX. URL http://www.ilog.com/products/cplex/.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, 1993.

[4] M. G. Bardossy and S. Raghavan. Dual-based local search for the connected facility location and related prob-

lems. Technical report, Smith School of Business and Institute for Systems Research, University of Maryland,

2009.

[5] J. E. Beasley. OR-library. URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html.
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