Capacitated Network Design with Facility Location

Stefan Gollowitzer?, Bernard Gendron®, Ivana Ljubié¢?

“Department of Statistics and Operations Research,
Faculty of Business, Economics, and Statistics,
University of Vienna, Austria
¥ Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), and
Department of Computer Science and Operations Research, Université de Montréal
C.P. 6128, Succursale Centre-Ville, Montréal, Canada H3C 3J7

Abstract

We consider a network design problem that arises in the design of last mile telecommunication
networks. It combines the capacitated network design problem (CNDP) with the single-source
capacitated facility location problem (SSCFLP). We will refer to it as the Capacitated Connected
Facility Location Problem (CapConFL). We develop a basic integer programming model based on
single-commodity flows. Based on valid inequalities for the subproblems, CNDP and SSCFLP, we
derive several (new) classes of valid inequalities for the CapConFL. We use them in a branch-and-cut
framework and show their applicability on a set of real-world instances.

Keywords: Capacitated Network Design, Facility Location, Connected Facility Location, Mixed
Integer Programming Models, Telecommunications

1. Introduction

Given a set of customers, a set of potential facility locations and some inter-connection nodes,
the goal of the Connected Facility Location problem (ConFL) is to find the minimum-cost way of
assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner
tree. The sum of costs for the Steiner tree, the facility opening costs and the assignment costs needs
to be minimized. This problem has been used to model a network design problem that arises in
the design of last mile telecommunication networks when the fiber to the curb (FTTC) deployment
strategy is applied (see, e.g., [17]). Contrary to the fiber to the home strategy, where each customer,
i.e., household, has its own fiber-optic uplink, in the FTTC strategy some of the existing copper
wire infrastructure is used. More precisely, in an FTTC network, fiber optic cables run from a
central office to a cabinet serving a neighborhood. End users connect to this cabinet using the
existing copper connections. Expensive switching devices are installed in these cabinets. The usage
of the last d meters of copper wire between the customer and a switching device may significantly
reduce deployment costs while still enabling broadband connections of reasonable quality.

In more detailed planning of FTTC networks, capacities of the links and of multiplexor devices
are limited and this aspect was not captured by the ConFL variants studied in the literature so
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far. In this paper we consider a new capacitated variant of the ConFL problem, that we will refer
to as the Capacitated Connected Facility Location Problem (CapConFL).

In a typical application from telecommunications, demands of customers are given as the number
of twisted copper lines that are to be “served” at the respective customer location. Switching (or
multiplexor) devices have both capacity and demand. Capacity is defined in terms of the number of
twisted copper lines a device can serve. The demand of a switching device is defined as the number
of fiber-optic uplinks required to connect the device to the central office (which is further connected
to the backbone network). The number of uplinks is fixed for each device and independent of the
number of customers that are finally assigned to it. The CapConFL consists of deciding on the
location of switching devices, the assignment of customers to these devices and the routing of the
uplinks from the switching devices to the central office, while minimizing the overall investment
costs.

1.1. Problem definition

More formally, CapConFL can be defined as follows. The input is a graph G = (V, EgUAR) with
the set of nodes V' partitioned into the set of customers (R), the set of potential facility locations
(F) and the set of potential Steiner nodes (V \ (F'U R)). A root node r € V' \ (F U R) represents
the connection to a higher order (e.g., backbone) network. The network Gg = (Vg, Eg), where
Vs :=V\Rand Es :={e = {i,j} € E|i,j € Vg} is called the core network. The assignment
network Ggr = (FUR, ARr) consists of directed arcs between potential facilities and customers, i.e.,
Ar ={(i,k) | i € F,k € R}. The following input parameters are associated to the network:

e Facility opening cost f; > 0, capacity v; > 0 and demand d; > 0 for each i € F.
e Arc cost ¢, > 0 and capacity u. > 0 for each e € Fg.

e Assignment cost ¢;; > 0 for each (i,7) € Ag.

e Customer demand by > 0 for each k € R.

The goal is to find a subnetwork of G consisting of the set of open facilities F”’, the set of core edges
E’ and the set of assignment arcs A%, such that:

(P1) Each customer is assigned to exactly one open facility using arcs from A’.
(P2) The sum of customers’ demands assigned to a facility ¢ does not exceed its capacity v;.

(P3) In the core subnetwork induced by EY§, we can simultaneously route the flow from the root
node to satisfy the demand of all open facilities, without violating the edge capacities.

(P4) The sum of assignment, facility opening and edge costs, given by > . By Ce T Yoier fi +
Z(i,j)eA% Cij, is minimized.

Obviously, by setting capacities u, = o0, for all e € Eg and v; = oo, for all ¢ € F, we obtain
the previously studied ConFL problem. Figure 1 illustrates solutions for ConFL and CapConFL.
Squares and triangles denote facilities and customers, respectively. A black fill indicates that a
facility is open. A diamond denotes the root node. Solid edges are in the core network, dotted
edges represent the assignments. In the CapConFL the limited facility capacities require two



(a) ConFL solution (b) CapConFL solution

Figure 1: Feasible solutions of the ConFL and CapConFL problem, respectively.

additional open facilities and a different assignment of customers to facilities. The limited edge
capacities require additional edges in the core network.

Notice that ConFL combines the Steiner tree problem and the uncapacitated facility location
problem. On the other hand, CapConFL combines the capacitated network design problem with
the single-source capacitated facility location problem. To see this, consider a feasible CapConFL
instance whose core graph has a star topology. One can easily transform this input graph into an
instance of the single-source capacitated facility location problem: the facility opening costs for each
1 € F' are now defined as c. + f; where c. is the corresponding adjacent edge, and the assignment
graph remains unchanged. Similarly, a feasible CapConFL instance in which the assignment arcs
are such that each customer is adjacent to exactly one facility can be reduced into an instance of
the single-source capacitated network design problem.

1.2. Literature review

Since CapConFL has not been considered before, we provide a detailed literature overview of
three closely related problems: connected facility location, capacitated network design and single-
source capacitated facility location.

Connected Facility Location. Early work on ConFL mainly includes approximation algorithms.
ConFL can be approximated within a constant ratio and the currently best-known approximation
ratio is provided by Eisenbrand et al. [13]. Recently, heuristic approaches have been proposed
by Ljubié¢ [25] and Bardossy and Raghavan [3]. Gollowitzer and Ljubié [17] present and compare
several formulations for ConFL, both theoretically and computationally. Some of these results will
be discussed and related to the CapConFL later on. Arulselvan et al. [2] consider a time-dependent
variant of the ConFL and present a branch-and-cut approach based on cover, cut set cover and
degree balance inequalities. Leitner and Raidl [24] propose a branch-and-cut-and-price approach
for a variant of ConFL with capacities on facilities. Cutting planes are used to ensure paths



between the root and open facilities, while column generation is used for selecting open facilities
and assigning customers to them.

(Single-Source) Capacitated Network Design Problems (CNDP). In a typical CNDP setting, a net-
work is given with a limited capacity available on each edge. A subset of edges of minimum cost
needs to be installed in the network such that commodities with multiple origins and multiple
destinations can be routed through the network without violating installed edge capacities. There
exists a large body of work on the CNDP and related problems.

It includes exact methods based on Lagrangian relaxation or decomposition [14, 19, 9, 23],
heuristic methods based on tabu search, neighbourhood search, slope scaling and Lagrangian relax-
ation [8, 15, 16, 10]. Recent developments comprise a theoretical study and comparison of Benders,
metric and cut set inequalities [7] and a hybrid method combining mathematical programming
and neighbourhood search techniques [18]. Finally, Chouman et al. [5] present a branch-and-cut
approach that compares several families of valid inequalities for the CNDP.

A generalization of the single-source CNDP is the Local Access Network Design problem (LAN).
In this problem multiple copies of each edge are available. The Local Access Network Design
problem was studied by Raghavan and Stanojevié [27], Salman et al. [28] and Ljubié¢ et al. [26].

The Single-Source Capacitated Facility Location Problem (SSCFLP). Aardal et al. [1] and Deng and
Simchi-Levi [11] proposed MIP models and studied the corresponding polyhedra of the SSCFLP and
related problems. Holmberg et al. [20] present a branch-and-bound method based on a Lagrangean
heuristic, Diaz and Ferndndez [12] develop a branch-and-price approach based on a decomposition
of the SSCFLP and Contreras and Diaz [6] propose a scatter search heuristic. Ceselli et al. [4] give
an exhaustive computational evaluation of branch-and-cut and branch-and-price approaches for a
general class of facility location problems that includes the SSCFLP.

1.3. Contribution and outline

In Section 2 we introduce a basic integer programming model for CapConFL and discuss the
relation of CapConFL and the Connected Facility Location problem. In particular, we show that a
domination result between two sets of valid inequalities for ConFL does not hold for CapConFL. In
Section 3 we derive cover and extended cover inequalities for the various knapsack type constraints
in our model. In addition, we provide two generalizations of recently proposed cut-set-cover inequal-
ities and cover inequalities for single cut sets. Separation procedures for these valid inequalities
are discussed in Section 4. In Section 5 we illustrate the effectiveness of the proposed model and
the valid inequalities by computational experiments on a set of new, realistic benchmark instances
based on real data. We conclude the paper in Section 6.

2. Mixed integer programming models

In this section we introduce a first basic model for the CapConFL. It is based on models familiar
in the context of the SSCFLP and the CNDP. We then strengthen this model using concepts known
from the Connected Facility Location problem [17].

Since all demands of open facilities have to be routed from a single source node, it can be shown
(see, e.g., [26]) that without loss of generality we can replace the undirected core network Gg by a
bidirected graph in which each edge e € Eg is replaced by two directed arcs, except for the edges
adjacent to the root node, where it is sufficient to consider outgoing arcs from r. The set of arcs



of the bidirected core network will be denoted by Ag. Since the flow routed through an edge will
always be routed in one of the two opposite directions, we define cost and capacities as ¢;; = ¢, and
uij = Ue, respectively, for each e = {4, j} in Eg. The union of core and assignment arcs is denoted
by A= AgU Ag. For a set of customers J C R we denote the set of facilities that can serve these
customers by F(J) = ey F(k), where F(k) := {i € F : (i,k) € Ar}. Likewise, for I C F' we
denote by R(I) = |J;c; R(i) where R(i) := {k € R: (i,k) € Ar}. For W C V' we denote the set of
ingoing arcs by 6~ (W).

2.1. The basic MIP model

In our models we will use the following binary decision variables:

1, if arc (¢,7) is installed .

Tij = (5.4) (i,) € A
0, else
1, if facility ¢ is installed

I , if facility ¢ is installe ieF
0, else

In addition, continuous flow variables g;; indicate the total amount of the flow between the root r
and all open facilities in F' routed through the arc (i, j) € A.

The following model combines the single-commodity flow (SCF) formulation for the CNDP (see,
e.g., [27, 28]) with a formulation for the SSCFLP (see, e.g., [20]):

(SCF) min Z CijTij+ Z fzzz

ijeA el
dlzl i=1
s.t. Z 9ji — Z gij =4 —2uerdiz i=r i€Vs (1a)
ji€Ag ij€Ag 0 else
0 < gij < uijwij (4,J) € As (1b)
D bpwik < viz i€F (1c)
kER(i)
ik < % i€ F, ke R(z) (1d)
Z Tip =1 keR (le)
icF(k)
Tij € {0,1} (i,j) € A (1f)
2 €{0,1} ieF (1g)

Constraints (1c)-(le) are the strong relaxation of the SSCFLP. The assignment constraints (le)
model the property (P1) and constraints (1c)-(1d) ensure the property (P2). In constraints (1a)-
(1b) we use the single-commodity flow variables to ensure the property (P3). This model is intuitive,
but it provides weak lower bounds, due to the following facts: 1) big-M constraints (1b) are used
to model the arc capacities, and 2) the connectivity between the root and the open facilities, rather
than between the root and the customers, is required. The model is impractical to solve in a
branch-and-bound framework, even for medium sized instances.



Using the following capacitated cut set inequalities we can project out the flow variables from
the previous model and replace the constraints (1a)-(1b) by the following ones (see, e.g., Ljubié
et al. [26]):

Z UjjLi5 = Z diz W C Vs \ {7’} (CUtSCF)
ijes— (W) leFNW

The obtained model contains an exponential number of inequalities and provides the same lower
bounds as the corresponding flow model. However, inequalities (Cutscr) can be strengthened as

follows:
Z min (u;;, Z dy)zij > Z diz W C Vs\{r}

ijed— (W) leFNW leFNW

2.2. Relations to Connected Fuacility Location and cut set inequalities

In [17] we studied MIP formulations for ConFL and provided a complete hierarchy of several
MIP formulations with respect to the quality of their LP-bounds. Among others, we described two
cut set-based formulations for ConFL. The models differ in the way they require connectivity.

In the first model, connectivity is ensured between the root and any open facility as follows:

Z Tij 2 2 W C Vs\{r}, le WNF (Cutz)
ijes— (W)

These inequalities state that for each open facility the edges on at least one path between the
root node and the respective facility need to be installed. Additional assignment constraints (1d)
and (le) are required between the facilities and customers.

The second model replaces constraints (Cutz) by the following cut set inequalities that ensure
connectivity between the root and every customer:

Y owy=1 WCVA\{rL,WNR# (Cutx)
ijed— (W)

We showed that for ConFL the second model provides theoretically stronger lower bounds, but
is computationally outperformed by the first model on the set of benchmark instances considered
there.

Both sets of inequalities, (Cutz) and (Cutx) are also valid for CapConFL. It is interesting to
mention that, unlike for the ConFL, for which the inequalities (Cutyz) are implied by the model
with (Cutx) constraints, the two families of inequalities can be used complementary to each other
for CapConFL:

Lemma 1. Inequalities (Cutz) and (Cuty) both strengthen the LP-relazation of the basic model
(SCF). However, the MIP models (SCF)+(Cutx) and (SCF)+(Cutz) are incomparable w.r.t. the
quality of their LP-bounds.

Proof. 1t is not difficult to see that inequalities (Cutz) and (Cutx) both strengthen the LP-
relaxation of (SCF). To see that (Cuty) inequalities are not implied by (SCF)+(Cuty ), consider the
example shown in Figure 2. A vector (x,z) that satisfies (Cutgcr) is z12 = 0.75, x93 = x4 = 0.25,
z3 = 24 = 0.75, 235 = 246 = 0.75 and x45 = x36 = 0.25. This solution is cut off by the (Cutx) con-
straints xo3+x24 > 1 and x12 > 1. Finally, inequalities (Cutyz) are not redundant for (SCF)+(Cuty)



since they ensure x93 + x94 > 1.5 which further strengthens the model.

Conversely, the model (SCF)+(Cutz) does not imply (Cuty) constraints, which follows from the
previous results for ConFL in [17], i.e., a CapConFL instance with sufficiently large capacities on
arcs and facilities will have the desired property. O

Figure 2: Example for comparison of cut set inequalities

3. Valid Inequalities

For the well-known subproblems of CapConFL, SSCFLP and CNDP, several sets of strength-
ening valid inequalities are known. We will review ideas that seem relevant in the context of the
CapConFL and propose several sets of new valid inequalities based on the combination of the
facility location and network design aspect.

3.1. Cover inequalities for single facilities

Deng and Simchi-Levi [11] proposed cover inequalities for the SSCFLP with uniform capaci-
ties. These inequalities are better known in the context of general mixed integer programming to
strengthen knapsack-type constraints. We will use the concept of extended cover inequalities (see,
e.g., the recent work of Kaparis and Letchford [22]).

Consider an arbitrary potential facility node i € F. We call a set R’ C R(i) a cover for i € F' if
> ker bk > v; and minimal if Y, p by — by < vy for all £ € R'. We call it a minimal cover if it is
minimal and a cover. For a minimal cover R, we define E(R') = {k € R(i) \ R’ : by > b*}, where
b* = maXgc R’ bk.

Let the set of all minimal covers of i € F' be denoted by M C(i). Then the following extended
knapsack cover inequalities are valid for the CapConFL:

Y wy<(R|-1)z R eMC()icF (EKS)
JER'UE(R')

3.2. Inequalities involving multiple facilities

We derive two new families of inequalities that are implied by the limited capacities of facilities
and the limited number of assignments edges in Ag.



Minimum cardinality inequalities on facilities. For a given set of customers J C R and the cor-
responding subset of facilities F'(J), let p(J) be the minimum number of facilities in F(J) that
is required to assign the customers in J in a feasible way, i.e., by respecting the allowed possible
assignments and satisfying the capacity constraints on the facilities in F'(J). In other words, p(J)
is the optimum solution of a capacitated bin-packing problem with the set of bins F'(.J), capacities
v; for i € F(J), the set of items J, demands b; for j € J and such that each item j € J is only
allowed to be assigned to bins in F'(j). W.lL.o.g. we can assume that by < v; for all (i, k) € Ar and
thus p({k}) =1 for all kK € R and p(J) < min{|F(J)|,|J|} for all J C R.
Then the following minimum cardinality inequalities are valid for the CapConFL:

> zzplJ) JCR (MCr)
ieF(J)

(Extended) Cover inequalities on facilities. Next we apply the idea of cover inequalities to the
relation of facility capacities and customer demands. Let again J C R. We call a set F' C F(J) a
capacity cover with respect to J if 3 ;e g )\ pr vi < b(J) and we call it minimal if v+, p o Vi =
b(J) for all k € F'. Let CC(F(J)) denote the set of all such capacity covers of F(J). We call the
following set of constraints cover inequalities on facilities:

Y m>1 F eCCF(]),JCR (2)
1<y
Similar to the cover inequalities for single facilities we can extend the covers and obtain stronger
inequalities. Let v* = max;ep v; and let E(F') = {i € F(J)\ F’ : v; > v*} be the set of remaining
facilities from F'(.J) with a capacity of at least v*. We refer to the following inequalities as extended
cover inequalities on facilities:

Y sz 1+|E(F)  F eCCF(),JCR (Covp)
i€EF'UE(F)

To see that these inequalities are valid we can rewrite inequalities (2) as >, (1 — 2;) < |[F'| — 1.
The corresponding extended cover inequality is then

Yo (1-z) < |F|-1.
i€ F'UE(F")
Rewriting this inequality gives (Covp).
The sets of inequalities (MCp) and (Covg) do not contain each other as the following coun-
terexamples show. In the example in Figure 3(a) a valid (Covp) inequality is z; + zo > 2, while
the (MCp) inequalities only ensure z; + z2 + z3 > 2. On the contrary, for the example given in

Figure 3(b) the (Covp) inequalities are z; + 29 > 1 and 21 + 23 > 1, but they are strictly dominated
by the (MCp) inequality 21 + 29 4+ 23 > 2 that also implies z9 + 23 > 1.

General representation of cover inequalities on facilities. Consider now a general valid inequality

of type
Z 2 2 p (3)
ick
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Figure 3: Counterexamples for comparison of (MCr) and (Covr)

defined for a set F C F and p > 1. For p = 1 we have the simple cover inequalities (2) (i.e.,
F e CC(F(J))) and, for p > 2, inequalities of type (MCp) and (Covg) belong to this family, i.e.,
we have F' € F(J)U{F' UE(F') | F' € CC(F(J))}, for J C R. The following family of general
cover inequalities on facilities is then also valid for our problem:

Y z>1 FCFE|FNF|>|F|-p+1 (Covgen)
icF
It is not difficult to see that the latter inequalities are implied by (3). However, they are of particular
interest when combined with cut set inequalities, as explained below.

3.8. Clut-set-cover inequalities

This new family of valid inequalities combines cut set inequalities with the general cover in-
equalities for facilities of the form (Covge,). Inequalities (Covgey,) state that at least one facility
in F needs to be opened in a feasible solution. Consequently, for every subset of nodes W C V
containing all nodes in F, at least one ingoing arc needs to be installed. Let F denote the family
of all subsets of facilities for which (Covgep) is valid, i.e.:

F=|J F()U{F'UE(F") | F' € CC(F(]))}
JCR
and let .
o(F) = {1+ [E(F))|, F=FUE(F), F'e CC(F(J))

for all ' € F. The following cut-set-cover inequalities are valid for CapConFL and not implied by
any of the previously described sets of constraints:

Y w21 FCWOFEIFNF|>|F|—pF)+1, FeF (Cutcoy)
ijed— (W)

Inequalities (Cutcy, ) are a generalization of the previously introduced cut-set-cover inequalities
for the incremental ConFL studied in Arulselvan et al. [2]. Figure 4 illustrates inequalities (Cutcoy)
for two different subsets W and a cover inequality z1 4+ 22 > 1 of type (Covp). Figure 5 illustrates
inequalities (Cutcy,) for the minimum cardinality inequality z1 + 2o + 23 > 2.



Figure 4: Example for cut-set-cover inequali- Figure 5: Example for cut-set-cover inequali-
ties (Cutcow) derived from an inequality (Covp). ties (Cutcou) derived from an inequality (MCr).

3.4. Cover inequalities for single cut sets

The following set of valid inequalities generalizes the cover inequalities known for the capacitated
network design problem studied in Chouman et al. [5]. Consider a (Cutgcr) cut set inequality
D ijes—(w) WijTij = D epaw diz defined by a cut set 67 (W) for W C V\ {r}. Let F" C FNW
and d(F') = Y cpdi. A set C C 07 (W) is called a cover with respect to 6~ (W) and F’, if
> ijes—wc i < d(F') and a minimal cover if, in addition,

> uij+ug > d(F) for all Ik € C.
ijes—(W)\C

Let MC(W, F’") denote the set of all minimal covers with respect to = (W) and F’. Then the
following cover inequalities on single cut sets are valid for the CapConFL:

Say 1+ (a—1)  ¥CeMCW,F). (Covs- )

ijec leF

Figure 6 illustrates inequalities (Covs-(yyy). Edge (b,d) is a cover with respect to W =
{1,2,3,d,e, f} and F' = {2,3}.

Figure 6: Illustration of cut set cover inequalities

4. Separation procedures

In this section we describe the separation procedures used in our branch-and-cut algorithm. We
refer to the variable values of the current fractional solution by (X, Z).
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4.1. Separation of inequalities (Cutscr) and (Cutyz)

Inequalities (Cutscor) can be separated in polynomial time (see also Ljubi¢ et al. [26]). We define
the support graph G' = (V’, A’) where V' := Vg Ut with an additional sink node ¢, A" := Ag U A;
and A; == {(i,t) |t € F,Z > 0}. We define capacities on arcs as u;;Z;; for each arc ij € Ag and
d;z; for each arc it € A;. We calculate the minimum cut between r and ¢ in G'. Let 6~ (W) denote
the arcs of this cut. If 6~ (W) N Ag # () and Zijeé—(W)ﬂAg UijTij < Y iewnr diZi we have detected
a violated inequality (Cutscr).

Inequalities (Cutyz) can be separated in similar fashion (see also Gollowitzer and Ljubié [17]).
The support graph in this case is the bidirected core network (Vg, Ag) with arc capacities set to
Z;j for each arc ij € Ag. A minimum cut in Ag between r and | € I’ with a weight of less than z;
corresponds to a violated inequality (Cuty).

4.2. Separation of inequalities (Cutx)

For the separation of (Cutx) inequalities we define a support graph G; for each j € R. Thereby,
Gj=(VU{j},AsUA;) where A; = {(i,j) | i € F(j)}. Capacities on the arcs from Ag U A; are
set to Z;;. Each minimum cut in G; between r and j € R whose weight is less than 1 corresponds
to a violated inequality (Cuty).

If the number of customers is large, complete separation of inequalities (Cuty) is very time-
consuming. We therefore reduce the set of customers considered in the separation to a subset that
still ensures all violated inequalities are identified. A customer ¢; € C' is ignored if there exists
another customer cz € C such that F(cy) C F(c1). If F(c;) are identical for all ¢; € C' C C only
one customer in C is considered.

4.3. Separation of inequalities (EKS)

For a fractional point (X,Z) and for each i € F' = {i € F | z; > 0}, the separation of (simple,
non-extended) inequalities (EKS) is equivalent to solving a knapsack problem which is described
by the following integer program:

min z = Z(ZZ — fij)sj
JER
s.t. Z bij > ;
JER
S5 € {0, 1} VieR

If z < z; a simple, non-extended cover inequality is violated.

Instead of solving the separation problem exactly (e.g., using a dynamic programming proce-
dure), we restrain to a heuristic separation which was proposed by Kaparis and Letchford [22].
Their efficient and fast separation heuristic detects extended knapsack cover inequalities. Adapted
to our (EKS) inequalities, this procedure consists of the following steps, executed for each i € F:

1. Sort the items in R(7) in non-decreasing order of (2; — Z;;)/b;, and store them in a list L.
Initialize the cover R’ as the empty set and initialize b* = v;.

2. Remove an item from the head of the sorted list L. If its weight is larger than b*, ignore it,
otherwise insert it into R’. If R’ is now a cover, go to step 4.

3. If L is empty, stop. Otherwise, return to step 2.

11



4. If the extended cover inequality corresponding to R’ is violated by (X,Z), output it.

5. Let k* = argmax;cp b; be the customer in R’ with the highest demand. Set b* = by« and
delete k* from R’. Return to step 2.

In fact, we perform two variants of this algorithm. The one stated above and one where the
customers are sorted in non-increasing order of Z;;.

4.4. Separation of inequalities (MCp) and (Covp)

We consider subsets of facilities F/ € Fo := Fy U Fy, where F} := {F(k) | k¥ € R} and
Fy :={F(k1) UF(ko) | |F(k1) N F(ke)|/ min(|F(k1)|,|F (k2)|) > 0.5,k1,ke € R}, i.e., Fy contains
unions of F'(k1) and F'(k2) such that at least half the facilities of either F'(k;) or F'(k2) are common

to both these sets. For each F’ we define the subset of customers to be considered in the separation
of (MCp) and (Covp) inequalities as J(F') := {k' € R| F(k') C F'}.

Separation of inequalities (MCp). We calculate p(J) for J and F(J) by solving a bin-packing
problem with assignment restrictions and non-uniform bin capacities:

ieF(J)
s.t. Z brsir < wvit; ie F(J)
keR(7)
Sik <t kEJ,iEF(k‘)
> sik=1 kel
ieF (k)

sik € {0,1} ke JieF(k)
t; €{0,1}  ieF(J)

We consider F' € F¢ as candidate sets for F'(J) and determine J = J(F’) as described in the
previous paragraph. The values of p(J) are calculated for all such J during preprocessing. In the
separation procedure we repeatedly check whether the current fractional solution violates any of
the stored inequalities (MCp). By doing so we consider at most |F¢| < |R| + |R|? inequalities of
type (MCr).

Separation of inequalities (Covp). Given J C R and F'(J), the separation of (simple, non-extended)
covers on facilities (2) is equivalent to solving the following knapsack problem:

min z = Zi8;
iEF(J)
s.t. Z ViSi > Z V; — b(J)
i€F(J) i€F(J)
s; € {0,1} i e F(J)

If z < 1, an inequality (2) is violated.
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We consider F(J) for J = J(F') and F' € Fo. To find covers in CC(F(J)) we use the
separation procedure described in Section 4.3 with the following modifications: The facilities in
F(J) are ordered according to Z; /v; in non-decreasing fashion and b* is initialized with the maximum
capacity of the facilities in F'(J).

4.5. Separation of inequalities (Cutcgy)

In the separation of (Cutcey) we consider all inequalities of the form (3) that were found by
the separation procedure for (Covg) and (MCp). For the corresponding set of facilities ' and
right-hand side p we randomly generate up to p sets ' C F such that |F| = |F| —p+ 1. We
separate inequalities (Cutcey) by running a maximum flow algorithm on graph G’ defined as in
Section 4.1, but with capacities of 1 on arcs it if i € F and 0if i ¢ F.

4.6. Separation of inequalities (Covs- ()
Given a cut set W C V \ {r} and the set of facilities contained in that cut set, F/ =W NF, a
violated cut set cover inequality is detected by solving the following integer program:

min z = Z TijSij — Z(El -1

ijes(W) leF’
s.t. Z UijSij + Z dit; > Z Ujj
ijed— (W) leF’ ijed— (W)

Sij € {0, 1} 1] € (5_(W)
te{0,1} leF

A (Covs-(w)) inequality is violated if 2z < 1.

We separate inequalities (Covs-(y)) as follows: All cut sets W that are obtained during the
separation of inequalities (Cutscr) are kept in a pool. We choose F/' = {l € FNW | z > 0.1}.
Then we use the following heuristic procedure to find minimal covers C € MC(W, F"), where
F" C F"

1. Sort the items in 6~ (W) and F’ in non-decreasing order of (1 — z;)/d; and Z;;/u;; and store

them in a list L. Initialize the cover C and F” as empty sets and initialize b* = Zijeé*(W) Ujj-

2. Remove an item from the head of the sorted list L.

(a) If it is an arc and its weight is larger than b*, ignore it, otherwise insert it into R'.
(b) If it is a facility insert it into F”.
If C is now a cover with respect to 6~ (W) and F”, go to step 4.
3. If L is empty, stop. Otherwise, return to step 2.
If the cover inequality corresponding to C' € MC(W, F") is violated by (X,Zz), output it.
5. Let ij* = arg max;;cc u;; be the arc in C' with the highest capacity. Set u* = u;;+ and delete
i7" from C. Return to step 2.

e

5. Computational results

In this section we report the results of our computational experiments. They were performed
on a desktop machine with an 8-core Intel Core i7 CPU at 2.80 GHz and 8 GB RAM. Each run
was performed on a single processor. We used the CPLEX [21] branch-and-cut framework, version
12.2. All cutting plane generation procedures provided by CPLEX are turned off unless stated
explicitly. All heuristics provided by CPLEX are turned off. The other parameters are set to their
default values.

13



5.1. Branch-and-cut framework

The settings described in this section are the result of our preliminary testing.

To reduce the number of constraints that need to be identified by our separation routines we
add degree balance constraints and subtour elimination constraints for cycles of size two to our
model:

zji < x(6T(0) + 2 (4,i) € Ag,i € F (4a)

zji < (87 (1)) (J,1) € As,i € Vs \ (FU{r}) (4b)

2 < (67 (1)) i€ F (4c)

25 < z(67 (i) (i,7) € Ag,i € Vg \ {r} (4d)

zij + x5 <1 (i,7) € As, i < j, 1,5 #7 (4e)

In order to reduce the size of the linear programs solved throughout the process we relax
constraints (1d) and add them only if they are violated. Separation procedures are called in
the following order: (EKS) - (Covg) - (MCp) - (1d) - (Covs- ) - (Cutcey) - (Cutz) - (Cuty)
- (Cutgcr). To prevent a tailing off effect of the separation procedures we stop separating valid
inequalities if the lower bound has improved by less than 0.05% for the last 10 calls of the separation
procedures. We apply this rule in each node of the branch-and-bound tree.

Inequalities (Covg), (MCF), (Covs—(w), (Cutcoy) and (Cutscr) are only separated at the
root node of the branch-and-bound tree. Inequalities (EKS) and (1d) are separated at every node,
separation of (Cuty) is done at every 10th node and separation of (Cutyz) is done at every 100th
node. In all nodes of the branch-and-bound tree we ensure the feasibility of our model by testing
potential integer solutions for violation of inequalities (Cutscr).

To improve the computational efficiency of the separation procedures for cut set inequalities,
we search for nested minimum cardinality cuts. To do so, all capacities in the respective separation
graph are increased by some € > 0. Thus, every detected violated cut contains the least possible
number of arcs. We resolve the linear program after adding at most 30 violated inequalities of any
class. Finally, we randomly choose the target nodes to search for violated cuts.

5.2. Instances

We generated a set of realistic benchmark instances derived from real world data we were given.
The real world data contain most of the information needed for complete CapConFL instances: The
sets of facilities, Steiner nodes and edges of the core network; a set of customers with associated
demands; a set of assignment arcs connecting customers and facilities, including their distance and
an estimate of the bandwidth provided by the respective assignment arc; lengths of core edges and
assignment arcs. These inputs define five graphs with different topologies that will be denoted by
A, B, C, D and E. To complete the instances with respect to the input required by CapConFL we
applied the following steps:

e For each instance a minimum customer bandwidth is selected, assignment arcs that provide
less than this bandwidth are removed. We chose 20, 25 and 30 MBit/s and denote this by
20, 25 and 30 in the instance label.

e At most 20 assignment arcs per customer are considered.

e Customers without assignment arcs are removed and facilities without assignment arcs are
replaced by Steiner nodes.
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e Steiner nodes with a degree of two and their adjacent edges are replaced by a single edge.

e A technology for each facility is randomly selected. For FTTB instances we consider the
following combinations of capacity, demand and cost: (32,4,4000), (64, 5,6000), (128, 7,8000).
For FTTC instances we choose between (64, 4,13000), (128,4, 16000) and (192, 4, 20000).

e Edge capacities are uniformly randomly selected from [0.7u,1.3u], where p is equal to the
demand of the smallest set of facilities needed to feasibly assign the customers, given the
facility capacities chosen before [9].

The key figures for the instances we use are listed in Table 1.

5.8. Comparison against basic model and general purpose solver

In the first part of our computational study we assess the influence of the cutting plane gener-
ation procedures built into CPLEX compared to the influence of the valid inequalities proposed in
this work. To this end we ran our model with the following different settings: Basic is the cut set
based model corresponding to SCF, i.e., the model consisting of constraints (1c)-(1g), (Cutscr)
and (4a)-(4e). Basic+CPX is the basic model with all CPLEX cuts turned on. All VI is the basic
model with all valid inequalities from Section 3 added. All VI+CPX is the basic model with all
valid inequalities and CPLEX cuts turned on.

In Table 1 we compare the LP gaps (gp) and time to solve the LP relaxation (¢.p) for these
four models. We calculated the gaps as (UB — LB)/UB, where UB is the best known integer
solution found in all our tests and LB is the solution value of the LP relaxation of the respective
model. In the last two lines we show the mean and median of the values in the respective column.
The best LP gap of the four models is shown in bold.

From the results in Table 1 we conclude that the model without valid inequalities provides a
weak LP bound with an LP gap of 14.28% on average over the considered instance set. The cutting
planes provided by CPLEX can reduce the LP gaps of the basic model by almost one half to an
average of 7.23%. This average gap is still substantial compared to 1.31% obtained by the model
that is strengthened by the valid inequalities proposed in this paper. Using CPLEX cuts in addition
only improves the average gap to 1.13%.

5.4. Influence of different sets of valid inequalities

In the second part of our computational study we assess the influence of the different sets of
valid inequalities proposed in this work. We compare five different settings that differ by the sets
of valid inequalities considered. For each setting we add a subset of valid inequalities to the basic
model described above. Settings (Cutyz), (Cuty) and (Cutz)+(Cutx) are self-explaining. Setting
All VI is defined as above and setting Most VI uses inequalities (Cutyz), (Cutx), (EKS), (Covp)
and (MC F).

For each of these settings, Table 2 shows the gap of the linear programming relaxation, g p,
calculated as in Table 1, the time needed to solve linear programming relaxation, t;p, and the
number of cutting planes added, Cuts. In the last two lines we show the mean and median of the
values in the respective column. The best LP gap of all models is shown in bold.

We would like to point out several interesting aspects. The LP gaps of setting (Cuty) are sub-
stantially larger than the ones of all other settings. Surprisingly the same does not hold for setting
(Cutx), which on average gives even stronger LP bounds than setting (Cutyz)+(Cutx). We trace
the difference between the gaps of (Cutx) and (Cutz)+(Cutx) to the criteria we used to prevent
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a tailing off effect during separation. A comparison of the running times shows that separating
valid inequalities with a different structure improves the overall running time of the LP relaxation.
Approaches (Cutz) and (Cutx) need 110 and 90 seconds on average, respectively whereas approach
(Cutz)+(Cutx) only takes 46 seconds to compute approximately the same lower bounds as (Cutx).
The separation routines in approaches Most VI and All VI require an additional 10 and 12 seconds
on average. Thereby, the average LP gaps are improved from 1.44% ((Cutz)+(Cuty)) to 1.31%
(Most VI and All VI). However, All VI does not improve upon Most VI significantly.

There is a notable difference in the numbers of valid inequalities that were detected during the
LP relaxations of the different settings. By far the most inequalities are found by setting (Cutyz),
even though the obtained LP bound is comparably weak. This is consistent with the long running
time of the LP relaxation of setting (Cutz). Rather surprising is the fact, that setting All VI
obtains the same LP bound as setting Most VI for 28 out of 30 settings but the number of valid
inequalities found by All VI is smaller for 22 and larger for only 2 instances.

Table 3 shows the respective gap of the five different settings after 3, 10, 30 and 60 minutes.
For these results we calculate the gaps as (UBy — LB;)/ UBy where UB; is the best integer solution
found by the respective setting after ¢ minutes and LBy is the lower bound after ¢ minutes. For each
instance and running time the smallest gap of all five settings is indicated in bold. If no integer
solution is available after ¢ minutes we indicate this by a dash in the respective column. For each
setting and time t the last three lines of the table indicate the mean and median of gaps over the
instance set and how often the respective approach gives the smallest gap of all settings.

Contrary to what the LP gaps in Table 2 suggest the setting All VI with all valid inequalities
enabled outperforms the other settings on a majority of instances. The performance of setting Most
VI is only slightly worse (0.09%, 0.07% and 0.05% larger gap after 10, 30 and 60 minutes). The
other settings perform significantly worse with between 0.46% and 2.58% larger gaps on average.

In Figures 7 and 8 we give a graphical illustration of the numbers reported in Table 3. The
coordinates of each mark indicate how many out of 30 instances (ordinate axis) were solved within
a given optimality gap (abscissa). Figure 7 shows the performance after 3 and 10 minutes and
Figure 8 shows the performance after 30 and 60 minutes.

6. Conclusions

In this paper we introduce the Capacitated Connected Facility Location problem. We introduce
various sets of cut set, minimum cardinality, cover and cut-set-cover inequalities to strengthen a
basic integer programming model. After a detailed discussion of separation procedures we report
the results of our computational experiments. These confirm that the proposed approach finds
solution within a small optimality gap averaging to less than 2% for a set of realistic new benchmark
instances.
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Figure 7: Performance chart for 3 minutes (top) and 10 minutes (bottom) runtime
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Figure 8: Performance chart for 30 minutes (top) and 60 minutes (bottom) runtime
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