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Abstract

In the Prize-Collecting Steiner Tree Problem (PCStT) we are given a set of customers with potential
revenues and a set of possible links connecting these customers with fixed installation costs. The
goal is to decide which customers to connect into a tree structure so that the sum of the link costs
plus the revenues of the customers that are left out is minimized. The problem, as well as some of
its variants, is used to model a wide range of applications in telecommunications, gas distribution
networks, protein-protein interaction networks, or image segmentation.

In many applications it is unrealistic to assume that the revenues or the installation costs are known
in advance. In this paper we consider the well-known Bertsimas and Sim (B&S) robust optimization
approach, in which the input parameters are subject to interval uncertainty, and the level of robustness
is controlled by introducing a control parameter, which represents the perception of the decision maker
regarding the number of uncertain elements that will present an adverse behavior.

We propose branch-and-cut approaches to solve the robust counterparts of the PCStT and the
Budget Constraint variant and provide an extensive computational study on a set of benchmark in-
stances that are adapted from the deterministic PCStT inputs. We show how the Price of Robustness
influences the cost of the solutions and the algorithmic performance.

Finally, we adapt our recent theoretical results regarding algorithms for a general class of B&S
robust optimization problems for the robust PCStT and its budget and quota constrained variants

Keywords: Prize Collecting Steiner Trees; Robust Optimization; Interval Uncertainty; Mixed Integer
Programming; Branch-and-Cut.

1. Introduction

When defining an expansion plan of a fiber optic network in a given area and for a given planning
horizon, a telecommunication company needs to decide to which subset of customers a service should
be provided. Thereby, two elements need to be taken into account: potential gains in revenue (that
will be referred to as prizes) of each customer, and infrastructure costs needed to connect them. This
problem can be formulated as a network optimization problem called the Prize-Collecting Steiner Tree
Problem (PCStT). In this paper we will focus on the PCStT and the Budget and Quota constrained
variants, under data uncertainty assumption.

When facing strategic decisions modeled by the PCStT, companies should consider the presence
of uncertainty in problem parameters as an inevitable feature of the decision-making process. In
our particular case, customer revenues and connection costs are uncertain parameters since they are
affected by many external economic or even social factors. Consequently, uncertainty in both groups
of parameters (or at least one of them) should be part of any decision model in order to obtain reliable
and robust solutions from the economic point of view.
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In our models, robustness can be seen as a guarantee of protection against data uncertainty. This
guarantee is provided by the use of the Bertsimas and Sim (B&S) Robust Optimization (RO) approach,
see [10], which entails the adoption of protection functions that are included in the objective function
and/or constraints. Protection functions depend on both, the uncertainty present in the problem’s
input parameters and the intuition of the decision maker. These protection functions are all in all what
determines the Price of Robustness, see [11], which can be defined as the worsening of the economic
performance of the solutions while ensuring higher level of robustness in presence of higher levels of
uncertainty. The resulting model will be called robust counterpart of the original deterministic problem.

The PCStT arises as an important problem in Network Optimization from both the algorithmic
and practical points of view (cf. Section 2). Therefore, we believe that studying the robust counterpart
of the PCStT will help in solving and better understanding not only the robust PCStT itself, but also
other related problems in the area of robust network optimization.

In this paper we propose several RO variants of the PCStT and establish some connections between
them. As main contribution, we propose three different strategies to exactly solve the Robust PCStT
(RPCStT). These exact algorithms are all based on Branch-and-Cut techniques and the differences
among them are implied by the underlying mathematical programming formulations and the different
cutting-plane techniques. An extensive analysis of computational results is carried out in order to assess
the performance of the proposed algorithms and their dependence on the problem parameters, and the
nature and characteristics of the obtained solutions. This analysis concerns a qualitative study of the
solutions in terms of the Price of Robustness and an interpretation and assessment of the different
algorithmic performances. To complement this analysis, we also consider a budget-constrained variant
of the PCStT and adapt the developed algorithms to solve its robust counterpart.

One of the three proposed branch-and-cut approaches has been computationally tested, only for
the robust version of the PCStT, in our preliminary work that appeared in [2].

Structure of the paper. In Section 2, the PCStT is formally defined, a review of the main literature
is presented, two important variants of the problem, i.e., Budget and Quota PCStT, are defined,
and an integer programming formulation is provided. In Section 3, motivations and alternatives to
consider parameter uncertainty are presented with an emphasis on the B&S robust optimization model.
Subsequently, different Mixed Integer Programming (MIP) formulations for the robust counterpart of
the PCStT and the Budget and Quota Constraint variants are presented. Branch-and-Cut algorithms
are presented in Section 4. In Section 5 we present and analyze the computational results obtained
for different sets of benchmark instances for the robust counterparts of the PCStT and its budget-
constrained variant. In Section 6, our recent theoretical results regarding algorithms for a general
class of B&S robust optimization problems, see [3], are adapted for the robust PCStT and its variants.
Finally, concluding remarks and paths for future work are presented in Section 7.

2. The Prize Collecting Steiner Tree Problem

The term Prize Collecting was used for the first time by Balas, see [7], in the context of the
traveling salesman problem. However, it was in [12] where the PCStT has been introduced. It is worth
to mention that in [36], Segev studied for first time the closely related Steiner tree problem with node
weights. A formal definition of the PCStT can be given as follows.

Given is an undirected graph G = (V,E) with n = |V |, m = |E|, edge costs ce ∈ R>0 for all e ∈ E,
and node prizes pv ∈ R≥0 for all v ∈ V . The PCStT consists of finding a tree T = (VT , ET ) of G, that
minimizes the function

f (T ) =
∑
e∈ET

ce +
∑

v∈V \VT

pv. (1)

For a feasible solution T , function (1) corresponds to the sum of the costs ce of the edges in the tree,
e ∈ ET , plus the sum of the prizes pv of the nodes that are not spanned by the tree, v ∈ V \VT ;
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this definition of the PCStT is known as the Goemans and Williamson PCStT (GW-PCStT) [12].
In the context of the expansion of fiber optic networks mentioned above, graph G = (V,E) is the
potential network for which we want to find an expansion plan, so edges e ∈ E are the possible links
with construction costs ce and nodes v ∈ V represent customers or street intersections with potential
revenues pv > 0 or pv = 0, respectively. By Vpi>0 (n′ = |Vpi>0|) we will denote the set of potential
customers and by Vpi=0, the set of potential Steiner nodes.

The PCStT can be also defined as the problem of finding a tree T that minimizes

fNW (T ) =
∑
e∈ET

ce −
∑
v∈VT

pv. (2)

Function (2) corresponds to the minimization version of the Net-Worth PCStT (NW-PCStT) which
was introduced in [26]. Although functions (1) and (2) are equivalent in the sense that both produce
the same optimal solutions, they are not equivalent regarding approximation algorithms, see [26].

Approximation algorithms for the GW-PCStT are discussed in [12], [19], [26] and recently in [4].
Heuristic procedures are implemented in [13], [28] and [35]. The first published work on polyhedral
studies for the PCStT is [32], where a cutting plane algorithm is proposed. The cuts are efficiently
generated when a violation of a generalized subtour elimination constraint (GSEC) is verified. In [31],
a branch-and-cut algorithm based on a directed cut-set MIP formulation has been designed and im-
plemented. Several state-of-the-art methods are combined and pre-processing techniques are used.
The proposed procedure has significantly improved the algorithm presented in [32]. The same set of
benchmark instances has been solved by two orders of magnitude smaller running times. Optimal
solutions have also been achieved for large-scale real-world instances concerning the design of optical
fiber networks. Another important algorithmic efforts for the PCStT and some of its variants have
been presented in [13], [20], [21] and [22].

In [31] an application of the problem is approached for the first time; the exact algorithm developed
in the paper is used to solve real world instances for the design of fiber optic networks of a German
city where an existing subnetwork needed to be augmented in order to serve new customers in the
most profitable way. Over the last few years various other applications have been studied in which
the PCStT has shown to play a crucial role in the modeling process. These problems arise from very
different industrial and scientific contexts, showing the potential and versatility of the PCStT as a
modeling tool.

Relevant applications of the PCStT are found in Bioinformatics in the context of protein-protein
interaction networks (PPIN). In [16], [5], [24] and [6] the PCStT is applied to network optimization
problems arising in the analysis of PPIN for different datasets of biological processes. The PCStT
is used to model an “inference problem” in order to find, or rather “to infer”, functional modules in
PPIN. These networks represent signal pathways (constructed by edges) between proteins or protein
complexes (represented by nodes). These biological networks are modeled as a graph G = (V,E), where
edge costs ce represent the confidence of interaction between the source and the target of the given edge
e, and node prizes pv corresponds to the differential expression of node v in the network for a given
biological process. In [30], where a survey of models and algorithms for cellular response networks is
provided, the PCStT and the algorithm studied in [16] (which is based on the exact approach developed
in [31]) are presented as state-of-the-art tools for the detection of response networks in the context of
analysis of gene expressions. Recently in [23], the author emphasizes the quality of the results obtained
using the PCStT model compared with other modeling and algorithmic approaches for the analysis of
signaling networks carried out over different gene databases.

The design of a leakage detection system using the PCStT is performed in [34]. The problem consists
of finding the optimal location of detectors in an urban water distribution network so that, given a
budget constraint, a desired coverage is provided. The instance considered in the paper corresponds to
the urban water distribution network of the city of Lausanne, Switzerland.

In [39], the PCStT is used to efficiently detect region-based objects in the context of image recog-
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nition. Nodes v represent superpixels and edges e connect pairs of superpixels that share a boundary.
Node prizes pv represent the contribution of the superpixel to the classifier score, and edge costs are a
measure of the probability of two superpixels to belong to the same element. The objective is to find
a best-scoring subregion identifying the most likely region of the object of interest. It is important to
remark that in [16] and [39] the equivalence between the PCStT and the Maximum-weight connected
subgraph problem (MWCS) is exploited to model the particular problem. For more details see [25].

2.1 A Integer Programming Formulation for PCStT

To characterize the set of feasible solutions for the PCStT, i.e., subtrees of G, we consider a directed
graph model and use connectivity inequalities to guarantee connectivity of the solution.

We transform the graph G = (V,E) into the directed graph GSA = (VSA, ASA). The vertex set
VSA = V ∪ {r} contains the nodes of the input graph G and an artificial root vertex r. The arc set
ASA is defined as ASA = {(r, i) | i ∈ Vpi>0} ∪ A, where A = {(i, j), (j, i) | e = {i, j} ∈ E}. A subgraph
TSA of GSA that forms a directed tree rooted at r such that for each node i in TSA there is a directed
path between r and i, is called a Steiner arborescence and is a feasible solution of the problem in case
there is only one outgoing arc from r. We will use the following notation: A set of vertices R ⊂ VSA
and its complement R̄ = VSA\R, R 6= ∅, induce two directed cuts: δ+ (R) =

{
(i, j) | i ∈ R, j ∈ R̄

}
and

δ− (R) =
{

(i, j) | i ∈ R̄, j ∈ R
}

. Let zij , ∀(i, j) ∈ A, be a binary variable such that zij = 1 if arc (i, j)
belongs to a feasible arborescence TSA and zij = 0 otherwise. Let yi, ∀i ∈ V , be a binary variable such
that yi = 1 if node i belongs to TSA and yi = 0 otherwise. The set of constraints that characterizes the
set of feasible solutions of PCStT is given by:∑

(j,i)∈δ−(i)

zji = yi ∀i ∈ VSA\ {r} (3)

∑
(i,j)∈δ−(R)

zij ≥ yk, k ∈ R, ∀R ⊆ VSA \ {r}, R 6= ∅ (4)

∑
(r,i)∈δ+(r)

zri = 1 (5)

Let xe, ∀e ∈ E, be a binary variable such that xe = 1 if edge e belongs to a feasible subtree T (induced
by TSA) and xe = 0 otherwise. The connection between x and z variables is given by

xe = zij + zji ∀e = {i, j} ∈ E (6)

The corresponding set of feasible solutions satisfying these inequalities is given as:

T = {(x,y) ∈ {0, 1}|E|+|V | | (x,y, z) satisfies (3)− (6) and z ∈ {0, 1}|ASA|}.

Constraints (4), also known as cut or connectivity inequalities, are the directed counterpart of undirected
GSECs used in [32]. They ensure that there is a directed path from the root r to each customer k such
that yk = 1. In-degree constraints (3) guarantee that the in-degree of each vertex of the tree is equal
to one. The root-out-degree constraint (5) makes sure that the artificial root is connected to exactly
one of the terminals. In addition, the following inequalities are used to initialize the MIP model:

zrj ≤ 1− yi, ∀i < j, i, j ∈ Vpi>0 (7)∑
(j,i)∈δ−(i)

zji ≤
∑

(i,j)∈δ+(i)

zij , ∀i ∈ Vpi=0. (8)

Constraints (7), the so-called asymmetry constraints, ensure that for each feasible solution the customer
vertex adjacent to the root is the one with the smallest index. Inequalities (8) are the flow-balance
constraints, originally introduced for the Steiner tree problem (see [29]). Constraints (7) cut off sym-
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metric solutions, while constraints (8) improve the quality of lower bounds of the Linear Programming
(LP) relaxation of the MIP model.

In the remainder, let T = (VT , ET ) denote the tree induced by a pair (x,y), such that ET = {e |
xe = 1} and VT = {v | yv = 1}. For simplicity of notation we state that T ≡ (x,y).

2.2 Variants of the PCStT: Budget and Quota PCStT

Two well-known variants of the PCStT are the Budget Constrained PCStT (B-PCStT) and the
Quota Constrained PCStT (Q-PCStT), which are presented for the first time in [26], where also ap-
proximation algorithms and computational studies have been provided.

Given a cost budget B, B ∈ R≥0, representing the maximum total cost allowed for the construction
of the solution, the B-PCStT is defined as

f∗B (T ) = min
T∈T

 ∑
v∈V \VT

pv

∣∣∣∣∣∣
∑
e∈ET

ce ≤ B

 . (9)

Given a prize quota Q, Q ∈ R>0, representing the maximum total prize allowed to be left out of a
solution (or the total prize allowed to be lost), the Q-PCStT is defined as

f∗Q (T ) = min
T∈T

∑
e∈ET

ce

∣∣∣∣∣∣
∑

v∈V \VT

pv ≤ Q

 . (10)

Problem (9) and (10) are natural extensions of the problem that appear in the bi-objective optimization
framework. There are two conflicting goals, namely, minimization of the cost and maximization of the
profit, and typically, one can solve these problems in iterative frameworks by e.g., the weighted sum
approach or ε-constrained based approaches (see, e.g., [17]).

3. Formulations for Robust PCStT and its Variants

3.1 Robust Optimization Approaches

In this paper we consider decision-making environments with a lack of complete knowledge about
the uncertain state of data and instead of dealing with probabilistic uncertainty (as in stochastic opti-
mization, see e.g., [38]) we actually deal with deterministic uncertainty [10]. In contrast to probabilistic
models, that treat the input parameters as random variables, in the deterministic uncertainty models
we assume that the input parameters belong to a known deterministic set. This is in the core of many
real world applications and it is the motivation supporting the robust optimization approaches, where
the essential objective is to find solutions that will have a reasonably good performance (of optimality
and/or feasibility) for all possible realizations of the parameter values.

In the last 20 years several RO models have been proposed, corresponding to different motivations
and conceptual definitions; for a deep and extensive study on the RO we refer the reader to [9]. In
our opinion there are three main characteristics that define the differences among RO models: (1) The
nature of the input data; whether the data belong to e.g., an ellipsoidal set or polyhedral set, a closed
interval, or a set of discrete scenarios; (2) If robustness is considered with respect to the value of the
objective function (robust solution), to the feasibility of the solution (robust model) or both; (3) The
definition of reasonably good performance of a solution, which is what determines the main features of
the model.

In this paper we consider the RO concept by Bertsimas and Sim (B&S) defined in [10] and [11].
This model is considered as one of the most important references in the field of RO. Regarding the
first characteristic mentioned above, this approach tackles interval uncertainty. Regarding robustness,
the B&S model allows to find solutions that are robust in terms of optimality and/or feasibility of
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the solution. The definition of what is a reasonably good performance of a solution is given by the
protection against a pre-defined number of parameters that might be subject to uncertainty.

In this paper we consider interval uncertainty, which means that associated with each input param-
eter there is a closed interval with its lower and upper bounds. Formally, in the case of the PCStT, an
interval [c−e , c

+
e ], such that 0 < c−e ≤ c+

e , is associated with each edge e ∈ E, and an interval [p−v , p
+
v ],

such that 0 ≤ p−v ≤ p+
v is associated with each customer v ∈ Vpi>0. To simplify the notation, we will

define 0 ≤ p−v ≤ p+
v for all nodes v ∈ V , where p−v = p+

v = 0 for potential Steiner nodes v ∈ Vpi=0. Since
we consider deterministic uncertainty, each input parameter can take any value from the corresponding
interval without any specific (or known) behavior and independently of the values taken by the other
parameters. The lower interval values c−e and p−v will be referred to as nominal values, i.e., they are
the values to be considered if the deterministic PCStT is solved. Deviations from the nominal values
are defined as: de = c+

e − c−e , for all e ∈ E and dv = p+
v − p−v , for all v ∈ V . In the following we will

present two ways to derive mathematical programming formulations for the robust counterpart of the
PCStT and of its variants.

The PCStT under interval uncertainty has been considered before in [1]. The authors used an
alternative RO model based on a Risk/Cost trade-off concept defined in [14] and provided polynomial
time algorithms for solving both the PCStT and its robust counterpart on 2-trees. In this context,
our work is complementary since we consider a different RO model and we provide a more general
algorithmic framework focusing on graphs with general structure.

3.2 The B&S Robust PCStT

Suppose that a decision maker wants to solve the PCStT in which the input parameters, edge costs
and node prizes, are subject to interval uncertainty. In many practical applications it is unlikely that
all of edge costs and/or node prizes will present an uncertain behavior at the same time. Therefore,
we assume that only a subset of input data is subject to uncertainty, while the remaining parameters
are fixed to their nominal values. More precisely, the decision maker may assume that only ΓE edges
and ΓV nodes (ΓE ∈ [0,m] and ΓV ∈ [0, n′]) will be subject to uncertainty, although she/he does not
know exactly which they are. Without loss of generality, we will assume that the values of ΓE and ΓV
are integral.

The essence of the model is to find a solution that is “robust” considering all scenarios in which ΓE
edges and ΓV nodes present an adverse behavior. If ΓE = 0 and ΓV = 0, then uncertainty is ignored
and the problem to solve is nothing but the nominal problem, whereas if ΓE = m and ΓV = n′, i.e.,
full uncertainty is assumed, the most conservative robust solution is sought.
Considering the general mathematical programming formulation for combinatorial optimization prob-
lems with interval uncertainty presented in [10], the B&S RPCStT can be formulated as

ROPT (ΓE ,ΓV ) = min
T∈T

∑
e∈ET

c−e + β∗E(ΓE) +
∑

v∈V \VT

p−v + β∗V (ΓV )

 , (11)

where

β∗E(ΓE) = max

 ∑
e∈Ẽ∩ET

de | ∀Ẽ ⊆ E, |Ẽ| ≤ ΓE


and

β∗V (ΓV ) = max

 ∑
v∈Ṽ ∩{V \VT }

dv | ∀Ṽ ⊆ V, |Ṽ | ≤ ΓV

 .

These last two functions are the so-called protection functions and they provide robustness to the
solutions in terms of protection of optimality in presence of a given level of data uncertainty, represented
by ΓE and ΓV .
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An optimal solution for (11) can be interpreted as the one that minimizes the total nominal cost
plus the cost of the maximal ΓE deviations in the cost of the edges of the solution plus the maximal
ΓV deviations in the prizes of the nodes that are not spanned by the solution. If ΓE = m and ΓV = n′,
the solution will obviously correspond to the optimal (worst-case) deterministic solution in which all
edge costs and node prizes will be set to their upper bounds. The flexibility provided by ΓE and ΓV is
the main advantage of the model from the practical point of view, because it allows the decision maker
to include her/his preferences in order to control the level of conservatism of the solutions.

Formulation based on compact robust-constraints:. To find a mixed integer programming formulation
for (11), it is necessary to rewrite protection functions β∗E(ΓE) and β∗V (ΓV ) using auxiliary variables
ue ∈ [0, 1], ∀e ∈ E and uv ∈ [0, 1], ∀v ∈ V , which represent the portion of the corresponding deviation,
de and dv respectively, included into the protection function. We thus obtain

β∗E(ΓE) = max

∑
e∈ET

deue | ue ∈ [0, 1] ∀e ∈ E,
∑
e∈E

ue ≤ ΓE

 (12)

and

β∗V (ΓV ) = max

 ∑
v∈V \VT

dvuv | uv ∈ [0, 1] ∀v ∈ V,
∑
v∈V

uv ≤ ΓV

 . (13)

When considering (12) and (13) it is clear that the objective function of (11) contains two non-linear
nested maximization problems. To overcome this, one can use strong duality. Let T ∗ ≡ (x∗,y∗) be an
optimal tree for (11). Objective functions of problems (12) and (13) can be written as

∑
e∈E dex

∗
eue

and
∑

v∈V dv(1− y∗v)uv, respectively. By strong duality (see, e.g. [10]), we have:

β∗E(ΓE) = min

{
θΓE +

∑
e∈E

he | he + θ ≥ dex∗e and he ≥ 0 ∀e ∈ E, θ ≥ 0

}
(14)

and

β∗V (ΓV ) = min

{
λΓV +

∑
v∈V

kv | kv + λ ≥ dv (1− y∗v) and kv ≥ 0 ∀v ∈ V , λ ≥ 0

}
, (15)

respectively. Combining (11), (14) and (15), we can formulate the B&S RPCStT as the following Mixed
Integer Programming (MIP) model:

ROPT (ΓE ,ΓV ) = min
∑
e∈E

c−e xe + θΓE +
∑
e∈E

he +
∑
v∈V

p−v (1− yv) + λΓV +
∑
v∈V

kv (16)

s.t.

he + θ ≥ dexe, ∀e ∈ E (17)

kv + λ ≥ dv (1− yv) , ∀v ∈ V (18)

he ≥ 0 ∀e ∈ E, kv ≥ 0 ∀v ∈ V and θ, λ ≥ 0 (19)

(x,y) ∈ T . (20)

In this model, variables he, kv, θ and λ are called “robust variables”, while constraints (17) and (18)
are called “compact robust-constraints” as their number is linear in m and n.

Formulation based on robustness cuts:. One can also use Benders decomposition to project out robust
variables from the previous formulation. Since every solution (x,y) ∈ T is feasible for the robust
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counterpart of the problem, only Benders optimality cuts will be needed to describe the robustness of
an optimal solution. These optimality cuts are given by constraints (22) and (23) below:

ROPT (ΓE ,ΓV ) = min
∑
e∈E

c−e xe + Θ +
∑
v∈V

p−v (1− yv) + Λ (21)

s.t.

Θ ≥
∑
e∈S

dexe, ∀S ⊆ E, |S| ≤ ΓE (22)

Λ ≥
∑
v∈R

dv(1− yv), ∀R ⊆ V , |R| ≤ ΓV (23)

Θ,Λ ≥ 0 (24)

(x,y) ∈ T . (25)

In this model, additional variables Θ and Λ and constraints (22) and (23) allow to model the two
nested maximization problems β∗E(ΓE) and β∗V (ΓV ), respectively. Constraints (22) and (23) are called
“robustness cuts”. In this model we enforce robustness by working directly on the space of variables
(x,y) at the expense of adding an exponential number of robustness constraints. In Section 4, we
will show that these constraints can be separated in polynomial time. In Section 5 we will provide
a computational study comparing the practical performance of the compact robust constraints versus
these robustness cuts. In [18], the authors have proposed to use robustness cuts for modeling robust
linear optimization problems with uncertainty in the constraint parameters.

3.3 The B&S Robust NW-PCStT and equivalences

It is known that for the deterministic case the connection between f(T ) and fNW (T ) is given as

fNW (T ) = f(T )−
∑
v∈V

pv,

i.e., the two formulations of deterministic GW-PCStT and NW-PCStT find the same solution because
the sum of node revenues is constant. However, when node revenues are subject to interval uncertainty
and a B&S robust solution is sought, this sum is not constant anymore. In this case, the robust
counterpart of the NW-PCStT is essentially solving a different problem. To better understand this
difference, assume for a moment that edge costs are deterministic. Recall now that in the robust
counterpart of the GW-PCStT, nominal values for node revenues are set to conservative lower bounds
and, therefore ROPT corresponds to a potential increase of revenues, which a decision maker can miss.
On the other hand, conservative setting for the node revenues in the robust NW-PCStT case is to
assume the values are set to their upper bounds, p+

v , for all v ∈ V .
By following the same ideas presented above for the GW-PCStT, the B&S Robust counterpart of

the NW-PCStT is defined as:

ROPTNW (ΓE ,ΓV ) = min
(x,y)∈T

{∑
e∈E

c−e xe + β∗E(ΓE)−

(∑
v∈V

p+
v yv − η∗V (ΓV )

)}
(26)

where

η∗V (ΓV ) = max

{∑
v∈V

dvuv |
∑
v∈V

uv ≤ ΓV , uv ∈ [0, 1] ∀v ∈ V

}
.

In other words, when assuming deterministic edge costs, ROPTNW corresponds to a potential decrease
of revenues, that the decision maker can experience. It can be easily seen from (26) that larger values
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of ΓV will increase the total value of the solution (i.e., decrease the total revenue) as it is expected
in this RO model. A MIP formulation can be obtained accordingly by following the same procedure
explained for the GW-PCStT.

Despite the fact that these two robust formulations essentially model different problems, the next
result shows that in particular cases the two formulations are the same.

Observation 1. For a fixed value of Γ̃E ∈ [0,m], and ΓV ∈ {0, n′}, the robust counterparts of the
GW-PCStT and of the NW-PCStT are equivalent, i.e., they produce identical optimal subtrees. The
following connection exists between the corresponding objective values:

ROPTNW (Γ̃E , 0) = ROPT (Γ̃E , n
′)−

∑
v∈V

p+
v

and
ROPTNW (Γ̃E , n

′) = ROPT (Γ̃E , 0)−
∑
v∈V

p−v .

3.4 The B&S Robust B-PCStT and Q-PCStT

In the case of both the GW-PCStT and the NW-PCStT, uncertainty is present only in the coef-
ficients of the objective function, which means that their robust counterparts provide protection with
respect to the optimality of the solutions. However, in the case of the B-PCStT and if the Q-PCStT,
the presence of uncertainty in edge costs and in node prizes affects not only their corresponding objec-
tive functions but also their budget and quota constraints, respectively. Therefore, for a given level of
uncertainty, the robust counterpart of these problems should not only provide protection in terms of
optimality but also in terms of feasibility.

Adopting the ideas presented in the previous sections, the Robust B&S Budget Constrained PCStT
(B-PCStT), is defined as:

ROPTB = min
(x,y)∈T

{∑
v∈V

p−v (1− yv) + β∗V (ΓV )

∣∣∣∣∣∑
e∈E

c−e xe + β∗E(ΓE) ≤ B

}
.

According to the previous section, for a given description T of the deterministic problem, one can
consider four possible ways to derive a valid MIP model for this robust counterpart of the problem.
The objective function can be modeled using compact or Benders robust constraints. But also the
budget constraint can be modeled using one or the other variant. To model the budget constraint
using Benders reformulation, we will need to insert the following family of inequalities into the MIP:∑

e∈E
c−e xe +

∑
e∈S

dexe ≤ B ∀S ⊆ E, |S| ≤ ΓE (27)

These cuts are similar to (22) (see also [18]).
Similarly, the Robust B&S Quota Constrained PCStT (Q-PCStT), is defined as:

ROPTQ = min
(x,y)∈T

{∑
e∈E

c−e xe + β∗E(ΓE)

∣∣∣∣∣∑
v∈V

p−v (1− yv) + β∗V (ΓV ) ≤ Q

}

and again one can consider four ways of deriving a MIP model for this problem.

4. Branch-and-Cut Algorithms

The MIP formulations considered throughout this paper cannot be solved directly, even for small
instances, since there is an exponential number of connectivity constraints of type (4) and, in addition,
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if Benders cuts are used to model the protection functions, there is also an exponential number of
robustness cuts to be considered. Consequently, more sophisticated and specific techniques should be
designed and implemented to solve these models.

In this section we propose three ways to develop a branch-and-cut (B&C) algorithm for solving
the robust PCStT and its budget and quota constrained variants. We will explain the main ideas for
solving the RPCStT, and a similar scheme needs to be applied in order to solve the B-RPCStT or the
Q-RPCStT.

B&C with Compact Robust Constraints (Compact):. In this approach, we are solving the MIP model
in which the deterministic model (3)-(8) is extended by a compact set of auxiliary variables and
constraints (17)-(19) that model the protection functions (cf. Section 3.2). In this approach, only
connectivity constraints will be separated within a B&C framework. The separation algorithm is an
adaptation of the exact approach presented in [31]. The MIP initially contains all variables and the
constraints (3), (5)-(8). In addition, we explicitly insert the subtour elimination constraints of size 2:

xij + xji ≤ yi, ∀i ∈ VSA\ {r} , j ∈ δ+(i)

to avoid too frequent calls of the maximum flow procedure. The connectivity constraints are separated
within the B&C framework by means of the maximum flow algorithm given in [15]. This separation
randomly selects a terminal i ∈ Vpi>0, calculates the maximum flow between an artificial root and i
and inserts the corresponding (4), if violated. Instead of adding a single violated cut per iteration, we
use nested, back-flow and minimum cardinality cuts to add as many violated cuts as possible (see [29]
for details). We restrict the number of inserted cuts within each separation callback to 25.

B&C with Separation of Robustness Cuts (R-Cuts):. In this approach, we consider the MIP model in
which protection functions are modeled by means of robustness cuts of type (22) and (23). We initialize
the model using only the following bounds for Θ and Λ variables:

Θ ≤
∑
e∈S∗ΓE

de and Λ ≤
∑
e∈S∗ΓV

dv

where S∗ΓE
(S∗ΓV

) is the subset of edges (nodes) containing ΓE (ΓV ) edges (nodes) with largest deviations.
The correctness of the bounds comes from the fact that both Θ and Λ accumulate the deviations of
the nominal costs for the solution edges and for the nodes left out of the solution, respectively.

The separation problem for robustness cuts of type (22) is as follows: given the current LP solution
(x̂, ŷ, Θ̂, Λ̂), find a set S ⊆ E such that |S| ≤ ΓE and

∑
e∈S dex̂e is a maximum. Assume that a subset of

edges S∗ satisfies these properties. If
∑

e∈S∗ dex̂e > Θ̂, the current LP solution violates constraint (22)
and hence we insert the cut Θ ≥

∑
e∈S∗ dexe into the model. To determine the set S∗, we associate

with each edge e ∈ E a weight we = dex̂e. The separation problem consists in finding the subset of
edges of size ΓE with the maximum weight, which can be done in O(|E|) time (see also [18]). This idea
was first implemented in [18] in the context of robust optimization for linear and integer programming
under uncertainty. The authors report a remarkable improvement in the running times when using
these robustness cuts in the formulations and separation framework instead of a compact formulation.

Robustness cuts are added on the fly, within the B&C framework, i.e., we are not waiting to find an
LP-solution that satisfies all the connectivity cuts. Instead, within one separation callback, we insert
all the violated connectivity cuts detected plus the (one or two) robustness cuts associated with (22)
and (23).

B&C with Separation of Robust Compact Constraints (C-Cuts):. We have observed that not all of
compact constraints associated with a protection function are tight in an optimal solution. On the other
hand, when the number of nodes and/or edges increases, the size of the compact block of constraints
associated with β∗V (ΓV ) or β∗E(ΓE) may become a bottleneck of the implementation. Therefore, instead
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of inserting all these constraints at once, we propose to separate them within a B&C framework. We
start with an LP model in which there are no constraints associated with robust variables, except the
following ones: ∑

e∈E
he + θ ≤

∑
e∈S∗ΓE

de and
∑
v∈V

kv + λ ≤
∑
v∈S∗ΓV

dv

and
θ ≤ d∗e and λ ≤ d∗v

where S∗ΓE
(S∗ΓV

) has been described above, and d∗e and d∗v are the largest edge and node deviations,
respectively.
The separation of constraints (17) can be stated as follows: given an LP-solution (x̂, ŷ, ĥ, k̂, θ̂, λ̂), find
a set Ê ⊆ E of maximum cardinality for which ĥe + θ̂ < dex̂e ∀e ∈ Ê and insert the corresponding
constraints of type (17). Of course, the separation of constraints (17) and (18) can be performed in
O(|E|) and O(|Vpi>0|) time, respectively.

Within the B&C framework we first separate all the connectivity constraints (4), and once we find
an optimal LP solution, we find a subset of violated compact robust constraints, and insert all of them
at once into the current LP.

5. Computational Results

Benchmark Instances. In our computational experiments four sets of benchmark instances have been
tested: C, D, K and P. These instances have been used in most of the papers discussing algorithm design
for the PCStT ([32],[31],[35]). Instances of group P were introduced in [26] – they are unstructured
and designed to have constant node degree and a constant prize/cost ratio. Group K are randomly
generated geometric graphs designed to have a structure similar to street maps [26]. Groups C and D

were presented in [13]. These two groups of instances are derived from the instances of the Steiner tree
problem provided in the OR-Library [8].

Groups C and D are composed by 40 instances with 500 and 1000 nodes respectively, and the
number of edges goes from 625 to 12500 and from 1250 to 25000 respectively. Group P is composed
by 11 instances with 100, 200 and 400 nodes and the number of edges goes from 300 to 1185. Finally,
group K is formed by 23 instances with 100, 200 and 400 nodes and the number of edges goes from 344
to 1493. For more details on the description of instances see Table 7 in the on-line supplement.

Given an original instance Prob for the deterministic PCStT, the corresponding robust instance,
named Prob-α-β, (α ∈ [0, 1] and β ∈ [0, 1]) is derived as follows: the number of nodes and edges are left
unchanged. Lower limits for intervals defining edge costs and node prizes are set to the corresponding
deterministic values ce and pv, i.e., c−e = ce ∀e ∈ E and p−v = pv ∀v ∈ V . The upper limit of edge costs,
c+
e is set to (1 + α)ce ∀e ∈ E. Similarly, the upper limit of node prizes, p+

v , is set to (1 + β)pv ∀v ∈ V .
Parameters α and β allow to control the width of the corresponding intervals and, consequently, the
level of uncertainty of the problems.For our experiments we consider α = β = 0.05, which means that
both edge costs and node prizes present a deviation equal to the 5% of their corresponding nominal
values. In preliminary experiments we also considered deviations of 1% and 2.5%, however, these
instances did not allow to clearly show the impact of considering higher levels of uncertainty on both
the solution structure and the algorithm performance. A deviation of 5% is in the middle of the values
considered in most of the literature which range from 1% up to 10% (see [10], [11] and [18], among
other papers). There are other criteria to produce interval data instances from deterministic instances;
for example, see [33].

Reduction Tests. Reduction tests for the deterministic PCStT have been implemented in [13], [32], [31]
and [37]. It has been demonstrated that the utilization of some of these preprocessing procedures can
lead to remarkable improvements of the algorithmic performance. For our interval data instances we
have adapted one of these reduction tests, which is described in the following.
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Robust Least-cost Test. Let SPij(ΓE) be the cost of the B&S robust shortest path between a pair of
nodes i and j calculated for ΓE in G. If there is an edge e connecting i and j such that SPij(ΓE) ≤ c−e ,
then edge e can be eliminated from G.

Since the calculation of SPij(ΓE) requires O(m) shortest path calculations (cf. Bertsimas and Sim
[10]), in our implementation we have used only a weaker variant of this test in which SPij(ΓE) is
replaced by SPij(|E|). Although somehow conservative, this reduction criterion provides a unique
reduced graph valid for any value of ΓE < |E| when solving the RPCStT or any of its variants. For
larger instances, the reduced graphs have less than 50% of the original number of edges. It is important
to observe that applying this test requires only a few seconds even for large instances. It turned out
that the other robust reduction tests cannot be easily derived from their deterministic counterparts –
an illustrative example is a degree two test on a potential Steiner node. After merging two edges and
two intervals into one, we basically obtain a new edge whose interval contains an extra break point
that is needed to model 0, 1 or 2 deviations from the nominal edge costs.

Machine and Implementation. All the experiments were performed on a Intel Core2 Quad 2.33 GHz
machine with 3.25 GB RAM, where each run was performed on a single processor. The Branch-and-
cut algorithms are implemented using CPLEX 12.2 and Concert Technology. All CPLEX parameters
were set to their default values, except the following ones: (i) Branching: we set the highest branching
priorities to variables yv, v ∈ Vpi>0; (ii) Emphasis: this parameter was set to optimality. (iii) Maximum
Running Time was set to 500 seconds.

In the following tables and figures, the running times are expressed in CPU seconds.

5.1 The Price of Robustness

As mentioned above, the Price of Robustness corresponds to the increase of the cost of a robust
solution with respect to the nominal cost when increasing the level of robustness, i.e., when increasing
the values of ΓE and ΓV . In Table 1 we report the relative increase of the cost of the solutions,
∆ROPT (%), for different combinations of ΓE and ΓV . ∆ROPT (%) is defined as (ROPT − OPT ) ∗
100/OPT , where ROPT and OPT are the optimal values2 of the robust and of the nominal solution,
respectively. We consider 16 settings obtained by combining ΓV ,ΓE ∈ {0, 5, 20, 50}. Since we chose
α = β = 0.05 for generating the instances, we would expect ∆ROPT (%) to be always not greater than
5%. The difference between 5% and ∆ROPT (%) can be seen as the level of protection provided by the
robust model and the chosen values of ΓE and ΓV . From the information reported in Table 1, two main
observations can be made: (i) the B&S model seems to provide more protection against uncertainty to
groups C and D than to groups K and P, and (ii) in the case of groups C, D and P, parameter ΓE has a
stronger impact on the price of robustness than ΓV , while in the case of group K, parameter ΓV is the
one with a stronger influence on the price of robustness.

Both observations can be explained by considering the relation between the particular values of
ΓE and ΓV and the size of the obtained solutions, whose statistics are given in Table 7 in the on-line
supplement. In the case of C, D and P instances, the mean number of edges in the solutions is almost
always greater than the chosen values of ΓE , which means that in many cases the cost of some edges
in the solution will remain within the corresponding lower limit, which explains why, for a given ΓV ,
the average value of ∆ROPT (%) does not reach 5% even when ΓE = 50. When comparing the mean
number of customer nodes in the instances and the mean number of customer nodes connected by the
solutions for groups C and D (see Table 7), it can be easily seen that, on average, many customer nodes
are connected, which means that the number of non-connected customers, i.e., those nodes whose prizes
and deviations are added in the objective funcion, is generally smaller than ΓV = 50. This explains
why, for a given value of ΓE , a variation of ΓV does not strongly increase the value of ∆ROPT (%).

2In case that none of the exact approaches was able to find an optimal solution within the specified time limit, we
used the final upper bound to calculate ∆ROPT (%), which is a good approximation considering the quality of the gaps.
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∆ROPT (%)
C D K P

ΓE ΓV min mean max min mean max min mean max min mean max

0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 5 0.00 0.71 5.00 0.00 0.62 5.00 0.67 2.02 3.74 0.36 0.66 1.74

0 20 0.00 0.95 5.00 0.00 0.81 5.00 1.79 3.54 5.00 0.45 0.94 1.89

0 50 0.00 1.11 5.00 0.00 0.93 5.00 1.79 4.07 5.00 0.45 0.98 1.89

5 0 0.00 0.78 3.00 0.00 0.60 3.10 0.00 0.39 1.73 0.46 0.96 1.92

5 5 0.15 1.49 5.00 0.03 1.22 5.00 0.98 2.42 4.41 0.89 1.65 2.87

5 20 0.15 1.72 5.00 0.05 1.41 5.00 2.50 3.99 5.00 1.25 1.93 3.03

5 50 0.15 1.89 5.00 0.06 1.54 5.00 2.67 4.52 5.00 1.25 1.96 3.03

20 0 0.00 1.82 5.00 0.00 1.46 5.00 0.00 0.65 1.98 1.38 2.45 4.00

20 5 0.43 2.53 5.00 0.19 2.16 5.00 0.98 2.72 4.84 1.83 3.18 4.74

20 20 0.43 2.77 5.00 0.20 2.34 5.00 3.05 4.30 5.00 2.23 3.47 5.00

20 50 0.43 2.93 5.00 0.19 2.48 5.00 3.78 4.88 5.00 2.23 3.50 5.00

50 0 0.00 2.39 5.00 0.00 1.88 5.00 0.00 0.73 2.51 2.50 3.34 4.44

50 5 0.72 3.12 5.00 0.47 2.62 5.00 0.98 2.81 4.84 3.01 4.10 5.00

50 20 0.97 3.36 5.00 0.47 2.81 5.00 3.05 4.40 5.00 3.49 4.40 5.00

50 50 0.98 3.53 5.00 0.47 2.95 5.00 4.92 4.99 5.00 3.49 4.44 5.00

Table 1: Basic statistics of ∆ROPT (%) (Price of Robustness) for different values of ΓE and ΓV , groups C, D, K
and P.

In the case of group P, particularly for instances P400.{0-4}, the ratio between the connected versus
non-connected customers might be a little bit smaller that in the case of C and D, which explains why
∆ROPT (%) can be as high as 4.44% for the maximum values of ΓE and ΓV .

In contrast to what happens for C, D and P groups, in the case of instances of group K, most
of the solutions are on average relatively small, which explains why the mean value of ∆ROPT (%)
can reach almost 5% for large values of ΓE and ΓV . The particular Euclidean geometric topology of
these instances might also give hints to understand these results; nodes are ”locally connected” within
a neighborhood, so despite the increase in the prize of non-connected nodes these are not reached
because there are no direct connections between a given component and these attractive nodes, which
increases the overall cost of the solution.

To look deeper into the impact of ΓE and ΓV on the structure of the solutions, Figures 1(a) and 1(b)
show two optimal solutions obtained for the instance K400.4-0.05-0.05 for ΓE = 0, ΓV = 50 and
for ΓE = 50, ΓV = 0, respectively. The ROPT value of the first solution is 403 036 while the cost of
the second is 393 919, which represents a relative difference of only 2.3% although the structure of the
solutions are quite different; just as a reference, the value of ROPT for ΓE = 0 and ΓV = 0 is 389 451.
These two figures put in evidence the capability of the B&S model to produce very different robust
solutions for different levels of conservatism, and, at the same time, to provide a guarantee of protection
in terms of the relative increase of the solution cost. This important feature of the model offers the
possibility to choose a solution according the perception of the uncertain state of the decision-making
environment.

5.2 Algorithmic performance

As mentioned before, to solve the RPCStT we used three different B&C strategies: Compact,
Robustness-Cuts and Compact-Cuts. The performance of these different approaches depends not only
on the instance group, and the size of the instances therein, but also on the particular selection of the
parameters ΓE and ΓV .

Figure 2(a) shows the cumulative percentage of instances of group C solved to optimality within a
fixed time limit of 500 seconds. We compare the three different approaches for 16 settings across all
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(a) ΓE = 0 and ΓV = 50 (b) ΓE = 50 and ΓV = 0

Figure 1: Optimal solutions for the instance K400.4-0.05-0.05

values of ΓE ,ΓV ∈ {0, 5, 20, 50} and across all the 40 instances of group C. From this figure we conclude
that the Compact strategy seems to be the best approach for this group since a larger percentage of
instances can be solved within smaller running times than those of the other two approaches. However,
we also observe that Compact-Cuts approach behaves similarly. To solve 90% of the instances, the
Compact approach requires less than 30 seconds, Compact-Cuts slightly more than 30 seconds, and
Robustness-Cuts more than 400 seconds. To solve an extra 5% of instances, the Compact approach
requires about 300 seconds, while both Compact-Cuts and Robustness-Cuts reach the time limit (500
seconds) for most of them. Overall, the Robustness-Cut approach presents a performance clearly worse
than that of the Compact-Cuts, and the Compact-Cuts is outperformed by the Compact approach.

To complement the previous analysis, Figure 2(b) shows the cumulative percentage of solved in-
stances considering four different combinations of ΓE and ΓV for the Compact approach only. We can
see that for the nominal case (ΓE = 0 and ΓV = 0), the Compact approach can solve to optimality
all the instances within just a few seconds. However, when increasing the values of ΓE and ΓV , the
running times begin to increase quickly, and even for ΓE = 5 and ΓV = 5 there are a few instances
that cannot be solved to optimality within 500 seconds. Further increasing of the values of ΓE and ΓV
produces a severe deterioration of the algorithmic performance. For example, when taking ΓE = 50
and ΓV = 50, almost 15% of the instances can not be solved to optimality within the given time limit.
Hence, this is another aspect of the price of robustness: obtaining more robust solutions, in terms that
they provide more protection against uncertainty, requires willingness to accept higher running times
to calculate the optimal solutions.

Tables 2-5 provide more detailed statistics for the four groups of instances and the three algorithmic
approaches. On the left hand side, we report statistics on the running times considering only those
instances that can be solved to optimality within 500 seconds by all the three approaches. On the right
hand side, we provide statistics for the remaining problems (i.e, for those that can not be solved to
optimality by at least one of the approaches). For each approach, we report the number of instances
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Figure 2: Cumulative percentage of the total number of solved instances of group C within 500 seconds.

that are not solved within the time limit (over the total number of instances) and the statistics on
the final gap (calculated with respect to the lower bound) over these problems. These statistics on
the running times, along with the number of times that an optimal solution cannot be found in less
than 500 seconds, indicate that, for the three approaches and across the four family of instances, there
is an apparently small number of cases (given by a particular combination of ΓE and ΓV ) that are
intractable under the algorithms used.

Although optimality is not always verified (especially for the Robustness-Cuts approach), the quality
of the solutions obtained when reaching the time limit is remarkably good, as it can be seen from the
statistics on the final gaps. The values of the median and the mean of the gaps in Tables 2-5 indicate
that the chosen formulations and approaches guarantee that solutions of a good quality can be obtained
within a reasonable running time, in case that they are not optimal. This observation complements
the analysis of Figure 2(b).

Running times statistics (t ≤ 500 s) Gaps (%) statistics (t > 500 s)
Approach Min Median Mean Max # Min Median Mean Max
Compact 0.063 0.969 6.210 275.600 32/640 0.000 0.009 0.038 0.618
R-Cuts 0.031 0.773 12.380 419.200 63/640 0.000 0.223 0.287 0.817
C-Cuts 0.047 1.320 7.106 318.800 35/640 0.000 0.019 0.024 0.297

Table 2: Algorithmic performance statistics for group C

Running times statistics (t ≤ 500 s) Gaps (%) statistics (t > 500 s)
Approach Min Median Mean Max # Min Median Mean Max
Compact 0.156 5.719 23.690 407.200 87/640 0.000 0.029 0.048 0.327
R-Cuts 0.141 4.484 27.690 476.600 127/640 0.000 0.095 0.132 1.745
C-Cuts 0.141 8.297 30.430 402.600 96/640 0.000 0.047 0.060 0.609

Table 3: Algorithmic performance statistics for group D

Further information about algorithmic performances is presented in the on-line supplement (Ta-
bles 8 - 11). The evolution, over time, of the gap between lower and upper bounds in the B&C tree for
a subset of the most difficult instances is also analyzed in the supplementary document.

The overall superiority of the Compact approach might be explained by the fact that from the
beginning of the optimization process the underlying LP contains complete information regarding
the robustness of the solution. Although at the root node we obtain tight bounds even if we consider
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Running times statistics (t ≤ 500 s) Gaps (%) statistics (t > 500 s)
Approach Min Median Mean Max # Min Median Mean Max
Compact 0.047 1.156 10.680 133.000 0/368 0.000 0.000 0.000 0.000
R-Cuts 0.047 0.766 13.270 476.500 3/368 0.020 0.059 0.064 0.114
C-Cuts 0.031 0.719 11.190 197.400 0/368 0.000 0.000 0.000 0.000

Table 4: Algorithmic performance statistics for group K

Running times statistics (t ≤ 500 s) Gaps (%) statistics (t > 500 s)
Approach Min Median Mean Max # Min Median Mean Max
Compact 0.031 0.180 0.974 8.703 0/176 0.000 0.000 0.000 0.000
R-Cuts 0.031 0.297 4.622 84.200 0/176 0.000 0.000 0.000 0.000
C-Cuts 0.031 0.242 1.731 20.380 0/176 0.000 0.000 0.000 0.000

Table 5: Algorithmic performance statistics for group P

Robustness- or Compact-Cuts, after starting the branching process, a large sequence of re-optimizations
(each time that a number of cuts is inserted we need to solve the underlying LP) deteriorates the
optimization process entailing higher running times. In particular, in the case of Robustness-Cuts
the convergence of the values of Θ and Λ becomes slower, i.e., more cuts have to be added and more
branch-and-bound nodes have to be enumerated in order to reach optimal values. The combination
of these two elements is responsible for the poor performance of this approach with respect to the
others. A similar observation is pointed out in [18] when analyzing the performances of the compact
formulation and Robustness-Cuts to solve generic MIP problems.

5.3 Results for the Robust B-PCStT

In order to complement the analysis of the computational results presented for the RPCStT, we
developed a similar experimental framework for the robust counterpart of the B-PCStT which, as we
mentioned before, is an important variant of the PCStT. Because of the restriction on the length of the
paper, we only present results obtained for group P and for eleven instances (K100.{0-10}) of group K.

As part of the Robust B-PCStT model, it is necessary to provide a given budget B, which represents
the maximum allowed sum of the edge costs, considering uncertainty, that the decision maker is willing
to pay. Since different instances, even within the same group, have different cost structures, a given
value of B might not be suitable for all of them, so it is necessary to establish a fair criterion to define
appropriate values of B. In order to do so, we set the budget to be a percentage of a potential maximum
robust budget value Bmax, associated with each particular instance. If the input graph is connected,
Bmax represents the cost of the optimal robust Steiner tree in which all the customers are connected
and the cost of at most ΓE edges is allowed to deviate from its nominal value. If the input graph is not
connected, Bmax is the cost of the robust Steiner subtree connecting as many customers as possible.
To calculate the value of Bmax, we set the node prizes to a big-M -value and ΓE to 50, and use one
of the algorithms for the RPCStT proposed before. The selected value of ΓE = 50 ensures feasibility
for all the other values of ΓE as long as they are not greater than 50, which is the maximum value we
consider for this parameter in our experiments. We note that it was necessary to set the node prizes
to a big-M -value, instead of simply adding the constraints yv = 1 ∀v ∈ Vp−v ≥0 into the MIP model,
because the considered instances are not necessarily connected.

B&C Variants. Since there are more alternatives to formulate the Robust B-PCStT as a MIP, there
are also more alternatives to design a B&C algorithm. Besides the separation of the connectivity in-
equalities, we have considered four alternatives to manage the different types of robust constraints: (i)
B&C using the compact robust constraints of type (17) and (18) (Compact); (ii) B&C with separa-
tion of the robustness cuts of type (27) and type (23) including variable Λ in the objective function
(Robustness-Cuts); (iii) B&C with separation of the robust compact constraints of type (17) and (18)
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(Compact-Cuts); (iv) B&C with separation of the robustness cuts of type (27) but including all the
compact constraints of type (18) (Robustness-Cuts + Compact).
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Figure 3: Values of ROPTB for different values of B, ΓE and ΓV , instance K100.10-0.05-0.05

The Price of Robustness. In Figure 3 the value of ROPTB is reported for different values of the budget
B and for four different combinations for ΓE and ΓV for instance K100.10-0.05-0.05. As expected,
and independently of the values of ΓE and ΓV , there is a monotone decrease of the value of the objective
function (recall that this is the sum of the prizes of the nodes that are not connected) when increasing
the value of the available budget. When considering a particular value of B, we observe that the
differences of ROPTB, among different values of ΓE and ΓV , do not present a clear pattern as in
the case of the RPCStT. This can be explained by the fact that ΓE is not included in the objective
function but in the budget constraint, so it has an indirect influence on the objective function value. For
example, when considering a budget given by 25% of Bmax, the four considered combinations produce
significantly different values of ROPTB; while for a budget given by 90% of Bmax, the four values of
ROPTB are almost the same. Another characteristic that we can observe, is that for tight budgets
(0% - 20%) the value of ΓV has more impact on the model than ΓE , while for large budgets (80% -
100%) it is just the opposite.

As this was the case for the RPCStT, the latter behaviors are related to the size of the corresponding
optimal solution and to its interaction with the problem parameters B, ΓE and ΓV . For a tight budget,
an optimal solution is made up of only a few edges and many customer nodes are left unconnected,
which explains why increasing the value of ΓV strongly increases the value of the objective function,
while increasing ΓE barely produces changes since only a few edges can be taken into account. On the
other hand, for a large budget, most of the customers are connected and an increase of ΓV might not
significantly affect the value of ROPTB, but increasing ΓE will indeed strongly influence the value of
ROPTB because the budget feasibility will enforce a solution of a smaller cardinality, i.e., it will be
necessary to “disconnect” some customers and consequently the value of ROPTB will be increased. An
example that illustrates these dependencies is shown in Figure 10 in the on-line supplement.

Algorithmic Performance. Figure 4(a) shows the cumulative percentage of instances of group P solved
to optimality within time t with a time limit of 500 seconds, comparing the four approaches described
above. In a more detailed plot (see Figure 4(b)), only the Compact and Compact-Cuts approaches
are compared. We observe that the Compact and Compact-Cuts approaches are substantially better
than the other two approaches (which are both based on the utilization of Robustness-Cuts). For
example, to solve 95% percent of the instances of group P, the Compact approach needs less than 20
seconds, Compact-Cuts less than 30 seconds, while the other two approaches need almost 150 seconds
to solve the same percentage of instances. Moreover, in a small number of cases (less than 2%), the
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Figure 4: Cumulative percentage of the average number of solved instances of group P within t = 500 seconds
considering different values of B ∈ {0, 5, 10, . . . , 95, 100}Bmax%, and ΓE ,ΓV ∈ {0, 5, 20, 50}.

Robustness-Cuts and Robustness-Cuts + Compact approaches reach the time limit without being able
to find optimal solutions within the given time limit.

More details about the running times needed to solve the instances, as well as the statistics on
the gaps for those instances where at least one of the approaches failed to find an optimal solution,
are reported in Table 6. For group P, the Compact approach is the best in terms of average running
times. However, the Compact-Cuts approach has a similar performance and provides better minimum
and median running times, but a few outliers (see Figure 4(b)) deteriorate the overall statistics. The
same table shows that, in 14 out of 1056 cases, the Robustness-Cuts and Robustness-Cuts + Compact
approaches do not solve the instances to optimality, but provide very small final gaps.

Running times statistics (t ≤ 500 s) Gaps (%) statistics (t > 500 s)
Approach Min Median Mean Max # Min Median Mean Max
Compact 0.031 0.500 3.621 65.831 0/1056 0.000 0.000 0.000 0.000
R-Cuts 0.031 0.546 16.450 477.900 14/1056 0.000 0.417 0.671 1.811
C-Cuts 0.015 0.453 4.791 162.100 0/1056 0.000 0.000 0.000 0.000

R-Cuts+C 0.015 0.546 16.630 486.000 14/1056 0.000 0.811 0.836 2.332

Table 6: Algorithmic performance statistics for group P (Robust B-PCStT).

Comparing the statistics for the RPCStT (see Table 5) with the results presented in Table 6 for
the Robust B-PCStT, we may conclude that the Robust B-PCStT is a considerably more complex
problem. With an inclusion of a budget constraint the search for an optimal solution becomes a more
difficult numeric task. The influence of the budget level on the algorithmic performance is shown in
Figure 5, where the average running times over all the instances of group P are displayed for different
budget levels and different values of ΓE and ΓV . Our first observation is that, independently of the
values of the budget, increasing values of ΓE and ΓV directly influence the running times as it was
the case of the RPCStT (see Figure 2). However, budgets levels set between [0%, 25%] or [75%, 100%]
entail a better algorithmic performance than those taken from [25%, 75%], and the influence of ΓE and
ΓV is more accentuated in the latter case.

These relations between the running times and the budget levels can be explained by the way how
different values of B reduce the space of feasible solutions. Tight budgets, let us say [0%, 25%], strongly
limit the set of feasible solutions, i.e., they usually correspond to small trees connecting a few customer
nodes. Therefore, and considering that most of the P instances are sparse graphs (see Table 7 in the on-
line supplement), the optimal solutions can be quickly obtained. On the other hand, optimal solutions
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for large budgets, as those defined by [75%, 100%], will be usually comprised by almost all the customer
nodes; hence, solutions will be similar to the robust Steiner tree connecting those customers, which
explains the decrease of the running times. On the contrary, for B chosen from [25%, 75%] of Bmax, the
combinatorial nature of the problem seems to have more influence on the algorithmic performance and
there are more solutions, probably each of them with a very different structure, that might verify the
optimality. Consequently, the computational effort to find an optimal solution is greater as illustrated
in Figure 5.
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Figure 5: Average running times for group P for different values of B ∈ {0, 5, 10, . . . , 95, 100}Bmax, and the four
selected combinations of (ΓE ,ΓV ).

A similar analysis of the results obtained for instances K100.{0-10} (see Figure 9 and Table 12
in the on-line supplement) lead us to conclude that the Compact-Cuts approach is the best one, both
in terms of average and median running times. Once more, the Robustness-cuts based approaches do
not seem to be competitive although they solve to optimality all instances within the given time limit.
Consequently, we may say that both the Compact and Compact-Cuts approaches are the most effective
ones for solving the robust B-PCStT for the considered instances.

6. Improved B&S Algorithms for the RPCStT and its Variants

Although in this paper we presented MIP-based exact approaches for solving the robust counterparts
of the PCStT and of its variants, it is also possible to solve them by successively solving a finite number
of classical instances of the corresponding problem. The next corollaries are derived from the more
general results presented in [3]. To apply the results below, we assume that the customers and the
edges are sorted in non-increasing order with respect to their deviations, i.e., d1 ≥ d2 ≥ d3 . . . and the
last deviations dn′+1 (for the customers) and dm (for the edges) are set to zero.

Lemma 1. Given ΓE ∈ {0, . . . ,m} and a given ΓV ∈ {0, . . . , n′}, the B&S Robust Counterpart of the
GW-PCStT can be solved by solving (n′ − ΓV + 2)(m− ΓE + 2) nominal problems

ROPT (ΓE ,ΓV ) = min
a∈{ΓE ,...,m+1}
b∈{ΓV ,...,n′+1}

Ga,b,

where for a ∈ {ΓE , . . . ,m+ 1} and b ∈ {ΓV , ..., n′ + 1}:

Ga,b = ΓEda + ΓV db + min
(x,y)∈T

(∑
e∈E

c−e xe +

a∑
e=1

(de − da)xe +
∑
v∈V

p−v (1− yv) +

b∑
v=1

(dv − db) (1− yv)

)
.

19



Lemma 2. Given ΓE ∈ {0, . . . ,m} and ΓV ∈ {0, . . . , n′}, the Robust B&S B-PCStT can be solved by
solving (n′ − ΓV + 2)(m− ΓE + 2) nominal problems

ROPTB (ΓE ,ΓV ) = min
a∈{ΓE ,...,m+1}
b∈{ΓV ,...,n′+1}

Ga,bB , (28)

where for a ∈ {ΓE , ...,m+ 1} and b ∈ {ΓV , ..., n′ + 1}

Ga,b = ΓV db + min
(x,y)∈T

(∑
v∈V

p−v (1− yv) +

b∑
v=1

(dv − db)(1− yv)

∣∣∣∣∣∑
e∈E

c−e xe +

a∑
e=1

(de − da)xe + ΓEda ≤ B.

)

Lemma 3. Given ΓE ∈ {0, . . . ,m} and ΓV ∈ {0, . . . , n′}, the Robust B&S Q-PCStT can be solved by
solving (m− ΓE + 2)(n′ − ΓV + 2) nominal problems

ROPTQ (ΓE ,ΓV ) = min
a∈{ΓE ,...,m+1}
b∈{ΓV ,...,n′+1}

Ga,bQ , (29)

where for a ∈ {ΓE , ...,m+ 1} and b ∈ {ΓV , ..., n′ + 1}

Ga,b = ΓEda + min
(x,y)∈T

(∑
e∈E

c−e xe +

a∑
e=1

(de − da)xe

∣∣∣∣∣∑
v∈V

p−v (1− yv) +

b∑
v=1

(dv − db)(1− yv) + ΓV db ≤ Q.

)

Lemmas 1-3 are particulary useful when polynomial-time algorithms are available for graphs with
some special structures (see, e.g., Corollary 1). We want to point out that for the case of general
graphs, where the deterministic counterparts are NP-Hard, branch-and-cut algorithms like the ones
presented in this paper remain a preferable option.

Corollary 1. If the input graph is a tree, a series-parallel graph or a 2-tree, the robust counterpart of
the PCStT can be solved in O(|V |3) time.

Proof. The deterministic PCStT can be solved in O(|V |) time on trees (see [27]). A series-parallel graph
can be completed in linear time into a 2-tree. [1] have shown that the PCStT can be solved in O(|V |)
time on 2-trees. We complete the proof by combining these results with the result of Lemma 1.

7. Conclusions and Future Work

In this paper we studied the PCStT and its budget and quota constrained variants assuming
interval uncertainty associated with their input parameters. To include and handle this uncertainty
we considered the B&S robust optimization (RO) approach, formulating the robust counterpart of
the problems by means of different mixed integer problems. Specific branch-and-cut algorithms were
implemented to solve these problems. The algorithms were tested on a set of benchmark instances
generated from state-of-the-art instances of the deterministic version of the problem. The obtained
computational results suggest that: (1) the RO model allows to produce different robust solutions for
different levels of conservatism. These solutions provide a protection in terms of the relatively small
increase of the solution cost in presence of an increased uncertainty. This important feature of the
model offers to the decision maker more flexibility to choose a solution according to her/his perception
of the uncertain state of the decision-making environment. (2) The algorithmic performance strongly
depends on the model parameters, ΓE and ΓV (and B in the case of the Robust B-PCStT). There is a
strong correlation between the size of the optimal solution and the corresponding values for B, ΓE and
ΓV . (3) Among three possibilities to deal with robustness in a MIP model, the addition of a compact
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set of constraints right at the beginning of the Branch-and-Bound process, outperforms the remaining
two (cutting planes) approaches. This can be explained by the fact that from the beginning of the
optimization process the underlying LP contains complete information regarding the robustness of the
solution, which allows CPLEX to exploit its powerful preprocessing, heuristics and MIP algorithms,
while this is not possible for the cutting plane approaches.

As possible directions for future work, it would be interesting to develop algorithms for 2-trees
(or, graphs with a bounded tree-width, in general) that improve the trivial running times obtained
by running O(|V ||E|) iterations of the deterministic problem. In addition, a strategy combining the
results described in Section 6 and the utilization of further polyhedral techniques might improve the
results we obtained in terms of algorithmic performance.
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